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We study the Interconnectedness of stress- - Network Graphs - DFAST networks connectivity patterns are intuitive and
tested banks by exploiting how they are ' exhibit core-periphery topology.

_ y _ P J _ y _ April 2020 Earnings Release Week: PEHPRELY TOPOIoJY
mentioned together In the context of financial : | T 13 .+ Denser networks under stress, aligned with the literature,
news. We use Ronngvist and Sarlin (2015) s j with increased connectivity mainly across bank types.
text-to-network approaCh using the COVID-  Real time and more stable systemic risk rankings, than
19 pandemic as an external shock to the traditional measures, using text-based eigenvector
banking system to examine how the network centrality.
topology behaves during high-stress periods. Ranking of Bank Systemic Risk:
________________________________________________________ D Eigenvector Centrality (left) vs. SRISK (right)
Methods
We use data from Factiva Analytics top financial news. Our sample | |
consists of 18K articles with at least one co-occurrence (more than 151
one DFAST bank mentioned in an article) and expands July 2019 -
September 2020. Network Topology Comparison
We build Weekly DFAST banks network matrices based on the Table 5. Summary statistics of January and April earmings network matrices "

] Jamary Earnings 15 13 - 19, 2020; April Earnings 1s 13 - 19, 2020. Connections i1s the number of links and
number of co-occurrences by bank across time. We use an co-occurrences is the number of co-mentions in articles. Clustering coefficient is calculated as the transitivity
or connectivity of a network and average path length is the mean shortest path between two nodes. | 0

eigenvector centrality measure to proxy systemic risk rankings.

January Earnings Aprl Earnings % Change

Number of Connections

We classify banks by type: Big 6 (largest Universals + Inv. Banks), Within Big 6 19 19 0% |
: : Within Non-Big 6 508 698  16.72% ! T mm e m o mmm oo oo e ——mm e — -
Regionals, Trusts, Credit Card, and /HCs. | n Aoy e > e j
etween Big 6 and Non-Big 6 131 141 7.63 % _ :
_ _ Number of Co-occurrences ' CO n C I u S I O n
We focus on earnings release weeks to achieve an apples-to-apples | Within Big 6 3439 2788 10.37% |
: . Within Non-Big 6 1556 1959 25.90% ‘ : ) : :
comparison of network tOpO/Ogy pre vs durlng COVID-19. We | Between Big 6 and Non-Big 6 1069 1218 26.20 % ‘ We find a core perlphery tOpOIOgy in DFAST Dbanks
: . Othe trics ; ' - ..
compare earnings release weeks of January 2020 (pre-Crisis) to o Cloofiicion _ - networks, with increased connectivity across clusters
. Tustering Coethicient (.69 0.76 ~
April 2020 (Crisis & peak of stress). .- Average Path Length 1.50 .41 ~ during peaks of stress. We capitalize on the fast-moving

pace of news articles to uncover systemic risk implications
of bank interconnectedness. Overall, text-based networks
provide an alternative to traditional approaches in real
time and with a narrative behind connections.
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