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Abstract

We study the problem of a decision maker alternating between exploring existing alter-
natives in the consideration set and searching for new ones. We characterize the optimal
policy and identify implications for search and exploration dynamics. When the search
technology is stationary, or improves over time, search is equivalent to replacement. With
deteriorating technologies, instead, alternatives are revisited after search is launched and
each expansion is treated as if it were the last one. We show that the comparative stat-
ics with an endogenous consideration set can be qualitatively different from those with an
exogenous one. For example, improvements in a category of alternatives may lead to a
reduction in the category’s usage as well as in the eventual selection of an alternative from
that category. We apply the analysis to the administration of medical treatments, clinical
trials toward regulatory approval, Weitzman (1979)’s Pandora’s boxes problem, and online
consumer search.
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1 Introduction

Classic models of sequential experimentation or learning involve a decision maker (hereafter,

DM) exploring a fixed set of alternatives with unknown returns. Yet, a ubiquitous feature of

many dynamic decision problems is that the set of alternatives a DM can explore is expanded

over time, in response to the information gathered by exploring the alternatives already in the

consideration set (hereafter, CS).

In this paper, we study the tradeoff between the exploration of alternatives already in the

CS and the expansion of the latter through search for additional alternatives. A key difference

between exploration and expansion is the direct-vs-indirect nature of the two activities. When

an alternative is in the CS, the DM can “point to it,” that is, she can choose to explore that

particular alternative instead of others. When, instead, an alternative is outside the CS, the DM

cannot point to it, meaning that she cannot choose to explore that specific alternative instead of

others.1 This inability may reflect natural randomness in the search process, which may bring

to the CS alternatives different from those the DM was looking for. Alternatively, search may

bring more than a single alternative and such batching may have important implications for the

decision to expand the CS in the first place. Finally, the DM may have limited knowledge about

the alternatives outside her CS, and/or her ability to bring new alternatives to it.

To study the tradeoff between exploration of alternatives already in the CS and expansion of

the latter, we consider a generalization of the classic multi-armed bandit problem in which the

set of “arms” is endogenous. Exploring an alternative already in the CS (pulling an arm) yields a

flow payoff and generates information (for example, about the distribution from which the flow

payoff is drawn). Searching for new “arms” (that is, choosing to expand the CS) is costly and

brings a random set of new alternatives (i.e., of arms).

We characterize the solution to the above problem and show that it takes the form of an

“index” policy. Each alternative in the CS is assigned a history-dependent number that is a

function only of the state of that alternative. This number (the arm’s “index”) is the same as

in Gittins and Jones’ (1974) original work on bandit problems with an exogenous set of arms.

Search (that is, the decision to expand the CS) is also assigned an index, which depends only on

the state of the search technology. Crucially, the search index does not depend on the information

generated by the exploration of any of the alternatives already in the CS. It also differs from

the value the DM attaches to the expansion of the CS but is linked to the indexes of the new

alternatives the DM expects to find through current and future searches. The optimal policy

consists in selecting at any period the alternative for which the index is the highest. We establish

the optimality of such a policy through a proof based on a recursive characterization of the index

1Likewise, the DM cannot choose to bring a specific alternative from outside of the CS into the CS: If she
could, there would be no distinction between exploring alternatives inside and outside the CS, making the latter
irrelevant.
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for search that also permits us to uncover various properties of the exploration and expansion

dynamics under the optimal policy. We then show how such a characterization facilitates novel

comparative statics relevant for applications.

At any point in time, the decision to expand the CS depends on the composition of the

current CS only through (a) the state of the alternative with the highest index, and (b) the

state of the search technology. This result holds despite the fact that the opportunity cost of

searching for new alternatives (which is linked to the value of continuing with the current CS)

depends on the entire composition of the current CS. Similarly, conditional on forgoing search in

a given period, the decision of which alternative to explore in the current CS is independent of

the search technology, despite the fact that search may bring alternatives that are more similar

to certain alternatives currently in the CS than others.2 If the search technology is stationary, or

improving, in a sense made precise below, then alternatives in the CS at the time of its expansion

never receive attention in the future, and hence are effectively discarded once the CS is expanded.

Each search is then equivalent to replacement of the current CS with a new one. When, instead,

the search technology deteriorates over time (e.g., because the DM becomes pessimistic about

the possibility of finding attractive new alternatives), the alternatives in the current CS are put

on hold and may be revisited after the CS is expanded. Furthermore, in this case, the decision

to expand the CS is made as if there will be no further expansions after the current one.

The analysis can be applied to a broad class of experimentation and sequential learning

problems. We consider a few in the paper: administration of medical treatments, clinical trials

toward regulatory approval, Weitzman’s (1979) “Pandora’s boxes problem” with an endogenous

set of boxes, and online consumer search.

Administration of medical treatments. One of the most prominent applications of the

multi-armed bandit model is the administration of medical treatments.3 A physician must choose

in each period which medical treatment to administer, trading off the well-being of the patients

receiving the treatments with the value of generating information about the treatments’ efficacy

useful for future patients. Each treatment belongs to a different category with treatments from

the same category sharing some core characteristics. We enrich this problem by giving the

physician the possibility to expand her CS by searching for new treatments to administer.

We use the model to study the effects of an improvement in a category of treatments on the

administration of such treatments. The improvement may take the form of an increase in the

2These properties can be seen as a generalization of the IIA (independence of irrelevant alternatives) property
of classic multi-armed bandit problems. What makes this problem different from the classic one enriched with
a “meta” arm that comprises all the alternatives brought to the CS by search is that the evaluation of such a
“meta” arm requires knowing how to subsequently explore the arms that search brings to the CS, which is what is
investigated in the first place. Furthermore, dynamic problems with “meta” arms rarely admit an index solution.
See also the discussion in footnote 22.

3See, e.g., Berry (2006), Berry and Fristedt (1985), Dickstein (2014), Katehakis and Derman (1986), Villar,
Bowden and Wason (2015), and the FDA’s ”Guidance for the Use of Bayesian Statistics in Medical Device Clinical
Trials”.
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ex-ante probability that the treatments are effective, or an increase in the physician’s payoff from

administering such treatments. Perhaps surprisingly, we show that, when the CS is endogenous,

such improvements are not guaranteed to boost the administration of the improved treatments.

In fact, they may even reduce it. The reason is that such improvements also increase the benefit

of expanding the CS (as measured by the search index). When strong enough, this novel effect

may induce the physician to administer fewer treatments from the improved category, not only

relative to other treatments, but overall.

Clinical trials towards regulatory approval. Consider a pharmaceutical company seek-

ing to persuade the FDA, or an equivalent regulatory authority, to approve one of its drugs. The

safety of such drugs is unknown ex-ante, both to the firm and to the regulatory authority. At

each period, the firm can conduct a public experiment on one of its products, or conduct basic

research aimed at identifying new products to subsequently test for approval. The approval of

a product requires a sufficiently large number of satisfactory outcomes. The firm can bring a

product to the market only once it is approved. The firm’s objective is to maximize the expected

discounted profit from the sale of its products, net of all the experimentation and search costs.

The problem described above is a multi-product version of the one in Henry and Ottaviani

(2019), with the additional feature that the set of products the firm can experiment with is

endogenously expanded over time, based on the outcomes of past experiments.

We use the model to study the effects of changes in regulatory standards. We show that,

when the approval standards for a category become more lenient, the firm also responds by

investing more in basic research. The resulting expansion of the CS may crowd out a more

thorough experimentation of the products whose standards have been lowered, possibly reducing

their approval rate. To clarify, we are not claiming that such “crowding out” necessarily happens,

but that the endogeneity of the CS may explain why this may happen.

Pandora’s problem with an endogenous set of boxes. Our third application is an

extension of Weitzman (1979)’s classic “Pandora’s boxes problem” to a setting with an endoge-

nous set of boxes. In Weitzman (1979)’s problem, the DM faces an exogenous set of boxes, each

containing a prize of unknown value drawn from a known distribution. Opening a box reveals

its prize, is costly (with the cost box-specific), and is necessary to collect its prize. The DM can

collect only one prize among any of the opened boxes, and must choose the optimal sequence

of inspections as well as when to stop. We extend this problem by allowing the DM to sequen-

tially choose between inspecting existing boxes and searching for additional ones. Our solution

generalizes Weitzman (1979)’s by introducing an appropriate reservation price for search.

Online consumer search and endogenous click-through-rates. We consider the prob-

lem of a consumer alternating between (a) reading new ads (bringing the corresponding products

to the consumer’s CS), (b) clicking on the ads of those products already in the CS (revealing the

products’ value to the consumer), and (c) finalizing a purchase with one of the visited vendors.
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We use our results to endogenize the click-through rates (CTRs)—that is, the probability that

an ad is clicked upon, as a function of the order by which the search engine displays the ads.

The models that have been used to study such a problem typically assume that the consumer

clicks on the ads in the order they are displayed, and that CTRs are either invariant to positions

or depend on the latter in an exogenous fashion. Such assumptions do not seem to square well

with empirical findings.4 We characterize the CTRs and show that they need not be monotone

in the ads’ positions, even when the purchasing probabilities are. We establish this result by first

deriving an “eventual-purchase theorem” in the spirit of Choi, Dai and Kim (2018) that relates

the probability each product is purchased to the primitives of the problem (realized values, ads’

positions, and search technology), but accounting for the endogeneity of the consumer’s CS (the

latter is exogenous in Choi, Dai and Kim, 2018).5

Finally, we use the model to illustrate why a firm that is already advertising on a platform’s

first page may experience a decline in its profits when the probability it displays an additional

product’s ad on the second page increases. This can happen even if the extra ad is unambiguously

profitable when brought exogenously to the consumer’s CS.

The rest of the paper is organized as follows. The remainder of this section briefly discusses

the most pertinent literature. Section 2 introduces the model. Section 3 characterizes the optimal

policy and identifies key properties for the dynamics of experimentation and expansion of the

CS. Section 4 contains the applications mentioned above. Section 5 discusses a few extensions

whereas Section 6 concludes. All proofs are either in the Appendix at the end of the document

or in the Online Supplement.

1.1 Related literature

The paper is part of a fast-growing literature on CSs.6 Eliaz and Spiegler (2011) study implica-

tions of different CSs on firms’ behavior, assuming such sets are exogenous. Manzini and Mariotti

(2014) and Masatlioglu, Nakajima, and Ozbay (2012), instead, identify CSs from choice behav-

ior. Caplin, Dean, and Leahy (2018) provide necessary and sufficient conditions for rationally-

inattentive agents to focus on a subset of all available choices, thus endogenizing the CSs. Simon

(1955) considers a sequential search model, in which alternatives are examined until a“satisfying”

alternative is found. Caplin, Dean, and Martin (2011) show that the rule in Simon (1955) can be

viewed as resulting from an optimal procedure when there are information costs. Our analysis

complements the one in this literature by providing a dynamic micro-foundation for endogenous

CSs. Rather than committing to a CS up front and proceeding to evaluate its alternatives, the

4See, for example, Jeziorski and Segal (2015).
5See also Armstrong and Vickers, 2015 and Armstrong, 2017 for related models with an exogenous CS.
6For the earlier marketing literature, see, e.g., Hauser and Wernerfelt (1990) and Roberts and Lattin (1991).

For a survey of recent developments, see Honka et al (2019).
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DM gradually expands the CS, in response to the results obtained from the exploration of the

alternatives in the set.

The paper is also related to the literature on experimentation and sequential learning. Most

closely related are Austen-Smith and Martinelli (2018), Fudenberg, Strack and Strzalecki (2018),

Gossner, Steiner and Stewart (2019), Ke and Villas-Boas (2019) and Ke, Shen, and Villas-Boas

(2016), which study the problem of a DM that gradually acquires costly information about a

set of options before stopping and choosing one of them. Related are also Che and Mierendorff

(2019), who study the optimal sequential allocation of attention to two different signal sources

biased towards alternative actions, and Liang, Mu, and Syrgkanis (2019), who study the dynamic

acquisition of information about an unknown Gaussian state. In all of these papers, the set of

alternatives is fixed ex-ante. In our model, instead, the DM expands the CS over time in response

to the information she collects about the alternatives already in it.

Related is also Garfagnini and Strulovici (2016), which studies how successive (forward-

looking) agents experiment with endogenous technologies. Trying “radically” new technologies

reduces the cost of experimenting with similar technologies, which effectively expands the set of

affordable technologies.7 Schneider and Wolf (2019) study the time-risk tradeoff of an agent who

wishes to solve a problem before a deadline, and allocates her time between implementing a given

method and developing (and then implementing) a new one. While, at a high level, the problems

examined in the last two papers bear a resemblance to ours in that they also consider environ-

ments in which the set of alternatives expands over time, both the models and the questions

addressed are different.

In Fershtman and Pavan (2020), we study the effects of “soft” affirmative action on minority

recruitment, in a setting in which the candidate pool is endogenous. While that paper studies the

effects of changes in the search technology on the selection of minority candidates, the analysis

in Subsections 4.1 and 4.2 in the present paper focuses on the effects of variations in a category’s

attractiveness on the usage (and ultimate selection) of its alternatives.

As anticipated above, the application to clinical trials and regulatory approval in Subsection

4.2 is related to Henry and Ottaviani (2019), whereas the application in Subsection 4.3 extends

Weitzman (1979) to a setting with an endogenous set of boxes.8 Finally, the application to online

consumer search in Subsection 4.4 is related to independent work by Greminger (2021). While

that paper focuses on the comparison between direct and indirect search, we endogenize the

click-through-rates and study the effects of additional ad space on firms’ profits.9

7Technologies are interdependent in their environment. In particular, a radically new technology is informative
about the value of similar technologies.

8Despite its many applications, relatively few extensions of Weitzman’s problem have been studied in the
literature. Notable exceptions include Olszewski and Weber (2015), Choi and Smith (2016), and Doval (2018).
In these papers, though, the set of boxes is fixed.

9The model in that paper is a special version of the one in Subsection 4.4 in which payoffs are additively
separable in an observable and an unobservable component.
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Our characterization of the optimality of an index policy is related to the branching-arm

literature (e.g., Weiss, 1988, Weber, 1992, and Keller and Oldale, 2003). This literature studies

decision problems in which arms branch into new ones. Under certain conditions, the problem

in the present paper can be viewed as a special case of the one considered in that literature.

To the best of our knowledge, our proof of indexability is new and uncovers a novel recursive

representation of the index of search which is key to the exploration and expansion dynamics

that we identify as well as to the comparative statics that we study.

2 Model

In each period t = 0, 1, 2, ..., the DM chooses between exploring one of the alternatives within

her CS and expanding the CS by searching for additional alternatives. Exploring an alternative

yields a flow payoff and generates information about it. Expanding the CS yields a stochastic

set of new alternatives, which are added to the CS and can be explored in subsequent periods.

Consideration sets. Denote by Ct ≡ (0, ..., nt) the period-t CS, with nt ∈ N. Ct comprises

all alternatives i = 0, ..., nt that the DM can explore in period t, with the initial set C0 ≡ (0, ..., n0)

specified exogenously and with alternative 0 corresponding to the selection of the DM’s outside

option, yielding a payoff normalized to zero. Given Ct, expansion of the CS in period t (that

is, search) brings a set of new alternatives Ct+1\Ct = (nt + 1, ..., nt+1) which are added to the

current CS and expand the latter from Ct to Ct+1.

Alternatives, categories, learning, and payoffs. Each alternative belongs to a fixed

category ξ ∈ Ξ that is observable to the DM when the alternative is brought to the CS. A category

contains information about an alternative’s experimentation technology and payoff process. Let

µ ∈ R denote a fixed unknown parameter about the alternative that the DM is learning about,

with µ drawn from a distribution Γξ. When the DM explores the alternative, she observes a signal

realization about µ. Let m−1 ∈ N denote the number of past explorations, and ϑm−1 ≡ (ϑs)
m−1
s=0

the history of past signal realizations, with ϑ0 ≡ ∅. When the DM explores the alternative for

the m-th time, she receives an additional signal ϑm drawn from some distribution Gξ(ϑ
m−1;µ)

and updates her beliefs about µ using Bayes’ rule. Importantly, signal realizations are drawn

independently across alternatives, given the alternatives’ categories. The flow payoff u that the

DM obtains from exploring an alternative from category ξ with parameter µ for the m-th time

is drawn from a distribution Lξ(m;µ) that does not depend on the calendar time t.

The search (expansion) technology. When DM searches for the k-th time, she incurs

a cost ck and discovers alternatives of different categories. Let Ek = (nk(ξ) : ξ ∈ Ξ) denote

the complete description of the alternatives identified through the k-th search, with nk(ξ) ∈ N
representing the number of category-ξ alternatives discovered. Let (ck, Ek)

m−1
k=0 denote the history

of the past m−1 search outcomes. Given (ck, Ek)
m−1
k=0 , the m-th search outcome (cm, Em) is drawn

6



from a distribution J((ck, Ek)
m−1
k=0 ) that is independent of calendar time, with (c0, E0) ≡ ∅. The

dependence of J on the history of past search outcomes allows us to capture, for example, learning

about the effectiveness of search, as well as changes in the DM’s ability to find new alternatives

(e.g., learning by doing and/or fatigue).

Objective. A policy χ for the decision problem described above is a rule specifying, for each

period t, whether to experiment with one of the alternatives in the CS Ct or expand the latter

through search. A policy χ is optimal if, after each period t, it maximizes the expected discounted

sum Eχ [
∑∞

s=t δ
sUs|St] of the flow payoffs, where δ ∈ (0, 1) denotes the discount factor, Us denotes

the flow period-s payoff (with the latter equal to the search cost in case search is conducted in

period s), St denotes the state of the problem in period t (the latter specifies for each alternative

in the CS the history of signals along with the history of all past search outcomes; see Section 3

for the formal definition) and Eχ [·|St] denotes the expectation under the endogenous process for

the flow payoffs obtained by starting from the state St and following the policy χ at each period

s ≥ t. To guarantee that the process of the expected payoffs is well behaved, we assume that,

for any t, any St and any χ, δtEχ [
∑∞

s=t δ
sUs|St]→ 0 as t→∞.10

The model above describes an infinite-horizon experimentation problem (augmented by search)

in which payoffs are accumulated alongside learning. In Sections 4.2-4.4 we also consider appli-

cations in which the DM sequentially decides between learning about alternatives in her CS and

expanding the CS, until a final choice is made among the alternatives in the CS, ending the

decision problem.

2.1 Example: Administration of medical treatments

As an illustration of the type of problems that the above formalism captures, consider the fol-

lowing extension of the classic problem of sequentially administering medical treatments. In

each period, a physician must choose between administering a medical treatment among those

in her CS, or expanding the latter by searching for new treatments (see, e.g., “How Physicians

Can Keep Up with the Knowledge Explosion in Medicine”, 2016, Harvard Business Review).

Whenever the physician administers a treatment, she observes the outcome on the patient that

receives it. The outcome yields a payoff to the physician – which may be linked to the well-being

of the patient receiving the treatment – and is informative about the treatment’s efficacy, which

may be valuable for the good of future patients.

For simplicity, suppose there are two possible categories of treatments, indexed by ξ ∈ Ξ =

{α, β}. Ex-ante, treatments from the same category are identical. In keeping with the classic

framework (e.g., Berry and Fristedt, 1985), the efficacy µ ∈ {0, 1} of a treatment is unknown

ex-ante, with µ = 1 in case the treatment is effective and µ = 0 otherwise. Let pξ(∅) denote

10This property is immediately satisfied if payoffs and costs are uniformly bounded; its role is to guarantee that
the solution to the Bellman equation of the above dynamic program coincides with the true value function.
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the ex-ante probability that a ξ-treatment is effective, with each µ drawn independently across

treatments, conditional on their category (hence, in this example, the distribution Γξ is Bernoulli

with parameter pξ(∅)). Using a treatment generates information about the treatment’s efficacy.

Specifically, when a treatment is administered for the m-th time, an outcome ϑm ∈ {G,B} is

observed, with ϑm = G denoting a “good” outcome, and ϑm = B a “bad” outcome. If the

treatment is effective (i.e., if µ = 1), the outcome is good with probability qξ1 ∈ (0, 1]. If the

treatment is ineffective (i.e., if µ = 0), the outcome is bad with probability qξ0 ∈ (0, 1], with

1− qξ0 < qξ1. Hence, in this example, Gξ(ϑ
m;µ) is also Bernoulli with parameter qξµ that does not

depend on the history ϑm of past signal realizations.

The physician’s flow payoff from administering a ξ-treatment is vξ if the outcome is good

and 0 otherwise. Given a history ϑm−1 of past treatment’s outcomes, denote by pξ(ϑm−1) the

posterior probability that the specific ξ-treatment is effective. The distribution Lξ(m;µ) from

which the physician’s payoff from administering the ξ-treatment for the m-th time is drawn is

thus binary with support {0, vξ} and parameter pξ(ϑm−1).

We enrich this classic problem by considering the possibility that the physician can search for

new treatments. Specifically, each search costs the physician c ≥ 0 and results in the discovery

of a new ξ-treatment with probability ρξ, with ρα + ρβ = 1 (as is typically the case in scientific

discovery, the outcome of search is unknown ex-ante). Hence, in this example, for each m,

J((ck, Ek)
m−1
k=0 ) is a distribution that assigns probability ρα to the event that cm = c and Ek ≡

(nk(α), nk(β)) = (1, 0), and probability ρβ to the event that cm = c and Ek = (0, 1).

3 Optimal Policy and Key Implications

To facilitate the characterization of the optimal policy, we start by introducing the following

notation. Denote by θ a generic sequence of signal realizations about an alternative; that is, θ is

given by ϑm ≡ (ϑs)
m
s=1 for some m. Denote by ωP = (ξ, θ) an alternative’s state, and by ΩP the

set of all possible states of an alternative.11,12 While the category ξ is fixed, the history θ of past

signal realizations changes over time as the result of the information that the DM accumulates

about the alternative through past explorations. Similarly, the state of the search technology is

given by the history of past search outcomes, that is, ωS = (ck, Ek)
m−1
k=0 for some m. Denote the

set of the possible states of search by ΩS.

The state of the decision problem is given by the pair S ≡ (ωS,SP ), where SP is the state of

the current CS ; formally, SP : ΩP → N is a counting function that specifies for each possible state

11The initial state of each alternative from category ξ, before the DM explores it, is (ξ, ∅). The superscript P
in ωP is meant to highlight the fact that this is the state of a “physical” alternative in the CS, not the state of
the search technology, or the overall state of the decision problem, defined below.

12As shown below, when the CS is endogenous, the outcome of each CS’s expansion may depend on the
categories of the alternatives added to the CS through previous expansions. If the CS were exogenous, without
loss of generality, one could always take each alternative’s category to coincide with its “name”.
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of an alternative ωP ∈ ΩP , the number of alternatives in the CS in that state. Let Ω ≡ ΩP ∪ΩS.13

Denote by St the state of the decision problem at the beginning of period t.

This representation of the decision problem keeps track of all relevant information in a par-

simonious way and, as will become clear below, greatly facilitates the analysis.

Remark. The time-varying component θ of alternatives’ states ωP = (ξ, θ) admits interpreta-

tions other than the signals about a fixed unknown parameter µ. In particular, all of our results

apply to a broader class of problems where θ evolves as the result of “shocks” that need not reflect

the accumulation of information. For example, such shocks may reflect endogenous variations in

preferences, as in certain habit-formation or learning-by-doing models.

3.1 Optimal Policy

We now characterize the optimal policy and discuss its implications for experimentation and

search dynamics. Recall that a policy χ for the decision problem above specifies, for each period t

and each period-t state St, whether to experiment with one of the alternatives in the CS or expand

the latter through search. Clearly, because the entire decision problem is time-homogeneous

(independent of calendar time), so is the optimal policy.14

For each state ωP of an alternative, let15

IP (ωP ) ≡ sup
τ>0

E
[∑τ−1

s=0 δ
sus|ωP

]
E
[∑τ−1

s=0 δ
s|ωP

] , (1)

denote the “index” of an alternative in the CS currently in state ωP , where τ denotes a stopping

time (that is, a rule prescribing when to stop, as a function of the observed signal realizations),

and where us denotes the flow payoff from the alternative’s s-th exploration. The definition in

(1) is equivalent to the definition in Gittins and Jones (1974).16 As is well known, the optimal

stopping rule in the definition of the index is the first time at which the index falls below the

value at the time the index was computed (see, e.g., Mandelbaum, 1986).

Given each state S = (ωS,SP ) of the decision problem, denote the maximal index among the

alternatives within the CS by I∗(SP ).17

We now define an index for search (i.e., expansion of the CS). This index is independent

of the state of each alternative in the CS, conditional on the state of the search technology

ωS.18 Analogously to the indexes defined above, the index for search is defined as the maximal

13Note that ΩP ∩ ΩS = ∅.
14That is, for any two periods t and t′ such that St = St′ , the decisions specified by the optimal policy for the

two periods are the same.
15The expectations in (1) are under the process obtained by selecting the given alternative in all periods.
16See also Bergemann and Välimäki (2008) for an overview of applications of multi-armed-bandit problems in

economics.
17Formally, I∗(SP ) ≡ maxωP∈{ω̂P∈ΩP :SP (ω̂P )>0}I(ωP ).
18That is, the index depends on the state of each alternative in the CS only through the information that the
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expected average discounted net payoff, per unit of expected discounted time, obtained between

the current period and an optimal stopping time. Contrary to the standard indexes, however,

the maximization is not just over the stopping time, but also over the rule governing the selection

among the new alternatives brought to the CS by the current and further searches. Denote by τ

a stopping time, and by π a rule prescribing, for any period s between the current one and the

stopping time τ , either the selection of one of the new alternatives brought to the CS by search

or further search. Importantly, π selects only among search and alternatives that are not already

in the CS when the decision to search is made.19

Formally, given the state of the search technology ωS, the index for search is defined by

IS(ωS) ≡ sup
π,τ

Eπ
[∑τ−1

s=0 δ
sUs|ωS

]
Eπ
[∑τ−1

s=0 δ
s|ωS

] , (2)

where Us denotes the flow payoff from the s-th decision taken under the rule π, and where the expec-

tations are under the process generated by the rule π.

Definition 1. The index policy χ∗ selects at each period t the option with the greatest index

given the overall state St = (ωS,SP ) of the decision problem: search if IS(ωS) ≥ I∗(SP ), and

an arbitrary alternative with index I∗(SP ) if IS(ωS) < I∗(SP ).20

Ties between alternatives are broken arbitrarily. In order to maintain consistency throughout

the analysis, we assume that, when IS(ωS) = I∗(SP ), search is carried out. To characterize the

optimal policy, we first introduce the following notation. Let κ(v) ∈ N ∪ {∞} denote the first

time at which, when the DM follows the index policy χ∗, (a) the search technology reaches a

state in which its index is no greater than v, and (b) all alternatives in the CS – regardless of

when they were introduced into it – have an index no greater than v. That is, κ(v) is the minimal

number of periods until all indexes are weakly below v (κ(v) =∞ if this event never occurs).21

Let V∗(S0) = (1 − δ) supχ Eχ [
∑∞

t=0 δ
tUt|S0] denote the maximal expected per-period payoff

the DM can attain across all feasible policies χ, given the initial state S0.

Theorem 1. (i) The index policy χ∗ is optimal in the sequential experimentation problem with

endogenous CS.

(ii) The index for search, as defined in (2), admits the following recursive representation. For

latter state contains for the state ωS of the search technology.
19Suppose the index for search is computed in period t when the state of the search technology is ωS . Then,

for each period t < s < τ , π selects between further search and the selection of alternatives in the CS at period s
that were not in the CS in period t.

20Recall that I∗(SP ) is the largest index among the alternatives in the CS.
21Note that between the current period and the first period at which all indexes are weakly below v, if the DM

searches, new alternatives are added to the CS, in which case the evolution of their indexes is also taken into
account in the calculation of κ(v).
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any ωS ∈ ΩS,

IS(ωS) =
Eχ∗

[∑τ∗−1
s=0 δsUs|ωS

]
Eχ∗

[∑τ∗−1
s=0 δs|ωS

] , (3)

where τ ∗ is the first time s ≥ 1 at which IS and all the indexes of the alternatives brought to the

CS by search fall weakly below the value IS(ωS) of the search index when search was launched,

and where the expectations are under the process induced by the index policy χ∗.

(iii) The DM’s expected (per-period) payoff under the index policy χ∗ is equal to∫ ∞
0

(
1− Eχ

∗
[
δκ(v)|S0

])
dv. (4)

As in the classic multi-armed bandit problem with exogenous CS, independence across alter-

natives is the key assumption behind the optimality of the index policy. That is, the payoffs (and

the signals) from the various alternatives are drawn independently across the alternatives, given

the latter’s categories, and the new alternatives brought to the CS at each expansion only depend

on the number of alternatives from each category brought to the CS in the past. Under such

assumptions, the theorem establishes a generalization of the Gittins-index Theorem, according to

which selecting in each period the alternative, or search, with the highest index is optimal.22 Part

(ii) further characterizes the stopping time in the index of search. Such recursive representation

facilitates an explicit characterization of the index in applications, permits us to identify vari-

ous properties of the dynamics of experimentation and search, and can be used for comparative

statics, as illustrated in the next section. Finally, part (iii) offers a convenient representation of

the DM’s payoff under the optimal rule that can be used, among other things, to determine the

DM’s willingness to pay for changes in the search technology with limited knowledge about the

details of the environment (see also the discussion in the next subsection).

3.2 Implications for Exploration and Expansion Dynamics

We now highlight several properties of the dynamics of exploration and CS expansion, under the

optimal policy.

Corollary 1 (Invariance of expansion to CS composition). At any period, the decision to expand

22The reason why indexability of the optimal policy is not obvious is that search is a “meta-arm” bringing
alternatives whose returns are correlated at the time search is launched (through the alternatives’ categories)
and that one needs to process optimally. Problems in which alternatives correspond to “meta arms”, i.e., to
sub-problems with their own sub-decisions, typically do not admit an index solution, even if each sub-problem
is independent from the others, and even if one knows the solution to each independent sub-problem. In the
same vein, dependence, or correlation, between alternatives typically precludes indexability. This is so even if
each subset of dependent alternatives evolves independently of all other subsets, and even if one knows how to
optimally choose among the dependent alternatives in each subset in isolation. We provide an example illustrating
such difficulties in the Online Supplement.
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the CS is invariant to the composition of the CS, conditional on the value I∗(SP ) of the alternative

with the highest index, and the state ωS of the search technology.

The corollary is an immediate implication of the optimal policy being an index policy. The

result is not trivial, because the opportunity cost of expanding the CS (i.e., the value of con-

tinuing with the current CS) may well depend on the entire composition of the CS, beyond the

information contained in I∗(SP ) and ωS.

Corollary 2 (Independence of Irrelevant Alternatives). At any period t, for any pair of alter-

natives i, j ∈ Ct with i 6= j, the choice between exploring alternative i or exploring alternative j

is invariant to the period-t state ωS of the search technology.

Corollary 2 is also an immediate implication of Theorem 1. Starting with each period t, the

relative amount of time the DM spends on each pair of alternatives in the period-t CS is invariant

to what the DM expects to find by expanding the CS. This is true despite the fact that further

expansions of the CS may bring alternatives that are more similar to one alternative than the

other.

Corollary 3 (Possible irrelevance of improvements in search technology). An improvement in

the search technology increasing the probability of finding alternatives of positive expected value

(vis-a-vis the outside option) need not affect the decision to expand the CS even at histories at

which, prior to the improvement, the DM is indifferent between expanding the CS and exploring

one of the alternatives already in it.

The result follows from the fact that improvements in the search technology need not imply

an increase in the index of search. This is because, as shown in part (ii) of Theorem 1, the

optimal stopping time in the index of search is the first time at which the index of search and the

indexes of all alternatives brought to the CS by search fall weakly below the value of the search

index at the time search was launched. As a result, any improvement in the search technology

affecting only those alternatives whose index at the time of arrival is below the value of the search

index at the time search is launched does not affect the value of the search index, and hence the

decision to expand the CS.

Definition 2. (i) A search technology is stationary if, given any two states of the search technol-

ogy ωS = (cj, Ej)
m
j=0 and ω̂S = (ĉj, Êj)

m̂
j=0, J(ωS) = J(ω̂S). (ii) A search technology is deteriorat-

ing if, given any state ωS = ((cj, Ej))
m
j=0 and subsequent state ω̂S =

(
(cj, Ej)

m
j=0, (cj, Ej)

m+s
j=m+1

)
,

m, s ∈ N, the distribution J(ωS) first-order stochastically dominates the distribution J(ω̂S). (iii)

A search technology is improving if, for any state ωS and subsequent state ω̂S, as defined in part

(ii), J(ω̂S) first-order stochastically dominates J(ωS).23

23That is, the search technology is deteriorating if, regardless of the outcome of past searches, for any k and
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Corollary 4 (Stationary value function). If the search technology is stationary, for any two

states S, S ′ at which the DM expands the CS, V∗(S) = V∗(S ′).

The corollary says that the continuation value when search is launched is invariant to the

state of the CS. The result follows from the fact that, without loss of optimality, the DM never

comes back to any alternative in the CS after search is launched. The same property holds in

case of improving search technologies.

Corollary 5 (Stationary replacement). If the search technology is stationary or improving and

search is carried out at period t, without loss of optimality, the DM never comes back to any

alternative in the CS at period t.

Since the state of an alternative changes only when the DM selects it, if, in period t, IS(ωS) ≥
I∗(SP ), under a stationary or improving search technology, the same inequality remains true in

all subsequent periods. In this case, search corresponds to disposal of all alternatives in the

current CS. Each time the DM searches, she starts fresh.

Corollary 6 (Single search ahead). If the search technology is stationary or deteriorating, at

any history, the decision to expand the CS is the same as in a fictitious environment in which

the DM expects she will have only one further opportunity to search.

The result follows again from the recursive characterization of the stopping time in the index

of search, as per part (ii) of Theorem 1. Recall that this time coincides with the first time at

which the index of any physical alternative brought to the CS by the current or future searches,

and the index of search itself, drop below the value of the search index at the time the current

search is launched. If the search technology is stationary, or deteriorating, the index of search

falls (weakly) below its current value immediately after search is launched. Hence, IS(ωS) is

invariant to the outcome of any search following the current one, conditional on ωS.

Corollary 7 (Pricing formula). Consider two states S0 = (SP , ωS) and Ŝ0 = (SP , ω̂S) that differ

only in terms of the state of the search technology. The DM’s willingness-to-pay to change the

state of the search technology from ωS to ω̂S is equal to

P∗(SP , ωS , ω̂S) =

∫ ∞
0

(
E
[
δκ(v)|SP , ω̂S

]
− E

[
δκ(v)|SP , ωS

])
dv.

The result in Corollary 7, which follows directly from part (iii) in Theorem 1, can be used

to price changes to the search technology, with limited knowledge about the details of the en-

vironment. To see this, suppose that the econometrician, the analyst, or a search engine, have

any upper set A ⊂ R × N|Ξ| (that is, any set A ⊂ R × N|Ξ| such that for each a1, a2 ∈ R × N|Ξ| with a2 ≥ a1,
a2 ∈ A if a1 ∈ A), one has that Pr((−ck+1, Ek+1) ∈ A) ≤ Pr((−ck, Ek) ∈ A). This definition is quite strong. In
more specific environments, where there is an order on the set of categories Ξ, weaker definitions are consistent
with the results in the corollaries below.
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enough data about the average time it takes for an agent with an exogenous outside option equal

to v ∈ R+ to exit and take the outside option, under different search technologies. Then by

integrating over the relevant values of the outside option one can compute the maximal price

P∗(SP , ωS, ω̂S) that the DM is willing to pay to change the search technology from ωS to ω̂S.

4 Applications

Having characterized the optimal policy and its key implications for the dynamics of exploration

and CS expansion, we now put the results to work in a few applications of interest.

4.1 Administration of Medical Treatments

Consider the environment described in Subsection 2.1. To simplify, further assume that, when a

treatment is ineffective (i.e., µ = 0), the outcome is bad with certainty, that is, qξ0 = 1.24 Using

the results in the previous section, we can arrive at the following characterization of the indexes

for the optimal policy (see the Appendix for the derivations). For any ωP = (ξ, θ), the index of

a treatment in state ωP is equal to

IP (ωP ) =

(
1− δ + δqξ1

)
pξ(θ)qξ1v

ξ

1− δ + δpξ(θ)qξ1
. (5)

The index of search is invariant to ωS and equal to25

IS =
(1− δ)

{∑
ξ∈{α,β} ρ

ξE
[∑τξ∗−1

s=0 δsus| (ξ, ∅)
]
− c
}

1−
∑

ξ∈{α,β} ρ
ξE
[
δτξ∗ | (ξ, ∅)

] , (6)

where τ ξ∗ is the first time at which the value of the index of the new ξ-treatment brought to the

CS by search drops weakly below IS (τ ξ∗ =∞ if this event never occurs), and where us denotes

the flow payoff from the s-th administration of the treatment.

We now use the above results to illustrate some of the novel comparative statics that may

arise when accounting for the endogeneity of the CS. Consider an improvement in a category of

treatments. Such an improvement may occur because of technological advancement, changes in

pricing, or changes in the incentive schemes offered to the physician for the administration of the

various treatments.

With an exogenous CS, an improvement in a category of treatments always leads to an

24The results below extend to environments where, occasionally, ineffective treatments also yield good outcomes
with positive probability, provided that such a probability is smaller than the one for effective treatments.

25The expectations in the formula in (6) are under a rule selecting in each period the ξ-treatment brought to
the CS by search.
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increase in their administration at the expense of other categories. While this may happen also

with an endogenous CS, the opposite may also occur.

Corollary 8. Consider the environment described above. The ex-ante expected discounted num-

ber of times the α-treatments are administered may decrease both with the ex-ante probability

pα(∅) such treatments are effective and with the value vα the physician assigns to good outcomes

delivered through such treatments.

Importantly, the phenomenon in the corollary is not knife-edge (see the Appendix for con-

ditions under which the phenomenon occurs). Roughly, when the CS is endogenous, an im-

provement in the α-treatments also increases the value of expanding the CS. This is because

such expansions are expected to bring more attractive α-treatments. Because the increase in the

index of the α-treatments is not homogeneous across histories, there can be histories at which

the increase in the index of search is larger than the increase in the index of the α-treatments.

At such histories, the physician may choose to expand the CS instead of further exploring one

of the α-treatments. This may happen despite the fact that the only reason why search is more

attractive is that it brings more attractive α-treatments. Once the expansion is carried out, it

may change the composition of the CS in favor of the β-treatments.

Interestingly, this phenomenon is not monotone in the parameters of the model (and, as a

result, does not involve extreme parameter values). To see why this is the case, consider the role

of ρβ, the probability that search brings a β-treatment. When ρβ is low, because search delivers

primarily α-treatments, the changes in the composition of the CS due to search being carried out

more often contribute to a boost in the administration of the α-treatments. In this case, there is

no crowding out. When, instead, ρβ is high, search is unlikely to bring α-treatments. As a result,

improvements in the α-treatments have a small impact on the search index as the latter is driven

primarily by the properties of the β-treatments (this is because the search index “averages” over

the properties of the two categories, as can be seen from the formula in (6)). In this case, the

improvement in the search index is small compared to the improvement in the indexes of the

α-treatments that delivered bad outcomes. The instances where search is carried out instead of

further exploration of the α-treatments are then rare. The direct effect of the improvement in

the attractiveness of the α-treatments then prevails over the indirect effect of the improvement in

the attractiveness of search. Hence, in this case, too, there is no crowding out. The phenomenon

in the corollary thus occurs only for intermediate values of ρβ. Similar non-monotonicities apply

to the other parameters of the model.

Phenomena analogous to those discussed in this subsection are likely to be relevant also

in other scientific research environments, where improvements in a product category may spur

investments in basic research which in turn may induce more experimentation with products

from other categories.
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4.2 Clinical Trials towards Regulatory Approval

In many problems of interest, a player produces research output to persuade another player to

take a decision. For example, a pharmaceutical company may undertake clinical trials experi-

menting with different drugs or vaccines with the intent to induce a regulatory authority (e.g.,

the FDA) to approve one of its products. Our results can be used to shed light on such problems.

Consider a firm that needs regulatory approval to sell its products. The products differ in

their profitability to the firm, but also in their safety. We capture such a heterogeneity by

assuming that each product belongs to a category ξ ∈ Ξ, where Ξ is a finite set. Each ξ-product

can either be safe (µ = 1) or unsafe (µ = 0), and this event is unknown both to the firm and

to the regulator at the outset. The products’ safety is independent across products, conditional

on their category. Let pξ(∅) denote the prior probability that a category-ξ product is safe. Each

ξ-product, when sold to the market, brings the firm a flow payoff equal to (1− δ)vξ > 0. There

is no value to the firm in selling more than one product per period (e.g., because the products

are seen as close substitutes by the consumers).

At each period, the firm can either conduct an experiment on one of the products in its

current CS, expand the CS by conducting basic research aimed at identifying new products (e.g.,

testing new molecule compounds), or sell one of its approved products.26 Each experiment on a

ξ-product generates a binary outcome ϑ ∈ {G,B}, with ϑ = G denoting a “good” outcome and

ϑ = B a “bad” one. If the ξ-product is safe, a good outcome ϑ = G is generated with probability

qξ1 = Pr(ϑ = G|µ = 1) ∈ (0, 1]. If, instead, the ξ-product is unsafe, a bad outcome ϑ = B is

generated with probability qξ0 = Pr(ϑ = B|µ = 0), with qξ1 ≥ 1− qξ0. Given a history θ = (ϑs)
m
s=1

of past outcomes, denote by pξ(θ) the posterior probability that a ξ-product is safe. The history

θ is public.

Experimentation with a ξ-product entails a cost λξ(θ) to the firm, the magnitude of which

may depend on the outcomes of past experiments. Expansion of the CS entails a constant cost

c ≥ 0 and brings a new product from category ξ ∈ Ξ with probability ρξ, with
∑

ξ∈Ξ ρ
ξ = 1.27

The firm’s goal is to maximize the expected discounted profit from selling its approved prod-

ucts, net of all experimentation and search costs.

As in Henry and Ottaviani (2019), the approval process is modeled as follows. For each

category ξ, there exists a threshold Ψξ ∈ (0, 1] such that a ξ-product is approved once the

posterior probability that the product is safe exceeds the threshold Ψξ. To avoid trivialities,

assume that pξ(∅) < Ψξ, so that each product must be tested at least once to be approved.

Contrary to Henry and Ottaviani (2019), here we take the approval thresholds Ψξ as given

26Such basic research is typically interpreted to be “undirected,” that is, conducive to innovations and products
that are not under the firm’s direct control.

27That
∑
ξ∈Ξ ρ

ξ = 1 is without loss of generality. The case where search brings no product with positive
probability can always be captured by letting one of the categories replicate the arrival of no new product.
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and investigate how the latter influence the firm’s investment in basic research and ultimately

the approval of products from different categories. In future work, it would be interesting to

endogenize such thresholds by studying the game between the regulatory authority and the

experimenting firm.

In the context of this application, the indexes of Theorem 1 take the following form (see the

Appendix for the derivations). Given ωP = (ξ, θ), the index of a product in state ωP that has

not been approved yet is equal to

IP (ωP ) =
(1− δ)E

[
−
∑min{τ∗,φ}

s=0 δsλξ(θ) + δφ1{φ<τ∗}v
ξ|ωP

]
1− E [δτ∗ |ωP ]

, (7)

where the expectations in (7) are under the process obtained by selecting the product under

consideration in each period, φ is the first time at which the posterior belief that the product

is safe exceeds the threshold Ψξ (φ = ∞ if this event never occurs), and τ ∗ is either the first

period at which the posterior belief that the product is safe is below pξ(θ), when such an event

occurs before the product is approved (i.e., before period φ), or is equal to τ ∗ = ∞ otherwise.

The index for search is given by

IS =
(1− δ)

(
−c+ δ

∑
ξ∈Ξ ρ

ξEχ∗
[
−
∑min{τξ∗,φξ}

s=0 δsλξ(θ) + δφ
ξ
1{φξ<τξ∗}v

ξ|ξ, ∅
])

1−
∑

ξ∈Ξ ρ
ξEχ∗

[
δτξ∗ |ξ, ∅

] , (8)

where φξ is the first time at which the posterior belief that the new ξ-product brought to the

CS by search is safe exceeds the approval threshold, whereas τ ξ∗ is either the first time at which

the value of the index of the new ξ-product drops weakly below IS, when this event occurs

before φξ, or is equal to τ ξ∗ = ∞ otherwise. The index of a ξ-product that received regulatory

approval is constant and equal to (1− δ)vξ. As we show in the Appendix, as soon as one of the

firm’s products is approved, the firm brings to an end its experimentation process and sells the

approved product in each of the subsequent periods.

Now suppose that the regulator lowers the approval standard for one of the products’ category,

possibly with the intent of favoring the approval of products from that category. As we show

below, such regulatory changes are not guaranteed to deliver the desired results, when accounting

for their effects on the firm’s investment in basic research. For simplicity, suppose that, as in the

previous application, there are two products’ categories, α and β.

Corollary 9. A reduction in the approval standard for the α-products from Ψα to Ψα− ε, ε > 0,

may reduce the ex-ante probability that an α-product is approved.

The arguments are related to those establishing Corollary 8 (the proof is in the Online Sup-

plement). The reduction in the approval standard for the α-products unambiguously contributes

to an increase in the value the firm attaches to experimenting with such products. However, it

also increases the value the firm assigns to basic research, as the new α-products that the firm
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expects to discover are more likely to be approved. Search may thus crowd out further experi-

mentation with those α-products whose earlier tests yielded negative outcomes. Because search

also brings β-products, the changes in the composition of the CS due to search may then favor

the β-products more than the α-ones, possibly leading to a reduction in the ex-ante probability of

approval of the α-products. The proof in the Online Supplement identifies conditions for which

this happens. As in the previous application, such conditions tend to involve intermediate values

of the relevant parameters (the reason for the non-monotonicities is similar to the one discussed

above).

More generally, the result in the corollary may warn against simplistic assessments of policy

interventions when such interventions also affect the incentives for search.

4.3 Pandora’s Problem with Endogenous Set of Boxes

Consider the following variant of Weitzman’s (1979) “Pandora’s boxes problem” in which the

set of boxes is endogenously expanded over time. Each alternative is a “box” and belongs to a

category ξ ∈ Ξ . To each category corresponds a pair (F ξ, λξ), where F ξ is the distribution from

which the box’s prize v is drawn and λξ is the cost of inspecting (i.e., of opening) the box. As

in Weitzman’s (1979) original setting, each box’s prize v is revealed upon the first inspection.

At each period, the DM can either (a) search for additional boxes to add to the CS, (b) open

one of the boxes in the CS to learn its prize, or (c) stop and either recall the prize of one of

the previously opened boxes, or take the outside option, with either one of the last two choices

ending the decision problem. For simplicity, assume that each search m ∈ N brings exactly one

box, whose category ξ is drawn from Ξ according to a time-homogeneous distribution ρ ∈ ∆(Ξ)

independently across searches, with ρξ denoting the probability that search brings a ξ-box, and∑
ξ∈Ξ ρ

ξ = 1.28 The boxes’ prizes are drawn independently, conditional on the boxes’ categories.

The cost of expanding the set of boxes depends on the number of past searches, with c(m)

denoting the cost of the m-th search, where c(·) is a positive and increasing function. The DM

discounts the future according to δ.

The solution to Pandora’s boxes problem with an endogenous CS is the index policy of

Theorem 1. In the context of this application, the indexes take the following form (see the

Appendix for the derivations). For any ωP = (ξ, ∅), the index of a ξ-box that has not been

28All the results extend to the case where Ξ is infinite. Likewise, that the distribution ρ is invariant to the
number of past searches is not essential. The results below extend to the case where such a distribution depends
on m provided that the indexes for search decline (weakly) with the number of past searches.
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opened yet is given by29

IP (ωP ) =

−λξ + δ
∫∞
IP (ωP )

1−δ
vdF ξ(v)

1 + δ
1−δ

(
1− F ξ

(
IP (ωP )

1−δ

)) . (9)

For any l ∈ R, let Ξ(l) ≡
{
ξ ∈ Ξ : IP (ξ, ∅) > l

}
denote the set of boxes whose reservation price

exceeds l. One can then use our recursive characterization in Theorem 1 to verify that, in this

problem, the index of search is given by30

IS(m) =

−c(m) + δ
∑

ξ∈Ξ(IS(m)) ρ
ξ

(
−λξ + δ

∫∞
IS(m)

1−δ
vdF ξ(u)

)
1 +

∑
ξ∈Ξ(IS(m)) ρ

ξ
[
δ + δ2

1−δ

(
1− F ξ

(
IS(m)

1−δ

))] . (10)

As in Weitzman (1979), the reservation prices IP (ωP ) have the following interpretation. Suppose

there are only two alternatives. One is an unopened ξ-box and the other is a hypothetical box,

with a known value K. The reservation price is the value of K, multiplied by (1 − δ), for

which the DM is indifferent between taking the hypothetical box and inspecting the ξ-box while

maintaining the option to recall the hypothetical box once the prize v of the ξ-box is discovered.

The reservation price IS(m) of search extends this interpretation as follows. Suppose there

are two options: the hypothetical box with known value K described above, and the option of

expanding the CS. The reservation price of search is the value K for which the DM is indifferent

between taking the hypothetical box right away, and expanding the CS, maintaining the option to

take the hypothetical box either (a) once the category ξ of the newly discovered box is discovered

and IP (ξ, ∅) ≤ K, or (b), in case IP (ξ, ∅) > K, after the prize v of the newly discovered ξ-box

is learned and v ≤ K.

We highlight various implications of endogenizing the set of boxes in the next subsection,

after showing how the boxes problem described above can be adapted to study online consumer

search.

4.4 Online consumer search: endogenous click-through-rates

Consider the problem of a consumer searching online for a product to purchase. The Pandora’s

boxes problem with an endogenous set of boxes described in the previous subsection can be used

to endogenize the relationship between the positions of the products’ ads on the platform and the

29This index corresponds to what Weitzman refers to as a box’s “reservation price”. Weitzman defines the
reservation price ÎP (ωP ) for ωP = (ξ, ∅) as the solution to λξ = δ

∫∞
ÎP (ωP )

(v − ÎP (ωP ))dF ξ(v)− (1− δ)ÎP (ωP ),

which yields
ÎP (ωP ) = [−λξ + δ

∫∞
ÎP (ωP )

vdF ξ(v)]/[1 − δ + δ[1 − F ξ(ÎP (ωP ))]]. The indexes in (9) are thus equal to the

reservation prices in Weitzman (1979) multiplied by (1− δ), that is, IP (ωP ) = (1− δ)ÎP (ωP ).
30Because all the relevant information about the state of the search technology is summarized in the number

of past searches, hereafter we abuse notation and let IS(m) denote the index for the m-th search.
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corresponding click-through-rates (hereafter CTRs). To see this, note that, in this environment,

reading an ad corresponds to expanding the CS, clicking on an ad corresponds to opening a box,

and purchasing a product from one of the visited vendors corresponds to selecting an opened

box.31

Formally, suppose that each category ξ ∈ Ξ corresponds to a different firm and that each

position m ∈ N is occupied by the ad of one and only one firm, with the same firm possibly

displaying ads for different products at multiple positions. Reading the m-th ad reveals to the

consumer the identity ξ(m) ∈ Ξ of the firm occupying the m-th position. The consumer believes

that each ξ(m) is drawn from ρ ∈ ∆(Ξ), independently across m.32 By clicking on the m-th ad,

the consumer is directed to firm ξ(m)’s website, where she incurs a cost λξ(m) to learn her value

v for the firm’s product, with v drawn from an absolutely continuous distribution F ξ(m).33 The

consumer expects the values v to be drawn independently.34 Let c(m) denote the cost of reading

the m-th ad. We then have that the index for the decision to read the m-th ad is equal to IS(m),

with IS(m) as in (10), whereas the index for the decision to click on the m-th ad, after discovering

the identity ξ(m) of the firm advertising at the m-th position, is equal to Im ≡ IP (ξ(m), ∅), with

IP (ξ(m), ∅) as in (9).

One can then use the model to endogenize the probability with which the consumer reads

the ads, clicks on them, and finalizes her purchases. In a similar setting, but with an exogenous

CS, Choi, Dai and Kim (2018) – and, independently, Armstrong, 2017 – derive a static condition

characterizing eventual purchasing decisions based on a comparison of “effective values.” Propo-

sition 1 below extends the characterization to an endogenous CS. Let vm denote the value to the

consumer for the product sold by the firm advertising at the m-th position. For all m ≥ 1, let

wm ≡ min{Im, vm(1− δ)} be the “effective value” of the product advertised at the m-th position

(for brevity, product m) when the product is already in the consumer’s CS, as in Choi, Dai and

Kim (2018), and dm ≡ min{wm, IS(m)} the product’s “discovery value,” when the product must

be brought to the consumer’s CS before it can be explored. Let product m = 0 correspond to

the consumer’s outside option, with w0 = d0 = 0.

Proposition 1. The consumer purchases product m if, for all l ∈ N∪ {0}, l 6= m, dl < dm (and

only if dl ≤ dm, for all l 6= m).

31This formulation assumes that consumers read the ads in the order they are displayed but, after reading the
ads, click on the links of the ads they have read in the order of their choice. This seems consistent with normal
practices.

32This assumption simplifies the exposition but is not essential. The results below extend to other search
technologies that are weakly deteriorating. For example, the consumer may expect lower positions to be occupied
by firms providing, on average, lower-value products.

33The assumption that each F ξ is absolutely continuous is made only to avoid the need to keep track of possible
indifferences in the consumer’s optimal behavior which affect the formulas but not the qualitative results.

34This also means that, in case the consumer encounters the same firm at different positions, she expects her
value for each of the firm’s products to be drawn independently across products.
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As in Choi, Dai and Kim (2018), purchasing decisions are determined by a static comparison

of the products’ values, as in canonical discrete-choice models. Contrary to Choi, Dai and Kim

(2018), however, such values account for the order by which the various products are brought

to the CS. In particular, Proposition 1 implies that, provided that the reading cost c(·) is non-

decreasing, all other things equal, the further down a product is on the list, the lower the ex-

ante probability the product is purchased (and hence its ex-ante demand), a property typically

assumed, but not micro-founded, in existing search models.

The result in Proposition 1 follows from the fact that the optimal policy is an index rule

along with the fact that the search indexes IS(m) decline with m. Heuristically, if a consumer

reads the m-th ad, it must be that the reservation prices Il of all products l < m already

in her CS, as well as the discovered values vl(1 − δ) of those products l < m that have been

inspected already, are no greater than IS(m). Furthermore, because the search technology is

non-improving, IS(m + 1) ≤ IS(m). Hence, if after reading the m’th ad, Im ≥ IS(m), the

consumer necessarily clicks on the m’th ad, thus learning product m’s value vm. Once vm is

learned, if (1 − δ)vm ≥ Im, the consumer then stops the search and purchases product m. The

formal proof in the Appendix shows how the above monotonicity properties imply the result in

the proposition.

The result in the previous proposition can be used to endogenize the CTRs (the fraction

of ads at each position that are clicked upon, among those that are brought to the consumer’s

CS). In the setting described above, a product is brought to the consumer’s CS after its ad

has been displayed to and read by the consumer. We thus have that, for each position m, the

corresponding CTR is equal to35

CTR(m) ≡ Pr (m’s ad is clicked|m’s ad is read) .

The following proposition characterizes CTRs in terms of effective and discovery values.

Proposition 2. The CTR for each position m ≥ 1 is given by36

CTR(m) = Pr
(
Im ≥ max {maxl<m{wl},maxl>m{dl}} | IS(m) ≥ maxl<m{wl}

)
.

In order for product m to be read, it must be that IS(m) ≥ maxl<m{wl}, for otherwise the

consumer selects one of the products advertised in one of the preceding positions before reading

35Note that the probability in the definition of CTR(m) is computed ex-ante by integrating over the different
products that are advertised at the different positions. It is not the probability that a specific product advertised
at a given position is clicked upon. In other words, the CTRs are position-specific and not product-specific,
consistently with the definition used in practice.

36For simplicity, the formula in the proposition assumes that, in case of indifference, the consumer favors
position m (both when it comes to reading and clicking it). This is what justifies the weak inequalities in the
formula. The proof discusses how alternative ways of breaking the indifferences must be accounted for if one were
to compute bounds for such probabilities.
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the ad displayed in the m’th position. Once product m is read, in order for it to be clicked

upon, it must be that its index Im exceeds the effective value of each product brought to the

consumer’s CS prior to m, but also the discovery value of all products advertised further down

the list, for otherwise the consumer selects one of the other products before clicking on m.37

The result in Proposition 2 also suggests that, while the ex-ante demands are naturally

decreasing in the positions, the CTRs need not be monotone in m. To see this, note that

Pr (Im ≥ maxl<m{wl}) is decreasing in m, which contributes to CTRs declining in m. However,

for product m to be read, it must be that maxl<m{wl} ≤ IS(m). Because IS(m) is decreasing in

m, Pr
(
maxl<m{wl} ≤ IS(m)

)
is also decreasing in m, thus contributing to the possibility that

CTRs are non-monotone in positions.38

One can also use the model to investigate the effects of additional ad space on firms’ profits.

Typically, a firm receiving additional ad space expects larger profits. This, however, is not

guaranteed when consumers’ CS are endogenous. To see this, consider the following situation.

The consumer’s initial CS contains three products, one from each firm ξ ∈ Ξ = {A,B,C}. By

searching online, the consumer is presented with a fourth product drawn from Ξ according to

ρ ∈ ∆(Ξ). As above, each product yields the consumer a net value v drawn from a distribution

F ξ, independently across products.39 The cost to the consumer of learning her value for each ξ’s

products is λξ.40 The consumer has unit demand and each firm’s profit is the same for each of

its products.

The following result illustrates how the increase in the probability that search brings an

additional product by firm ξ may reduce the index of search, inducing the consumer to visit the

website of one of firm ξ’s competitors before searching for new products. When strong enough,

such an effect may reduce the probability that one of firm ξ’s product is selected, and hence firm

ξ’s profits.

Corollary 10. Consider the environment described above. An increase in the probability ρξ that

search brings an additional product from firm ξ may reduce firm ξ’s ex-ante expected profits.

See the Online Supplement for details.

37Note that the assumption that IS(l) is weakly decreasing in l is important here. It implies that, if for some
position l > m, dl > Im, then for all j = m + 1, ..., l, IS(j) > Im, meaning that the consumer will necessarily
read the ad of any product displayed between position m and position l before clicking on m. If for any of such
product the discovery value exceeds Im, the consumer purchases one of these products before clicking on m.

38That Pr (Im ≥ maxl>m{dl}) is increasing in m also contributes to the possibility of CTRs increasing in m.
39If the extra product the consumer is presented when searching is from firm ξ, the value the consumer derives

from such a product is also drawn from F ξ, independently from the value derived from the three products already
in the CS.

40Again, if the extra product discovered is by firm ξ, because the value the consumer derives from such a
product is independent from the other ξ-product already in the CS, the total cost the consumer incurs to learn
her value for the two ξ-products is 2λξ.
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5 Extensions

The results accommodate for a few extensions that may be relevant for applications.

Multiple expansion possibilities. In certain problems of interest, the decision to search

also involves an intensive margin, as when the DM chooses “how much” to invest in search. As

we show in the Online Supplement, in general, such problems do not admit an index solution

because of the correlation in the search outcomes. Instead, the analysis readily extends to

an environment in which there are multiple search possibilities with independent outcomes, by

allowing for multiple “search arms”.

No discounting. All results above assume that δ < 1. However, they extend to δ = 1 (i.e.,

no discounting). As noted in Olszewski and Weber (2015), bandit problems in which δ = 1 can

be thought of as problems with non-discounted “target processes” where arms reaching a certain

(target) state stop delivering payoffs. A well known result for such problems is that the finiteness

they impose allows one to take the limit as δ → 1 (e.g., Dumitriu, Tetali, and Winkler, 2003).

Irreversible Choice. In many decision problems, in addition to learning about existing

options and searching for new ones, the DM can irreversibly commit to one of the alternatives,

bringing to an end the exploration process. In general, such problems do not admit an index

solution. In the Online Supplement, we derive a sufficient condition under which the optimality

of an index rule extends to such problems. We assume the DM must explore each alternative of

category ξ at least Mξ ≥ 0 times before she can irreversibly commit to it (for example, a consumer

must visit a vendor’s webpage at least once to finalize a transaction with that vendor, as in the

consumer search problem of Section 4.4). The condition guarantees that, once an alternative

reaches a state in which the DM can irreversibly commit to it, its “retirement value” (that is,

the value of irreversibly committing to it) either drops below the value of the outside option,

or improves over time. This property is related to a similar condition in Glazebrook (1979),

who establishes the optimality of an index policy in a class of bandit problems with stoppable

processes. Our proof, however, is different and accounts for the fact that the set of alternatives

evolves endogenously over time.

Relative length of expansion. In order to allow for frictions in the search for new alter-

natives, we assume that, whenever the DM searches, she cannot explore any of the alternatives

in the CS, with search occupying the same amount of time as the exploration of any of the

alternatives in the CS. All the results extend to a setting in which both the time that each search

occupies and the time that each exploration takes vary stochastically with the state.41 Further-

more, because the time that each exploration takes can be arbitrary, by rescaling the payoffs and

adjusting the discount factor appropriately, one can make the length of time during which the

exploration of the existing alternatives is paused because of search arbitrarily small. The results

41More generally, all of the results can be extended to a semi-Markov environment, where time is not slotted.
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therefore also apply to problems in which search and learning occur “almost” in parallel.

6 Concluding remarks

We introduce a model of experimentation in which the decision maker alternates between ex-

ploring alternatives already in the consideration set and searching for new ones to explore in

the future. The consideration set is thus constructed gradually over time in response to the

information the decision maker collects. We characterize the optimal policy and study how the

tradeoff between the exploration of existing alternatives and the expansion of the consideration

set depends on the search technology. The evolution of this tradeoff is driven by a a comparison

of independent indexes, where the index for search is computed in recursive form, accounting for

future optimal decisions.

The analysis may also be of interest to certain dynamic problems in which the decision maker

is unable to consider all feasible alternatives from the outset, either because of limited attention,

or because of the sequential provision of information by interested third parties such as online

platforms and search engines.
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7 Appendix

Preliminaries. In the analysis below, it will be useful to describe changes in the composition

of the CS, the evolution of the search technology, as well as all information acquired about the

alternatives, entirely in terms of transitions between states.
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Rather than keeping track of the collection of kernels Gξ(ϑ
m;µ) describing the conditional

distributions from which the marginal signals ϑm+1 are drawn, it will be convenient to describe

directly the evolution of each alternative’s state ωP as follows. When the DM explores an

alternative currently in state ωP , its new state ω̃P is drawn from a distribution HωP ∈ ∆(ΩP )

that is invariant to time.42 Note that when the DM explores a different alternative, or expands

the CS, the alternative currently in state ωP remains in the same state with certainty at the

beginning of the next period. Similarly, each time search is conducted, given the current state of

the search technology ωS, the new state of the search technology ω̃S is drawn from a distribution

HωS ∈ ∆(ΩS). Note that the distributions Hωs are time-homogeneous (i.e., the evolution of

the search technology depends on past search outcomes but is invariant in calendar time), and

the outcome of each new search is drawn from HωS independently from the idiosyncratic and

time-varying component θ of each alternative in the CS.

Proof of Theorem 1. The proof is in three steps. Step 1 first establishes the result in part

(ii) and then uses the recursive representation of the index of search in (3) to show that, when

the DM follows an index policy, her expected (per-period) payoff satisfies the representation in

(4), thus establishing part (iii). Steps 2 and 3 then use the representation in (4) to show that

the DM’s payoff under the proposed index rule satisfies the Bellman equation for the dynamic

program under consideration, thus proving the optimality of the index policy in part (i).

Step 1. Let τ̂ be the optimal stopping time in the definition of IS(ωS). Note that, at τ̂ , the

index of each alternative brought to the CS following the search under consideration (initiated in

state ωS), as well as the index of search itself, must be weakly smaller than IS(ωS). Otherwise,

by continuing to search, or by selecting one of the alternatives brought to the CS following the

search under consideration for which the index is larger than IS(ωS) and stopping optimally from

that moment onward, the DM would attain an average payoff per unit of average discounted time

Eπ
[∑τ−1

s=0 δ
sUs|ωS

]
Eπ
[∑τ−1

s=0 δ
s|ωS

]
strictly greater than IS(ωS), contradicting the definition of τ̂ in IS(ωS).43 This implies that τ̂

is weakly greater than τ ∗, where the latter is the first time at which the index of search and

the index of each alternative brought to the CS following the search under consideration are

weakly below IS(ωS). Moreover, since at τ ∗ the index of search and of each alternative brought

to the CS following the search under consideration are weakly below IS(ωS), if τ̂ > τ ∗, the

42Clearly, because each alternative’s category ξ is fixed, given the current state ωP = (ξ, θ), the distribution
HωP assigns probability one to states whose category is ξ and whose signal history ϑm+1 = (ϑm, ϑm+1) is a
“follower” of ϑm, meaning that it is obtained by adding a new signal realization ϑm+1 to the history ϑm.

43Since infinity is allowed as a value of the stopping time, the supremum in the definitions of IS (and IP ) is
attained, that is, an optimal stopping time exists (the arguments are similar to those in Mandelbaum, 1986, and
hence omitted).
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average payoff per unit of average discounted time between τ ∗ and τ̂ must be equal to IS(ωS).

Hence, under the optimal selection rule in the definition of IS(ωS), the average payoff per unit

of average discounted time from 0 to τ ∗ must also be equal to IS(ωS). This implies that the

optimal stopping time in the definition of IS(ωS) can be taken to be τ ∗. Because the index policy

χ∗ selects in each period between 0 and τ ∗ the alternative for which the average payoff per unit

of average discounted time is the largest (including search), we have that the optimal selection

rule π in the definition of IS(ωS) must coincide with the index policy χ∗. That IS(ωS) satisfies

the representation in part (ii) then follows from the arguments above.

Next, consider part (iii). We construct the following stochastic process based on the values

of the indexes, and the expansion of the CS through search, under the index policy. Starting

with the initial state S0 = (SP0 , ωS0 ), let v0 ≡ max{I∗(SP0 ), IS(ωS0 )}. Let t(v0) be the first time

at which, when the DM follows the policy χ∗, all indexes are strictly below v0, with t(v0) =∞ if

this event never occurs. Note that t(v0) differs from κ(v0), as κ(v0) = 0 is the first time at which

all indexes are weakly below v0. Next let v1 ≡ max{I∗(SPt(v0)), IS(ωSt(v0))} be the value of the

largest index at t(v0), where St(v0) = (SPt(v0), ω
S
t(v0)) is the state of the decision problem in period

t(v0). Note that, by construction, t(v0) = κ(v1). Furthermore, when t(v0) <∞, if v0 > IS(ωS0 ),

then ωSt(v0) = ωS0 . We can proceed in this manner to obtain a strictly decreasing sequence of

values (vi) i≥0, with corresponding stochastic times (κ(vi))i≥0. Note that the values vi are all

non-negative, as the DM’s outside option is normalized to zero. Next, for any i = 0, 1, 2, ..., let

ηi ≡
∑κ(vi+1)−1

s=κ(vi)
δs−κ(vi)Us denote the discounted sum of the net payoffs between periods κ(vi)

and κ(vi+1)− 1, when the DM follows the index policy, and let (ηi)i≥0 denote the corresponding

sequence of discounted accumulated net payoffs, with ηi = 0 if κ(vi) =∞.

Denote by V(S0) the expected (per-period) net payoff under the index policy χ∗, given the

initial state of the problem S0. That is, V(S0) = (1− δ)Eχ∗ [
∑∞

t=0 δ
tUt|S0]. By definition of the

processes (κ(vi))i≥0 and (ηi)i≥0, V(S0) = (1−δ)Eχ∗
[∑∞

i=0 δ
κ(vi)ηi|S0

]
. Next, using the definition

of the indexes (1) and (2), observe that

vi =
(1− δ)Eχ∗

[
ηi|Sκ(vi)

]
Eχ∗

[
1− δκ(vi+1)−κ(vi)|Sκ(vi)

] . (11)

To see why (11) holds, recall that, at period κ(vi), given the state of the decision problem Sκ(vi),

the optimal stopping time in the definition of the index vi is the first time at which the index of

the alternative corresponding to vi (if vi corresponds to a physical alternative), or the index of

search and of all alternatives introduced through future searches (in case vi corresponds to the

search index), drop below vi.44

44Note that if, at period κ(vi), there are multiple options (“physical” alternatives and search) with index vi,
the average sum of the discounted net payoffs until the indexes of all options drop below vi per unit of average
discounted time is the same as the average sum of the discounted net payoffs of each individual option with index
vi normalized by the average discounted time until the index of that alternative falls below vi. This follows from
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Figure 1: An illustration of the function δκ(v) and the region∑∞
i=0 v

i
(
δκ(vi) − δκ(vi+1)

)
=
∫∞

0 vdδκ(v), for a particular path with κ(v3) =∞.

Rearranging, multiplying both sides of (11) by δκ(vi), and using the fact that δκ(vi) is known

at κ(vi), we have that

(1− δ)Eχ∗
[
δκ(vi)ηi|Sκ(vi)

]
= viEχ

∗
[
δκ(vi) − δκ(vi+1)|Sκ(vi)

]
.

Taking expectations of both sides of the previous equality given the initial state S0, and using

the law of iterated expectations, we have that

(1− δ)Eχ∗
[
δκ(vi)ηi|S0

]
= Eχ

∗
[
vi
(
δκ(vi) − δκ(vi+1)

)
|S0

]
.

If follows that

V(S0) = Eχ
∗

[ ∞∑
i=0

vi
(
δκ(vi) − δκ(vi+1)

)
|S0

]
. (12)

Next, note that δκ(vi) = 0 whenever κ(vi) =∞, and that, for any i = 0, 1, ..., κ(v) = κ(vi+1)

for all vi+1 < v < vi. It follows that (12) is equivalent to

V(S0) = Eχ
∗
[∫ ∞

0
vdδκ(v)|S0

]
= Eχ

∗
[∫ ∞

0

(
1− δκ(v)

)
dv|S0

]
=

∫ ∞
0

(
1− Eχ

∗
[
δκ(v)|S0

])
dv. (13)

The construction of the integral function (13) is illustrated in Figure 1.

Step 2 . We use the representation of the DM’s payoff under the index rule in (4) to characterize

how much the DM obtains from following the index policy χ∗ from the outset rather than being

forced to make a different decision in the first period and then reverting to χ∗ from the next

period onward. This will permit us to establish in Step 3 the optimality of χ∗ through dynamic

programming.

Abusing notation, in this step, we find it useful to denote the state of the decision problem by

the independence of the processes. Hence, Condition (11) holds irrespectively of whether, at κ(vi), there is a
single or multiple options with index vi.
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a function S : Ω→ N that specifies, for each ω ∈ Ω, including ω ∈ ΩS, the number of alternatives,

including the search technology, that are in state ω.45 Given this notation, for any pair of states

S ′ and S ′′ then define S ′ ∨ S ′′ ≡ (S ′(ω) + S ′′(ω) : ω ∈ Ω) and S ′\S ′′ ≡ (max{S ′(ω)−S ′′(ω), 0} :

ω ∈ Ω). Any feasible state of the decision problem must specify one, and only one, state of

the search technology (i.e., one state ω̂S for which S(ω̂S) = 1 and such that S(ωS) = 0 for all

ωS 6= ω̂s). However, it will be convenient to consider fictitious (infeasible) states where search

is not possible, as well as fictitious states with multiple search possibilities. If the state of the

decision problem is such that either (i) the CS is empty, or (ii) there is a single alternative in the

CS and the latter cannot be expanded, we will denote such a state by e(ω), where ω ∈ Ω is the

state of the search technology in case (i) and of the single physical alternative in case (ii).46

Lemma 1. For any v ∈ R and states S ′ and S ′′, κ(v|S ′ ∨ S ′′) = κ(v|S ′) + κ(v|S ′′).

Proof of Lemma 1. The result follows from the fact that the state of each alternative that

is not explored in a given period remains unchanged, along with the fact that the time-varying

components θ of the various alternatives evolve independently of one another and of the state

of the search technology, given the alternatives’ categories ξ. Similarly, the state of the search

technology remains unchanged in periods in which search is not conducted, and evolves inde-

pendently of the time-varying component θ in the state of each existing alternative, given the

alternatives’ categories ξ. Furthermore, the index of each alternative is a function only of the

alternative’s state, and the index of search is a function only of the state of the search technol-

ogy. Therefore, all indexes evolve independently of one another (conditional on the alternatives’

categories), and evolve only when their corresponding decision (search or exploration of an al-

ternative) is chosen. Since the decisions are taken under the index policy χ∗, the result follows

from the fact that, starting from any state S, the total time it takes to bring all indexes (that is,

those of the alternatives in the CS as well as the index of search) below any value v is the sum

(across alternatives in the CS and search) of the individual times necessary to bring each index

below v in isolation. �

Given the initial state S0, for any ωP ∈ {ω̂P ∈ ΩP : SP0 (ω̂P ) > 0}, denote by E
[
u|ωP

]
the

immediate expected payoff from exploring an alternative in state ωP and by ω̃P the new state of

that alternative triggered by its exploration (drawn from HωP ). Let

V P (ωP |S0) ≡ (1− δ)E
[
u|ωP

]
+ δEχ

∗ [V (S0\e(ωP ) ∨ e(ω̃P )
)
|ωP
]

(14)

45Clearly, with this representation, there is a unique ω̂s ∈ ΩS such that S(ωS) = 1 if ωs = ω̂s and S(ωS) = 0
if ωs 6= ω̂s. The special case where the DM does not have the option to search corresponds to the case where for
all ωS ∈ ΩS , S(ωS) = 0.

46Throughout the analysis below, we maintain the assumption that an outside option with value equal to zero
is available to the DM. However, to avoid possible confusion, here we do not explicitly treat the outside option
as a separate alternative.
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denote the DM’s payoff from starting with exploring an alternative in state ωP and then following

the index policy χ∗ from the next period onward. Similarly, let

V S(ωS |S0) ≡ −(1− δ)E
[
c|ωS

]
+ δEχ

∗ [V (S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S)
)
|ωS
]

(15)

denote the DM’s payoff from expanding the CS when the state of search is ωS, and then following

the index policy χ∗ from the next period onward, where E
[
c|ωS

]
is the immediate expected cost

from searching (when the state of the search technology is ωS), ω̃S is the new state of the search

technology, and W P (ω̃S) is the state of the new alternatives brought to the CS by the current

search, with c and W P (ω̃S) jointly drawn from the distribution HωS .47

We introduce a fictitious “auxiliary option” which is available at all periods and yields a

constant reward M <∞ when chosen. Denote the state corresponding to this fictitious auxiliary

option by ωAM , and enlarge ΩP to include ωAM . Similarly, let e(ωAM) denote the state of the

problem in which only the auxiliary option with fixed reward M is available. Since the payoff

from the auxiliary option is constant at M , if v ≥ M , then κ(v|S0 ∨ e(ωAM)) = κ(v|S0), whereas

if v < M , then κ(v|S0 ∨ e(ωAM)) =∞. Hence, the representation in (4), adapted to the fictitious

environment that includes the auxiliary option, implies that

V(S0 ∨ e(ωAM )) =

∫ ∞
0

(
1− Eχ

∗
[
δκ(v)|S0 ∨ e(ωAM )

])
dv = M +

∫ ∞
M

(
1− Eχ

∗
[
δκ(v)|S0

])
dv

= V(S0) +

∫ M

0
Eχ
∗
[
δκ(v)|S0

]
dv. (16)

The definition of χ∗, along with Conditions (14) and (15), then imply the following:

Lemma 2. For any (ωS, ωP ,M),

V(e(ωS) ∨ e(ωAM )) =

V S(ωS |e(ωS) ∨ e(ωAM )) if M ≤ IS(ωS)

M > V S(ωS |e(ωS) ∨ e(ωAM )) if M > IS(ωS)
(17)

V(e(ωP ) ∨ e(ωAM )) =

V P (ωP |e(ωP ) ∨ e(ωAM )) if M ≤ IP (ωP )

M > V P (ωP |e(ωP ) ∨ e(ωAM )) if M > IP (ωP ).
(18)

Proof of Lemma 2. First note that the index corresponding to the auxiliary option is equal

to M . Hence, if M ≤ IS(ωS), given e(ωS) ∨ e(ωAM), χ∗ prescribes to start with search, implying

that V(e(ωS) ∨ e(ωAM)) = V S(ωS|e(ωS) ∨ e(ωAM)). If, instead, M > IS(ωS), χ∗ prescribes to

select the auxiliary option forever, with an expected (per period) payoff of M. To see why, in this

case, M > V S(ωS|e(ωS) ∨ e(ωAM)), observe that the payoff V S(ωS|e(ωS) ∨ e(ωAM)) from starting

47Note that WP (ω̃S) is a deterministic function of the new state ω̃S of the search technology. To see this, recall
that, for any m ∈ N, the function Em in the definition of the state of the search technology counts how many
alternatives of each possible state ωP have been added to the CS, as a result of the m-th search.
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with search and then following χ∗ in each subsequent period is equal to V S(ωS|e(ωS)∨ e(ωAM)) =

Eχ
∗

>1

[
(1− δ)

∑τ̄−1
s=0 δ

sUs + δτ̄M |ωS
]
, where τ̄ is the first time at which the index of search and of

all the alternatives brought to the CS by search fall weakly below M , and where the expectation

is under the process that obtains starting from e(ωS) ∨ e(ωAM) by searching in the first period

and then following the index policy in each subsequent period (the notation Eχ
∗

>1[·] is meant to

highlight that the expectation is under such a process). This follows from the fact that, once

the DM, under χ∗, opts for the auxiliary option, he will continue to select that option in all

subsequent periods. By definition of IS(ωS),

M > IS(ωS) ≡ sup
π,τ

Eπ
[∑τ−1

s=0 δ
sUs|ωS

]
Eπ
[∑τ−1

s=0 δ
s|ωS

] ≥ Eχ
∗

>1

[∑τ̄−1
s=0 δ

sUs|ωS
]

Eχ
∗

>1

[∑τ̄−1
s=0 δ

s|ωS
] .

Rearranging, MEχ
∗

>1

[∑τ̄−1
s=0 δ

s|ωs
]
> Eχ

∗

>1

[∑τ̄−1
s=0 δ

sUs|ωS
]
. Therefore,

Eχ
∗

>1

[
(1− δ)

τ̄−1∑
s=0

δsUs + δτ̄M |ωS
]
< MEχ

∗

>1

[
(1− δ)

τ̄−1∑
s=0

δs + δτ̄ |ωS
]

= M.

Similar arguments establish Condition (18). �

Next, for any initial state S0 of the decision problem, and any state ωP ∈ {ω̂P ∈ ΩP : S0(ω̂P ) >

0} of the alternatives in the CS corresponding to S0, let DP (ωP |S0) ≡ V(S0)−V P (ωP |S0) denote

the payoff differential between (a) starting by following the index rule χ∗ right away and (b)

exploring first one of the alternatives in state ωP and then following χ∗ thereafter. Similarly, let

DS(ωS|S0) ≡ V(S0)− V S(ωS|S0) denote the payoff differential between (c) starting with χ∗ and

(d) starting with search in state ωS and then following χ∗. The next lemma relates these payoff

differentials to the corresponding ones in a fictitious environment with the auxiliary option.48

Lemma 3. Let S0 be the initial state of the decision problem, with ωS ∈ ΩS denoting the state

of the search technology, as specified in S0. We have that49

DS(ωS |S0) =

∫ I∗(SP0 )

0
DS(ωS |e(ωS) ∨ e(ωAv ))dEχ

∗
[
δκ(v)|S0 \ e(ωS)

]
(19)

+ Eχ
∗
[
δκ(0)|S0\e(ωS))

]
DS(ωS |e(ωS) ∨ e(ωA0 )).

Similarly, for any alternative in the CS in state ωP ∈ {ω̂P ∈ ΩP : SP0 (ω̂P ) > 0},

DP (ωP |S0) =

∫ max{I∗(SP0 \e(ωP )),IS(ωS)}

0
DP (ωP |e(ωP ) ∨ e(ωAv ))dEχ

∗
[
δκ(v)|S0 \ e(ωP )

]
(20)

+ Eχ
∗
[
δκ(0)|S0\e(ωP ))

]
DP (ωP |e(ωP ) ∨ e(ωA0 )).

48In the statement of the lemma, S0 \ e(ωS) is the state of a fictitious problem where search is not possible,
whereas SP0 \e(ωP ) is the state of the CS obtained from SP0 by subtracting an alternative in state ωP .

49Recall that I∗(SP0 ) is the largest index of the alternatives in the CS under the state S0.
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Proof of Lemma 3. Using Condition (16), we have that, given the state S0 ∨ e(ωAM) of the

decision problem, and ωS ∈ ΩS ,

DS(ωS |S0 ∨ e(ωAM )) = V(S0) +

∫ M

0
Eχ
∗
[
δκ(v)|S0

]
dv + (1− δ)E

[
c|ωS

]
(21)

− δEχ∗
[
V(S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S)) +

∫ M

0
Eχ
∗
[
δκ(v)|S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S))

]
dv|ωS

]
,

where the equality follows from combining (15) with (16). Similarly,

DS(ωS |e(ωS) ∨ e(ωAM )) = V(e(ωS)) +
∫M

0 Eχ∗
[
δκ(v)|e(ωS)

]
dv + (1− δ)E

[
c|ωS

]
−δEχ∗

[
V(e(ω̃S) ∨WP (ω̃S)) +

∫M
0 Eχ∗

[
δκ(v)|e(ω̃S) ∨WP (ω̃S))

]
dv|ωS

]
.

(22)

Differentiating (21) and (22) with respect to M , using the independence across alternatives

and search and Lemma 1, we have that

∂

∂M
DS(ωS |S0 ∨ e(ωAM )) = Eχ

∗
[
δκ(M)|S0\e(ωS)

] ∂

∂M
DS(ωS |e(ωS) ∨ e(ωAM )). (23)

That is, the improvement in DS(ωS|S0 ∨ e(ωAM)) that originates from a slight increase in the

value of the auxiliary option M is the same as in a setting with only search and the auxiliary

option, DS(ωS|e(ωS) ∨ e(ωAM)), discounted by the expected time it takes (under the index rule

χ∗) until there are no indexes with value strictly higher than M , in an environment without

search where the CS is the same as the one specified in S0. Similar arguments imply that, for

any ωP ∈ {ω̂P ∈ ΩP : S0(ω̂P ) > 0},

∂

∂M
DP (ωP |S0 ∨ e(ωAM )) = Eχ

∗
[
δκ(M)|S0\e(ωP )

] ∂

∂M
DP (ωP |e(ωP ) ∨ e(ωAM )). (24)

Let M∗ ≡ max{I∗(SP0 ), IS(ωS)}. Integrating (23) over the interval (0,M∗) of possible values

for the auxiliary option and rearranging, we have that

DS(ωS |S0 ∨ e(ωA0 )) = DS(ωS |S0 ∨ e(ωAM∗))−
∫ M∗

0
Eχ
∗
[
δκ(v)|S0\e(ωS))

] ∂
∂v
DS(ωS |e(ωS) ∨ e(ωAv ))dv

= DS(ωS |S0 ∨ e(ωAM∗))−DS(ωS |e(ωS) ∨ e(ωAM∗))

+ Eχ
∗
[
δκ(0)|S0\e(ωS))

]
DS(ωS |e(ωS) ∨ e(ωA0 ))

+

∫ M∗

0
DS(ωS |e(ωS) ∨ e(ωAv ))dEχ

∗
[
δκ(v)|S0\e(ωS))

]
,

where the second equality follows from integration by parts and from the fact that Eχ∗
[
δκ(M∗)|S0\e(ωS)

]
=

1. That the outside option has value normalized to zero also implies that DS(ωS|S0 ∨ e(ωA0 )) =

DS(ωS|S0). It is also easily verified that DS(ωS|S0∨e(ωAM∗)) = DS(ωS|e(ωS)∨e(ωAM∗)).50 There-

50This follows immediately from the observation that V(S0∨e(ωAM∗)) = V(e(ωS)∨e(ωAM∗)) = M∗, and similarly
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fore, we have that

DS(ωS |S0) =

∫ M∗

0
DS(ωS |e(ωS) ∨ e(ωAv ))dEχ

∗
[
δκ(v)|S0\e(ωS)

]
(25)

+ Eχ
∗
[
δκ(0)|S0\e(ωS))

]
DS(ωS |e(ωS) ∨ e(ωA0 )).

Similar arguments imply that

DP (ωP |S0) =

∫ M∗

0
DP (ωP |e(ωP ) ∨ e(ωAv ))dEχ

∗
[
δκ(v)|S0\e(ωP )

]
(26)

+ Eχ
∗
[
δκ(0)|S0\e(ωP ))

]
DP (ωP |e(ωP ) ∨ e(ωA0 )).

To complete the proof of Lemma 3, we consider separately two cases. Case (1): given S0,

χ∗ specifies starting by exploring a physical alternative (i.e., M∗ = I∗(SP0 )). Then Condi-

tion (19) in the lemma follows directly from (25). Thus consider Condition (20). First ob-

serve that, for any state ωP ∈ ΩP such that M∗ > max{I∗(SP0 \e(ωP )), IS(ωS)}, we have that

M∗ = IP (ωP ), in which case DP (ωP |S0) = DP (ωP |e(ωP ) ∨ e(ωA0 )) = 0 and the integrand

DP (ωP |e(ωP )∨e(ωAv )) in (26) is equal to zero over the interval [0, IP (ωP )] and hence also over the

interval [0,max{I∗(SP0 \e(ωP )), IS(ωS)}]. We thus have that, in this case, Condition (20) clearly

holds. Next observe that, for any state ωP ∈ ΩP such that M∗ = max{I∗(SP0 \e(ωP )), IS(ωS)},
Condition (20) follows directly from (26).

Case (2): given S0, χ∗ specifies starting with search (i.e., M∗ = IS(ωS)). Then, for any

ωP ∈ ΩP , max{I∗(SP0 \e(ωP )), IS(ωS)} = M∗, in which case Condition (20) in the lemma

follows directly from (26). That Condition (19) also holds follows from the fact that, in this case,

DS(ωS|S0) = DS(ωS|e(ωS)∨e(ωA0 )) = 0 and the integrand DS(ωS|e(ωS)∨e(ωAv )) in (25) is equal

to zero over the entire interval
[
0,max{I∗(SP0 \e(ωP )), IS(ωS)}

]
. �

Step 3. Using the characterization of the payoff differentials in Lemma 3, we now establish

that the average per-period payoff under χ∗ solves the Bellman equation for our dynamic opti-

mization problem. Let V∗(S0) ≡ (1 − δ)supχ∈XEχ [
∑∞

t=0 δ
tUt|S0] denote the value function for

the dynamic optimization problem.

Lemma 4. For any state of the decision problem S0, with ωS denoting the state of the search

technology as specified under S0,

1. V(S0) ≥ V S(ωS |S0), and V(S0) = V S(ωS |S0) if and only if IS(ωS) ≥ I∗(SP0 );

2. for any ωP ∈ {ω̂P ∈ ΩP : S0(ω̂P ) > 0}, V(S0) ≥ V P (ωP |S0), and V(S0) = V P (ωP |S0) if and

only if IP (ωP ) = I∗(SP0 ) ≥ IS(ωS).

Eχ∗
[
V
(
S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S) ∨ e(ωAM∗)

)
|ωS
]

= Eχ∗
[
V
(
e(ω̃S) ∨WP (ω̃S) ∨ e(ωAM∗)

)
|ωS
]
. Intuitively, un-

der the index policy, any alternative with index strictly below M∗ is never explored given the presence of an
auxiliary alternative with payoff M∗.
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Hence, for any S0, V(S0) = V∗(S0), and χ∗ is optimal.

Proof of Lemma 4. Part 1 . First, use (17) to note that, for all v ≥ 0, DS(ωS|e(ωS)∨e(ωAv )) ≥
0, with the inequality holding as an equality if and only v ≤ IS(ωS). Therefore, from (19),

DS(ωS|S0) ≥ 0 – and hence V(S0) ≥ V S(ωS|S0) – with the inequality holding as an equality if

and only if I∗(SP0 ) ≤ IS(ωS).

Part 2 . Similarly, use (18) to observe that for any ωP ∈ {ω̂P ∈ ΩP : SP0 (ω̂P ) > 0} and

any v ≥ 0, DP (ωP |e(ωP ) ∨ e(ωAv )) ≥ 0, with the inequality holding as an equality if and only if

0 ≤ v ≤ IP (ωP ). Therefore, from (20), DP (ωP |S0) ≥ 0 with the inequality holding as equality if

and only if IP (ωP ) ≥ max{I∗(SP0 \e(ωP )), IS(ωS)}. The result in part 2 then follows from the

fact that the last inequality holds if and only if IP (ωP ) = I∗(SP0 ) ≥ IS(ωS).

Next, note that, jointly, Conditions 1 and 2 in the lemma imply that

V(S0) = max

{
V S(ωS |S0), max

ωP∈{ω̂P∈ΩP :SP0 (ω̂P )>0}
V P (ωP |S0)

}
.

Hence V solves the Bellman equation. That δTEχ [
∑∞

s=T δ
sUs|S] → 0 as T → ∞ guarantees

V(S0) = V∗(S0), and hence the optimality of χ∗. �

This completes the proof of the theorem. �

Derivations of the indexes in (5) and (6). Recall that the optimal stopping time in the

index definition in (1) is the first time at which the index drops below its initial value (i.e.,

its value at the time the index is calculated). This event occurs at the first time at which the

posterior belief that the treatment is effective drops below its value pξ(θ) at the time the index

is computed. The formula in (5) then uses the fact that a good outcome perfectly reveals that

the treatment is effective, in which case τ ∗ =∞ in (1), whereas a single bad outcome suffices to

reduce the posterior belief that the treatment is effective below the value at the time the index

was computed, implying that τ ∗ = 1.

Next, consider the index of search. Using the recursive representation in part (ii) of Theorem

1, together with Corollary 6, we have that the index for search is invariant to ωS and equal to (6).

To see this, recall that the search technology is stationary (and, hence, weakly deteriorating) in

this problem. Corollary 6 then implies that the index is the same as in a fictitious environment

with a single opportunity to search. Part (ii) of Theorem 1 in turn implies that the optimal stop-

ping time in (2) is the first time at which the posterior belief about the newly added treatment’s

efficacy is such that the treatment’s index drops below the index of search when the latter was

launched. �

Proof of Corollary 8. Hereafter, we first identify conditions under which the exploration and

expansions dynamics take a particularly simple form. We then compute the ex-ante expected
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discounted number of times an α-treatment is administered prior to the improvement and af-

ter. Finally, we show that the administration of the α-treatments may be higher before the

improvement. The conditions we identify are sufficient but not necessary for the result. While

a complete characterization of the conditions for which the result holds is not easily attainable,

the conditions below make clear that the result is not knife-edge.

Suppose that initially there are two treatments in the physician’s CS, one of each category,

and suppose that the α-treatments improve. Such an improvement may take the form of (1)

an increase in the ex-ante probability that each α-treatment is effective from pα(∅) to p̂α(∅) =

pα(∅) + εp, εp > 0, or (2) an increase in the payoff the physician derives from a good outcome

delivered through the administration of an α-treatment from vα to v̂α = vα + εv, with εv ≥ 0.

Let Λξ(θ) ≡ pξ(θ)qξ1 denote the posterior probability that a treatment yields a good outcome.

Because the posterior belief pξ(θ) that a ξ-treatment is effective is equal to one if θ 6= ∅ contains at

least one good outcome and else depends on θ 6= ∅ only through the number s of bad outcomes

recorded in θ, with an abuse of notation, hereafter we simplify the formulas for pξ(θ), Λξ(θ),

and IP (ξ, θ), by replacing any vector θ = (B,B, ..., B) containing only bad outcomes with the

number s of bad outcomes in the vector. Clearly, if θ contains one or more good outcomes,

then pξ(θ) = 1, in which case IP (ωP ) = qξ1v
ξ. We continue to denote by pξ(∅) and IP (ξ, ∅) the

prior belief a ξ-treatment is effective and the index of a ξ-treatment that has never been tested,

respectively. Likewise, we let Λξ(∅) ≡ pξ(∅)qξ1.

Suppose that the following order applies

IP (α, ∅) > IP (β, ∅) > IP (α, 1)

>
−c(1− δ) + δ

{
ραΛα(∅)

[
1− δ2(1− qα1 )2

]
vα + ρβΛβ(∅)

[
1− δ(1− qβ1 )

]
vβ
}

1− δ2 {ραδ [1− 2Λα(∅) + qα1 Λα(∅)] + ρβ [1− Λβ(∅)]}

> max{IP (β, 1), IP (α, 2)}. (27)

We then argue that the formula for the index of search in (6) simplifies to

IS =
−c(1− δ) + δ

{
ραΛα(∅)

[
1− δ2(1− qα1 )2

]
vα + ρβΛβ(∅)

[
1− δ(1− qβ1 )

]
vβ
}

1− δ2 {ραδ [1− 2Λα(∅) + qα1 Λα(∅)] + ρβ [1− Λβ(∅)]}
.

Once again, the result follows from part (ii) of Theorem 1, along with Corollary 5. In particular,

the order in (27) implies that the optimal stopping time in (6) is equal to: (a) τ ξ∗ =∞ if either

the new treatment is an α-treatment and a good outcome is observed in one of the treatment’s

first two administrations, or the new treatment is a β-treatment and a good outcome is observed

after the treatment’s first administration; (b) τ ξ∗ = 2 if the new treatment is a β-treatment and

the outcome of its first administration is bad; (c) τ ξ∗ = 3 if the new treatment is an α-treatment
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and each of its first two administrations yielded a bad outcome.51

Now suppose that the α-treatments improve. Let Λ̂α(∅) ≡ p̂α(∅)qα1 and suppose that

ÎP (α, ∅) > IP (β, ∅) >
−c(1− δ) + δ

{
ραΛ̂α(∅) [1− δ(1− qα1 )] v̂α + ρβΛβ(∅)

[
1− δ(1− qβ1 )

]
vβ
}

1− δ2
[
1− ραΛ̂α(∅)− ρβΛβ(∅)

]
> max{ÎP (α, 1), IP (β, 1)}, (28)

where the hat on the indexes Î indicates that the indexes are computed after the improvement

in the α-treatments. We then argue that the index for search after the improvement is equal to

ÎS =
−c(1− δ) + δ

{
ραΛ̂α(∅) [1− δ(1− qα1 )] v̂α + ρβΛβ(∅)

[
1− δ(1− qβ1 )

]
vβ
}

1− δ2
[
1− ραΛ̂α(∅)− ρβΛβ(∅)

] .

The result follows again from part (ii) of Theorem 1 along with Corollary 5. Given (28), the

optimal stopping time in the definition of the index of search is τ ξ∗ = 2 if the new treatment

brought to the CS by search yields a bad outcome after its first administration, and τ ξ∗ = ∞
otherwise.

Next, compare the ex-ante expected discounted number of times the physician administers

an α-treatment before the improvement and after. The ordering in (27) implies that, before

the improvement, the physician starts by administering the α-treatment in the CS. If such a

treatment yields a bad outcome, she then administers the β-treatment in the CS. If the latter

also yields a bad outcome, the physician administers again the α-treatment in the CS that yielded

the initial bad outcome. If this latter treatment yields a second bad outcome, the physician then

searches for new treatments. If, at any point, the administered treatment yields a good outcome,

because the treatment is revealed effective, the physician then administers it in all subsequent

periods, thus bringing the experimentation de facto to a halt.

Because the search technology is stationary, by virtue of Corollary 5, all treatments in the

CS are effectively discarded once each search for new treatments is carried out. Therefore, the

expected discounted number of times the physician administers an α treatment after each search

is carried out is given by

AS = ρα
[
1 + δ +

Λα(∅)(2− qα1 )δ2

1− δ
+ (1− Λα(∅)(2− qα1 )) δ3AS

]
+ ρβ

(
1− Λβ(∅)

)
δ2AS .

Solving for AS, we have that

AS =

ρα

1−δ
(
1− δ2 + δ2Λα(∅) (2− qα1 )

)
1− δ2 (ρα (1− Λα(∅) (2− qα1 )) δ + ρβ (1− Λβ(∅)))

.

51Recall that search itself occupies one period.
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From an ex-ante standpoint, the overall expected discounted number of times an α treatment is

administered is therefore equal to

A = 1 +
δΛα(∅)
1− δ

+ (1− Λα(∅))(1− Λβ(∅))δ2

[
1 +

δΛα(1)

1− δ
+ (1− Λα(1))δ2AS

]
,

where Λξ(1) = pξ(1)qξ1 = (1− qξ1)Λξ(∅)/
(
1− Λξ(∅)

)
is the probability of a good outcome from a

ξ-treatment that yielded a bad outcome at its first administration.

Now let ÂS and Â be the analogs of AS and A, respectively, after the improvement in the

α-treatments. Under the order in (28), the physician first administers the α-treatment in the CS.

If the latter yields a bad outcome, the physician then administers the β-treatment in the CS. If

the latter also yields a bad outcome, the physician then searches for new treatments.52 Then

ÂS = ρα

(
1 +

δΛ̂α(∅)
1− δ

+ δ2ÂS(1− Λ̂α(∅))

)
+ ρβ

(
1− Λβ(∅)

)
δ2ÂS .

Solving for ÂS, we have that

ÂS =
ρα
(

1 + δΛ̂α(∅)
1−δ

)
1− δ2 + δ2

(
ραΛ̂α(∅) + ρβΛβ(∅)

) .
Therefore, the ex-ante expected discounted number of times an α-treatment is administered when

the α-treatments are improved is equal to

Â = 1 +
δΛ̂α(∅)
1− δ

+ (1− Λ̂α(∅))(1− Λβ(∅))δ3ÂS .

Finally, it can be verified that Conditions (27) and (28) are consistent with

A > Â (29)

over an open set of parameter values such that εp ≥ 0 and εv ≥ 0, with at least one inequality

strict. �

Characterization of optimal policy in clinical trials application. The characterization

of the indexes follows from arguments similar to those establishing the formulas of the indexes

in (5) and (6), and is therefore omitted. Next, note that because experimenting with a product

that has been approved already is dominated by selling the approved product, the index of a

ξ-product that received regulatory approval is constant and equal to (1 − δ)vξ. The optimal

policy being an index policy (which follows from Theorem 1) then implies that, as soon as one of

52Again, if at any point a treatment yields a good outcome, because it is revealed effective, it is then administered
in each subsequent period. Furthermore, because the search technology is stationary, all treatments in the current
CS are effectively discarded when search is carried out.
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the firm’s products is approved, the firm brings to an end its experimentation process and sells

the approved product in each of the subsequent periods.53 �

Characterization of optimal policy in Pandora’s problem with an endogenous set of

boxes. Consider a relaxed problem in which the DM gets a flow payoff equal to (1 − δ)v each

time she selects an opened box with value v, and can revert her decision at any period. The

solution to such a problem is the index policy of Theorem 1 and has the property that, once an

opened box is selected, it continues to be selected in all subsequent periods. The index policy

for such a problem is thus feasible (and hence optimal) also in the primitive problem.

To see that the index of a ξ-box that has not been opened yet is given by (9), note that the

index of an opened box is equal to (1−δ)v. Because the optimal stopping time τ ∗ in the definition

of the index IP (ωP ) in (1) is the first time at which the value of the index drops below its value

IP (ωP ) at the time the index is computed, we then have that τ ∗ = 1 if (1− δ)v ≤ IP (ωP ) and

τ ∗ =∞ otherwise.

Turning to the index for search, by Corollary 6, because the search technology is deteriorating,

the optimal stopping-time τ ∗ in (2) is equal to (a) τ ∗ =∞ if the box identified at the m-th search

has a reservation price IP (ωP ) > IS(m) and its realized flow payoff satisfies v(1− δ) > IS(m),

(b) τ ∗ = 1 if IP (ωP ) ≤ IS(m), and (c) τ ∗ = 2 if IP (ωP ) > IS(m) and v(1− δ) ≤ IS(m). �

Proof of Proposition 1. Since product 0 corresponds to the outside option, one of the products

is always purchased. Let l 6= m be such that dl < dm. We show that product l will not be

purchased.

Case 1: l > m (i.e., l is read after m is read). First, suppose that dl = IS(l). Because

IS(l) ≤ IS(m) and because min{Im, (1 − δ)vm} ≥ dm > IS(l), under the index policy of

Theorem 1, product l is read only after product m is clicked upon. Once m is clicked, however,

because (1 − δ)vm > IS(l), l is never read. Hence, l will not be purchased. Next suppose that

dl = Il. Then min{Im, (1− δ)vm} ≥ dm > Il. Thus, product l is clicked only after m is clicked.

But again, once m is clicked, because (1 − δ)vm > Il, l is never clicked, implying that l is not

purchased. Finally, suppose dl = (1− δ)vl. Then because min{Im, (1− δ)vm} ≥ dm > (1− δ)vl,
m must be clicked before l is purchased. Because vm > vl, l is not purchased after m’s value is

learned.

Case 2: l < m (i.e., l is read before m is read). Because IS(m) ≥ dm > dl = min{Il, (1 −
δ)vl, IS(l)}, and because IS(m) ≤ IS(l), it must be that dl = min{Il, (1− δ)vl} and hence

min{Il, (1− δ)vl} < dm ≤ min{Im, (1− δ)vm}. (30)

Furthermore, because the search technology is non-improving, IS(l + 1) ≥ ... ≥ IS(m − 1) ≥
53This follows from the fact that the index of a ξ-product that has been approved already is higher than the

index of any ξ-product that has not been approved yet.
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IS(m). Along with the fact that dl = min{Il, (1 − δ)vl} < dm ≤ IS(m), this implies that

min{Il, (1− δ)vl} < IS(k) for all (l+ 1) ≤ k ≤ m. This last property in turn implies that either

clicking on l, or purchasing l, is dominated by reading any product k, with (l + 1) ≤ k ≤ m. If

m is read, then (30) implies that l will not be purchased (the arguments are similar to those for

case 1). If, instead, m is not read, it must be that another product k 6= l,m is purchased. In

either case, product l is not purchased. �

Proof of Proposition 2. The proof is in two steps. Step 1 shows that IS(m) ≥ maxl<m{wl}
is necessary for product m to be read and that IS(m) > maxl<m{wl} implies that product m is

necessarily read. Step 2 shows that product m is read and clicked only if

IS(m) ≥ maxl<m{wl} and Im ≥ max {maxl>m{dl},maxl<m{wl}} (31)

and that, when both of the above inequalities are strict, product m is necessarily read and

clicked. The result in the proposition then follows directly from the above properties along with

the definition of CTR(m).

Step 1. To see that IS(m) ≥ maxl<m{wl} is necessary for product m to be read, suppose

that, for some l < m, wl > IS(m). That is, both the index corresponding to clicking on product

l, Il, and the one corresponding to purchasing product l, (1 − δ)vl, are strictly greater than

IS(m). Because product l is read before product m is read, by Theorem 1 in the main text, m

is never read.

Next, we show that, when IS(m) > maxl<m{wl}, product m is always read. To see this,

note that since the search cost c(·) is increasing, IS(1) ≥ ... ≥ IS(m − 1) ≥ IS(m). Therefore,

IS(m) > maxl<m{wl} implies that, for any 1 ≤ l ≤ m, IS(l) > wl−1 = min{Il−1, (1 − δ)vl−1}.
Hence, by Theorem 1, for any 1 ≤ l ≤ m, it cannot be that product l− 1 is purchased before the

product l is read. Repeatedly applying this argument for all 1 ≤ l ≤ m implies product m must

be read before any product l < m is purchased.

Step 2. To see that both inequalities in (31) must hold for product m to be read and clicked,

first observe that we already established in Step 1 that the first inequality in (31) is necessary

for product m to be read. Thus assume that such inequality holds. To see that the second

inequality in (31) must also hold, suppose that Im < max {maxl>m{dl},maxl<m{wl}}. Then

either there exists a product l < m such that wl > Im, or a product l > m such that dl > Im, or

both. Suppose there is a product l < m such that wl > Im. Then product m cannot be clicked,

because product l is necessarily read before m and, because both Il and (1 − δ)vl are strictly

greater than Im, product l is purchased before m is clicked. Next, suppose that there exists a

product l > m such that dl = min{IS(l), Il, (1− δ)vl} > Im. By the monotonicity of the search

indexes, IS(m) ≥ IS(m + 1) ≥ ... ≥ IS(l). That IS(l) > Im, then implies that IS(k) > Im for

any k = m,m + 1, ..., l. In turn, this last property implies that clicking on m is dominated by
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reading product k, for any k = m+ 1, ..., l. If product l is read, because both Il and (1− δ)vl are

strictly greater than Im, product m is not clicked. If, instead, product l is not read, it must be

that another product k 6= l,m, with k ∈ {m+ 1, ..., l − 1}, is purchased. In either case, product

m is not clicked. Hence, both inequalities in (31) are necessary for product m to be read and

clicked.

Next, we show that when both inequalities in (31) are strict, product m is necessarily read

and clicked. We already established in Step 1 that, when the first inequality in (31) is strict,

product m is read. Now suppose that the second inequality is also strict. That Im > maxl<m{wl}
implies that for each product l < m, either Il or (1− δ)vl are strictly smaller than Im. Because

product m is read, by Theorem 1, it cannot be that any product l < m is purchased before

product m is clicked. Similarly, that Im > maxl>m{dl} implies that, for each l > m, either IS(l),

or Il, or (1 − δ)vl are strictly smaller than Im, which again guarantees that no product l > m

can be purchased before product m is clicked. Since one of the products is necessarily purchased

(product 0 representing the outside option), it must be that product m is clicked. Hence, we

conclude that when both inequalities in (31) are strict, product m is necessarily read and clicked.

�
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