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Setting: binary treatment T , baseline covariates X (arbitrary),
(Ti, Xi) i.i.d.∼ (T,X) (the only assumption!)

Strict overlap condition:
∃O0 > 0, O0 ≤ e(X) , P(T = 1 | X)︸ ︷︷ ︸

propensity score
≤ 1−O0, a.s.

Population overlap slack: O∗ = infx min{e(x), 1− e(x)}

• Strict overlap condition ⇐⇒ O∗ ≥ O0

•nO∗ is the effective sample size without outcome restriction (Hong et al. ’18)

• 1− nO∗/min{n1, n0} measures the relative efficiency loss compared to an RCT
• In practice, high O∗ =⇒ stability of doubly robust estimators

Current approaches for assessing overlap:
• Informal comparisons or plug-in estimates based on estimated propensity scores

– useful but lack of statistical guarantees
– “sample overlap” 6= population overlap
– sensitive to model mis-specification or finite sample errors

• Standard two-sample test: testing the wrong null

H0 : P(X | T = 1) = P(X | T = 0) =⇒ H0 : e(X) ≡ e0

Major challenge: O∗ is irregular (extreme of an unknown function)

Population overlap in observational studies

Definition. Ô is an O-value if it is an upper confidence bound of O∗, i.e.
P(O∗ ≤ Ô) ≥ 1− α

Analogous to p-value:

•A small Ô provides strong evidence against overlap
•A large Ô does not necessarily imply sufficient overlap

Some practical implications:

• Strict overlap condition as a composite null hypothesis: reject if Ô < O0

• (1− nÔ/min{n1, n0})+ estimates efficiency loss caused by the imbalance

•Assessing if trimming (say, at 0.1 and 0.9) is successful by comparing Ô with 0.1

•Comparing different matches based on Ô

Main (and perhaps surprising) contribution:

We develop distribution-free O-values that are valid in finite samples!

O-value

Key observation: overlap is preserved under transformation of X
O0 ≤ e(x) ≤ 1−O0 =⇒ O0 ≤ P(T = 1 | s(X) = s) ≤ 1−O0

for any fixed function s(·)

•Let O∗s be the population overlap slack for (T, s(X))
•O∗ = O∗e (Rosenbaum and Rubin, ’83)

•Data splitting guarantees that ê(·) |= (second half of data)
•O∗ ≤ O∗ê always holds even if ê is bad; tight if ê is good

From now on, we assume that
(Si, Ti) are i.i.d. with Si = ê(Xi) ∈ [0, 1]

Goal: construct upper confidence bounds on O∗ê (w/ standardized covariates)

Step I: covariate standardization

Key observation: overlap ⇐⇒ bounded likelihood ratio

bmin(O∗; π) ≤ dPS|T=1
dPS|T=0

(s) , dP1

dP0
(s) ≤ bmax(O∗; π), ∀s ∈ [0, 1],

where π = P(T = 1), bmin(O∗; π) = O∗

1−O∗
π

1− π
, bmax(O∗; π) = 1−O∗

O∗
π

1− π

Intuition: larger O∗ =⇒ smaller discrepancy between P1 and P0

A generic strategy:

•Find an estimable “discrepancy” ∆(P0, P1) and B∆(O) ↓ O
∆(P0, P1) ≤ B∆(O∗) (population property)

•Compute a lower confidence bound on ∆(P0, P1)
P

∆̂− ≤ ∆(P0, P1)
 ≥ 1− α (sample property)

• Ô = B−1
∆ (∆̂−) is a valid O-value:
P

Ô ≥ O∗
 = P

∆̂− ≤ B∆(O∗)
 ≥ P

∆̂− ≤ ∆(P0, P1)
 ≥ 1− α

Step II: careful balance check

∆ B∆(O∗) ∆̂− Two-sample test analogy

DiM T-stat. χ2-divergence Hedged capital bound
Waudby-Smith-Ramdas (’20)

t-test

DiT LR Simple algebra Line-crossing Dempster (’59)

Simes’ inequality Sarkar (’98)
Kolmogorov-Smirnov test

DiR AUC Generalized
Neyman-Pearson

Hybrid bound for U-stat
Bates-Candès-Lei-Romano-Sesia (’21)

Wilcoxon rank-sum test

CE class.
error

Formula of
Bayes risk Same as DiT O-values Classification-based test

Summary of DiM/DiT/DiR/CE O-values

Population property D’Amour-Ding-Feller-Lei-Sekhon (’17)

Theorem. Let µt, σ2
t be the mean and variance of Pt. Then

(∆(P0, P1) =) T0 ,
|µ1 − µ0|

σ0
≤

√√√√(1− bmin(O∗; π))(bmax(O∗;π)− 1) (= B∆(O∗)),

Sample property Maurer-Pontil (’09) (constants are not good enough!)
Proposition (Empirical Berstein’s inequality). Let Z1, . . . , Zn ∈ [0, 1] be i.i.d.
with EZi = µ,Var(Zi) = σ2. Then with probability 1− δ,

|µ̂− µ| ≤ σ̂
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=⇒ a lower confidence bound on T0 (with Bonferroni correction over (µ1, µ0, σ0)):

T̂−0 = µ̂−1 − µ̂+
0

σ̂+
0

(Simplified) DiM O-value
Cπ ← (1− α/2)-CI for π, T̂−0 ← (1− α/2)-lower confidence bound on T0

ÔDiM = sup
π∈Cπ

1
2
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Theorem. With solely the i.i.d. assumption, P(O∗ ≤ ÔDiM) ≥ 1− α

Example: (simplified) DiM O-value

An illustrative simulation study

•X ∼ N(0, Ip) with p ∈ {10, 30, 100}

• e(x) = f (xTβ), f (y) =

0.1 (y < c)
0.9 (y > c)

• β sparse; c is chosen such that P(e(X) = 0.1) = 0.8
p = 10 p = 30 p = 100
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Gradient Boosting Random Forest

Practical recommendation based on extensive numerical experiments
•Algorithm to estimate propensity scores: gradient boosting
•Type of O-value: DiT

Comparisons of O-values

•National Supported Work Demonstration program Lalonde (’86)

•Treatment group has n1 = 185 units
• 7 control groups: 6 from observational studies, 1 from an RCT
•Apply gradient boosting for DiT O-values

CPS PSID RCT
n0 Ô L̂ n0 Ô L̂ n0 Ô L̂

Raw 15992 0.003 77% 2490 0.018 75% 260 0.483 0%
V2 2369 0.021 71% 253 0.234 45%
V3 429 0.143 53% 128 0.313 23%

O-values for Lalonde data


