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Abstract

This paper provides a novel characterization of time-varying heterogeneous earn-

ings risk through a Markov process with heterogeneous transition probabilities.

The resulting earnings process allows for a richer notion of earnings risk hetero-

geneity than previously studied by the literature. Assumptions are derived under

which a combination of savings and earnings data can be used to identify the earn-

ings process parameters. Alternatively, a narrower interpretation of earnings risk

can be adopted, limiting risk heterogeneity to heterogeneous variances of earnings

shocks, such that the earnings process is identifiable from earnings data only. This

gives rise to two identification strategies. Applying both strategies to the Survey

of Income and Program Participation dataset shows that individuals face consider-

able inequality of earnings risk. High-risk states are found to be temporary, while

low-risk states are persistent. Comparing both strategies shows that only allowing

for variance heterogeneity is too restrictive, and a rich notion of risk is required

to capture the joint dynamics of individuals’ savings and earnings.
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1 Introduction

Earnings risk affects the consumption and saving choices individuals make. As such,

improving our understanding of earnings risk can help explain wealth and consumption

inequality, and the response of individuals to tax or insurance policies. This paper asks

whether and to what extent individuals are heterogeneous with respect to their earnings

risk, and how this risk changes over time. In answering this question, earnings risk is not

limited to a selected number of moments. Rather, individuals are heterogeneous with

respect to the entire probability distribution of earnings shocks. To achieve this, this

paper proposes an earnings process where individuals can transition between discrete

earnings levels through a Markov process with heterogeneous transition probabilities.

Given the discrete nature of its state space, the proposed earnings process can readily

be incorporated into a general equilibrium heterogeneous agent model with incomplete

asset markets, such that the welfare and distributional effects of earnings risk hetero-

geneity can be evaluated. The paper derives two identification strategies and estimates

the parameters of the earnings process through indirect inference, using the Survey of

Income and Program Participation (SIPP), a panel data set for earnings and savings of

individuals in the United States.1

The earnings process proposed in this paper is not identifiable from a panel of just

earnings data. Therefore, the paper explores two identification strategies: (i) using ad-

ditional information, and (ii) restricting the earnings process. The first strategy exploits

the information contained in the savings decisions of individuals. A savings panel can

aid identification because individuals facing different earnings processes also make dif-

ferent saving decisions. I use this idea to non-parametrically assign labels to individuals.

These labels reflect individuals’ earnings and savings levels relative to individuals with

similar observables and previous period’s savings levels. Conditional on these observ-

ables, individuals with relatively low savings likely face a different earnings risk than

individuals with relatively high savings, and, as such, this procedure groups individuals

with similar earnings risk together. Next, an auxiliary transition matrix is constructed

describing the transitions of individuals between these assigned states over time. I de-

rive conditions under which this non-parametric labelling procedure correctly assigns

individuals into the same risk states. These conditions relate to the way earnings risk

affects saving decisions, and bear some similarity to the assumptions on instrumental

1Indirect inference is a simulation-based estimated method by Smith, Jr. (1993) and Gourieroux,
Monfort, and Renault (1993).
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variables in treatment effect estimation.2 If these conditions are satisfied, the auxiliary

transition matrix is already a consistent estimator of the transition probability matrix

characterizing the earnings process of interest. For better finite-sample properties and

less reliance on these conditions, indirect inference is used to find the earnings process

that matches the joint dynamics in savings and earnings summarized in this auxiliary

transition matrix as closely as possible.

The second identification strategy shows how the earnings process parameters can be

identified using only earnings data when the earnings process is restricted. The restric-

tion this paper considers is to assume that individuals are heterogeneous with respect

to the variance of the probability distribution from which earnings shocks are drawn,

rather than assuming heterogeneity with respect to the entire probability distribution.

Individuals then transition between different discrete earnings and variance levels, and I

assume these transitions are governed by a (state-space) discretized generalized autore-

gressive conditional heteroskedasticity (GARCH) process.3 To achieve this, this paper

proposes an improved method to discretize ARCH-type processes as a Markov chain

with a discrete state space, adapted from Duan and Simonato (2001).4 Through the

restrictions implied by an ARCH-type process, identification is aided, because only the

parameters of this restricted process have to be estimated, rather than all transition

probabilities of the Markov process. Similar to the first approach, I estimate the param-

eters of the earnings process using indirect inference, but, instead of matching the joint

dynamics in savings and earnings using the unrestricted earnings process, I only match

the dynamics in earnings, using a discretized AR(1)-GARCH(1,1) model.

To get a sense of the restrictiveness of only allowing for heterogeneous variances, rather

than unrestricted heterogeneous transition probabilities, the estimates resulting from

the two identification strategies (i) and (ii) are compared. I also consider a combination

of both identification strategies, where the GARCH-restrictions are imposed on the

estimates obtained from the first identification strategy.

In addition to the theoretical contributions described above, this paper shows five main

empirical results. The first result relates to the patterns in saving behavior uncovered by

the non-parametric analysis of the SIPP data. I find large dispersion in savings levels of

2As first derived in Imbens and Angrist (1994).
3Introduced by Engle (1982) and generalized by Bollerslev (1986).
4The method of Duan and Simonato (2001) is applied in an option-pricing setting, and their method

generates highly sparse transition matrices. I propose an adaption to their method, such that the
resulting Markov process is more likely to be stable, and as such compatible with general equilibrium
models requiring a stable Markov process. I furthermore introduce an extension that can accommodate
transitory earnings shocks.
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individuals, even after controlling for last period’s savings levels and a large set of con-

trol variables. Furthermore, the incidence of transitions between low- and high-savings

states implied by the auxiliary transition matrix of the first identification strategy re-

veals a strong reversion in saving behavior towards low-savings states. To explain these

empirical patterns in saving behavior, a source of time-varying unobservable heterogene-

ity is needed. This motivates the earnings process considered in this paper, modeling

time-varying heterogeneous earnings risk.

Second, the earnings process parameter estimates from both identification strategies

reveal how individuals face not only large heterogeneity in earnings levels, but also in

earnings risk. The estimates indicate the existence of low and high-risk states, and

these states are, among others, distinguishable by their large differences in job-loss

probabilities. Individuals in high-risk states are four to ten times more likely to become

unemployed next year than individuals in low-risk states.

Third, the estimates from both identification strategies indicate that there is a difference

in the dynamics of high- and low-risk states. High-risk states are unstable; in the absence

of (large) shocks to their earnings level, individuals are likely to move to a low-risk state

next period. In contrast, low-risk states are persistent. This strong reversion towards

low-risk states can explain the patterns in saving behavior found in the non-parametric

analysis described under the first main result.

The fourth main result relates to the restrictiveness of this discretized GARCH process

used in the second identification strategy. Limiting the notion of earnings risk to a

time-varying variance by imposing the restrictions of a discretized GARCH process is

highly restrictive. This can, for example, be seen by enforcing the restrictions of the

second identification strategy on the estimates of the first identification strategy. Doing

so leads to a deterioration in the indirect inference objective function of 200%. This

underscores the necessity of a rich notion of risk heterogeneity, as proposed by this

paper. Interestingly, I find that the GARCH-process estimates are different from what

is typically observed in data on financial returns, a common application for GARCH

models. While GARCH models for the volatility of financial returns tend to find a low

sensitivity to shocks and high persistence of the variance component in order to capture

the long periods of high volatility in financial data, the (discretized) GARCH model for

earnings risk implies strong mean reversion (low persistence) and a high sensitivity to

shocks, in order to match the strong reversion towards the low risk states.5

5Common parametrizations of GARCH models are discussed in, for example, Zivot (2009).
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Finally, heterogeneous earnings risk has implications for the estimated general equilib-

rium model. A model with earnings risk heterogeneity generates a savings distribution

with a larger variance, and attributes a higher probability to the right tail of the distri-

bution than a model without earnings risk heterogeneity. The welfare gain of eradicating

earnings risk heterogeneity, computed by comparing the consumption increase needed

to make individuals, before they know their risk types, indifferent between an economy

with and without earnings risk heterogeneity, equals 0.51%.6

In the next subsection, I discuss the literature this paper relates and contributes to. In

Section 2, I present the data and the non-parametric analysis that provides evidence

for the presence of heterogeneous time-varying earnings risk. Section 3 describes the

general equilibrium model, the earnings process with heterogeneous earnings risk, and

its relationship to ARCH-type processes and other earnings processes proposed in the

literature. In Section 4, I derive results related to the identification strategies of this

paper. In Section 5, I describe the econometric approach used by this paper, followed

by the results in Section 6. Section 6 also analyzes the general equilibrium effects of

heterogeneous earnings risk. Section 7 concludes.

Related literature The earnings process proposed by this paper can subsume the

properties of multiple earnings processes previously considered in the literature, but

is more general. This includes earnings processes with heterogeneous variances as in

Meghir and Pistaferri (2004), Jensen and Shore (2011), Botosaru and Sasaki (2018),

Botosaru (2020), and Almuzara (2021), heterogeneous job-loss and job-finding proba-

bilities (Guvenen, Karahan, Ozkan, and Song, 2021; Mueller, Spinnewijn, and Topa,

2021), heterogeneous persistence (Arellano, Blundell, and Bonhomme, 2017; Guvenen et

al., 2021), as well as skewness and other non-normalities, as in Busch, Domeij, Guvenen,

and Madera (2021) and Guvenen et al. (2021). The process also relates to models of

heterogeneous earnings expectations (as in, e.g., Stoltenberg and Singh (2020)), where it

is assumed individuals have heterogeneous information about the same earnings process;

in contrast, I assume the processes itself are heterogeneous.

Most closely related within this literature are the papers by Guvenen et al. (2021) and

Arellano et al. (2017). Guvenen et al. (2021) model earnings dynamics over the lifecycle

using a persistent-transitory model with mixtures of normals and state-dependent em-

ployment risk. My results confirm the importance of heterogeneity in persistence and

6To put this into context, the welfare gains from eliminating earnings risk heterogeneity are similar
in size to, for example, the average welfare effects of eliminating business cycles (Krusell, Mukoyama,
Şahin, and Smith Jr., 2009) and the welfare effect of the increase in income inequality seen during the
period of 1972-2000 (Krueger and Perri, 2004).
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heterogeneous job-loss probabilities highlighted in their paper. Arellano et al. (2017) also

focuses on heterogeneous persistence of earnings shocks. There are several important dif-

ferences between their approaches and mine, one being the continuous state space of their

earnings processes. Guvenen et al. (2021) suggest using existing discretization methods

such as by Tauchen (1986) to discretize the state-space, albeit with an irregular and

large grid. Yet, it is unclear whether this discretized earnings process can fully accom-

modate heterogeneous persistence and heterogeneous job-loss probabilities. In addition,

the large number of grid points required to do so increases the computational burden

of solving the macro model that would use this earnings process. The discrete Markov

chain with heterogeneous transition probabilities in my paper can accommodate hetero-

geneous persistence and heterogeneous job-loss probabilities even with a small number

of grid points. Compared to the approaches of both Guvenen et al. (2021) and Arel-

lano et al. (2017), my earnings process accommodates richer heterogeneity; even when

conditioning on previous earnings levels (and age), individuals are heterogeneous with

respect to the earnings process they face for next period. Furthermore, my proposed

identification strategy also exploit the information that savings decisions contain on the

earnings processes individuals face, while these papers only use earnings data to estimate

their earnings process.

In fact, the majority of papers studying earnings processes are descriptive and aim to

estimate properties of earnings processes using earnings data only. There are a few

papers that do look at income data and savings (or consumption) panel data jointly.

These include, e.g., Guvenen and Smith (2014), and Alan, Browning, and Ejrnæs (2018),

but there are important differences to my approach. The process considered by Guvenen

and Smith (2014) restricts how individuals move from one expectation on future earnings

to another by assuming individuals update their expectations through Bayesian learning,

while my process does not restrict how inidividuals form expectations. Alan et al. (2018)

estimate a flexible earnings process, but, in contrast to this paper, do not consider time-

varying sources of unobserved heterogeneity. Furthermore, both papers consider a partial

equilibrium setting, while I consider a general equilibrium.

The improved discretization method this paper proposes for GARCH-type processes

contributes to the literature on the discretization of continuous-state-space stochastic

processes, with earlier contributions of Tauchen (1986) and Rouwenhorst (1995) for the

discretization of AR(1) processes. Recently, De Nardi, Fella, and Paz-Pardo (2020)

proposed a simulation-based discretization method for the specific earnings process of
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Arellano et al. (2017). My proposed earnings process is also in line with papers that aim

to directly estimate a discrete process, rather than discretizing a continuous process,

such as, e.g., Castaneda, Diaz-Gimenez, and Rios-Rull (2003), and Druedahl and Munk-

Nielsen (2020). Both, however, do not consider unobservable heterogeneity.

The identification results I derive for the proposed earnings process relate to the discus-

sion on the identification of latent-variable models such as Hidden Markov Models, see,

e.g., Bonhomme, Jochmans, and Robin (2016, 2017). An important distinction between

the latent-variable models they consider and the earnings process proposed in my pa-

per is that I assume that earnings levels follow a first-order Markov process, even when

conditioning on the latent variable, while Hidden Markov Models assume that condi-

tional on the latent variable, the observed variable is no longer first-order Markov. My

proposed process can generate richer dynamics, but it complicates identification, and

requires a novel identification strategy, which I provide in this paper.

2 Data and non-parametric analysis

This section presents the data, and a non-parametric analysis of the Survey of Income

and Program Participation (SIPP) dataset. In this analysis, I first demonstrate that

there is a large role for unobserved heterogeneity in explaining saving choices. Next,

I show that part of this unobserved heterogeneity must be time-varying. I do this

by constructing an auxiliary transition matrix, describing the dynamics of individuals’

earnings and savings levels. The earnings process proposed and estimated by this paper

aims to match the dynamics found by this non-parametric analysis.

The SIPP data is discussed in the next subsection, followed by the non-parametric

analysis. In the last subsection, some additional data sources are described that are

used to estimate the general equilibrium model presented in Section 3 of this paper.

2.1 Survey of Income and Program Participation

The panel data used in this paper is the SIPP dataset of the United States Census

Bureau. This survey follows individuals and households for a selected number of years

through a number of interviews over this period. This paper uses the 2014 wave, con-

taining four annual interviews and ending in 2017.
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Variables of interest The main variables of interest are person-level measures for

employment status, earnings, and net worth. The earnings variable is defined as the

sum of monthly earnings over all jobs held.7 Net worth is the sum of the values of all

assets minus the sum of the liabilities for a person.8

The analysis also relies on a set of control variables, including data on age, family

composition, gender, education, region of residence, having health insurance, ethnicity,

living in a metropolitan area and whether the individual owns or rents a house. For

more details on the SIPP dataset and the exact variables and transformations used, see

Appendix Section A.1.9 This appendix section also provides several summary statistics,

see Table A1.

Frequency Although the SIPP asks its respondents to report their earnings at a

monthly frequency, these data suffer from seam bias, having little variation in earnings

reported during one interview, and large changes between measurements across different

interviews (Moore, 2008). Furthermore, individuals report their net worth at a yearly

frequency, at the value of the last day of the preceding year. Therefore, I aggregate

the data to a yearly frequency. For earnings, the average earnings over each year are

used.10 For the unemployment status, an individual is labeled as unemployed in one

year if she was without any job at least six months of that year. This is a relatively

strict interpretation of unemployment and ignores short unemployment spells.

Sample selection criteria Self-employed individuals are omitted, because they tend

to have very different dynamics in savings and earnings (Elkhishin, West, and MacDon-

ald, 2019). I also omit individuals outside of the labor force due to child birth, disease,

disability, retirement, study, or other reasons not to work other than not being able to

find a job. Only individuals aged between 18 and 67 are considered.

7With a maximum of seven different jobs in a specific month.
8Assets include retirement accounts, interest-earning assets, other income-generating assets such

as stocks, mutual funds or rental properties, and other assets such regular checking accounts, primary
residence, other real estates, vehicles, collectibles, other loans owned to the individual, and owned
businesses. Liabilities include debts secured by assets such as mortgage debts, vehicle debt, debts on
businesses, owned, as well as unsecured debts such as credit card debt, student loans and other debts.

9For a complete description, consider the SIPP manual, available at https://www2.census.gov/

programs-surveys/sipp/tech-documentation/methodology/2014-SIPP-Panel-Users-Guide.pdf.
10Note that for the analysis below, what is important are the earnings levels relative to other indi-

viduals, rather than the absolute values.
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2.2 Non-parametric analysis of the dispersion in saving decisions

Incomplete-markets models with unobserved heterogeneity differ from models without

unobserved heterogeneity, such as, for example, the heterogeneous agent models of Aiya-

gari (1994) or Krusell and Smith (1997) that model uninsurable income shocks, because

these models make different predictions on the saving behavior of individuals. In a model

with only income heterogeneity (or any other observed heterogeneity), individuals that

are homogeneous with respect to the current period’s earnings and savings levels will

make the same savings choice next period. In a model with unobserved heterogeneity,

individuals with similar earnings and savings levels that differ with respect to this unob-

served heterogeneity make different saving choices. For example, in the case of earnings

risk heterogeneity, conditional on the current earnings and savings levels, individuals

with a low probability of becoming unemployed will – for typical model parametriza-

tions – save less compared to individuals with higher job loss probabilities, as the latter

will want to maintain a larger buffer for potentially harder times to come.

A non-parametric analysis of the data can empirically motivate the need to incorporate

unobserved heterogeneity when explaining saving decisions. For this purpose, I divide

all employed individuals in the sample into 20 groups using k-means – a clustering

algorithm – based on two variables: their net worth level on December 31st, 2013 and

their earnings over 2014. Consequently, each group (cluster) contains individuals that

are similar with respect to these two variables. Under the assumption that there is no

additional source of heterogeneity, these individuals should have similar net worth levels

on December 31st, 2014. The overall level of net worth within these groups can shift

up or down, but the dispersion should remain similar to the dispersion of net worth on

December 31st, 2013.

Figure 1a visualizes the 20 clusters identified by the k-means algorithm in a scatter plot,

with the net worth levels on December 31st, 2013 on the y-axis and earnings over 2014

on the x-axis. Next, Figure 1b visualizes these same clusters, but instead of using the

net worth at December 31st, 2013, it plots the net worth at December 31st, 2014 on the

y-axis.
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Figure 1: k-means analysis with 20 clusters applied to the (standardized and log(1 + x)-
transformed) person-level average monthly earnings over 2014 and net worth on Dec-31-2013.
The left panel depicts a scatter plot of net worth on Dec-31-2013 (time t) and average monthly
earnings in 2014, the right panel uses net worth on Dec-31-2014 (time t+ 1). Clusters a and b
represent two isolated clusters also depicted in Figures 1a-1b. Cluster a is cluster 14 in Figure
2, cluster b is cluster 18.
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(c) Cluster a, net worth at time t
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Figures 1c-1f focus on two specific clusters and display the large increase in dispersion

within these groups going from the end of 2013 to the end of 2014. Figure 1 shows how

individuals with similar saving levels at the end of 2013 and earnings over 2014 do not

have similar saving levels for next period. This is confirmed by Figure 2; this figure

displays the variance of the net worth on December 31st, 2013 and December 31st, 2014,

respectively, for the individuals in all 20 clusters and shows that the variance increases

are typically large.

Figure 2: Variance of the log(1+net worth) between individuals in each of the 20 k-mean
clusters (labeled on the x-axis) of Figure 1 in Dec-31-2013 (blue) and Dec-31-2014 (red).

Evidently, various factors can lead to this large increase in the dispersion of net worth

levels depicted in Figure 1, such as differences in age, gender, or education level, but

also whether people own a house and are hit by a local housing market shock. For

that reason, the analysis that generated Figure 2 is repeated, but now accounting for

all control variables described in Data section 2.1. If, after controlling for this wide set

of observable characteristics, the dispersion in next period’s net worth growth is still

large, it suggests that the large differences in net worth are not only due to observable

differences between individuals, and that unobserved heterogeneity plays a potentially

important role in explaining this dispersion.

To control for these observable characteristics, I use the approach of Bonhomme, Lamadon,

and Manresa (2021) to account for individual observable heterogeneity by applying k-

means to a large set of control variables. Specifically, I apply k-means clustering to the

set of control variables to construct groups of individuals that are similar with respect

to a set of observables. I refer to the resulting groups of similar individuals as measured

through their observable characteristics as a “control cluster” below. The advantage

of this approach, compared to the often-used approach where the variables of interest

(income and savings) are first regressed on the control variables, is that no functional
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form has to be imposed between the variables of interest and the control variables. In-

stead, the analysis groups similar individuals together and any subsequent analysis is

performed separately for each subgroup.

I use this method to construct 30 control clusters, and, after that, I create 20 subclusters

for each control cluster, again based on earnings over 2014 and net worth on December

31th, 2013. These subclusters thus group individuals together that have similar control

variables, as well as similar (2014) earnings and (end of 2013) savings levels. Next, Fig-

ure 3 shows the variances of the net worth at December 31th, 2013 versus December 31th,

2014 for all 20 subclusters of two of these control clusters. As can be seen, even when

controlling for potentially important determinants of heterogeneity in next period’s sav-

ings, dispersion in next period’s savings is large within the different clusters, suggesting

an important role for unobserved heterogeneity in explaining individuals’ saving choices.

The figure description shows that the control clusters are quite specific, implying that

the control clusters take care of most of the observed heterogeneity in the sample.

Figure 3: Variance of the log(1+net worth) between individuals in each of the 20 k-means
clusters (labeled on the x-axis) on Dec-31-2013 (blue) and Dec-31-2014 (red), for two different
control clusters (see note below for details).

(a) Control cluster a
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The individuals in control cluster a are all male, on average 54 years old, all have a college degree,

85% identify themselves as white, 98% are non-renter and 77% live in the South or South East of the

US, 60% live in a Metropolitan area, and 80% have health insurance. Only 4% still take care of a kid

younger than 18. On the other hand, individuals in control cluster b are all females, on average 26

years old, 57% have a college degree or less, 82% identify themselves as white, 99% live in the South,

84% have health insurance, 54% live in a Metropolitan area, 89% are non-renter and 78% have kids of

18 or younger to look after.

Note that these are different clusters than in Figures 1-2, because the methodology for Figure 3 requires

constructing control clusters first, after which the methodology used for Figure 2 is applied to each

control cluster separately.
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2.3 Non-parametric transitions in earnings and savings

Next, a second non-parametric approach is used, to demonstrate that the unobserved

heterogeneity driving similar individuals to make different saving choices has a time-

varying component. This is done by characterizing the transitions of individuals between

groups of high and low savings – relative to individuals with similar controls, earnings

and previous period’s savings – and high and low earnings levels – relative to individuals

with similar controls.

In formal notation, denote by Ŝi,t the state of an individual i at time t. First, k-means

is used to construct a set of control clusters c ∈ C = {1, ..., C} with individuals that are

comparable with respect to the control variables. C is set to 15. For all individuals that

are unemployed at time t, set Ŝit = 0. Next, group all employed individuals at each

period t into two earnings groups g ∈ G = {1, 2} using the following rule: for individual

i in control cluster c ∈ C, g = 1 if his or her earnings at time t are below a threshold

THe
c,t, and individual i of control cluster c ∈ C falls in group 2 if his or her earnings are

above this threshold. The threshold THe
c,t is chosen such that 70% of all individuals in

control cluster c at time t fall in group g = 1, and all other individuals of this cluster

fall in group g = 2.

Next, each group g ∈ G within a control cluster c is divided into b ∈ B = {1, ..., B}
savings bins, where B should be chosen such that each bin has a sufficient number of

individuals, yet the range of savings within a bin is small. In this case, B is set to

60. The bin-limits are chosen using k-means applied to the current savings level (at

the start of year t). This results in groups labeled (c, g, b) ∈ (C × G × B), where the

composition of these groups can vary at each point in time. These groups have similar

control variables (through control cluster c), earnings over period t (through the wage

group assignment g ∈ G) and savings up to time t (through bin assignment b ∈ B).

Then, for each group (c, g, b) at time t, a threshold THs
(c,g,b),t is chosen that splits the

groups into two based on next period’s savings, that is, savings at the beginning of time

t+ 1. The mean savings of next period of this subgroup (c, g, b) is used as choice for the

threshold THs
(c,g,b),t. Overall, this procedure results in an N × (T − 1) panel of imputed

states Ŝit for t = 2, ..., T and n = 1, ..., N .
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In equations:

Ŝit =



0 if uit = 1,

1 if uit = 0, wit < THe
c,t, and kit+1 ≤ THs

(c,1,b),t,

2 if uit = 0, wit < THe
c,t, and kit+1 > THs

(c,1,b),t

3 if uit = 0, wit ≥ THe
c,t, and kit+1 ≤ THs

(c,2,b),t

4 if uit = 0, wit ≥ THe
c,t, and kit+1 > THs

(c,2,b),t,

(1)

if individual i is in control cluster c and savings bin b at time t. uit is the employment

indicator of the individual, where uit = 1 if the individual is unemployed according to

the definition used by the employment panel, wit are the average monthly earnings of

individual i at year t, and kit+1 are the savings of the individual at the end of year t.

The reason to use cluster-controls in this analysis is because it is control-specific whether

one’s earnings are considered high or low, and whether savings are high or low. One of

the advantages of the approach presented below is that this labeling method is robust to

aggregate shocks affecting all individuals’ savings levels, as well as to local group-specific

shocks (e.g. a shock that hits all home-owners in the South of the US).

Next, one can compute the frequency of transitions between these five states. The ele-

ments of the transition matrix are then defined as the total number of times individuals

moved from the (imputed) state Ŝit = k to Ŝi,t+1 = l, divided by the total number of

periods individuals were in (imputed) state Ŝit = k, for all combinations of k and l:

P̂kl =

∑N
i=1

∑T−1
t=1 I(Ŝit = k, Ŝit+1 = l)∑N
i=1

∑T−1
t=1 I(Ŝit = k)

.

This results in the following transition matrix, given in Table 1.

According to this division of households into five groups and introducing a somewhat

simplified interpretation, 3% of individuals are unemployed for at least half of the year,

whereas 46% are in state 1 (low earnings, low relative savings), 19% in state 2 (low

earnings, high relative savings), 22% in state 3 (high earnings, low relative savings) and

10% are in state 4 (high earnings, high relative savings).11 As an example of how to

interpret the transition matrix P̂non-param, of the individuals that were unemployed for at

least 6 months in the previous year, 41.5% are unemployed for at least 6 months in the

next year as well. 50% of the individuals that were unemployed for at least 6 months

are relative low earners in the next year,12 of which 71% is a relative low saver.13

11These follow from computing the stationary distribution of the transition matrix in Equation (1).
1235.5% + 14.5% = 50%, consider the second and third input of the first row.
1335.5%/(50%)=71%.
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Table 1: Auxiliary transition matrix describing the relative frequency of transitions between the
five states defined in Equation (1).

Transition probabilities Unemployed Low earnings High earnings

(from row/to column) Low saver High saver Low saver High saver

Unemployed 0.415 (0.024) 0.355 (0.027) 0.145 (0.020) 0.067 (0.014) 0.018 (0.008)

Low earnings
Low saver 0.020 (0.002) 0.607 (0.006) 0.280 (0.005) 0.063 (0.004) 0.030 (0.002)
High saver 0.017 (0.003) 0.663 (0.010) 0.183 (0.009) 0.107 (0.007) 0.030 (0.004)

High earnings
Low saver 0.007 (0.001) 0.159 (0.008) 0.100 (0.005) 0.486 (0.009) 0.248 (0.007)
High saver 0.008 (0.002) 0.150 (0.012) 0.049 (0.007) 0.602 (0.016) 0.192 (0.012)

Stationary distribution 0.031 0.458 0.193 0.219 0.099

Bootstrapped standard errors are provided in parentheses, based on 1999 case-sampled bootstrap samples.

The transition matrix in Table 1 shows that these five groups are heterogeneous with

respect to their transition probabilities, indicating the existence of five disparate groups.

Furthermore, assuming that different saving choices are indicative of the differences

in the amount of risk faced by the individuals, the transition matrix contains non-

parametric evidence for the existence of time-varying heterogeneous earnings risk. For

example, consider the large flows of individuals within the same earnings level states.

Conditional on being in the high-earnings-high-savings group in the previous period,

60.2% of individuals move to the high-earnings-low-savings state in the next period.

Similarly, for the low-earnings-high-savings individuals, the probability of moving to the

low-earnings-low-savings state next year is 66.3%. This shows that, interpreting relative

high savings as high risk, individuals that stay within the same earnings category for

longer than one year perceive their risk to be lower and save less next period.

Summarizing, applying the non-parametric analysis outlined above on the SIPP dataset

provides evidence of unobservable time-varying heterogeneity that affects the saving

choices individuals make. The dynamics in savings indicate that non-time-varying unob-

servable heterogeneity is not sufficient, as studied, for example, in models with heteroge-

neous preferences, as in, Calvet, Campbell, Gomes, and Sodini (2021), or heterogeneous

non-time-varying variances of earnings shocks, as in Botosaru and Sasaki (2018), Boto-

saru (2020), and Almuzara (2021). Therefore, in the next section, this paper proposes

and estimates an earnings process with time-varying unobservable heterogeneity that

can match the earnings and saving dynamics of Table 1.
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2.4 Other data used for estimation

In addition to the panel data set described above, the estimation of the general equilib-

rium model that will be described in the next section requires additional data sources. In

particular, to estimate the firm-side parameters of this model, I use proxies for aggregate

output, aggregate depreciated capital, and aggregate wages. Furthermore, I use data for

the interest rate (per annum), the unemployment rate and the average tax rate. Details

on the variables used are in Appendix A.2. The proxies for the variables are visualized

in Figure A1 for the time-period 1984-2019 in the same Appendix section.

The proxy used for interest rates is the discount rate used by the Federal Reserve. Other

proxies for the interest rates can also be considered, but the choice of the proxy is unlikely

to affect the overall dynamics in earnings risk found in this paper, and will mainly affect

the estimate of the time discount rate (introduced below). Regarding the proxy for

the tax rate, the following should be noted. The government that will be presented in

the next section only uses taxes for the payment of unemployment benefits, as there

are no other government expenditures in the model. For that reason, I approximate

the average tax rate by the unemployment insurance expenditures of the government

divided by the total earnings of employees. Given the model assumption of a balanced

government budget at each point in time, this approximation is appropriate. In real life,

governments (should) smooth their taxes over the business cycle.14

3 Heterogeneous Earnings Risk Model

The model with heterogeneous earnings risk I propose falls into the category of heteroge-

neous agent models with idiosyncratic risk, in the line of Aiyagari (1994). In the model,

ex-ante identical households are ex-post heterogeneous due to incomplete markets in

the form of a borrowing constraint, and the idiosyncratic shocks they experience over

their lifetime. Whereas models of household heterogeneity as in Aiyagari (1994) focus

on idiosyncratic shocks to earnings levels, in the heterogeneous earnings risk model I

propose, workers face a second source of idiosyncratic variation. As a result, individuals

are heterogeneous both with respect to their earnings levels, and the probabilities of

facing certain future earning shocks. A government keeps a balanced budget while tax-

14Similar to the proxy used for the interest rate, the approximation of the tax rate is, given the
identification strategy that the paper uses, not going to affect the dynamics of the earnings risk. It
will, however, affect the unemployment benefits in the model, and, consequently, the impact of being
unemployed on consumption and saving decisions.
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ing labor earnings and providing unemployment insurance, individuals provide labor for

a representative firm producing consumption goods. Markets clear, implying a general

equilibrium framework.

First, the earnings process proposed by this paper is described, followed by its relation-

ship to other earnings processes proposed in the literature. After that, further details

on the general equilibrium model are provided.

3.1 An earnings process with heterogeneous and time-varying earnings risk

A common way to model earnings processes in general equilibrium models is through a

discrete-time first-order Markov chain. Let Y = {ȳ(1), ..., ȳ(L)} denote the set of dis-

cretized earnings levels, with L distinct levels. Denote the corresponding random variable

at time t as Yit with realizations yit ∈ Y . Transitions between the different earnings lev-

els are governed by a transition probability matrix Q, with elements qij, i, j = 1, ..., L,

representing the probability of transitioning from current earnings level Yit = ȳ(i) to

earnings level Yit+1 = ȳ(j) next period. That is, qij = P (Yit+1 = ȳ(j)|Yit = ȳ(i)).

The recursive equilibrium solution of this general equilibrium model is unique and exists

if our earnings process satisfies two conditions: (i) ergodicity and (ii) stationarity (Stokey,

Lucas Jr., and Prescott, 1989, Chapter 9). Ergodicity means that each state in Y should

be reachable from any other state in a finite number of steps. Stationarity refers to

the existence of a stationary distribution qstat that remains unaffected after applying a

matrix multiplication with Q: qstat = qstatQ. If both conditions are satisfied, the Markov

chain (Y , Q) is called stable.

To obtain heterogeneous transition probabilities for individuals with the same earnings

level, I propose to extend the state space with the random variable ξt, which has real-

izations from the set X = {ξ̄(1), ..., ξ̄(M)}, where M is the number of discrete levels.

The interpretation of ξ is that this is an additional source of heterogeneity; people differ

not only with respect to their earnings levels Y , but also with respect to the variable

ξ. The state an individual is in at time t is then characterized by random variables

(Yit, ξit) = (ȳ(j), ξ̄(l)) ∈ (Y × X ). The two variables Y and ξ can be dependent. The

transitions are therefore governed by an extended transition probability matrix P , where

p(i,k);(j,l) is the probability of transitioning from state (ȳ(k), ξ̄(m)) to (ȳ(l), ξ̄(n)). That

is,

p(k,m);(l,n) = P (Yit+1 = ȳ(l), ξit+1 = ξ̄(n)|Yit = ȳ(k), ξit = ξ̄(m)). (2)

As above, this Markov chain ((Y × X ), P ) should be stable.
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Extending the state space with ξ brings about that two individuals with the same current

level of earnings ȳ(i) have different transition probabilities to next period’s earnings levels

ȳ(k) ∈ Y , if these individuals differ with respect to the current value of ξ. This results in

a rich notion of earnings risk heterogeneity; individuals differ with respect to the entire

probability distribution of future earnings, rather than only a limited set of moments.

Furthermore, the process allows for time-varying earnings risk, even in the absence of

changes in the earnings levels, as individuals can transition between different values of

ξt ∈ X , and each state in X potentially corresponds to different transition probabilities

to next period’s earnings levels. The implications of this process are made intuitive

through Example 1.

Example 1. Consider a setting where L, the number of discrete earnings levels, equals

2, and M , the number of discrete levels of ξ, also equals 2, so that the total number of

states of the extended state space equals 4:

(Y × X ) = {(ȳ(1), ξ̄(1)), (ȳ(1), ξ̄(2)), (ȳ(2), ξ̄(1)), (ȳ(2), ξ̄(2))}.

Assume ȳ(1) < ȳ(2). The transition probability matrix of moving from one state to the

next, consistent with the notation in Equation (2) is given by P in Equation (3), with

a concrete example in Pe1:

P =


p(1,1);(1,1) p(1,1);(1,2) p(1,1);(2,1) p(1,1);(2,2)

p(1,2);(1,1) p(1,2);(1,2) p(1,2);(2,1) p(1,2);(2,2)

p(2,1);(1,1) p(2,1);(1,2) p(2,1);(2,1) p(2,1);(2,2)

p(2,2);(1,1) p(2,2);(1,2) p(2,2);(2,1) p(2,2);(2,2)

 , Pe1 =


0.90 0.01 0.08 0.01

0.01 0.30 0.60 0.09

0.01 0.01 0.08 0.90

0.50 0.01 0.09 0.40

 (3)

As can be seen, two individuals i and j with current earnings yit = yjt = ȳ(1) can face a

different earnings process for next period, if individual i has ξit = ξ̄(1), while individual

j has ξjt = ξ̄(2). Consider the concrete example in Pe1. An individual with (ȳ(1), ξ̄(1))

faces low upward risk and will remain in the same state with probability 0.9, while an

individual with (ȳ(1), ξ̄(2)) actually has a substantial probability of moving to the higher

income state ȳ(2) (0.6+0.09=0.69). For individuals with yit = ȳ(2), individuals with ξ̄(1)

have low downward risk, while individuals with (ȳ(2), ξ̄(2)) have a 0.51 probability of

moving to a lower earnings level. /

In the next subsections, the relationship of this general earnings process to other pro-

cesses proposed by the literature is discussed. In particular, I discuss how the earnings

process ((Y × X ), P ) can be mapped into (i) a GARCH-type process, (ii) an earnings
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process with heterogeneous (non-time-varying) variances, (iii) a model with heteroge-

neous job-loss and job-finding probabilities, (iv) an earnings process with skewness and

other non-normalities, (v) an earnings process with heterogeneous and time-varying per-

sistence, and (vi) a model with heterogeneous signals about the earnings process. The

first process will be discussed in more detail, as this process will be estimated and com-

pared to the unrestricted process in the Results section of this paper. In Section 4, the

identification of the parameters of this process is discussed.

3.1.1 Relationship to discretized GARCH-type processes

In the analysis below, I want to compare the estimates of the unrestricted Markov process

of Equation 2 with the estimates that follow from a more restrictive process, in this case

an AR(1)-GARCH(1,1) process. Therefore, I will now describe how one can discretize

the state space of an AR(1)-GARCH(1,1) and map the latter process into a discrete-

state-space first-order Markov process. The idea behind this mapping is that, instead of

describing transitions between discrete levels of earnings y and the unobserved state ξ,

the process describes transitions between discrete values of earnings y and σ2, where σ2

is the variance of the earnings shocks. These transitions are governed by the dynamics

of an AR(1)-GARCH(1,1) process (Bollerslev, 1986; Engle, 1982). The discretization

method I will describe below can also be used for related processes, such as NGARCH,

EGARCH, or TGARCH processes.

The macroeconomic profession is well-acquainted with methods to discretize AR(1) pro-

cesses, relying on the work of Tauchen (1986), Rouwenhorst (1995) and others, and

practitioners apply their discretization methods when incorporating AR(1) processes in

macroeconomic models, but discretized AR-GARCH processes have not yet been used in

macroeconomic models. Given that the solution methods used for heterogeneous agent

models require a discrete state space, discretization methods are necessary when one

wants to incorporate continuous-state-space processes in macroeconomic models.

In an option pricing application, Duan and Simonato (2001) show that GARCH-type

processes can be approximated by a Markov chain and they prove convergence to the

underlying GARCH model as the number of Markov states increases. The method of

Duan and Simonato (2001) is suitable for option pricing applications, but for a macroe-

conomic application, it has certain disadvantages. In particular, the approximation they

propose leads to sparse transition matrices, and as such the implied Markov chain may

be unstable. I will first present the method of Duan and Simonato (2001), after which

I will propose an adjustment to their method that improves the approximation.
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Assume the following AR(1)-GARCH(1,1) income process for the (log) earnings levels

of individual i at time t, Yi,t:

Yi,t+1 = a+ b · Yit + σi,t+1 · ui,t+1, b < 1 (4)

σ2
i,t+1 = c+ d · σ2

it + f · u2
it, uit ∼ N(0, 1), d+ f < 1. (5)

Now approximate this by a Markov chain with L discrete income levels (ȳ(i), i = 1, ..., L)

and n variance levels (σ̄2(j), j = 1, ....,M). The transition probability matrix PG of

the Markov process then contains the probabilities of moving from one combination

(ȳ(i), σ̄2(j)) to another pair (ȳ(k), σ̄2(l)) for all pairs (i, j) and (k, l). Once we know how

to compute the elements of the transition probability matrix PG, it is evident that the

discretized AR(1)-GARCH(1,1) model is a restricted version of the earnings process of

Equation (2), where σ2
it takes the role of the second source of heterogeneity ξit and the

transition dynamics in transition probability matrix P are now instead governed by the

model Equations (4)-(5).

Next, following Duan and Simonato (2001), I introduce some general notation for the

cells H that correspond to the L discretized income levels ȳ(i): H(i) = [h(i), h(i+1)] for

i = 1, ..., L with h(1) = −∞, h(i) = (ȳ(i) + ȳ(i− 1))/2 for i = 2, ...., L and h(L + 1) =

+∞. For the M levels of the conditional variance, similarly, define cells G, where

G(i) = [g(i), g(i+ 1)] for i = 1, ...,M , where g(1) = −∞, g(i) = (σ̄2(i) + σ̄2(i− 1))/2 for

i = 2, ...,M and g(M + 1) = +∞. Defining function

R(σ2
i,t+1, yi,t+1, yit) = c+ d · σ2

i,t+1 + f ·
(
yi,t+1 − a− b · yit

σit+1

)2

,

Duan and Simonato (2001) approximate the transition probabilities

pG(i,j);(k,l) = P (Yi,t+1 ∈ H(k), σ2
i,t+2 ∈ G(l)|Yit ∈ H(i), σ2

i,t+1 ∈ G(j)) (6)

by:

P (Yi,t+1 ∈ H(k), σ2
i,t+2 ∈ G(l)|Yit = ȳ(i), σi,t+1 = σ̄2(j))

≈

P (Yi,t+1 ∈ H(k)|Yit = ȳ(i), σ2
i,t+1 = σ̄2(j)) if R(σ̄2(j), ȳ(k), ȳ(i)) ∈ G(l)

0 else,

(7)

where P (Yi,t+1 ∈ H(k)|Yit = ȳ(i), σ2
i,t+1 = σ̄2(j)) = P (Lij(k) ≤ Z < Lij(k + 1)) with

Lij(k) = h(k)−a−bȳ(i)
σ̄(j)

and Z ∼ N(0, 1). Reading Equations (6) and (7) carefully, one sees

19



that this computation relies on two consecutive approximation steps. First, going from

Equation (6) to the first line in (7) requires the following approximation:

P (Yi,t+1 ∈ H(k), σ2
i,t+2 ∈ G(l)|Yit ∈ H(i), σ2

i,t+1 ∈ G(j)) ≈

P (Yi,t+1 ∈ H(k), σ2
i,t+2 ∈ G(l)|Yit = ȳ(i), σ2

i,t+1 = σ̄2(j)),
(8)

that is, instead of conditioning on the previous values of y and σ2 to fall inside their

respective intervals, the approximation assumes the previous values of y and σ2 are equal

to the midpoints of these intervals. Next, Equation (7) also relies on an approximation.

Instead of evaluating whether σ2
i,t+2 falls into interval D(l) for the different possible

realizations of Yi,t+1 ∈ H(k), it only evaluates whether the σ2
i,t+2 that corresponds to

ȳ(k), i.e., the midpoint of the interval H(k), falls into G(l).

This second approximation step has some serious limitations for the application con-

sidered in this paper. As articulated before, it is necessary that the Markov process

used is stable, otherwise a solution to the general equilibrium model may not exist or

may nor be unique. The approximation method of Duan and Simonato (2001) generates

highly sparse transition probability matrices and therefore can generate Markov chains

that fail the ergodicity condition; the stationary distribution of the Markov chain is not

reachable from any initial distribution. To make this issue less likely to occur, I suggest

replacing Equation (7) by the following:15

pG(i,j);(k,l) ≈ P (Yi,t+1 ∈ H(k), σ2
i,t+2 ∈ G(l)|Yit = ȳ(i), σi,t+1 = σ̄2(j))

=

∫ Lij(k+1)

Lij(k)

I{(c+ d · σ̄2(j) + f · u2) ∈ G(l)}φ(u)du,
(9)

where φ(u) denotes the probability density function of the standard normal distribution

and I{·} is an indicator function. As can be seen, I still use the approximation in

Equation (8), but the computation of this probability is then exact.

This issue and how my proposed computation of the transition probabilities resolves this

issue are visualized in Figure 4. Figure 4 also displays how the approximation of Duan

and Simonato (2001) can generate undesirable sparsity, as it is not possible to reach

a high-variance state from the low-variance state when using their proposed Equation

15Whether or not the Markov chain is ergodic will still depend on the underlying parameters of the
GARCH process, for example, if the GARCH process indicates a constant value for the conditional
variance, because the GARCH parameters are not identified, and transitions between different variance
states can never occur.
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(7), violating the ergodicity condition. This is not the case when using Equation (9),

because, as one can see in the lower part of Figure 4, it is also possible to reach a

high-variance state, albeit with a low probability.

Accommodating a transitory component in the income process

Another commonly encountered earnings process relies on the assumption that (log)

earnings Yit are composed of both a transitory and a permanent component. The Markov

transition matrix can also be mapped into such an earnings process of the form

Yit = ηit + νit, (12)

where ηit follows the AR(1) process above of Equation (4), and νit is a white-noise

transitory shock. This model is often referred to as the canonical model of earnings. As

an extension, assume that ηit follows an AR(1)-GARCH(1,1) process. The additivity

of the transitory-permanent income process allows using the discretization technique

proposed above for ηit, and in a second step computing the final discretized Markov

process for Yit. Details on the discretization method of the process in Equation (12) are

provided in Appendix Section B.1, where it is shown that a mapping can be made from

this model to the general earnings process ((Y × X ), P ).

Accommodating a leverage effect in the GARCH process

As indicated above, this discretization method is compatible with the larger class of

GARCH processes. To illustrate this, I show in Appendix B.2 how the discretiza-

tion method proposed above changes when one is interested in the discretization of

a TGARCH process. Unlike the traditional GARCH process, a TGARCH allows for a

leverage effect, where negative shocks have a different effect on the variance than positive

shocks.

3.1.2 Relationship to other earnings processes

In Appendix Sections B.3-B.7, I discuss how the general earnings process of Equation

(2) is related to other earnings processes studied in the literature. This includes earn-

ings processes with heterogeneous variances as studied by Botosaru and Sasaki (2018),

Botosaru (2020), Almuzara (2021), and others, as discussed in Section B.3, models with

heterogeneous job-loss and job-finding probabilities, as in Guvenen et al. (2021) and

Mueller et al. (2021), discussed in Section B.4, and models featuring skewness and other

higher-order moments, as shown to be important by Busch et al. (2021), and discussed
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Figure 4: An example of how the approximate discretization method of an AR(1)-GARCH(1,1)
processes by Duan and Simonato (2001) computes the transition probabilities (upper graph)
compared to the method I propose (lower graph). In this example, I assume a discretization of
3 income states ȳ(i) ∈ {yL, yM , yH} and two conditional variance levels σ̄2(i) ∈ {σ2

L, σ
2
H}. In

these figures, I show the probability mass that is attributed to the six different outcome states
(ȳ(k), σ̄(l)) when the previous state equals (ȳ(i), σ̄(j)) = (yL, σ

2
L). By integrating over the

shaded areas, one obtains the relevant transition probabilities PG(i,j);(k,l) of Equation (7) (upper)

and PG(i,j);(k,l) of Equation (9) from states (i, j) to (k, l) (lower).

(a) Approximate discretization as in Duan and Simonato (2001), see Equation (7).

−0.34 0.34

yM , σ2
LyL, σ2

L yH , σ2
L

−→ +∞−∞←−
u

N(0,1) p.d.f. of ui,t+1|Yit = yL, σi,t+1 = σ2
L

(b) Exact discretizaion of AR(1)-GARCH(1,1) process using Equation (9).

−0.34 0.34−1.58 1.58

yM , σ2
LyL, σ2

L yH , σ2
LyL, σ2

H yH , σ2
H

−→ +∞−∞←−
u

N(0,1) p.d.f. of ui,t+1|Yit = yL, σi,t+1 = σ2
L

Details on the parametrization of this example:

Yi,t+1 = 1 + 0.7 · Yit + σit+1 · ui,t+1 (10)

σit+1 = 1 + 0.8 · σ2
it + 0.1 · u2it (11)

with yL = 0, yM = 0.5, yH = 1.5 and σ2
L = 5, σ2

H = 5.5.
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in Section B.5. The relationship to models with heterogeneous persistence as in Arellano

et al. (2017) is discussed in Section B.6, and the mapping to models with heterogeneous

signals about earnings as in Stoltenberg and Singh (2020) is discussed in Section B.7.

3.2 The general equilibrium model

This subsection describes the general equilibrium model in which the earnings process

of this paper will be incorporated.

Workers A unit mass of ex ante identical workers optimizes its discounted future

stream of utilities, by allocating their incomes between savings and consumption. Work-

ers face earnings shocks consistent with the earnings process ((Y × X ), P ) in Equation

(2), for which, specifically, the following discretization will be assumed:

(yit, ξit) ∈


y = unemployed, ξ = (ξ̄(1) or ξ̄(2))

y = ȳ(1), ξ = ξ̄(1)

y = ȳ(1), ξ = ξ̄(2)

y = ȳ(2), ξ = ξ̄(1)

y = ȳ(2), ξ = ξ̄(2)

 . (13)

This means workers can be in one of five states: (i) unemployed (unemployed, ξ =

(ξ̄(1) or ξ̄(2))), (ii) employed with low earnings and low earnings risk (y = ȳ(1), ξ =

ξ̄(1)), (iii) employed with low earnings and high earnings risk (y = ȳ(1), ξ = ξ̄(2)),

(iv) employed with high earnings and low earnings risk (y = ȳ(2), ξ = ξ̄(1)), and (v)

employed with high earnings and low earnings risk (y = ȳ(2), ξ = ξ̄(2)). For simplicity,

ξ̄(1) is interpreted as low risk and ξ̄(2) as high risk, but no restrictions are yet imposed

to achieve such an ordering. Note that the unemployed state is an aggregation of two

states, namely (unemployed, ξ̄(1)) and (unemployed, ξ̄(2)). Denote the five states by

ε = (y, ξ) ∈ {0, 1, 2, 3, 4}.

If a worker is unemployed, she receives unemployment benefits µwt, where wt denotes

the aggregate wage rate and µ is a parameter capturing the fraction of average wages

received as unemployment benefits. Employed workers face heterogeneity with respect

to their wage rate and transition probabilities to next period’s earnings state. In the

low-wage state, a worker earns wt(1− vl), while in the high-wage state, a worker earns

wt(1 + vh). v denotes the wage differential between the two wage groups. vh is chosen

such that, given the proportion of workers in the low-wage state and high-wage state
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respectively, the average wage over these groups is equal to wt. This implies:16

vh = vl
(p1 + p2)

(p3 + p4)
.

where pε denotes the stationary probability of being in state ε.

Employed workers’ earnings are taxed with rate τt. All workers can save in capital k,

with a rate of return equal to rt. Workers cannot borrow, that is, kit+1 ≥ 0. This results

in the following optimization problem for workers:

max
{cit,kit+1}∞i=0

E
∞∑
t=0

βt
(cit)

1−γ − 1

1− γ
(14)

s.t. cit + kit+1 = (1 + rt)k
i
t +


µwt if εit = 0

(1− τt)wtl̄(1− vl) if εit = 1, 2

(1− τt)wtl̄(1 + vh) if εit = 3, 4

(15)

kit+1 ≥ 0, cit > 0 (16)

where kit is the beginning-of-period level of capital of the workers, cit is the individual

consumption level, l̄ is the number of hours an employed individual works, and k−1 is

given.

Firm There is a representative firm, characterized by a Cobb-Douglas production

function. Kt is capital per capita, depreciating at rate δ and Lt is the employment rate.

Then, per capita output is given by:

Yt = Kα
t (l̄Lt)

1−α (17)

Market competition implies that prices are given by

wt = (1− α)l̄

(
Kt

l̄Lt

)α
and rt + δ = α

(
Kt

l̄Lt

)α−1

(18)

Government The government taxes employed agents in order to pay the unemploy-

ment benefits to the unemployed agents. Assuming a balanced government budget

16Solve wt = ((p1 + p2)wt(1− vl) + (p3 + p4)wt(1 + vh))/(p1 + p2 + p3 + p4) for vh.
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implies

(l̄Lt)τt = µut (19)

where ut = 1− Lt is the unemployment rate at time t.

Recursive competitive equilibrium A stationary recursive competitive equilibrium

consists of a value function V (k, ε), aggregate prices r and w, an allocation K (aggregate

capital), a consumption decision rule c(k, ε), a savings decision rule k′(k, ε), and a joint

probability measure of the individual capital choices k and states ε, Φk,ε, such that:

(i) V (k, ε) is attained by decision rules c(k, ε), k′(k, ε), given prices r and w

(ii) Prices are consistent with Equation (18), taxes follow Equation (19).

(iii) The distribution over assets and states Φk,ε is stationary

(iv) The asset market clears: K =
∫ ∑

ε k
′(k, ε)dΦk,ε.

Note that in the stationary recursive competitive equilibrium, prices, the distribution of

assets and states and the aggregate variables are constant. There is, however, variation

in the choices that individuals make; workers move within the stationary distribution of

assets and states.

4 Identification

This section analyzes the identification of the parameters of the earnings process, as

well as the other structural parameters of the general equilibrium. To simplify the

identification analysis, the paper will make use of the two-step identification approach

in Janssens (2019), implying that identification of subsets of parameters can be analyzed

separately, when the moments used to identify these parameters do not depend on the

other parameters in the model. First, the two-step method and its advantages are briefly

described. Next, the paper will discuss identification of the earnings process parameters.

The discussion of the identification of the other parameters follows.

4.1 Two-step identification and estimation

This section briefly describes how the two-step identification and estimation procedure of

Janssens (2019) can be used for the heterogeneous earnings risk model presented in the
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previous section. As described by Janssens (2019) in more detail, the idea of two-step

identification and estimation is that the parameter vector of interest, denoted by θ, can

be subdivided into two subsets θ = (θ1, θ2), where for the first subset of parameters, θ1,

a set of moment conditions (or for indirect inference, auxiliary parameters) exists that is

satisfied for any value of θ2. Then, θ2 = θ\θ1, for which another set of moment conditions

is defined with no additional restrictions except that they globally and locally identify

θ2, conditional on θ1. Under the choice of an efficient weighting matrix, the second step

estimates of θ2 are asymptotically efficient. These results hold both for Generalized

Method of Moments, as well as indirect inference.

This two-step approach offers several advantages, of which the following two are most

relevant for the application in this paper. First of all, two-step estimation is computa-

tionally efficient. In macroeconomic applications, and the application in this paper, the

first-step parameters and moments can be chosen such that they do not require the full

model solution, which is computationally intensive to obtain. By estimating a subset of

parameters in the first step, fewer parameters have to be estimated in the step where

the objective function does rely on the evaluation of the full model. A second advantage

is that the identification analysis is simplified. The first-step identification analysis can

often-times be performed analytically, see also Janssens (2019). Furthermore, in the

second-step, identification analysis can be done conditional on the first-step estimates.

This two-step estimation method will be used to estimate the parameters of interest in

this application. Specifically, in the first step, the parameters are estimated that can

be identified from moments that characterize the firm-side and government-side of the

problem. The first-step parameters in this application are (i) α (elasticity of capital),

(ii) δ (depreciation rate), and (iii) µ (the unemployment benefits). For more details on

why these first-step parameters are independent of the other parameters of this model,

see Appendix C. In the second step, the other parameters will be estimated, being (i) P

(the transition probability matrix), (ii) γ (worker’s risk aversion), (iii) β (the discount

rate of the worker), and (iv) vl (the income differential between high and low earners).17

The consequence of this division of parameters is that the analysis only needs to show

joint identification of two groups of parameters, (α, δ, µ), and (P, γ, νl, β), but not

all parameters jointly.

17 l̄ (hours worked by an employed household) is used to normalize the average total labor supply of
the economy to one and therefore not estimated.
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4.2 Identification of the earnings process parameters

As the earnings process is the main object of interest in this paper, this subsection

analyzes the identification of the parameters of the earnings process of Section 3.1. This

set of parameters consists of the transition probabilities matrix of Equation (2), as well

as the discretized earnings levels. The proofs are based on the general process, while

numerical results are based on the process in Equation (13), or a smaller toy example

used for ease of exposition.

Whether a parameter is identified depends on how this parameter enters the structural

model, but also on the data that are available for estimation. For this discussion, a

distinction will be made between different sources of identification coming from four

potential data types: (i) cross-sectional earnings data, (ii) an earnings panel data set,

(ii) cross-sectional net worth data, and (iv) a panel with net worth data and earnings

data. Data types (i) and (iii) contain information on the cross-sectional distribution of

individuals, while (ii) and (iv) consider a panel dimension.

For the results on data types (i)-(iii), the focus is on local first-order identification.

Informally, a set of parameters is locally first-order identified if the Jacobian of the set

of moments or auxiliary parameters used to estimate these parameters has the same

rank as the number of parameters. If it is possible to change one of the parameters, and

adjust the other parameters such that the moments are unaffected, these parameters are

not jointly locally identified, and in that case, the rank of the Jacobian will be lower

than the number of parameters.

For data type (iv), a different identification argument is used. I derive a set of as-

sumptions under which one can perfectly retrieve the underlying earnings states of the

individuals in the panel. These assumptions bear some similarity to the relevance and

monotonicity assumption on instrumental variables used when estimating treatment ef-

fects. Under monotonicity, it is assumed that the chosen treatment is monotonically

increasing/decreasing in the instrumental variable. Instead, in this setting, I need to

make assumptions on the effect that the earnings state has on the saving decisions of

the individual. Furthermore, I need to assume that the effect of the earnings state on the

savings decision of individuals is sufficiently large, similar to the relevance condition for

instruments, which requires that instruments have a significant effect on the treatment

choice.
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4.2.1 Cross-sectional data on earnings

The following proposition can be derived regarding the identification of the earnings pro-

cess of Section 3.1 when using moments from the cross-sectional distribution of earnings

levels.

Proposition 1. Consider the first-order Markov process with earnings states

{ȳ(1), ..., ȳ(L)} × {ξ̄(1), ..., ξ̄(M)} and transition probability matrix P . Any set of mo-

ments derived from an N × T earnings (repeated) cross section, with T ≥ 1 and ob-

servations on earnings levels y ∈ Y = {ȳ(1), ..., ȳ(L)} can generate a Jacobian of the

moments with respect to the transition probabilities P with a rank at most L.

Proof In Appendix D.1.

Given that the estimation of the transition probability matrix P requires the estimation

of (L×M)× (L×M − 1) parameters, it follows from Proposition 1 that the parameters

of the earnings process are severely under-identified when using cross-sectional data on

earnings. The intuition for this result is as follows. Earnings data only contain infor-

mation about the observed component of the earnings state: the earnings levels y ∈ Y .

This characterizes an “observed” earnings process, with states y ∈ Y = {ȳ(1), ..., ȳ(L)}
and transition probability matrix Qobs given by

Qobs =


q11 . . . q1L

...
. . .

...

qL1 . . . qLL

 (20)

where qij = P (yt+1 = ȳ(j)|yt = ȳ(i)). The difference between the observed and un-

observed earnings process is visualized in Figure 5. Denote by q1, ..., qL the stationary

probabilities of the observed income process. These are functions of the transition prob-

abilities qij in Qobs, which are, in return, also functions of the transition probabilities

of the unobserved earnings process in matrix P . It follows that any moment derived

from an observed cross section of earnings levels will be a function of the stationary

probabilities q1, ..., qL, which has dimensionality L, and, as such, the Jacobian of any

set of moments with respect to the transition probabilities in P can have a rank of

at most L. In general, moments derived from the stationary distribution of a Markov

process are never sufficient to identify its (unrestricted) transition probability matrix,

but in this case, the identification issue is more stringent, because we only observe the

stationary distribution of the smaller Markov chain (y,Qobs), rather than of the Markov

chain ((y, ξ), P ).
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Figure 5: Observed earnings levels (outer circles, with black solid outline) versus hidden earn-
ings states (grey ellipses within the outer circles, with dotted outline).
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ȳ(1)

ξ̄(1)
...
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While cross-sectional data on earnings and employment does not suffice to identify the

transition probabilities in matrix P , moments derived from these data are able to identify

all the levels of the discrete earnings states in Y .

4.2.2 Earnings panel

Next, it is assessed whether an earnings panel can be used to identify and estimate

the earnings process introduced in Section 3.1. The conclusion that follows from this

analysis is negative, and is summarized in Proposition 2.

Proposition 2. Consider the first-order Markov process with earnings states

{ȳ(1), ..., ȳ(L)} × {ξ̄(1), ..., ξ̄(M)} and transition probability matrix P . Any set of mo-

ments derived from an N×T earnings panel with observations on earnings levels y ∈ Y =

{ȳ(1), ..., ȳ(L)} can generate a Jacobian of the moments with respect to the transition

probabilities P with a rank at most L× (L− 1).

Proof. In Appendix D.2.

It follows that an earnings panel is insufficient to estimate the parameters of the tran-

sition probability matrix P , which has (L ×M) × (L ×M − 1) parameters that need

to be pinned down. The intuition behind Proposition 2 is similar to that of Proposition

1. A panel with earnings data only gives information about the observed component of

the earnings state: y ∈ Y , and therefore, is only informative about the observed Markov

chain with transition probability matrix Qobs given in Equation (20). Any set of mo-

ments that can be derived from an earnings and employment panel will be a function

of these transition probabilities in Q, which has rank L × (L − 1), while the object of

interest, the transition probability matrix P of the unobserved Markov chain, has rank

(L×M)× (L×M − 1).
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Identifying assumptions To solve the identification problem posed in Proposition 2,

identifying assumptions can be introduced. For example, one can assume that certain

transition probabilities are zero, or equal to other transition probabilities. Alternatively,

one can consider the restrictions imposed by an AR(1)-GARCH(1,1) model. Recall that

the AR(1)-GARCH(1,1) can be mapped into the general earnings process proposed by

this paper, as was shown in Section 3.1.1. The AR(1)-GARCH(1,1) specification only

depends on five parameters, while the earnings process of interest in the application

of this paper, introduced in Equation (13), depends on twenty parameters. Following

Proposition 2, a vector of moments derived from an earnings and employment panel

will have a rank of at most six when trying to identify the parameters of the earnings

process in Equation (13). This means that under the restrictions of a GARCH process,

the earnings process of Equation (13) is identifiable from an earnings panel.

4.2.3 Cross-sectional data on net worth

The next step to analyze is whether moments from the cross-sectional distribution of

net worth can be used to identify and estimate the parameters of this earnings process.

At first thought, one may wonder how the cross sectional distribution of net worth

can identify the parameters of the earnings process if the cross sectional distribution

of earnings can not. If individuals facing different earnings risk make different saving

choices, however, the cross sectional distribution contains additional information that

is not reflected by the earnings distribution. Unlike for the analysis of the employment

and wage distribution, when analyzing the cross-sectional distribution of net worth, one

needs to rely on numerical approximations to the recursive competitive equilibrium of

the general equilibrium model, as a closed-form analytical solution for the cross-sectional

net worth distribution is not available.

As follows from the proof of Proposition 1, the moments of the earnings distribution

are a function of the stationary probabilities of the earnings process, implying that two

earnings processes with the same stationary distribution will generate the same earnings

distribution. This is not the case for the savings distribution, as can be illustrated

through Example 3 and corresponding Figure 6.

Example 3. In this example, heterogeneity with respect to earnings levels is ignored,

and the following earnings states are considered: (unemployed, ξ(1) or ξ(2)), (employed,

ξ(1)), (employed, ξ(2)). Specifically, two processes with the following transition matrices
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Figure 6: Comparing two savings distributions, computed from two different transition matri-
ces, but the same stationary distribution as in Equation (21).
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To generate this figure, the other structural parameters of the general equilibrium model are set to:

β = 0.95, γ = 2, α = 0.36, δ = 0.025, µ = 0.15.

are considered:

P red =

 0.5 0.4 0.1

0.2 0.6 0.2

0.05 0 0.95

 , P black =

0.380 0.286 0.334

0.200 0.714 0.086

0.070 0 0.930


where both distributions have stationary distribution P stationary = (0.125, 0.125, 0.750)

(21)

As can be seen in Figure 6, these two earnings processes imply two different saving

distributions as a solution to the general equilibrium model, even though these earnings

processes generate the same earnings and employment distribution. The difference be-

tween the saving distributions the two earnings processes generate can be measured, for

example, through the variances of these savings distributions: 22.9 (corresponding to

the red-dotted distribution line) versus 28.0 (solid black). /

To analyze (local) identification, one can numerically evaluate the Jacobian to assess the

identifying power of the cross-sectional distribution of net worth. In principle, one has

to compute the Jacobian for many possible parameter values P and assess its rank. As

this will not be the source of identification used to estimate the transition probabilities

in this paper, the Jacobian will only be computed for two examples.
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Example 4. Consider the same earnings process as in Example 3, with earnings

states (unemployed, ξ̄(1) or ξ̄(2)), (employed, ξ̄(1)), (employed, ξ̄(2)). and the following

transition matrix:

P =

 0.5 0.4 0.1

0.2 0.6 0.2

0.05 0 0.95

 (22)

The other structural parameters of the general equilibrium model are set to: β =

0.95, γ = 2, α = 0.36, δ = 0.025, µ = 0.15.

Next, consider the following choice of moments: ( 1
100

Var(ki),
1
10

Skewness(ki),
1
10

Percentile95(ki),
1
10

Percentile90(ki)/Percentile10(ki),
1
10

Percentile5(ki),
1
5
Percentile70(ki)/Percentile30(ki)).

Numerically computing the Jacobian of this moment vector with respect to the transition

probability matrix in Equation (22) gives the following Jacobian:

J =



0.991 −0.239 0.080 0.000 4.008 0.000

−0.879 −0.534 −0.387 0.000 0.000 0.000

−0.773 −0.869 0.080 0.000 4.080 0.000

−0.515 −0.650 0.003 0.000 0.000 0.000

2.750 2.041 3.546 −4.099 4.008 −0.654

−0.887 0.594 0.805 −0.541 4.008 0.755


Computing the rank of this Jacobian gives a value of 6, indicating that observing these

specific moments of the wealth distribution locally identifies the full transition matrix.

The condition number of this Jacobian, a statistic used to characterize the identification

strength of the moments and parameters, see Iskrev (2010), is approximately 40.22,

which suggests that identification at the current parametrization is fairly strong. /

Example 4 deals with the identification of six transition probabilities, which requires

the computation of six moments of the net worth distribution.18 In the case where

one wants to estimate all transition probabilities of the earnings process of Equation

(13) using the cross sectional distribution of net worth, this requires the computation

of twenty moments. Although in principle this can lead to a Jacobian matrix that is

full rank, it is probable that this identification will be weak: when computing twenty

moments from the same distribution, it is likely that the way these moments depend on

the underlying transition probabilities will be strongly correlated. This is confirmed by

Example 5.

18The other three transition probabilities follow from the first six.
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Example 5 Next, consider the earnings process of Equation (13), with earnings states

(unemployed, ξ̄(1) or ξ̄(2)), (y(1), ξ̄(1)), ((y(1), ξ̄(2)), (y(2), ξ̄(1)), (y(2), ξ̄(2)), evaluated

at the following transition probability matrix:

P =


0.60 0.10 0.10 0.10 0.10

0.02 0.92 0.02 0.02 0.02

0.25 0.11 0.60 0.02 0.02

0.02 0.02 0.02 0.92 0.02

0.25 0.05 0.05 0.05 0.60


A vector of twenty moments is defined, consisting of the variance, skewness and several

ratios of percentiles of the net worth distribution, the variance of the earnings distri-

bution, and the average unemployment rate. Computing the Jacobian evaluated at P

given above and the same choice of structural parameters as in Example 4, and vl = 0.5,

a rank of 20 is obtained. However, the condition number is equal to 3.7e5, confirming

the conjecture of weak identification. /

4.2.4 A panel with individuals’ net worth levels and earnings levels

This last subsection analyzes how a panel of individuals’ net worth levels, supplemented

with earnings levels, can be used to identify the parameters of the earnings process

proposed in this paper. Under a set of assumptions, a panel on the net worth holdings

and the earnings levels of individuals can be shown to provide a direct mapping to the

underlying risk states ξ (up to label swapping). The assumptions are summarized in

Assumptions 1 and 2, and the final result is described in Proposition 3.

Assumption 1: Ordering The optimal saving rule of the households is denoted by

k′(k, (y, ξ)) with domain y ∈ Y = {ȳ(1), ..., ȳ(L)}, ξ ∈ X = {ξ̄(1), ..., ξ̄(M)} and k ≥ 0.

There exists an ordering of the elements in εij = (ȳ(i), ξ̄(j)) ∈ Y × X over j, where the

ordered elements are denoted by ε̃ij such that

k′(k, ε̃i1) > k′(k, ε̃i2) > ... > k′(k, ε̃iM) ∀k ≥ 0.

This ordering exists for each i = 1, ..., L but is allowed to differ for each i.

Assumption 1 indicates that there should be a fixed ordering in the saving choices over

the risk states ξ. That is, if a certain combination of (ȳ(i), ξ̄(j)) implies a higher next

period’s savings level k′ than at another risk level ξ but the same earnings level y, it
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should do so at each level of previous savings k.

Assumption 2a: Locally Lipschnitz continuous The domain of k can, for each

value of ȳ(j) ∈ Y be subdivided into Kj
N subdomains [kj1, k

j
2], ..., [kji , k

j
i+1], ..., [kj

Kj
N

, kj
Kj
N+1

],

such that for each subdomain [kji , k
j
i+1], the saving function k′(·, (ȳ(j), ξ̄(i))) satisfies

d
(
k′(kji , (ȳ(j), ξ̄(l))), k′(kji+1, (ȳ(j), ξ̄(l)))

)
< Zijl · d(kji , k

j
i+1), ∀ l = 1, ...,M − 1, ∀ȳj ∈ Y

where Zijl = d(k′(kji , (ȳ(j), ξ̄(l))), k′(kji , (ȳ(j), ξ̄(l + 1))).

Assumption 2b: Minimum number of observations Each subdomain specified

in Assumption 2a contains at least M observations with earnings level ȳ(j) that can be

labeled (without loss of generality) (k1,t, k1,t+1), (k2,t, k2,t+1), ..., (kM,t, kM,t+1) for which

ki,t > ki+1,t and ki,t+1 < ki+1,t+1 for i = 1, ...,M − 1 .

Assumption 2a comes down to assuming that the savings function k′ is locally Lip-

schnitz continuous, in other words, is not too steep. Whether this assumption is

satisfied depends both on the (local) Lipschnitz coefficient, in this case defined as

Zijl = d(k′(ki, (ȳ(j), ξ̄(l))), k′(ki, (ȳ(j), ξ̄(l + 1))), that is, the difference between next

period’s net worth of an individual with risk state ξ̄(l) and an individual with risk state

ξ̄(l + 1), as well as on the steepness of k′(·, (ȳ(i), ξ̄(l))) in the subdomain. Simply put,

individuals with different risk states should differ enough in their saving choices, and how

different this should be depends on the steepness of the savings function k′(k, (ȳ(j), ξ̄(l)))

on the subdomain. Assumption 2b asserts that there are enough observations within

these subdomains such that the different risk states can actually be identified.

Proposition 3 Consider the first-order Markov process with earnings states

{ȳ(1), ..., ȳ(L)}×{ξ̄(1), ..., ξ̄(M)} and transition probability matrix P . Assume Assump-

tions 1 and 2a-2b hold. A panel of individual net worth kit, and earnings/employment

status yit, with t = 1, ..., T and i = 1, ..., N , T ≥ 2, can be used to perfectly retrieve a

panel of (reordered) unobserved states ξit for t = 2, ..., T and i = 1, ..., N .

Proof In Appendix D.3.

The intuition behind this result is as follows. The conditions in Assumptions 1 and 2a-b

assert that given current earnings level y, previous savings k and end-of-year savings k′,

one can deduce which observations have the same risk state ξ. For this, it is necessary

that people that face different levels of risk ξ make sufficiently different saving decisions
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k′. This is enforced by the assumptions. If so, then conditional on their previous savings

k and current earnings level y, their saving choice for next period reveals the amount

of risk they perceive. An N × T panel of net worth kit and earnings yit can then be

used to “reverse-engineer” an N × (T − 1) panel of (reordered) earnings states ε̃. Next,

this reverse-engineered panel can be used to identify and estimate the parameters of

transition probability matrix P .

Assumptions 1 and 2a-b, and their implication for the possibility to reverse-engineer

the risk states ξ are visualized in Figure 7a for an example with three different risk

states, that is, M = 3. Assumption 1 imposes that the three lines in this figure, that

correspond to sets of (k, k′) observations from three different risk states but the same

income level ȳ(j), do not intersect on the observable domain, and have a fixed ordering

of realizations k′ across all values of k. Furthermore, assumption 1 imposes a labeling

of these re-ordered risk states, being ε̃j1, ε̃j2 and ε̃j3 respectively. Next, assumption 2a

ensures that the interval [kji , k
j
i+1] is such that the three lines on which the observations

lie fall inside three non-overlapping subranges of k′, with range boundaries [0, kj,max
1 ],

[kj,max
1 , kj,max

2 ] and [kj,max
2 ,∞). At last, assumption 2b ensures that there exist at least

three observations that are such that the range-boundaries kj,max
1 and kj,max

2 can be

defined. kj,max
2 follows from being the largest value of k′ and most right (largest k) point

for which there does not exist another point that has a lower value of k yet a higher

value of k′. Next, all observations that have a value of k′ above kj,max
2 are labeled as ε̃j3,

and are removed from the sample. Then, kj,max
1 is defined in the same way and results in

the labeling of observations with risk state ε̄j2. The remaining observations are labeled

as ε̄j1.

Some analogies can be drawn between the assumptions on instrumental variables in treat-

ment effect estimation, and the assumptions given above. Assumption 1 is somewhat

analogous to the monotonicity assumption used in the estimation of treatment effects

using instrumental variables, assuming that the instrumental variable has a monotonic

effect on the treatment choice (Imbens and Angrist, 1994). The monotonicity assump-

tion is also sometimes called the no-defier assumption, that is, assuming the monotonic

effect is positive, there are no individuals that decide not to take the treatment after

the instrumental variable increases, while they would have taken the treatment for a

lower value of the instrumental variable. Assumption 2a can be compared to the idea

of a relevance assumption on instrumental variables when estimating treatment effects,

which requires that the instrumental variable sufficiently affects the treatment choice

of the individuals. Here, the assumption is that the saving choices of individuals with
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different earnings states are sufficiently different. Assumption 2b can be compared to

the assumptions that there are compliers in the sample: individuals that only take the

treatment for a sufficiently high value of the instrumental variable.

Figure 7: A visualization of Assumptions 1, 2a-2b and Proposition 3. Dots represent observa-
tions of (k, k′) with the same earnings level y = ȳ(j). Dots in the same color have the same
risk state ξ.
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Next, it is of interest to understand the implications of these assumptions better, and,

furthermore, to understand the implication of their potential violations. If Proposition

3 holds, then it means that the risk states (y, ξ) are indirectly observed. It follows

that the transition probability matrix P characterizing the earnings process can then
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be estimated using maximum likelihood, as it simply boils down to the estimation of a

transition probability matrix of an observed Markov chain. Proposition 3 thus leads to

a non-parametric identification method of the transition probabilities.

However, the assumptions under which Proposition 3 hold may be too stringent. Con-

sider Assumption 2a. A visualization is presented in Figure 7b of a case where this

assumption fails to hold. In this example, it is not possible to create an interval [kji , k
j
i+1]

such that k′(k, ε̃j3) > k′(k, ε̃j2) for all observations in the interval, while simulateneously

having observations in this interval for which ki > ki+1 and k′i < k′i+1 for i = 1, ..., L− 1

(as required by assumption 2b). The function k′(k, ε̃j2) is too steep. In words, this

means that the saving choices of individuals with risk states ε̃j2 and ε̃j3 are not different

enough, and are not distinguishable. The example in Figure 7d visualizes what happens

if Assumption 2b is violated. In this case, it is not possible to construct the range-

boundaries kj,max
1 and kj,max

2 , because there are no observations within the interval that

allow us to draw conclusions on the risk states individuals are in. Only if we have at

least two observations where one individual has a higher amount of current savings, but

chooses a lower value of future savings than the other individual, can we conclude that

these individuals are in different risk states. This is not the case in Figure 7d, implying

violation of Assumption 2b.

In both cases above where Assumption 2a and 2b are violated, the issue is likely to

disappear as N → ∞, because as the number of observations increases, the number of

intervals Kj
N can be increased and consequently the width of the intervals will decrease,

such that it is more likely that both assumption 2a and 2b will be simultaneously sat-

isfied. The probability of misclassification of certain observations due to violation of

Assumptions 2a-b thus decreases to zero as N →∞. The assumptions do rule out risk

neutrality, or near-risk neutrality, as under such parametrizations, the saving decisions

of households under the different risk states are too similar, and no intervals can be made

that simultaneously satisfy Assumptions 2a and 2b. Similarly, the probability distribu-

tions the individuals face under the different risk states should be sufficiently different.

This likely is satisfied in the application, which only considers two different risk states.

The assumption is also more likely to be violated at very high savings levels, because

income risk then becomes less important, and the saving decisions between individuals

with different saving levels become more similar.

Assumption 1 requires a strict ordering of saving decisions over risk states, but this

ordering is allowed to vary across income levels. Figure 7c visualizes a potential violation

of this assumption. However, violations of this assumption do not seem economically
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relevant. If individuals in a certain risk state save more at low current levels of saving,

they will also do so at high current levels of savings. The difference between the saving

decisions k′ does become smaller at higher levels of k, as also alluded to in the previous

paragraph, because at high savings levels, income risk is less important, but the ordering

is not expected to change.

To be less reliant on the assumptions discussed above, instead of using the non-parametric

classification method that follows from Proposition 3, and estimating the transition prob-

ability matrix of the reverse-engineered states using maximum likelihood estimation and

presenting these as the final estimates, a transition probability matrix computed based

on the idea of Proposition 3 is used as the auxiliary model parameters in an indirect

inference procedure instead. The advantage of such an approach is that the auxiliary

model is not required to be fully correctly specified, but, as the auxiliary model grows

closer to the true model (that is, if assumptions 1 and 2 are satisfied), the indirect in-

ference estimator of these parameters will converge to be fully efficient. The indirect

inference approach will be further discussed in Section 5.

4.3 Identification of the other structural parameters

Identification of the other structural parameters is discussed in detail in Appendix C.

The source of identification of the first-step parameters α (elasticity of capital), δ (de-

preciation rate) and µ (unemployment benefits) are moments derived from the firm-side

and government-side of the general equilibrium model. It follows that these parameters

can be estimated independently of all other parameters, using only the means of several

aggregate macro variables. Risk aversion can, as in Janssens (2019), be identified from

the cross-sectional distribution of net worth. As the earnings process will be identified

from the panel dimension and thus rely on a different source of identification, these

parameters will most likely be jointly identified, although this can only be verified nu-

merically. The discount factor β is not estimated, but follows as a solution to the model

for a given interest rate.

5 Econometric Approach

This section discusses the estimation procedure. It uses the two-step indirect inference

of Janssens (2019), briefly described in Section 4.1. The estimation procedure for the

first-step parameters α, δ and µ will first be described. After performing this step, these

parameters will be fixed to their estimates, and will be used in the second step, which

is described in larger detail in the second subsection below.
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5.1 First-step estimation of α, δ and µ

As derived in Appendix C, the following moment conditions can be used to consistently

estimate α, δ and µ:

E
(
wobs
t (1− uobs

t )

Y obs
t

− (1− α)

)
= 0

E
(

Y obs
t

(δKt)obs
− robs

t + δ

δα

)
= 0

E
(
τ obs
t

uobs
t

− µ
)

= 0,

under the assumption that the sample means of the observed counterparts of the vari-

ables, denoted τ obs
t , (the average tax rate), uobs

t , (the unemployment rate), wobs
t (the

average wage rate), Y obs
t (output), robs

t (interest rate) and (δKt)
obs (depreciation of cap-

ital) converge to their long-run values.19 Method of moments can be used to obtain

consistent estimates of these three parameters.

5.2 Second-step estimation of P , vl and γ

After estimating the first-step parameters, the other parameters of the structural model

can be estimated conditional on the estimated values of the first-step parameters. Of

the second-step parameters, the earnings process parameters are of main interest. Based

on the identification analysis in Section 4.2, two different identification strategies arise

that can be used to estimate the parameters of the earnings process:

1. Estimate the earnings process parameters using a panel data set on earnings, em-

ployment and net worth data using the identification strategy implied by Propo-

sition 3.

2. Estimate the earnings process parameters using a panel data set on earnings and

employment data, and restrict the parameters of the earnings process, for example,

using the mapping into an AR(1)-GARCH(1,1) process from Section 3.1.1.

In addition, I will also consider a combination of these two identification strategies,

that is, I will use a panel on earnings, employment and net worth data, and estimate

19(δKt)
obs is used because this variable is directly observed in the data, see also the Data section.

A similar condition can be derived using Kobs
t instead.
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the AR(1)-GARCH(1,1)-restricted earnings process. The estimation procedures corre-

sponding to these three approaches are visualized in three flow charts, in Figures 8-10,

and will be discussed in more detail below.

Identification strategy 1 The first identification strategy uses a panel on net worth,

earnings and employment status (as well as other observable characteristics of individu-

als) to estimate the unrestricted earnings process. The estimation procedure is visualized

in Figure 8. In this procedure, an auxiliary model with parameters φ is estimated for

both the observed data and simulated data. The optimization procedure then aims to

find a parameter combination θ = (P, vl, γ) that minimizes the distance between the

auxiliary model parameters of the observed data φ̂O and the simulated data, φ̂S(θ).

Simulating data from the general equilibrium model requires solving the recursive com-

petitive equilibrium, and is therefore computationally intensive.

Figure 8: Flowchart describing estimation of the unrestricted earnings process, using a struc-
tural model and net worth data.

Observed data:
earnings (N × T )
net worth (N × T )
employment (N×T )
controls (N × T )

Simulated data
(θ̂1, θ2)
earnings (N × T )
net worth (N × T )
employment (N×T )

Model (θ1, θ2):
Aiyagari (1994)
extended with
heterogeneous
earnings risk

Step 2 parameters θ2:
preferences (γ),
earnings process (P, vl)

Step 1 parameters θ1:
(α, δ, µ), estimated in

step 1: θ̂1

Auxiliary model
parameters φ :

P aux,
percentiles of net

worth and earnings
distribution, mean
unemployment rate

|φ̂O − φ̂S(θ)| < ε?

Final estimate θ̂2

No

Yes

Based on observed data: φ̂O

Based on simulated data: φ̂S(θ̂1, θ2)

Try new value of θ2

Start with
guess of θ

The auxiliary model parameters comprise the following elements. First of all, recall the

auxiliary transition probability matrix presented in the Data section in Table 1. The

method to compute this transition probability matrix actually uses the intuition of the

labeling procedure implied by Proposition 3. As such, if Assumptions 1-2 hold as the

number of observations N → ∞ and the number of clusters grows large, the auxiliary

transition matrix of Table 1 is already a consistent estimator of the transition probability

matrix P . Here, the matrix is used as one of the parameters of the auxiliary model, to
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be more robust against violations to the assumptions imposed in smaller samples.20 The

other auxiliary model parameters include various moments of the net worth and earnings

distribution, as well as the average unemployment rate. The full objective function is

given below in Equation (23).

Objective function for second step of the unrestricted model:

max
P,γ,vl

(
φ̂O − φ̂S(θ)

)′
W
(
φ̂O − φ̂O(θ)

)
(23)

where φ̂ =
(

vec(P̂non-param), Prctl90(kit)/Prctl15(kit), Prctl99(kit)/Prctl90(kit), ...

... Prctl50(kit)/Prctl15(kit), Prctl90(wit)/Prctl30(wit), ut

) (24)

Here ut denotes the sample mean of the unemployment rate. P̂non-param is described in

Equations (1) and given in Table 1. W is a weighting matrix, currrently not chosen as

the optimal efficient matrix, but chosen to ensure all elements of m̂obs have a similar

scale, by letting all weighted moments (
√
Wiim̂

obs
i ) have values between zero and one.

A diagonal matrix is used, where all weights related to P̂non-param receive a weight of

1. The other moment weights satisfy (following the order of Equation (24)):
√
Wii =

( 1
20000

, 1
100
, 1

1000
, 1

2000
, 1). The notation Prctlx(kit) denotes the xth percentile of the net

worth distribution.

Identification strategy 2 Consider Figure 9, visualizing the flow chart explaining

the estimation procedure for the second identification strategy. This strategy does not

require solving the structural model for the estimation of the earnings process parameters

P and vl, as the earnings process is assumed to be evolving exogenously, and, in this

case, can be identified fully from earnings data only. Thus, in the indirect inference

procedure, one does not need to solve the recursive competitive equilibrium to simulate

data from the general equilibrium for each combination of parameters, but instead one

simulates from the discretized GARCH model, which is analogous to simulating data

from a first-order Markov process. Next, the estimation procedure for P and vl aims to

find the parameters that minimize the distance between the auxiliary model parameters

computed for the simulated earnings and employment data and the observed data.

For the auxiliary model, an auxiliary transition matrix P aux, earn is computed that mea-

sures the (empirical) probability of transitions between unemployment, low (below av-

20A slightly different auxiliary transition probability matrix is used in the indirect inference pro-
cedure, based on a different choice for the number of saving bins and control groups. This auxiliary
transition probability matrix is given in Appendix E.
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Figure 9: Flow chart describing estimation of earnings process restricted using GARCH process,
without structural model and without net worth data.

Parameters θ:
earnings process
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Based on observed data: φ̂O

Based on simulated data: φ̂S(θ̂)

Try new value of θ

erage) earnings and high (above average) earnings. For the observed data, this division

into high- and low-earnings groups is done relative to its control cluster. For more de-

tails on how these control clusters are constructed, see also Sections 2.2 and 2.3. This

auxiliary transition matrix is supplemented with some additional moments: the average

earnings of individuals with below average earnings, the average earnings of individuals

that have above-average earnings, the unemployment rate in the sample, the average

over all non-zero earnings and the variance over all non-zero earnings. As in Figure 9,

denote the auxiliary model parameters computed for the observed dataset by φ̂O and

the auxiliary model parameters for the simulated data by φ̂S(θ), where θ in this case

are the parameters of the earnings process, P and vl. The indirect inference procedure

stops when the distance between φ̂O and φ̂S(θ) is minimized. An identity matrix is used

for weighting.

The other structural parameters of the model, being risk aversion γ and β, can afterwards

be obtained in a third step, in case one also has at least one higher-order moment (at

least second-order) of the net worth distribution. This does require solving the recursive

competitive equilibrium of the general equilibrium, and simulating net worth data from

the model. This paper will, however, focus on the estimates of the earnings process

parameters.

Combining identification strategy 1 and 2 The third approach combines both

identification strategies. The corresponding estimation procedure is visualized in Figure
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10, where the differences with the estimation procedure of identification strategy 1, vi-

sualized in Figure 8, are highlighted in grey. This approach uses a panel of net worth,

earnings and employment status (as well as various individual-level control variables) to

estimate the earnings process, where the earnings process parameters are restricted by

imposing that it behaves according to a discretized AR(1)-GARCH(1,1) process. The

reason to consider this combination of strategies is because it can be used to evalu-

ate the restrictiveness of the restrictions posed by the AR(1)-GARCH(1,1) process. In

essence, the AR(1)-GARCH(1,1) model limits the notion of risk in the model, as it no

longer relates to the entire probability distribution of future shocks, but is limited to

a time-varying variance. The most important difference between the two approaches

is the amount of parameters to be estimated: due to the restrictions of the discretized

AR(1)-GARCH(1,1) process, the earnings process is characterized by only six param-

eters, instead of 21 as in the unrestricted process. Apart from these restrictions, the

procedure is essentially the same as identification strategy 1 and uses the same auxiliary

model.

Figure 10: Flowchart describing estimation of earnings process restricted using GARCH pro-
cess, with structural model and with net worth data. Shaded elements indicate the elements
that are different from the flowchart in Figure 8.
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Optimization All three estimation procedures outlined above require the use of an

optimization algorithm. For the GARCH-restricted estimates, the following procedure

is used. First, a grid search is performed over the range of feasible AR(1)-GARCH(1,1)

parameters. Next, the ten lowest objective function evaluations and their corresponding

parameters are used as a starting point of a pattern search optimization algorithm.21

21For an overview of pattern search algorithms, see Torczon (1997). This paper relies on the imple-
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The estimate corresponding to the lowest objective is reported. For the unrestricted

estimates, grid search is not feasible due to the high dimensionality of the parameter

vector. However, the GARCH-restricted estimates provide good starting points for the

unrestricted estimates. Thus, ten random starting points are generated around the

GARCH-restricted estimates that are obtained from the procedure that combines both

identification strategies. Again, pattern search is used on these ten starting points, and

the estimate corresponding to the lowest objective is reported.

6 Estimates of the Heterogeneous Earnings Risk Model

This section summarizes the estimation results from the heterogeneous earnings risk

model. The first subsection discusses the first-step parameters. The next subsection

discusses the results obtained on the parameters of the earnings process, and how these

vary for the three approaches outlined in the Econometric Approach section. In the third

subsection, I explore the implications of heterogeneous earnings risk in an incomplete

markets model, by comparing the recursive competitive equilibrium solution with that

of a model without heterogeneous earnings risk.

6.1 First-step estimates of α (elasticity of capital), δ (depreciation rate), µ

(unemployment benefits)

Table 2: Estimates for α (elasticity of capital), δ (depreciation rate), and µ (unemployment
benefits). Standard errors obtained using block-bootstrap with blocks of 3-years width.

Parameter Estimate Standard errors

α 0.373 0.003
δ 0.026 0.004
µ 0.132 0.011

This subsection presents the estimates obtained for the parameters α (elasticity of capi-

tal), δ (depreciation rate), and µ (unemployment benefits). Recall that these parameters

are identified and estimable from a subset of moments that is independent of all the other

parameters, and they do not require the full solution of the stationary equilibrium. They

only require the solution to the firm-side problem (for α and δ) and the government bud-

get constraint (for µ). The obtained estimates are reported in Table 2. As can be seen,

the estimates are similar to those commonly used in calibrations, e.g., in Den Haan

mentation of pattern search in MATLAB, see https://nl.mathworks.com/help/gads/patternsearch
.html.
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(2010), and are estimated with high precision.

6.2 Estimation of earnings process parameters

This subsection presents and discusses the estimation results for the earnings process

parameters, and, when applicable, the other structural parameters of the general equi-

librium model. Results are presented for the three procedures outlined in Section 5.

6.2.1 Estimation results of identification strategy 1: using net worth, earnings

and employment panel

This subsection presents the estimates obtained from the first identification strategy.

This strategy enables the identification and estimation of the earnings process, without

imposing additional restrictions on the earnings process. These unrestricted estimates

are presented in Table 3. In Appendix E, the auxiliary model parameters are presented as

simulated from the model, and compared to the auxiliary model parameters as estimated

from the observed data.

Table 3: Estimates of unrestricted earnings process, using identification strategy 1.

Transition probabilities Unemployed Low earnings High earnings

(from/to) Low risk High risk Low risk High risk

Unemployed 0.318 0.482 0.052 0.009 0.139

Low earnings
Low risk 0.012 0.736 0.004 0.236 0.012
High risk 0.081 0.367 0.448 0.043 0.061

High earninngs
Low risk 0.021 0.106 0.043 0.792 0.038
High risk 0.110 0.145 0.302 0.143 0.300

Stationary distribution 0.036 0.377 0.068 0.474 0.045

Note: Other parameter estimates: νl: 0.68, νh (implied): 0.58, β (implied): 0.974, γ (risk aversion):

5.34. Standard errors are (currently) unavailable due to the high computational demands imposed by

the model in combination with the large number of parameters.

Several observations can be made about the estimation results. First of all, in terms

of interpretation, starting by comparing the low and high-income states, the estimates

of νl and νh show that individuals in the low-income state earn 32% below average

wage, while the high income individuals earn 58% above average wage. Individuals face

not only income inequality, but also income risk inequality. The second and fourth

row of P̂ can be unambiguously interpreted as states with low risk. The probability

of becoming unemployed is fairly low, and the probability of staying in the same state
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next period is relatively large: 0.736 for the low-income-low-risk state, and 0.792 for the

high-income-low-risk state. On the other hand, the third and fifth row represent the

transition probabilities for the high-risk states. Comparing the low-income-low-risk and

low-income-high-risk states (rows 2 and 3), the probability of becoming unemployed is

about seven times as large in the high-risk state. Similarly, the probability of becoming

unemployed is around five times as large in the high-income-high-risk state than in the

high-income-low-risk state.

Risk encompasses more than simply job-loss probabilities. Comparing the second and

third rows, one can see that individuals in the low-income-high-risk state (third row),

having a higher probability of becoming unemployed, also have a considerably lower

probability of moving into the high-income state (0.043+0.061=0.104), compared to the

low-income-low-risk individuals (second row), who face a probability of 0.248 (0.236+0.012)

of moving to a high-income state next period. This supports the notion that earnings

risk is a multidimensional object, and, as the results below will show, a variance-based

risk measure will not be able to capture this, as having a larger variance would also

imply a larger probability for positive income shocks. The estimates show that the high-

income-high-risk state in row five has a higher probability of moving to the low-income

level than the high-income-low-risk individuals in row four.

Another interesting result is the difference in stability of the high and low-risk states.

Comparing rows two and three, and rows four and five, it can be seen that low-risk states

(row two and four) are more stable than the high-risk states (row three and five), in the

sense that the probabilities of remaining in the same state next period (the diagonal

elements) are much larger in the low-risk than in the high-risk states.

6.2.2 Estimation results of identification strategy 2: using earnings and employ-

ment panel and GARCH restrictions

The results of the second identification strategy are summarized in Table 4, where the

AR(1)-GARCH(1,1) parameters are presented, as well as the corresponding discretiza-

tion into a first-order Markov process, denoted in the Table by P̂GARCH
earnings . P stat denotes

the corresponding stationary distribution.

There are several important differences between and similarities to the estimates that

follow from the first identification strategy, presented in the previous subsection. A

notable similarity is the difference in stability between high- and low-risk states; the

estimates of the second identification strategy confirm that individuals in high-risk states
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Table 4: GARCH estimates using earnings data only. Estimated using indirect inference.
AR(1)-GARCH(1,1) is given by: yit+1 = a + byit + σit+1uit+1, where σit+1 = c + dσ2

it + fu2
it.

y is log earnings.

Transition probabilities Unemployed Low earnings High earnings

(from/to) Low risk High risk Low risk High risk

Unemployed 0.574 (0.004) 0.302 (0.003) 0.107 (0.001) 0.000 (0.000) 0.017 (0.001)

Low earnings
Low risk 0.030 (0.001) 0.443 (0.003) 0.074 (0.001) 0.351 (0.001) 0.103 (0.002)
High risk 0.038 (0.001) 0.400 (0.003) 0.106 (0.001) 0.313 (0.002) 0.144 (0.002)

High earninngs
Low risk 0.005 (0.000) 0.166 (0.000) 0.099 (0.001) 0.628 (0.003) 0.103 (0.002)
High risk 0.007 (0.000) 0.137 (0.001) 0.137 (0.002) 0.575 (0.003) 0.144 (0.002)

Stationary distribution 0.035 (0.001) 0.263 (0.001) 0.097 (0.001) 0.497 (0.003) 0.109 (0.002)

a b c d f

AR(1)-GARCH(1,1) estimates 2.206 (0.018) 0.702 (0.002) 2.511 (0.008) 0.146 (0.001) 0.114 (0.001)

Note: Discretization is done at the same σ-levels as the earnings process estimated using earnings and

savings data that will be presented below, for sake of comparability. The other parameter estimates are:

νl: 0.6297, νh (implied): 0.8868. Standard errors based on 1999 case-bootstrap samples.

have lower probabilities of remaining in the same state next year than individuals in

low-risk states. The amount of income inequality is similar, but slightly larger than the

estimates found in the previous subsection: low-income earners have a wage 37% below

average, while the high-income earners have a wage 89% above average. Note that these

values are the same for the different risk states. Also, low-risk states have a smaller

probability of becoming unemployed than high-risk states, although this difference is

smaller than under the first identification strategy. Overall, the main conclusions are

similar.

There are also important differences. The first identification strategy does a better job

at matching the probability of remaining unemployed. The probability of remaining

unemployed next year given by the non-parametric auxiliary matrix in the Data Section

in Equation (1) is around 0.4. The GARCH-restricted estimates imply a probability

around 0.57. This is because in the GARCH-restricted estimates, unemployment is

interpreted as having a low income level, and the transition probabilities follow from the

GARCH model, but these cannot match this feature of the data well.

Another issue with interpreting risk as variance, as the GARCH-restricted model does, is

that the results in Table 4 suggest that the low-income-high-risk state has fairly similar

upward risk as the low-income-low-risk state, while the results in Table 3 indicate that

the low-income-high-risk individuals actually have a considerably lower probability of
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moving to the high-income state than low-income-low-risk individuals. Again, this is

driven by restricting risk to be a variance: when doing so, a high risk level corresponds

to a high variance, and consequently, an increase in both the probabilities of upward

and downward changes in income. These issues support the idea of this paper that a

rich notion of income risk heterogeneity should be studied and modeled.

A last notable difference between the two identification strategies is the following. Table

4 suggests that the low-income states have considerably larger job-loss probabilities than

the high-income states. In the discretized GARCH framework of this paper, unemploy-

ment is modeled as having a very low income, which is a smaller – and thus more likely –

shock when coming from the low-income state than from the high-income state. There-

fore, the GARCH restrictions suggest that low-income states are considerably more risky

in terms of their probability of moving into unemployment, while this inverse relation-

ship between income and risk is not supported by the unrestricted estimates of the first

identification strategy. However, the non-parametric results in Table 1 do support an

inverse relationship between earnings level and unemployment probabilities, suggesting

that it might not purely be the discretized AR-GARCH restrictions that are driving

this result. Instead, it seems plausible that the estimates of the first identification strat-

egy are affected by some of the other parameters in the auxiliary model. For example,

assigning higher unemployment probabilities to the high-earnings states may help to

generate more wealth inequality, at the cost of a worse fit for some of the other auxiliary

parameters.

6.2.3 Estimation results using a combination of identification strategy 1 and 2:

net worth, earnings and employment panel, and GARCH restrictions

This section considers the combination of both identification strategies. For these esti-

mates, essentially the transition probability matrix obtained from identification strategy

1 is restricted to be generated by a discretized AR(1)-GARCH(1,1) process. The results

of this procedure are summarized in Table 5. The reason to consider these estimates is

because they can be used to further analyze the restrictiveness of the GARCH model.

As both models minimize the same objective function, a direct comparison gives us a

good indication of this restrictiveness. Whereas the GARCH-restricted estimates of Ta-

ble 5 have an objective function of 0.7642, the unrestricted estimates of Table 3 have

an objective function as low as 0.2632, amounting to a deterioration of approximately

200% caused by imposing these restrictions.
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A comparison between the results of Table 5 and the unrestricted estimates of Table

3 confirms some of the results above on the restrictiveness of the AR(1)-GARCH(1,1)

process. The probability of remaining unemployed in table 5 is 0.6, which is larger

than the empirically measured probability of remaining unemployed next year, which is

around 0.4 (see the results in Equation (1) in the Data Section), confirming that the

discretized GARCH model fails to match this dimension of the data. The estimation

results again imply a relationship between income inequality and income risk inequality,

as found in both the auxiliary transition matrix of Table 1, and in the estimates of the

second identification strategy. Furthermore, the results also confirm the considerable

risk inequality faced by the individuals. The low-risk state has a variance of shocks to

the log earnings process of 2.079, while the high-risk state has a variance of 4.216, which

means the variance of the shocks to log-income doubles.

Table 5: GARCH estimates using an earnings, net worth and employment panel. yit+1 =
a+ byit + σit+1uit+1, where σit+1 = c+ dσ2

it + fu2
it. y is log earnings. Process is discretized at

the following two variance levels: c/(1− d) and c+ d(c/(1− d)) + f(((a/(1− b))(lνl + lνh))2).
lνl and lνh are the log-correspondences of the income differences νl and νh. The discretized
variance levels are: 2.079 and 4.216.

Transition probabilities Unemployed Low earnings High earnings

(from/to) Low risk High risk Low risk High risk

Unemployed 0.601 0.299 0.076 0.000 0.025

Low earnings
Low risk 0.024 0.433 0.105 0.311 0.128
High risk 0.082 0.461 0.000 0.389 0.069

High earninngs
Low risk 0.003 0.129 0.126 0.614 0.128
High risk 0.025 0.255 0.044 0.607 0.069

Stationary distribution 0.046 0.263 0.097 0.484 0.111

a b c d f

AR(1)-GARCH(1,1) estimates 1.850 0.722 2.817 -0.355 0.829

Other parameters: ν1: 0.699, ν2 (implied): 0.498. β: 0.979 and γ (risk aversion) 5.62.

Another example of how the GARCH model is put to the test is the following. The

discretized GARCH model has a hard time simultaneously matching the large stability

of the low-risk states, and strong reversion to the low-risk states from the high-risk states.

The model tries to match these features by choosing a negative parameter d, where d is

the autoregressive component in the variance equation, and the f parameter close to one,

where f is the relation between next period’s variance and the current earnings shock.

This combination achieves a large variance after having a sizeable earnings shock, but a
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strong reversion towards a low-variance state next period. Note that this is an a-typical

parametrization for a GARCH model. GARCH models are often used for financial

applications, and financial returns are typically characterized by a low sensitivity to

shocks (f close to zero) and very high persistence (d close to one). Note, furthermore,

that in financial applications, d is typically restricted to be positive, because else, the

model might predict negative variances. This is not necessary in this application, because

the state space is discretized at positive variance levels.

6.2.4 Conclusions shared by all three estimation procedures

Although the results point at the fact that the GARCH model is overly restrictive, and

earnings risk is a richer concept than only the variance of earnings shocks, several results

are consistent across all three approaches and are therefore highlighted here. Income

inequality is present and sizeable: low-income individuals earn around 30-33% below

average wages, while high-income individuals earn 49 to 88% above average. Similarly,

income risk inequality is found to be sizeable, and high-risk individuals have probabilities

of becoming unemployed four to ten times as large as low-risk individuals. Thirdly, the

estimates support that high-risk states are typically temporary, and the probability of

remaining in a high-risk state next period is fairly small. On the other hand, the low-risk

states are stable, and the probability of remaining in a low-risk state next period is large,

with estimates varying from 0.4 to 0.8.

6.3 Comparing an economy with and without heterogeneous earnings risk

In this subsection, I evaluate the implications of heterogeneous time-varying earnings

risk in the estimated general equilibrium model. I compare the model implications

with those of a general equilibrium with a reduced Markov chain that aggregates the

unobservable earnings risk, such that individuals only differ with respect to earnings

levels. These individuals thus still experience earnings risk, but there is no earnings risk

inequality. This analysis is based on the estimates of Table 3.

I first confirm that the model with risk heterogeneity can generate dispersion in saving

behavior, whereas this is not the case for the model without risk heterogeneity. Indi-

viduals in high-risk states save more than individuals in low-risk states, conditional on

their earnings and previous savings. This is shown in Figure 11. The difference in saving

choices between high- and low-risk individuals is larger at lower savings levels.

50



Figure 11: Variance of savings between individuals in 15 (out of 250 in total) clusters in period
t (blue) and period t+ 1 (red) in the model with and without risk heterogeneity, clustered based
on their earnings and period-t savings.
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In the model without risk heterogeneity, the same transition probability matrix is used as in the model

with risk heterogeneity, but states are aggregated such that individuals are only heterogeneous with

respect to earnings levels and not transition probabilities. Based on simulations, using the estimates of

the unrestricted model in identification strategy 1.

The model with earnings risk heterogeneity implies a savings distribution with a larger

variance, and attributes more probability to the right tail of the distribution than the

model without earnings risk heterogeneity. Also, aggregate savings go up by approxi-

mately 5%. This, and other properties of the savings distribution are summarized in

Table 6, and visualized in Figure 12. The differences between the savings distributions

of the models with and without earnings risk heterogeneity are mostly driven by the low-

wage individuals, for whom the pre-cautionary motive is strong. This can be seen from

the left bottom panel in Figure 12. The savings distribution of the low-income-high-risk

individuals lies almost strictly to the right of the distribution of the low-income-low-risk

individuals. The opposite happens for high-income individuals; the savings distribution

of high-risk individuals lies to the left of the savings distribution of low-risk individuals.

This can likely be explained as follows. Even though at a given savings level at time t,

the high-risk individuals will save more than high-income-low-risk individuals, on aver-

age these high-risk individuals will have accumulated lower savings levels, such that the

overall distribution of low and high risk individuals with high wages is fairly similar.
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Figure 12: Savings distributions for the model with heterogeneous risk (abbreviated as het.
risk) and without earnings risk heterogeneity (abbreviated as hom. risk). In the model without
risk heterogeneity, the same transition probability matrix is used as in the model with risk
heterogeneity, but states are aggregated such that individuals are only heterogeneous with respect
to earnings levels and not transition probabilities. ‘All’ refers to the savings distribution of all
individuals jointly. ’Low wage’ refers to individuals in the low income state, while ’high wage’
refers to the high income individuals.
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Table 6: Properties of the savings distributions for the model with heterogeneous risk and
without earnings risk heterogeneity. In the model without risk heterogeneity, the same transition
probability matrix is used as in the model with risk heterogeneity, but states are aggregated
such that individuals are only heterogeneous with respect to earnings levels and not transition
probabilities.

Model/Statistic Homogeneous risk Heterogeneous risk
Mean(kit) 40.076 41.041

β̂ (Implied time discount factor) 0.9637 0.9643
Variance(kit) 356.07 372.50
Skewness((kit) 0.4296 0.4301
Kurtosis(kit) 2.808 2.754
Percentile95(kit)/Percentile90(kit) 1.1216 1.1215
Percentile95(kit)/Percentile75(kit) 1.4094 1.4124
Percentile75(kit)/Percentile50(kit) 1.3636 1.3761
Percentile50(kit)/Percentile20(kit) 1.6552 1.6525
Percentile20(kit)/Percentile1(kit) 4.4615 4.2908

To assess the welfare implications of earnings risk heterogeneity, one can compute the

percentage increase in consumption, denoted by g(k, ε), needed to make an individual

with current savings k and earnings state ε indifferent between an economy with hetero-

geneous and homogeneous earnings risk. Denote the value function of an individual in

an economy with heterogeneous earnings risk by V het. risk(k, ε), and the value function of

an individual in an economy with homogeneous earnings risk by V hom. risk(k, εhom). Note

that εhom aggregates states 1 and 2, and states 3 and 4. Comparing the two economies

in equilibrium, g is given by (Krueger and Perri, 2004):

g(k, ε) = 100 ·

([
V hom. risk(k, ε)

V het. risk(k, ε)

] 1
1−γ

− 1

)
,

where, recall, relative risk aversion of the worker is denoted by γ. Conditional on the

joint probability measure of the individual capital choices k and states ε, denoted Φhet.risk
k,ε ,

an aggregate measure for welfare is the welfare gain comparing the steady states of both

economies, given by

gss =

( ∫
k,y
V hom. risk(k, y)dΦhom. risk

k,y∫
k,y,ξ

V het. risk(k, y, ξ)dΦhet. risk
k,y,ξ

) 1
1−γ

− 1 (25)

Computing Equation (25) for the estimates in Table 3 and the entire distribution implies

a welfare gain of 0.51%. This means that on average individuals are better off when they

all face the earnings process with homogeneous risk.
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7 Conclusion

This paper proposes a novel earnings process that models heterogeneity in earnings risk

by allowing for heterogeneous transition probabilities between high and low earning lev-

els. This process generates a richer notion of earnings risk heterogeneity than previously

considered in the literature. The paper specifies and analyzes a general equilibrium

heterogeneous agent model accommodating this heterogeneous idiosyncratic earnings

process for household earnings. Theoretical identification results are derived on the pa-

rameters of this earnings process, and these results show that a panel with savings levels

can be used to identify and estimate the parameters of this process. Alternatively, a

more restrictive variant of the idiosyncratic shock process proposed by this paper can

be mapped into a discretized (generalized) autoregressive conditional heteroskedasticity

model, such that these parameters can be estimated using only a panel of earnings levels.

To do so, this paper proposes an improved discretization method for GARCH-type pro-

cesses. These gives rise to two identification strategies, and these are used to estimate

the relevant parameters of the earnings process using indirect inference and data from

the Survey of Income and Program Participation.

The results show that earnings risk heterogeneity is empirically relevant, and individu-

als face large differences in their earnings risk, as evidenced, for example, by the differ-

ences in the probabilities of becoming unemployed. Heterogeneous earnings risk also has

implications in general equilibrium, for example, the precautionary savings of the low-

income-high-risk individuals moves the savings distribution to the right. Comparing the

two different identification strategies shows that a (discretized) GARCH model is overly

restrictive when modelling earnings risk. This supports the notion that earnings risk is a

rich concept, that should be modelled more flexibly, for example, by using the earnings

process proposed in this paper. Earnings risk heterogeneity also has welfare effects, and

individuals would on average be willing to give up 0.51% of their consumption to live in

an economy without earnings risk heterogeneity.

For further research, it would be interesting to analyze the heterogeneous earnings risk

model in a setting with aggregate risk, to assess whether heterogeneous earnings risk has

other important implications. Such a model can then also be used to analyze whether and

how earnings risk inequality varies over the business cycles, and to study the implications

of this potentially important source of business cycle variation for tax and monetary

policy.
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A Data

A.1 Individual-level variables

The individual-level variables used in this paper are obtained from the Survey of Income

and Program Participation (SIPP) dataset of the United States Census Bureau. The

analysis in Section 2.2 uses the panel of 2014. A detailed description of the variables

employed from the 2014 panel is now given, together with the sample transformations

used.

First of all, it should be noted that only person-level variables are used. I exclude indi-

viduals that are self-employed (using the variable SELFEMPL), and remove individuals

younger than 18 and older than 67 (using TAGE) at the start of the panel. Furthermore,

I remove the subset of individuals that are not in the labor force, for example because of

a disability or health condition, study, care-taking, pregnancy or retirement (indicated

by the variable EN NOWRKi).

Variables used in the analysis are: person-level net worth (TNETWORTH), sum of

earnings of all jobs (sum of TJBi MSUM for i = 1, ..., 7), and a code for the monthly

employment status (RMESR). It is also possible for jobs to be linked in the panel, such

that the employment status of an individual at one specific job can be assessed, but in

this paper the focus is on transitions between un- and employment, not in between jobs.

Apart from these variables, various controls are used to ensure that the measured effect

is due to the mechanism of interest: heterogeneity of earnings risk, rather than other

variables that could explain heterogeneity in saving decisions. The following variables

are used: TAGE (age of the individual), ESEX (indicating gender), EEDUC (highest

level of school completed or highest degree received by end of reference year), ERACE

(what race does the respondent consider him/herself to be) or the more detailed vari-

able TRACE (these demographic variables can be extended with variable EORIGIN

indicating whether the respondent is Spanish, Latino or Hispanic), TEHC ST (state of

residence), TEHC METRO (living in a metropolitan area or not).

Some other variables that could be important for the perception of risk an individual

faces that is unrelated to earnings risk is whether the individual has a health insurance

or not (RHLTHMTH), whether the parent takes care of children under 18 or not (ERP),

and coverage of housing (ETENURE, i.e. is the house rented, owned or occupied without

paying rent).
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Table A1: Selected summary statistics of the Survey of Income and Program Participation
dataset for 2014-2018 waves after sample selection. Selected standard errors given in paren-
theses.

Sample average Average for males Average for females
Age (years) 42 41.44 42.59
Female 38% – –
High school 30.94% 29.03% 34.01%
College 23.70% 18.24% 32.36%
University BSc or up 15.61% 12.10% 21.25%
Identifies as black 10.97% 0.08% 15.83%
Not white, not black 6.16% 5.46% 7.29%
Big city 61.34% 51.26% 77.50%
Health insurance 63.46% 51.65% 82.41%
Renter 25.88% 21.66% 32.64%
House owner 51.76% 43.14% 65.61%
Kids 16.42% 2.71% 38.41%
Average monthly earnings 3525.6 (3879.1) 3546.8 (3860.7) 3491.2 (3908.7)
Net worth 155940 (981400) 164190 (1226400) 142880 (325530)
Unemployed (>6 months) 5.95% 5.76% 6.25%
Total number of observations 25124 15479 9645
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A.2 Aggregate variables

Table A2: Data for the United States, all data except income tax revenues are retrieved from
FRED, Federal Reserve Bank of St. Louis, January 10, 2021 and can be accessed using the
codes given in parentheses via https: / / fred .stlouisfed .org/ .

Data for estimation parameters α, δ, ν
Variable Data proxy/description Source

Y Gross national income (A023RC1Q027SBEA) U.S. Bureau of Economic Analysis

w/Y

The sum of:
Shares of gross domestic income: Compensation
of employees, paid (A4002E1A156NBEA)
Shares of gross domestic income: Net operating
surplus: Private enterprises: Business current
transfer payments (net) (B029RE1A156NBEA)
Shares of gross domestic income: Net operating
surplus: Private enterprises: Proprietors’ income
with inventory valuation and capital
consumption adjustments
(A041RE1A156NBEA)

U.S. Bureau of Economic Analysis

δK Consumption of Fixed Capital (COFC) U.S. Bureau of Economic Analysis

r
Interest Rates, Discount Rate for United States
(percent per annum) (INTDSRUSM193N)

International Monetary Fund

u Unemployment Rate (UNRATE) U.S. Bureau of Labor Statistics

τ

Personal current transfer receipts: Government
social benefits to persons: Unemployment
insurance (W825RC1)
Divided by:
Compensation of Employees, Received: Wage
and Salary Disbursements (A576RC1)

U.S. Bureau of Economic Analysis
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Figure A1: Aggregate data used for estimation of the first-step parameters
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Data sources are described in more detail in Appendix A.2.
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B Additional details on the relationship to other earnings pro-

cesses

B.1 Discretizing a canonical earnings model with a GARCH component

It is common in the literature on earnings processes to assume that (log) earnings Yit

are composed of both a transitory and a permanent component, as opposed to only

the permanent component that the AR(1) process in Section 3.1.1 of the main paper

assumes. The Markov transition matrix can also be mapped into such an earnings

process of the form

Yit = ηit + νit, (B.1)

where ηit follows the AR(1)-GARCH(1,1) process of Equation (4) in the main paper,

and νit is a white-noise transitory shock. This model is often referred to as the canonical

model of earnings.22 The additivity of the transitory-permanent income process allows

using the discretization technique proposed in Section 3.1.1 for ηit, and in a second step

computing the final discretized Markov process for Yit.

To make this more concrete, assume that the permanent component ηit is discretized

in N levels η̄(i), i = 1, ..., N , and σ2
i,t+1, the conditional variance of the shocks to η,

is discretized into M levels σ̄2(j), j = 1, ...,M . Last, assume that (log) earnings Yit

is discretized into L levels, ȳ(k), k = 1, ..., L. Retain the definitions for cells H and G

introduced in Section 3.1.1 of the main paper, where H is now used to denote the cells of

the discretized permanent component, instead of the income level. For the income levels,

introduce cells E corresponding to the L income levels ȳ(k): E(k) = [e(k), e(k + 1)]

for k = 1, ..., L, with e(1) = −∞, e(k) = (ȳ(k) + ȳ(k − 1))/2, for k = 2, ..., L and

e(L+ 1) = +∞. Denote the transition probability

P (Yi,t+1 ∈ E(l), ηi,t+1 ∈ H(p), σ2
i,t+2 ∈ G(q)|Yi,t ∈ E(i), ηi,t ∈ H(j), σ2

i,t+1 ∈ G(k))

with short-hand notation π((i, j, k); (l, p, q)). As before, we approximate this probability

by P (Yi,t+1 ∈ E(l), ηi,t+1 ∈ H(p), σ2
i,t+2 ∈ G(q)|Yi,t = ȳ(i)), ηi,t = η̄(i), σ̄2

i = σ̄2(k)).

Next, this probability can be approximated by:

pCG((i,j,k);(l,p,q)) =

∫ Bupper(p,l)

Blower(p,l)

pG(p,q;j,k)p(ν)dν, (B.2)

22Alternatively, it is often assumed ηit is a unit-root process, but this case is not considered here.
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where p(ν) is the probability density function of the transitory shock νit, Blower(p, l)

is defined as e(l) − η̄(p) and Bupper(p, l) = e(l + 1) − η̄(p), that is, the highest and

lowest values of the transitory component ν that can correspond with the intervals of

the income levels and the permanent component, where the permanent component η is

fixed at the value middle of its interval. The definition of pG(p,q);(j,k) is given in Equation

(9). CG is short for canonical-GARCH.

Alternatively, an exact expression for the probability can also be derived, but this is

computationally more intensive.

pCG((i,j,k);(l,p,q)) =∫ Lij(k+1)

Lij(k)

∫ e(l+1)−η

e(l)−η
p(ν)dνI{(c+ d · σ̄2(j) + f · u2) ∈ G(l)}φ

(
η − a− b · η̄(i)

σ̄(j)

)
dη.

(B.3)

To compute the transition matrix of interest, that is, transition probabilities P (Yi,t+1 ∈
E(l), σ2

i,t+2 ∈ G(n)|Yi,t ∈ E(i), σ2
i,t+1 ∈ G(k)), one needs to aggregate over the states η̄:

P (Yi,t+1 ∈ E(l), σ2
i,t+2 ∈ G(q)|Yi,t ∈ E(i), σ2

i,t+1 ∈ G(k)) =

N∑
p=1

N∑
j=1

π(l, p, q; i, j, k)
P (Yi,t+1 ∈ E(i), ηi,t ∈ H(j), σ2

i,t+1 ∈ G(k))∑m
h=1 P (Yi,t+1 ∈ E(i), ηi,t ∈ H(h), σ2

i,t+1 ∈ G(k))
,

(B.4)

where the expression in the fraction can be computed directly from the stationary distri-

bution implied by the transition matrix in Equation (B.2). The attractiveness in allowing

for a transitory component νit is that this component can affect earnings temporarily,

without any lasting effects on future earnings or on future earnings risk.

B.2 Discretization of a TGARCH model

Unlike the traditional GARCH process, a TGARCH allows for a leverage effect, where

negative shocks have a different effect on the variance than positive shocks. This is

achieved in a TGARCH(1,1) model by assuming the following process for the variance:

σ2
i,t+1 = c+ d · σ2

it + (f + gI{uit < 0}) · u2
it. (B.5)

The effect of positive and negative shocks on the variance is asymmetric of g 6= 0. If

g > 0, there is a leverage effect. In financial applications, the typical finding is that

g is indeed positive and significant. However, for earnings, this might not necessarily
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be the case. In fact, a large negative shock, such as a fall into unemployment does not

make a large consecutive (positive or negative) shock more likely. It seems more likely

that unemployment will be followed by either another period of unemployment, or a

lower-wage job. g < 0 is thus also a possible outcome in earnings processes. Adjusting

the discretization method to accommodate this asymmetric effect only requires replacing

Equation (9) by (B.6) below.

pTG(i,j;k,l) = P (yi,t+1 ∈ H(k), σ2
i,t+2 ∈ G(l)|yit = ȳ(i), σi,t+1 = σ̄2(j))

=

∫ Lij(k+1)

Lij(k)

I{(c+ d · σ̄2(j) + (f + g · I{ε < 0})ε2) ∈ G(l)}φ(u)du,
(B.6)

with Lij(k), ȳ, σ̄2, H(k) and G(l) defined above, and φ(u) the probability density func-

tion of the normal distribution. TG is short for TGARCH.

B.3 Discretization of a canonical earnings model with heterogeneous (non-

time varying) variances

The general income process introduced in Section 3.1 can also be related to earnings

processes with ex-ante non-timevarying heterogeneous variances, as for example studied

by Almuzara (2021); Botosaru (2020); Botosaru and Sasaki (2018). Consistent with the

previous introduced notation, consider the following process for log earnings:

Yit = ηit + νit, νit ∼ (0, (σνi )2) (B.7)

ηit+1 = a+ bηit + σui ui,t+1, |b| < 1, uit ∼ (0, 1) (B.8)

where again ηit is the permanent component of earnings and νit the transitory compo-

nent. Consider a discretization of M permanent component variance levels (σ̄u(i), i =

1, ...,M), and N transitory component variance levels (σ̄ν(j), j = 1, ..., N). Also con-

sider L discrete income levels (ȳ(l), l = 1, ..., L). The discretized canonical earnings

process with heterogeneous non-time-varying variances of Equations (B.7)-(B.8) can be

mapped into the transition probabilities of the general process in Equation (2) by defin-

ing states as a combination of (ȳ(l), (σ̄u(i)), σ̄ν(j)) = (ȳ(l), ξ̄(k)). In this case, X from

the general model in Equation (2) corresponds to {σ̄u(i), i = 1, ...,M} × {σ̄ν(j), j =

1, ..., N}. Due to the non-time-vaying nature of the variances, transitions between dif-

ferent realizations of ξ̄(i) ∈ X are ruled out, and thus have probability zero.

To compute the non-zero transition probabilities, a similar strategy as in the previous

subsection can be used. Assume that also the permanent component is discretized in K
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levels η̄(k), k = 1, ..., K. For the income levels y, introduce again cells E corresponding

to the L income levels ȳ(l) : l = 1, ..., L as E(l) = [e(l), e(l + 1)] for l = 1, ..., L, with

e(1) = −∞, e(l) = (ȳ(l) + ȳ(l + 1))/2 for l = 2, ..., L and e(L + 1) = +∞. Denote

similarly by H the cells of the discretized permanent component η̄(k). Denote the

transition probability

P (Yi,t+1 ∈ E(m), ηi,t+1 ∈ H(n), σui = σ̄u(p), σνi = σ̄ν(q)|...

Yi,t ∈ E(i), ηi,t ∈ H(j), σui = σ̄u(k), σνi = σ̄ν(l))

with short-hand notation p(i,j,k,l),(m,n,p,q). As before, approximate this probability by:

P (Yi,t+1 ∈ E(m), ηi,t+1 ∈ H(n), σui = σ̄u(p), σνi = σ̄ν(q)|Yi,t = ȳ(i), ηi,t = η̄(j), σui = σ̄u(k), σνi = σ̄ν(l)).

Next, this probability can be computed as

p(i,j,k,l),(m,n,p,q) =

0 if k 6= p, l 6= q∫ Lj(n)

Lj(n+1)

∫ e(m)−η
e(m+1)−η p(ν, σ

ν)dνφ
(
η−a−bη̄(i)

σu

)
dη else

, (B.9)

where Lj(n) is given by h(n)−a−bη(j)
σu

. φ denotes the probability density function of uit.

At last, aggregate the transition probabilities similar as in Equation (B.4) to obtain the

transition probability matrix for the states (ȳ(l), (σ̄u(i)), σ̄ν(j)).

Evidently, this Markov chain is not ergodic with respect to the variance states, as there

is no randomness in those states. This means that it is not possible to transition from

each state to every other state in the state space. Yet, the process can still be stable with

respect to the earnings level states, because all earnings levels should still be reachable

from each other earnings level state within a finite number of transitions. The variance

levels of each individual should in this case rather be considered as ex-ante heterogeneous,

drawn from a set of possible discrete realizations.

B.4 Heterogeneous job-loss and job-finding probabilities

The earnings process of Section 3.1 in the main paper can easily accommodate hetero-

geneous job-loss and job-finding probabilities as in Guvenen et al. (2021) and Mueller et

al. (2021). To achieve this, when defining Y , the set of discretized earnings levels, one

should also include an unemployed state u, that is, Y = {u, ȳ(1), ..., ȳ(L)}. Next, for any

choice for the set X with cardinality of two or higher, the earnings process generates het-
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erogeneous job-finding probabilities for different unemployed individuals. Furthermore,

individuals with the same current earnings level have different probabilities of losing

their job if they have a different realization of ξt.

B.5 Skewness and higher-order moments

The general earnings process proposed by this paper can generate skewness and other

non-normalities, as shown to be important by Busch et al. (2021) and others. Further-

more, the amount of skewness in the earnings shock distribution can be heterogeneous

and time-varying.

Denote the current state by (ȳ(i), ξ̄(j)). In that case, the probability distribution of

next period’s earnings is characterized by the probabilities p(i,j);(k,l) for k = 1, ..., L and

l = 1, ...,M corresponding to the outcomes (yt+1, ξt+1) ∈ (Y × X ). The expectation of

next period’s earnings level conditional on the current state can be computed as:

µ(i,j) = E
[
Yt+1

∣∣∣(Yt, ξt) = (ȳ(i), ξ̄(j))
]

=
L∑
k=1

M∑
l=1

ȳ(k) p(i,j);(k,l). (B.10)

The skewness, conditional on current state (i, j) can be computed as:

γij =

∑L
k=1

∑M
l=1(ȳ(k)− µ(i,j))

3 p(i,j);(k,l)(∑L
k=1

∑M
l=1(ȳ(k)− µ(i,j))2 p(i,j);(k,l)

) 3
2

, (B.11)

with µ(i,j) given in Equation (B.10). If the next period’s earnings level distribution is

asymmetric, the conditional skewness will always be non-zero. Furthermore, individuals

with different realizations of ξt can have different values of skewness, generating time-

varying heterogeneous skewness. The same holds for other higher-order moments.

B.6 Heterogeneous persistence

In the approach of Arellano et al. (2017), the persistence of earnings shocks is time-

varying and heterogeneous, as it depends on the sign and size of the previous earnings

shock. This statistical property can also be achieved in the earnings process I propose,

as ilustrated through Example 2.

Example 2. Assume Y ∈ {ȳ(1), ȳ(2), ȳ(3)}, where |ȳ(1) − ȳ(2)| < b, with b some

scalar, |ȳ(2)− ȳ(3)| < b, but |ȳ(1)− ȳ(3)| > b. Also, ȳ(1) > ȳ(2) > ȳ(3). Next, restrict

ξ as representing the sign and size of the shock, where the shock is here for simplicity
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defined as the difference between yi,t+1 − yit. That is, take

ξt+1 =


ξ̄(1) if Yi,t+1 − Yit < −b

ξ̄(2) if − b ≤ Yi,t+1 − Yit ≤ b

ξ̄(3) if Yi,t+1 − Yit > b

Note that these restrictions imply that the following combinations of states do not

exist: (ȳ(1), ξ̄(3)), (ȳ(2), ξ̄(1)), (ȳ(2), ξ̄(3)), (ȳ(3), ξ̄(1)). This means that the transition

probability matrix would look like:

(Y × X ) =


(ȳ(1), ξ̄(1))

(ȳ(1), ξ̄(2))

(ȳ(2), ξ̄(2))

(ȳ(3), ξ̄(2))

(ȳ(3), ξ̄(3))

 , P =


0 p(1,1);(1,2) p(1,1);(2,2) 0 p(1,1);(3,3)

0 p(1,2);(1,2) p(1,2);(2,2) 0 p(1,2);(3,3)

0 p(2,2);(1,2) p(2,2);(2,2) p(2,2);(3,2) 0

p(3,2);(1,1) 0 p(3,2);(2,2) p(3,2);(3,2) 0

p(3,3);(1,1) 0 p(3,3);(2,2) p(3,3);(3,2) 0

 .

If we want ξ̄(1) to be a more persistent state than state ξ̄(2), then the probability

of staying at current earnings level ȳ(k) should be larger when in ξ̄(1). For example,

p(1,1);(1,2) should be larger than p(1,2);(1,2). Similarly, ξ̄(3) is a more persistent state than

ξ̄(2) if p(3,3);(3,2) > p(3,2);(3,2). /

B.7 Heterogeneous signals

The general earnings process can also be mapped into an earnings process with heteroge-

neous expectations that arise due to signals received by the individual as in Stoltenberg

and Singh (2020). For this mapping, the interpretation of unobserved state ξ is that it

is the signal received by the individual, Sit, which takes realizations from the set Y , so

(Yit, Sit) ∈ (Y × Y). The signal has a certain level of informativeness, represented by

κ = P (Yit+1 = ȳ(j)|Sit = ȳ(j)), i.e. the probability that the signal Sit coincides with

next periods earnings realization.

For the transition probability matrix of states (Yit, Sit), the following holds:

P (Yit+1 = ȳ(k), Sit+1 = ȳ(m)|Yit = ȳ(j), Sit = ȳ(l))

= P (Sit+1 = ȳ(m)|Sit = ȳ(l)) · P (Yit+1 = ȳ(k)|Yit = ȳ(j), Sit = ȳ(l)).

P (kit+1 = ȳ(m)|kit = ȳ(l)) depends on the process that is assumed for the signals. Given
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the assumptions on the signal’s informativeness,

P (Yit+1 = ȳ(k)|Yit = ȳ(j), Sit = ȳ(l)) =
pjkκ

I[l=k]
(

1−κ
1−L

)1−I[l=k]∑L
z=1 pjzκ

I[l=z]
(

1−κ
N−1

)1−I[l=z] ,

where pij is the probability P (Yit+1 = ȳ(j)|Yit = ȳ(i)). Recall that L is the number of

possible earnings realizations, that is, the cardinality of Y . If the process governing the

signal transitions, P (Sit+1 = ȳ(m)|Sit = ȳ(l)), is left unrestricted, this implies a total of

L× (L− 1) transition probabilities for the signals, L× (L− 1) transition probabilities

for the earnings, and the parameter κ, which is less than the number of parameters of

the general earnings process, with (L ×M) × (L ×M − 1) parameters, for M ≥ 2 if

L ≥ 1. Here M is the cardinality of the set of unobserved states X .
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C Identification of α, δ, µ, γ and β

First, consider the identification of the first-step parameters α, δ and µ. A set of

moment conditions can be derived that identifies parameters α (elasticity of capital), δ

(depreciation rate), and µ (unemployment benefits), such that these moment conditions

do not depend on the other structural parameters in the model.

The following four equations follow from the government and firm-side problem:

Yt = Kα
t (l̄Lt)

1−α,

wt = (1− α)l̄

(
Kt

l̄Lt

)α
,

rt + δ = α

(
Kt

l̄Lt

)α−1

,

(l̄Lt)τt = µut.

l̄ is set to 1
L̄

, where L̄ denotes the long-run average of Lt. Also denote the long-run

values of the other variables as Ȳ , K̄, w̄, r̄, τ̄ and ū respectively. Also, L̄ = 1− ū. The

following relations then hold:

Ȳ = K̄α,

w̄ = (1− α)

(
1

1− ū

)
K̄α,

r̄ + δ = αK̄α−1,

τ̄ = µū.

The following moment conditions can be used to consistently estimate α, δ and µ:

E
(
wobs
t (1− uobs

t )

Y obs
t

− (1− α)

)
= 0,

E
(

Y obs
t

(δKt)obs
− robs

t + δ

δα

)
= 0,

E
(
τ obs
t

uobs
t

− µ
)

= 0,

under the assumption that the sample means of the variables τ obs
t , uobs

t , wobs
t , Y obs

t , robs
t

and (δKt)
obs converge to their long-run values.23

23(δKt)
obs is used because this variable is directly observed in the data, see also the Data section.
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Local (first-order) identification can be shown by deriving the Jacobian of these moment

conditions with respect to the parameters α, δ and µ, and by showing that this Jacobian

is full rank. This is easily verified, as the first moment condition does not depend on

δ and µ, but does depend on α, the second condition does not depend on µ, but does

depend on δ and α, and the third moment condition does not depend on δ and α, but

does depend on µ. It follows that, for values of δ, α and µ unequal to zero, and α

unequal to one, the Jacobian will be full rank.

Janssens (2019) shows that given an idiosyncratic shock distribution, one can identify

the risk aversion parameter from the shape of the wealth distribution. However, we do

need to verify if it is possible to jointly identify the risk aversion parameter and the

transition probabilities of the idiosyncratic shock process. This can only be explored

numerically.

Example 6 Consider the setting described in Example 3, where there is no wage

heterogeneity (L = 1), but there is risk heterogeneity (M = 2). Using the same set

of moments, with the additional moment (1/5)Percentile50(ki)/Percentile20(ki)), the Ja-

cobian of the moments with respect to the transition probability matrix is evaluated,

around risk aversion parameter γ = 1. This results in a rank of 7 (full) and a condition

number of 39.77. /

This indicates numerically that the parameters of the earnings process and the risk

aversion parameter can be jointly identified, even when both are using the same source of

information (moments of a cross-section of net worth data). However, the identification

strategy that will be used below will pin down the transition probabilities from a savings

and earnings panel, while the identification of the risk aversion comes from moments of

the wealth distribution, meaning that identification will come from distinct sources.

The discount factor β is not estimated, but follows as a solution from the general equi-

librium model for a given choice of the interest rate level r.

A similar condition can be derived using Kobs
t instead.
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D Propositions and proofs on the identification of the hetero-

geneous earnings risk process

D.1 Proof of Proposition 1

Proposition 1. Consider an first-order Markov process with earnings states

{ȳ(1), ..., ȳ(L)} × {ξ̄(1), ..., ξ̄(M)} and transition probability matrix P . Any set of mo-

ments derived from an N × T earnings (repeated) cross section, with T ≥ 1 and ob-

servations on earnings levels y ∈ Y = {ȳ(1), ..., ȳ(L)} can generate a Jacobian of the

moments with respect to the transition probabilities P with a rank at most L.

The process is characterized by an observed Markov chain with levels y ∈ Y = {ȳ(1), ..., ȳ(L),

and transition probability matrix

Q =


q1;1 . . . q1;L

q2;1 . . . q2;L

...
. . .

...

qL;1 . . . qL;L


Denote the L stationary probabilities corresponding to this observed Markov chain

by q1, q2, ..., qL. On the other hand, the underlying earnings process has states Y =

{ȳ(1), ..., ȳ(L)} × {ξ̄(1), ..., ξ̄(M)} and transition probability matrix P given by

P =


p(1,1);(1,1) p(1,1);(1,2) . . . p(1,1);(1,M) p(1,1);(2,1) . . . p(1,1);(L,M)

p(1,2);(1,1) p(1,2);(1,2) . . . p(1,2);(1,M) p(1,2);(2,1) . . . p(1,2);(L,M)

...
...

. . .
...

...
. . .

...

p(L,M);(1,1) p(L,M);(1,2) . . . p(L,M);(1,M) p(L,M);(2,1) . . . p(L,M);(L,M)


Denote the L ×M stationary probabilities of this Markov chain by p1,1, ..., pL,M . The

following mapping exists between the stationary probabilities of the observed Markov

chain and the underlying Markov chain:

qi =
M∑
j=1

pi,j.

The stationary probabilities are functions of the underlying transition probabilities.

When deriving moments from the cross-sectional distribution of this earnings process,

these moments will be functions of the levels and the stationary probabilities that cor-
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respond to these levels. It follows that the Jacobian of any set of moments derived

from a cross section of earnings and employment data with respect to the transition

probabilities can have rank at most L. �

D.2 Proof of Proposition 2

Proposition 2. Consider the first-order Markov process with earnings states

{ȳ(1), ..., ȳ(L)} × {ξ̄(1), ..., ξ̄(M)} and transition probability matrix P . Any set of mo-

ments derived from an N × T earnings and employment panel with observations on

earnings levels y ∈ Y = {ȳ(1), ..., ȳ(L)} can generate a Jacobian of the moments with

respect to the transition probabilities P with a rank at most L× (L− 1).

Proof The process is characterized by an observed Markov chain with levels y ∈ Y =

{ȳ(1), ..., ȳ(L), and transition probability matrix

Q =


q1;1 . . . q1;L

q2;1 . . . q2;L

...
. . .

...

qL;1 . . . qL;L


whereas the underlying earnings process has states Y = {ȳ(1), ..., ȳ(L)}×{ξ̄(1), ..., ξ̄(M)}
and transition probability matrix P given by

P =


p(1,1);(1,1) p(1,1);(1,2) . . . p(1,1);(1,M) p(1,1);(2,1) . . . p(1,1);(L,M)

p(1,2);(1,1) p(1,2);(1,2) . . . p(1,2);(1,M) p(1,2);(2,1) . . . p(1,2);(L,M)

...
...

. . .
...

...
. . .

...

p(L,M);(1,1) p(L,M);(1,2) . . . p(L,M);(1,M) p(L,M);(2,1) . . . p(L,M);(L,M)



One can establish a mapping from P to Q:

qm;n =
M∑
j=1

(
P (η = η̄(j)|y = ȳ(m)) ·

( M∑
i=1

p(m,j);(n,i)

))
,

where P (η = η̄(j)|y = ȳ(m)) can be found by obtaining the eigenvector of P correspond-

ing to the eigenvalue of 1 and compute the conditional probability from Pstationary.

Deriving moments based on the observed panel data with states Y = {ȳ(1), ..., ȳ(L)}
and transition matrix Q shows that these moments can be expressed as a function of
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the L × (L − 1) linearly independent transition probabilities in Q, and the levels of Y .

It follows that therefore the Jacobian of these moments with respect to the underlying

transition probabilities in P will be of reduced rank, as P has (L×M)× (L×M − 1)

moments to be identified, which is larger than L× (L− 1) for M ≥ 2. �

D.3 Proof of Proposition 3

Proposition 3 Consider the first-order Markov process with earnings states

{ȳ(1), ..., ȳ(L)}×{ξ̄(1), ..., ξ̄(M)} and transition probability matrix P . Assume Assump-

tions 1 and 2a-2b hold. A panel of individual net worth kit, and earnings/employment

status yit, with t = 1, ..., T and i = 1, ..., N , T ≥ 2, can be used to perfectly retrieve a

panel of (reordered) unobserved states ξit for t = 2, ..., T and i = 1, ..., N .

Proof By assumption 2a, for each (discrete) level of y = ȳ(j), j = 1, ..., L, the domain

of k can be subdivided into Kj
N subdomains [kj1, k

j
2], ..., [kji , k

j
i+1], ..., [kj

Kj
N

, kj
Kj
N+1

]. For

each subdomain [kji , k
j
i+1] where all individuals have a value of y = ȳ(j), a rule can be

designed such that each observation is classified under the correct risk state ξ. Here, it

should be noted that the exact labeling of an observation having risk state ξ̄(l) is not

important, as this value does not have an interpretation itself, but the idea is rather

that there are M risk states for each of the L income states, and that the observations

that belong to the same risk state should be correctly categorized as belonging to one of

these L×M distinct groups, and should not be grouped with observations from another

risk state. This is where assumption 1 comes in, which relabels the risk states based on

the saving levels to which they correspond, and denotes them by ε̃j1, ..., ε̃jM .

First, for each subdomain [kji , k
j
i+1], the following thresholds should be determined:

kj,max
1 , ..., kj,max

M−1 . Consider all observations within this subdomain, and sort them in

increasing order of k as (k0, k
′
0), (k1, k

′
1), ..., (kn, k

′
n) where n+ 1 is the number of obser-

vations in the subdomain, ki denotes the net worth of an individual at time t, y = ȳ(j)

is the income of the individual at time t and k′i is the choice of net worth for next period

(t+ 1). So k0 ≤ k1 ≤ ... ≤ kn.

Next, kj,max
M−1 is defined as:

max q ∈ 0, ..., n) s.t.

(∃ p : (kp < kq ∧ k′p > k′q)) ∧ (@ m : k′m > k′p ∧ (∃ n : (kn < km ∧ k′n > k′m)))

⇒ kM−1,max
1 := k′q
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Now, label all observations in this subdomain for which k′ > kj,max
M−1 as ε̃jM . Then,

remove all observations with label ε̃jM from the ordered list. Repeat the same procedure

to define the other thresholds kj,max
m for m = M − 3, ..., 1 and iteratively assign the

labels ε̃j(M−1), ...., ε̃j2. After having assigned the label ε̃j2, and having removed those

observations from the ordered list, the remaining observations should be labeled as ε̃j1.

Note that the points that define these thresholds always exists through Assumption 2b.

Next, it is left to show that these labels are assigned correctly, that is, no observation

is categorized together with an observation that has a different risk state. This follows

from the second part of Assumption 2a, that is, in the interval [kji , k
j
i+1], if an observation

(kp, k
′
p) has k′p > kj,max

l , then it must be that the risk state of this observation ε̃j· 6= ε̃jl.

Else, it would imply that the local Lipschnitz continuity of Assumption 2a is violated

and the local Lipschnitz coefficient is larger than Zijl = d(k′(kji , ε̃jl), k
′(kji , ε̃jl+1)). �
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E Auxiliary parameter estimates

Table E1: Auxiliary transition probability matrix computed for observed data, based on 40
control groups and 5 saving bins per group, using Equation (1).

Transition probabilities Unemployed Low earnings High earnings

(from/to) Low savings High savings Low savings High savings

Unemployed 0.415 0.285 0.122 0.138 0.041

Low earnings
Low savings 0.019 0.562 0.264 0.118 0.037
High savings 0.017 0.563 0.197 0.177 0.047

High earnings
Low savings 0.008 0.120 0.071 0.562 0.239
High savings 0.005 0.086 0.043 0.601 0.265

Table E2: Auxiliary transition probability matrix computed for data simulated from the model
with estimates from the first identification strategy, based on a single control cluster and 200
saving bins for the low wage group, and 20 saving bins for the high wage group, using Equation
(1).

Transition probabilities Unemployed Low earnings High earnings

(from/to) Low savings High savings Low savings High savings

Unemployed 0.332 0.353 0.168 0.077 0.071

Low earnings
Low savings 0.020 0.491 0.247 0.177 0.066
High savings 0.031 0.488 0.269 0.140 0.073

High earnings
Low savings 0.030 0.102 0.071 0.550 0.248
High savings 0.030 0.096 0.068 0.556 0.250

Table E3: Auxiliary transition probability matrix computed for data simulated from the model
with estimates from the combination of the first and second identification strategy, based on a
single control cluster and 200 saving bins for the low wage group, and 20 saving bins for the
high wage group, using Equation (1).

Transition probabilities Unemployed Low earnings High earnings

(from/to) Low savings High savings Low savings High savings

Unemployed 0.591 0.208 0.174 0.022 0.006

Low earnings
Low savings 0.042 0.274 0.233 0.276 0.176
High savings 0.042 0.297 0.212 0.290 0.159

High earnings
Low savings 0.007 0.153 0.106 0.448 0.286
High savings 0.006 0.146 0.120 0.506 0.222
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Table E4: Other moments used as auxiliary parameters: observed, as simulated from the model
using the estimates from identification strategy one, and as simulated from the model using the
estimates from the combination of identification strategy one and two.

Moments Observed Identification strategy 1& 2 Identification strategy 1
Prctl90(kit)/Prctl15(kit) 320 2.507 2.849
Prctl99(kit)/Prctl90(kit) 4.056 1.285 1.319
Prctl50(kit)/Prctl15(kit) 35.9 1.566 1.728
Prctl90(wit)/Prctl30(wit) 4.367 4.726 5.007

Unrate (>6 months) 0.045% 0.046% 0.036%
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