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Abstract 

This paper sets up a quasi-experiment to estimate the impact of medical innovations on the 

economic outcomes for the individual and their family based on the rich administrative data for 

Sweden covering 1 million persons. I find that an increase in medical innovations by one 

standard deviation raises family income by 15%. Medical innovations strongly influence not 

only own disposable and labour income and welfare payments but also a spouse’s income. I 

also find that the economic effects are heterogeneous in relation to the insurance eligibility of 

the health shock. Results also suggest decreasing yet always positive returns to scale.  
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I. Introduction 

It is essential for society to know the welfare effects of medical innovations. Despite 

this, the most published research on this issue is difficult to generalize. An already vast 

literature has provided very different estimates for the aggregate productivity growth of 

medical care, yet none of them excludes the influence of factors other than medical care.1 

Several recent studies have used methods of causal inference to estimate the impact of 

specific medical innovations, such as pain-killing drugs, or specific diseases, such as breast 

and prostate cancer (Garthwaite, 2012; Bütikofer et al., 2018; Thirumurthy et al., 2008; Jeon 

and Pohl, 2019). The set of innovations as well as the outcomes studied in this literature has 

been scarce. Not only this, but previous studies have not accounted systematically for 

productivity effects in terms of the allocation of medical care. At the same time, the amount 

and the allocation of health investments are central policy choices because they influence not 

only current and future consumption and value added, but may also contribute to health 

inequalities.2     

 
1 At one extreme, Murphy and Topel (2006) found that returns to healthcare in 1970–2000 in the US 

amounted to a ratio of 3 to 1. At the other extreme, Bloom et al. (2020) reported that research 

productivity for medical research was negative in 1975–2006; for instance, research productivity for 

breast cancer declined annually by 6.8% using publications and 10.1% using clinical trials. Other 

studies found that the productivity rates lay within the range of these values (as reviewed, for 

instance, in Sheiner and Malinovskaya, 2016). 

2 Healthcare expenditures rise constantly in per capita terms or in relation to GDP among the OECD 

countries, and Sweden usually spends among the most, for instance, 5,447 USD PPP and 11% in 2018 

respectively (OECD (2019)). R&D spending is among the largest in medicine and health care 

(Statistics Sweden, 2020). Not only in aggregate, healthcare usually challenges with ensuring proper 

and equal care for all patients (OECD, 2019). Even today, policy makers view healthcare as spending 
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This paper aims to fill in the gap by estimating the total and heterogeneous effects of 

medical innovations against the whole range of adult morbidities on the individual’s 

economic outcomes. I have set up a quasi-experiment to obtain plausibly causal estimates by 

using rich data on both disease-specific medical innovations and individual-level longitudinal 

hospital admissions and economic outcomes for Sweden. More specifically, I have applied a 

difference-in-difference-in-differences (DDD) approach, and in doing so have estimated the 

impact of medical innovation on economic outcomes as an innovation-induced reduction in 

economic loss due to the onset of a specific disease. This analysis have been conducted in 

close connection to a theoretical framework of family health production by Grossman (1972, 

2000), where the resources available for health production are family disposable income and 

its sources.  

The results from my paper indicate that an increase in medical innovations by one 

standard deviation (SD) raises disposable family income by 14.8% (95% CI: 14.4%; 15.1%). 

Medical innovations appear to increase the income of both family members: by 5.99% 

(95%CI: 5.58%; 6.39%) of own disposable income and by 15.65% (95%CI: 14.15%; 

17.16%) of a spouse’s disposable income. The beneficial effects of medical innovations 

emerge through the increase in own labour supply at both its intensive and extensive margins. 

The effects of medical innovations vary extremely across diseases: they are strong for cancer 

(51.11%, 95%CI: 47.44%; 54.77%) and circulatory diseases (19.51%, 95%CI: 18.34%; 

20.67%), are close to the mean aggregate effects for mental and nervous, infectious and 

respiratory diseases, and are absent or appear as losses for other health shocks. Results also 

 
rather than as investments and do not recognize the link between its allocation and health inequalities 

(Lundberg, 2018).  
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suggest decreasing returns to scale, yet far from reaching zeros by the end of the study period. 

Finally, the returns decline the higher the education level. 

To obtain the causal estimates by means of the DDD approach, one should demonstrate 

that the assumption of “parallel trends” is likely to hold for all comparison groups involved in 

the estimation and that the estimation method provides an adequately weighted average 

treatment effect on the treated (ATET). These issues are solved in this paper by my discovery 

that individuals who experienced a health shock due to a specific disease compared to those 

who experienced the same shock in a very narrow time window are similar in pre-trends 

across the whole range of diseases. This discovery has allowed me to apply a DDD matching 

approach. Several previous studies on the returns to medical innovations inevitably failed to 

maintain the “parallel trends” assumption because they used healthy individuals as a 

counterfactual to the individuals who experienced a health shock (Glied and Lleras-Muney, 

2008; Lichtenberg, 2019).3 Additionally, many empirical studies that used two-way fixed-

effects regressions to estimate the difference-in-differences (DD) effects with differential 

timing likely suffer from the weighting problem that may strongly bias these effects (Baker et 

al., 2021).  

This paper contributes to several strands of literature in economics. First, it contributes 

to the applied microeconomic literature on the impact of single medical innovations on 

economic outcomes (e.g., Garthwaite, 2012; Bütikofer et al., 2018; Stephens and Toohey, 

2018; Jeon and Pohl, 2019) by broadening the evidence to include almost all health 

conditions observable in the population. This evidence also adds to the growing literature on 

 
3 There are also studies that have examined a relationship between a broader set of medical 

innovations and health, though these rely on descriptive designs (e.g. Gross et al., 1999; Cutler et al., 

2012). 
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the economic consequences of health shocks and their heterogeneity (e.g., García-Gómez et 

al., 2013; Lundborg et al., 2015; Dobkin et al., 2018) by assessing the value of the 

innovation-induced reduction in economic loss due to health shocks. My findings contribute 

to the empirical studies on the spousal labour supply responses to individuals’ health and 

labour supply shocks (reviewed, e.g., in Fadlon and Nielsen, 2021) by establishing that the 

benefits of medical innovations accrue not only to the individual but also to the spouse.  

Second, this paper contributes to the more general and diverse literature on the aggregate 

productivity of medical care (e.g., Cutler and McClellan, 2001; Murphy and Topel, 2006; 

Bloom et al., 2020; Scannell et al., 2012; Fonseca et al., 2021; Cutler et al., 2021) by showing 

plausibly causal gains of medical innovations based on a quasi-experimental design. My 

estimates of the impact of medical innovations on family income are ready-to-use to calibrate 

the value of health gains in terms of consumption. This strand of the literature has partially 

overlapped with the studies on the allocation of the productivity effects of medical 

innovations, which overwhelmingly covered the most common health conditions, such as 

cancer and heart disease (e.g. Berndt et al., 2002; Cutler et al., 2007; Cutler et al., 2012; Glied 

and Lleras-Muney, 2008). My paper adds to these studies by presenting findings on the 

causal heterogeneous economic returns to medical innovations across several theoretically 

driven dimensions – findings that are novel for the European context where the patterns can 

be different from the contexts with predominantly private health insurance.  

II. Conceptual framework 

To theorize how medical innovations may influence health and household income, I 

draw on the Grossman (1972, 2000) model of health production and its more recent 

extensions for family health production specifically (Jacobson, 2000; Bolin et al., 2002). In 

this extended model, the resources available for health production are not only own income 
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but also total family income. The development of the latter can be described by the following 

equation: 

(1) ∂W/∂t = r∙W + ωm(Hm, Eω,m)∙hω,m + ωf(Hf, Eω,f)∙hω,f  + B – p∙(Mm + Mf) – q∙X, 

where r is the market interest rate, ω and h  are the wage rates (‘labour market earnings rate 

of return on human capital’) and time spent at work respectively, these being functions of 

health (H) and level of education and on-the job training (E). B are transfers. p and q are the 

prices of medical care (M) and other goods (X) respectively.4 The subscripts m and f denote 

husband and wife respectively. Hence, the individual’s health affects market income in two 

ways: through its effect on the wage rate; and through its effect on the time a healthy 

individual is available for work. In this model, decreased health also decreases savings rates. 

In turn, the development of stock of health for a husband (or wife) is in line with the 

following equation: 

 (2) ∂Hm(f) /∂t = Im(f) – δm(f)∙Hm(f) 

where Im(f) are gross investments in health and δm(f) is the rate of depreciation. That is, adverse 

health events are depreciations or negative investments in health that can be offset by positive 

investments. Health investments for a family member are a function of medical care (Mm(f)), 

own and another family member’s time used in the production of health (hH,m and hH,f), and 

productivity in health production (EH,m and EH,f). 

The time restrictions for each family member are 

 (3) Ωi = hω,i  + hX,i  + hH,m,i  + hH,f,i   + hS,i       i = m,f 

 
4 In the case of universal public health insurance and the absence of out-of-pocket expenses, like in 

Sweden, increased medical care (i.e. costs) is absorbed by taxes with no direct effect on family 

income. 
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where hS,i   is duration of sickness (hS,i   = hS,i (Hi)). 

Equations 1 through 3 formulate that medical innovations (i.e. new drugs or medical 

procedures) are positive investments in health that reduce the decline in health capital 

through several channels. First, they directly reduce the negative consequences of a health 

shock, i.e. restore health. Second, they decrease time spent on health production that leads to 

an increase in time spent on market production and income. Finally, medical innovations 

affect the spouse’s income. The effect of a health shock on the spouse’s earnings is 

ambiguous: the spouse may compensate for the income loss of the individual by increasing 

their labour supply, or they may decrease their labour supply by increasing the time spent on 

the individual’s health production.5 Consequently, medical treatments of the individual 

reduce or increase income loss appeared on the spouse’s side. In sum, the model suggests to 

consider both ultimate and provisional outcomes such as family income, own and partner’s 

income, labour income, sickness and welfare payments and capital income.   

The Grossman model explicitly formulates the way the individual’s characteristics 

moderate the effects of a health shock. One important aspect is the severity of a health shock. 

In the model, the depreciation rate of health capital is an increasing function of age. However, 

the onset of either chronic or functional impairments at a similar age may have different 

consequences for the individual’s and the spouse’s labour supply and welfare uptake (e.g., 

McClellan, 1998). Another aspect is the type of returns to health investments over time, 

which the model suggests to be constant. An alternative model, with diminishing returns to 

scale, has been proposed in Galama et al. (2012; 2015). As a last aspect, productivity in 

health production of both family members affects the strength of a response to health 

 
5 In the context of Sweden, the subject of analysis in this study is generally not expected to remain 

attached to the labour market in the case of an adverse health event. 
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investments. As an illustration, individuals with a higher education level may be more 

efficient producers of health, and hence reap larger benefits from a medical innovation. In 

principle, a similar argument can justify gender differences in responses to health investments 

(Fuchs, 2004).  

III. Empirical strategy 

An ideal experiment of estimating the causal effects of medical innovations would assess 

to what extent medical innovations enable a reduction in the negative consequences of 

disease. In this study, in order to emulate such an experiment, I have applied a DDD 

approach and have estimated the impact of medical innovations on economic outcomes as an 

innovation-induced reduction in economic loss due to the onset of a specific disease. This can 

be thought of as the difference between the two DD estimators (see Goodman-Bacon, 2021, 

for details). To form the first DD estimator, the assumption is that one can compare the 

evolution of the economic outcomes of individuals who experienced a health shock due to a 

certain disease to those of valid counterparts. To form the second DD estimator, one needs to 

be sure that individuals also belong to either an affected group or an unaffected group. In my 

case, these differentially affected groups appear because the stock of medical innovations 

varies over time and across diseases.6 To be able to obtain a triple-difference coefficient 

where one of the differences varies across the values of a continuous variable (i.e. medical 

innovations), I have estimated the following DDD specification:   

 
6 In conducting this mental exercise, one can also flip the order of the DD estimators. That is, the first 

DD can indicate the evolution of outcomes between individuals having access to different levels of 

innovations, regardless of whether they experienced a shock. The difference between these DD 

estimators (i.e. DDD) can be constructed because some individuals had already experienced a health 

shock and some had not done so yet.  
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(4) Yitds = αi  + β1 postidst  + β2 DDidst + β3 DDidstMds + β4 postidstMds + uitds 

where: Yitds – is an outcome for an individual i in year t who either experienced a health shock 

due to disease d in year s (treated) or that for another individual who serves as a counterpart 

to the treated individual (control). The outcomes are determined by the conceptual model and 

include family income and its sources. DDidst  is an indicator for years during and after a 

health shock for individuals who experienced a negative health shock due to disease d in year 

s; postts – are years during and after a health shock; Mds  denote a medical innovation 

available to treat disease d in year s; αi – are individual fixed effects.7,8  

The main identification assumptions of the DD framework is that potential outcomes and 

treatments of different groups are independent (“independent groups”) and that the control 

group provides a valid counterfactual (the “parallel trends” assumption). These assumptions 

should hold for all DD comparisons that will eventually participate in the DDD estimation. If 

these assumptions are satisfied, the parameter of interest, β3, represents the causal effect of a 

medical innovation on income and its sources, i.e. the innovation-induced difference in the 

ATET. The “independent groups” assumption is likely to hold in the setting given in this 

paper because the individual’s probability of a health shock does not depend on the stock of 

medical innovations available in the country to treat disease. By contrast, there is the 

 
7 A similar model was used by Jeon and Pohl (2019) who studied the impact of medical innovations 

for single diseases, such as breast and prostate cancer, and hence, medical innovations varied for them 

only between years. 

8 As I will show below, the control individuals are observed during the same years as the treated ones, 

so postts and Mds are defined for both groups. In Eq.4, the effects of three terms – an indicator for the 

individuals who experienced a health shock, Mds and their interaction – are absorbed by the individual 

fixed effects.  
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challenge of assuring that the “parallel trends” assumption holds for individuals who have 

and have not experienced a health shock. For instance, an observed health shock that is 

preceded by deteriorating health and, correspondingly, income, would violate this 

assumption. 

I addressed the empirical challenge of obtaining plausibly valid counterfactuals in 

several ways. First, I extended an empirical approach previously suggested by Fadlon and 

Nielsen (2021) and matched individuals who experienced a health shock due to certain 

disease to those who experienced a shock due to the same disease within a few years of them, 

and stacked observations for the same years for cohorts with duplicates.9 Second, to account 

for the remaining deviations from the “parallel trends” between treatment groups across all 

diseases observed in the population, I also matched on several pre-treatment characteristics of 

the individual that affect both the probability of a health shock and the outcome. Third, I 

included individual fixed effects in the main specification to partial out the influence of 

permanent factors specific to individuals that may affect the outcomes. Finally, to diminish 

the possibility of anticipation, I focused on individuals with no health shocks in the three 

preceding years. Conditional on no anticipation, I could perform a formal test for the absence 

of pre-trends (Novgorodsky and Setzler, 2019). In doing this, I followed Borusyak et al. 

 
9 Fadlon and Nielsen (2021) focused on heart attacks and strokes that are both sudden and severe, and 

matched individuals who were hospitalized/died from these causes in year t to those who were 

hospitalized/died from these causes in year t+5. Similar to their paper, the research design in my paper 

is constructed to match individuals on the year of the shock occurring within sexes and the same 

cohorts, so this mechanically rules out calendar, sex and age effects. 
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(2021) and performed a t-test for the pre-trends in a fully dynamic specification (i.e. event-

study) of the underlying DD models.10  

As part of this study, in addition to measuring the total impact of medical innovations I 

have analyzed the allocation of this impact by estimating the heterogeneous DDD model: 

(5) Yitds = αi  + β1 postidstXi  + β2 DDidstXi + β3 DDidstMdsXi + β4 postidstMdsXi + uitds 

where all terms are defined as in Eq.4, and Xi is the covariate of interest. Eq.5 is a model of 

Eq.4 fully interacted with the covariates of interest specified without a reference category in 

order to obtain the estimates across the whole range of the values of covariates (see 

Wooldridge, 2021, for discussion). I analyzed the heterogeneity of the impact of medical 

innovations on economic outcomes across different dimensions as suggested by the 

conceptual model, such as the aggregated groups of diseases and their severity, the years and 

ages at hospitalization, and education level.11 I ran the analysis on all available realizations of 

the covariate to preclude the arbitrary choice of thresholds in the variable of interest for 

studying the heterogeneity. Last but not least, to be able to interpret the heterogeneous DDD 

coefficients as causal requires that the “parallel trends” assumption holds across the values of 

the covariate involved in Eq.5. To make it plausible, I match individuals within sex-by-

 
10 Borusyak et al. (2021) state that the t and F-tests have a statistical power only to detect the non-

linear pre-trends, so several distant pre-treatment event years should be used as reference categories. 

In this case, standard results about the tests’ behaviour apply, and one can use conventional 5% 

critical values. 

11 Aggregated (broad) disease groups follow the ICD chapters, except for infectious and parasitic 

diseases that are grouped together due to small numbers.  
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disease groups and test for the pre-trends in a fully-dynamic specification for each of these 

groups.12 

As a final important note, recent methodological literature has revealed that two-way 

fixed-effects regressions may not provide the ATET in the presence of heterogeneous effects 

due to a weighting problem, and this is true for both DD and event-study estimators (e.g., 

Callaway and Sant’Anna, 2020; Sun and Abraham, 2020). The solution proposed to solve this 

problem, to estimate the cohort-average treatment effects and appropriately aggregate them, 

is similar to the empirical approach applied in this paper. I matched each treated individual to 

the not-yet-treated individual, extracted the same pre- and post-treatment years for each pair, 

and stacked all pairs with duplicates in regressions. First, there were no negative weights in 

my estimation meaning that the DD and DDD estimates could not be of different signs 

compared to the ATET (see Chaisemartin and D'Haultfœuille, 2020, for details). Second, the 

availability of treatment pairs assured that differential treatment groups receive equal weights 

and contribute equally to the estimates in the two-way fixed-effects regression. In support of 

this statement, I estimated the aggregated ATETs following the approach by Callaway and 

Sant’Anna (2020) and received results nearly identical to those reported in the main body of 

the paper (available upon request). 

IV. Data 

a. Individual-level data 

 
12 This procedure will improve the plausibility of the identifying assumption primarily for broad and 

single disease-by-sex groups. Yet, since the matching procedure involves all covariates across which 

the heterogeneity is studied, this assumption is likely to hold for them as well.  
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The first piece of data needed to realize the empirical strategy presented above comes 

from the administrative longitudinal registers on the total Swedish population combined with 

the use of unique personal identifiers.13 SIP includes, among others, data on demographic 

characteristics, income, labor market participation, education and health. I have selected from 

these data individuals aged 40–60 as the target population in order to capture the full 

economic impact of medical innovations. I have extracted information on these individuals 

over the period 1978–2006, as wide as the overlap between different registers has allowed 

me. 

To define individuals who experienced a health shock due to a certain disease, I have 

utilized information on inpatient hospital admissions and their causes.14 Inpatient hospital 

admissions involve considerable economic consequences, are identifiable, and guarantee 

access to the newest medical technologies including diagnostics, therapies and drugs (similar, 

for instance, to the studies by Dobkin et al., 2018; Lundborg et al., 2015). To minimize the 

possibility of obtaining anticipated health shocks, I have focused on first hospital admissions 

of individuals who had not been admitted recently; especially not in the three preceding 

 
13 I have used a database called “Swedish Interdisciplinary Panel” hosted at the Centre for Economic 

Demography in Lund University (Statistics Sweden, 2011-2021). This is an extract and a compilation 

of multiple registers (through unique personal identifiers) for individuals born between 1930 and 1995 

and for their siblings and parents. Lazuka (2020) provides details about the sources and reliability of 

the data.  

14 Since 1987, the inpatient hospital register has covered all 24 counties in Sweden. Between 1977 and 

1987, this coverage gradually increased by including 7 previously missing counties. Population of 

these counties for older cohorts is excluded from the analysis (4.51% of all observations). For the 

period under study, I have employed 3-digit ICD codes from revisions 8, 9, and 10.   
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years. I have also limited admissions to those individuals for which medical technology could 

be identified, and have hence excluded stays related to pregnancy, external causes and 

symptoms.  

The data provide a rich set of variables for the individual’s income and its sources. The 

main outcome variable is disposable family income in real terms that has been empirically 

regarded as an ultimate outcome of all economic consequences of a health shock (e.g. 

O'Donnell et al., 2015). This variable is calculated net of taxes that can be considered 

equivalent to a measure of efficiency, in the context of public health insurance and the 

absence of out-of-pocket expenses such as in Sweden.15 Other important variables obtained 

from the data quantify the sources of family income, such as own and spouse’s disposable 

income, labour income, capital income, and payments for sickness absence, unemployment 

and disability.16 The results in this paper are insensitive to the functional form of the 

outcome. Yet, I have used the inverse hyperbolic sine (known henceforth as ihs) in order to 

limit the disproportionate influence of outliers and to ease interpretation and comparison to 

other studies.   

 
15 SIP does not contain information on utilization, for instance, the consumption of drugs. To my 

knowledge, the acquisition of this statistical individual-level information is not granted with such a 

large pool of cohorts as used in this paper. 

16 Family income is a sum of income of the married or cohabiting persons that form a family, plus the 

income of children, which is a commonly absent part of family income. The components for family 

and own disposable income are the same throughout the period under analysis. To obtain the spouse’s 

income, I subtract own income from the family income. There were several changes in the registration 

of welfare payments and its conditions in this period. This should not be problematic, as treated and 

control individuals are matched exactly on the calendar year.  
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b. Medical innovations 

A second piece of data necessary for the empirical design is medical innovations by 

disease group and year. The main sources of these data are registries of the Swedish 

authorities responsible for the approval of medical innovations. I have created disease groups 

within which medical innovations are measured in a trade-off between clinically meaningful 

categories, as defined in Elixhauser et al. (2015), and the availability and consistency of the 

ICD codes for the causes of hospitalizations over the study period. The final list of disease 

groups, comprising 91 disease groups (see Appendix A Table), has been verified by the 

health experts (Lindström and Rosvall, 2019). Innovations in each disease group have been 

constructed on an annual basis over the study period. 

One measure of medical innovations is the cumulative number of new molecular entities, 

a novel chemical compound that creates the basis for new drugs.17 I have chosen it as my 

preferred measure because it captures the role of one component of innovations in medical 

care (see Kesselheim et al., 2013, for details). I have linked drugs to specific diseases in 

several steps. First, the Swedish Medical Products Agency (Läkemedelsverket) provides a 

detailed registry of all drugs, their underlying molecular entities, and the dates of approval of 

both national and international origin to treat a particular disease in Sweden.18 Second, each 

drug is also supplied with the information on the ATC code of the underlying molecular 

entity and therapeutic indications, and I have successfully matched their combinations with 

 
17 The term drug refers henceforth to a new molecular entity or an active substance. 

18 Available at https://www.lakemedelsverket.se/sv/sok-lakemedelsfakta?activeTab=1. Using as a 

basis the extract from this registry of all drugs approved for each year in 1950–2006, I have 

constructed cumulative series of active ingredients. Drugs disapproved during this period were 

excluded from this calculation. 
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the three-digit ICD codes available from the Theriaque database (Husson, 2008). Finally, to 

validate the series, I have cross-checked the appearance of the most important drugs with 

those in both the WHO Model List of Essential Medicines (WHO, 2019) and the relevant 

systematic assessments (Kesselheim and Avorn, 2013). 

Another, and complementary, measure of medical innovations is patents granted for 

diagnostics and therapeutics and surgical treatment. I have obtained this information from the 

Swedish Patent Database run by the Swedish Patents and Registration Agency (Patent- och 

Registreringsverket) using a searching procedure practiced by advisory experts.19 The 

database with its detailed information, such as the IPC code, and taken together with the 

patent in a searchable format, is a useful tool for finding technology and innovation within a 

certain field, their origin, and the dates in force. As a first step, I have limited the IPC codes 

to those covering surgery, electrotherapy, magnetotherapy, radiation therapy, ultrasound 

therapy, medical devices and diagnostics.20 As a next step, based on the names of diseases in 

the corresponding ICD versions within each disease group, I have formulated combinations 

 
19 Available at https://tc.prv.se/spd/search?lang=sv&tab=1. The registry covers all patents granted, 

both in force and no longer in force, and I have constructed cumulative panels based on the extract 

listing these for each year in 1950–2006. 

20 They correspond to the subchapter in A61 “Medical or Veterinary Science; Hygiene” that includes 

the following categories linked to diagnostics/therapy/surgery: A61B “Diagnosis; Surgery; 

Identification”, A61F “Filters implantable into blood vessels; Prostheses; Etc”, A61M “Devices for 

introducing media into or on to the body; Etc”, A61N “Electrotherapy; Magnetotherapy; Radiation 

therapy; Ultrasound therapy”. I exclude patents granted for A61K “Preparations for medical, dental, 

or toilet purposes” that makes the variable measuring patents complementary to that for drug 

approvals. 
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of key words to be able to conduct inclusive yet independent searches (available upon 

request).21 Based on these, I have conducted a search for the number of patents per disease 

group and year in the heading and in the text of patents.22  

Figure 1 presents the resulting cumulative number of the drugs and patents together with 

their means aggregated to broader disease groups. The content and ranking of innovations 

based on the obtained series in general correspond to the categorizations provided by the 

relevant benchmark studies for pharmaceutical (Lichtenberg, 2003; Kesselheim and Avorn, 

2013) and non-pharmaceutical innovations (Fuchs and Sox, 2001; Fermont et al., 2016). 

Since I employed measures of medical innovations that were ready for use in healthcare, I 

preferred the lag of 1 year for each to capture the correct timing when the technology came in 

force as well as to take into account its exogenous nature. Previous literature has tended to 

choose the preferred lag length after examining the data that was the empirical exercise in 

itself, making any hypothesis testing irrelevant (e.g., Hirschauer et al., 2018).23 In order to 

 
21 I have excluded cases in the groups of “other diseases” which could not be linked to independent 

groups. 

22 Namely patents defined the final year of treatment in this study: the obtained series end in 2006 

because thereafter the law prohibited the granting of patents for surgical/therapeutic treatment and 

diagnostics. 

23 Gross et al. (1999) regressed current funding on research in medical sciences on current health 

measures. Cutler et al. (2012) related the current number of grants and publications to the decline in 

infant mortality by the end of the 15-year period to the current period. Lichtenberg (2015) found that 

lags of 10 or more years yielded a statistically significant effect of cumulative drug approvals on the 

years of life saved. To account for the delay in the appearance of the innovation in question and its 

wide use in healthcare, Jeon and Pohl (2019) used a 5-year lag of cumulative drug approvals and 
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compare this paper’s findings with those in the previous studies, I have presented the results 

with a longer lag length in Section V.c. 

[Figure 1 is about here] 

c. Construction of the estimation sample 

As mentioned in Section III, I extended an empirical approach previously suggested by 

Fadlon and Nielsen (2021) to all diseases observed in the Swedish population, and in this 

section I provide more details on the procedure and the results of the test for the pre-trends 

between the individuals who experienced a health shock and their matched counterparts in 

the initial estimation sample. 

In a similar, data-driven, way, I observed that individuals from the same cohorts whose 

first hospitalization with the same disease was a few years apart from each other experienced 

a parallel development of economic outcomes prior to hospitalization. However, this applies 

not only to severe and sudden hospitalizations; I also observed that individuals shared similar 

pre-trends across a wide range of causes of hospitalization if they were hospitalized only 

several years apart. The probable reason for this is that, where there were a number of events 

preceding hospitalization such as an earlier diagnosis or job loss, both groups of individuals 

experienced a deterioration in economic outcomes resulting in similar pre-trends in a very 

narrow time window. I chose a group of individuals first hospitalized in year t+2 as a pool of 

potential control individuals. I then matched individuals first hospitalized in year t to 

individuals first hospitalized in year t+2 and found exactly the same calendar years for the 

 
patent applications to measure their heterogeneous effect on employment reduction after cancer 

diagnosis. 
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control individuals in the window of [-3; +1] years for the treated individuals.24 To account 

for the remaining differences in pre-trends, I also matched on linear measures of years of 

education, earnings (in ages 38–39) and year of birth within sex-by-disease groups.25 This 

matching procedure was not particularly restrictive, as 97% of the individuals observed in the 

data were successfully matched. 

As the empirical strategy required, I performed matching within each of the 91 disease x 

2 sex groups for each year of first hospitalization (between 1980 and 2007). Across each of 

the 91 disease groups, I then performed a t-test for the pre-trends in a fully dynamic 

specification of the underlying DD model in Eq.4 by omitting t=-3 and t=-1 (see Borusyak et 

al., 2021, for details). Out of 91 disease groups at a 5% significance level I could not reject 

the null hypothesis of no effect in t=-2 in 89 groups but could reject it in a minor set of 2 

groups (see Appendix B Table). The frequency of groups with significant pre-trends is 

2.20%, which is close to random and supports my expectation of similarity in behaviour in a 

very narrow time window for individuals hospitalized currently and two years later across a 

very broad set of diseases. I also noticed that there are several disease groups where pre-

 
24 This is the smallest window possible: for the pre-treatment period, 3 years is the minimum time to 

detect non-linearity in outcomes based on t and F-tests; for the treatment period, the year after 

hospitalization – t+1 – is the first year when the negative effect of hospitalization is fully realized. 

25 Following Austin (2014), I used propensity score matching with a calliper of 0.2 standard 

deviations and no replacement as the most efficient matching procedure. As soon as an individual was 

matched, they received a new unique individual (experimental) number that was different from their 

original individual number. That is, observations for individuals who participated both as controls (at t 

∈ [-8; -4]) and then as treated (at t=0) are considered and constructed as being independent of each 

other.    
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trends are detected at a 10% significance level and are influential in the final sample, pushing 

non-linearity in pre-treatment development of the outcomes. In sum, I observed that groups 

where the “parallel trends assumption” was likely to be violated are those heterogeneous 

disease groups that could not be split further due to the changes in the classification of 

diseases across the versions of the ICD. These groups have been omitted from the estimation 

sample.26 Table 1 presents descriptive statistics for the final estimation sample.  

[Table 1 is about here]  

As a diagnostic for the “parallel trends” in the final estimation sample, I have plotted ihs 

family income by event years across DD groups that will further participate in the DDD 

estimation. As one way to look at these comparisons, Figure 2 presents the average family 

income by event years comparing treated and control groups of individuals in total and by the 

broad disease groups in the final estimation sample. The individual fixed components, αi, 

were excluded from ihs family income to make the graphs compatible with the regression 

analysis in Eq.4.27 It reveals remarkable similarity in the development of the outcome for 

 
26 Disease groups with significant pre-trends detected at a 5% significance level, “Benign neoplasms” 

(#25) and “Diseases of oesophagus, stomach and duodenum” (#49), and those with significant pre-

trends detected at a 10% significance level, “In situ neoplasms” (#24) and “Deforming dorsopathies, 

osteopathies and chondropathies. Disorders of muscles” (#59) have been dropped from the estimation 

sample. Probably, one could split these populous groups further so as to be able to match proper 

counterfactuals. For the hospital cases in this paper, changes in the classification of diseases across 

versions of the ICD impedes splitting. Excluding all disease groups where pre-trends are significant at 

a 10% level (an additional 4) marginally affects the main results. 

27 Development of family income as shown in the original series (αi included) also demonstrates the 

similarity of pre-trends and is shown in Appendix B Figure B1.  
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both treated and control groups before the event year of t = 0, the year of hospitalization for 

treated individuals, across all groups of diseases. This observation applies both to severe and 

unanticipated diseases, such as cancers and circulatory, and to those usually understood as 

chronic and anticipated, such as mental/nervous and metabolic. During and after 

hospitalization, ihs family income declined rapidly for the treated individuals while there was 

no change for the control individuals. Figure B2 Appendix B shows similar patterns for the 

sources of family income as outcomes. Another way to look at the DD terms underlying the 

DDD specification is to compare the outcomes of both treated and control individuals 

assigned to different levels of medical innovations based on the year of hospitalization.28 

Figure B3 and B4 in Appendix B present the average family income by event years 

comparing individuals above and below the median of medical innovations, drugs and patents 

respectively. The outcomes of the comparison groups develop strictly parallel to each other. 

V. Results 

a. Main results 

Table 2 presents the DDD estimates of the impact of medical innovations, such as the 1-

year lags of the cumulative number of drug approvals and patents granted in diagnostics, 

therapy and surgery, on family income in total and by sex, obtained from Eq.4. As discussed 

above, these estimates are the innovation-induced reduction in economic loss due to 

hospitalization. The baseline economic loss, which is the impact of a health shock on family 

income when medical innovations are absent, is 36% using drugs and 28% using patents. In 

absolute terms, it equals to a substantial reduction in family income of 13 410 and 9 790 US 

dollars respectively per individual-year, these respective amounts having been adjusted for 

 
28 This implies the analysis of the groups underlying the postidstMds term. 
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inflation.29 Results show that medical innovations significantly reduced these losses. It is 

easier to grasp the size of the DDD effect if it is interpreted in terms of one SD of the medical 

innovations. In these terms, the impact of medical innovations on family income amounts to 

9.39% (95% CI: 9.01%; 9.76%) using drugs and to 5.38% (95% CI: 5.37%; 5.39%) using 

patents. Since both these measurements are independent and since constructed measures of 

medical innovations are complementary, I was able to calculate the sum of both effects to 

obtain the combined impact of medical innovations.30 The combined income impact of 

medical innovations was calculated to be 14.76% (95% CI: 14.39%; 15.14%). In absolute 

terms, medical innovations reduced the economic loss by 5 353 inflation-adjusted US dollars 

per individual-year. The 95% confidence intervals for the combined effects for men and 

women overlap (they amount to 12.79% and 15.11% for men and 14.96% and 15.92% for 

women), suggesting no difference between them in the ultimate impact of medical 

innovations on family income.    

[Table 2 is about here] 

Table 3 presents the DDD estimates of the impact of medical innovations on the sources 

of family income, such as own and spouse’s disposable income, own labour income, different 

welfare payments and own capital income. Medical innovations appear to increase the 

income of both family members: by 5.99% (95%CI: 5.58%; 6.39%) of own disposable 

 
29 This is compared to the real family income among the counterfactuals (i.e. DDidst = 0) that equals 

36 245 inflation-adjusted US dollars per year (the base year is 2020). 

30 For independent measurements, as given in this paper, the standard error (SE) of the coefficient 

estimate in terms of one SD of the medical innovations can be obtained using the following formula: 

SEcombined=�(SEdrugs·SDdrugs)
2+(SEpatents·SDpatents)

2. 
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income and by 15.65% (95%CI: 14.15%; 17.16%) of spouse’s disposable income. I have also 

estimated the effects by sex separately (see Appendix C Table C1 for men and Table C2 for 

women). The beneficial effects of medical innovations on own income and welfare payments 

are almost twice as strong for men than for women, which could be linked to more severe 

health shocks being experienced by the former. In contrast, the combined impact of 

innovations on spouse’s income is smaller for men than for women, and consistent with 

stronger responses on the part of women to the partner’s health shock. The beneficial effects 

of medical innovations emerge through the increase in own labour supply at both its intensive 

and extensive margins. This is evident through the positive impact of innovations on labour 

income (10.83%, 95%CI: 9.50%; 12.16%), and their negative impact on payments of 

sickness absence (-37.64%, 95%CI: -39.36%; -35.73%) and unemployment benefits (-9.03%, 

95%CI: -9.44%; -8.63%). The effects of medical innovations on disability pension are small 

in a DDD specification, although they can be detected in the last event year that reflects the 

long-term uptake of this form of insurance (see Section V.b).   

[Table 3 is about here] 

Figure 3 presents the heterogeneous DDD estimates of the impact of medical innovations 

on family, own and spouse’s disposable income outcomes across broad disease groups 

estimated according to Eq.5.31 Results show that medical innovations produce large positive 

effects on family income for individuals hospitalized due to cancer (51.11%, 95%CI: 

47.44%; 54.77%) and circulatory diseases (19.51%, 95%CI: 18.34%; 20.67%). The estimates 

for own disposable and labour income show positive effects of medical innovations for 

nervous, respiratory and infectious diseases, the size of which are close to the mean effects 

 
31 The effect for each subgroup (heterogeneous DDD) is calculated as one SD of drug 

approvals/granted patents in this subgroup multiplied by the estimate of β3 for this subgroup. 
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for the subsequent outcomes. It is worth noting that the effect of innovations in the case of 

hospitalizations due to mental disease is moderate (2.27%), albeit statistically insignificant.32 

Another notable finding for spouse’s income (and for family income accordingly) is that the 

effects of innovations are negative for several chronic diseases, such as diseases of the 

digestive and blood-forming organs, and these counterbalance positive effects on own income 

for a few other chronic diseases. While spouse’s income declines in response to a health 

shock for all these diseases, I suggest that it represents the family-level economic losses from 

shocks with low insurance eligibility.33   

[Figure 3 is about here] 

I further analyzed heterogeneous responses of household income to medical innovations 

following Grossman’s theoretical formulations. First, bearing in mind the supposition that the 

depreciation rate of health capital increases with age, I found that the compensating effect of 

medical innovations on family income loss increases with age (see Panel (A) in Figure 4). For 

instance, for individuals admitted to hospital at the age of 43 (the youngest age observed) and 

at the ages of 58–60 (the oldest ages) the combined effect is equal to 7.04% (95%CI: 5.35%; 

 
32 By performing additional analyses, I found that it reaches 3.39% (95%CI: 0.75%; 6.03%) when 

using the 10-year lag of medical innovations instead of the 1-year lag. This may suggest a delay in the 

wide use of medical innovations for mental conditions after their appearance, in particular drugs, 

which should be taken into account. 

33 Here I rely on the effect of a health shock on the uptake of a disability pension that is no different 

from null after hospitalization due to a digestive, blood-forming or infectious disease. In contrast, the 

change in disability pension uptake is statistically and economically significant for other health 

conditions. 
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8.73%) and 31.5% (95%CI: 28.22%; 34.78%) respectively.34 Second, the impact of medical 

innovations declines over time (i.e. across years of hospitalization), which suggests 

decreasing rather than constant returns to health inputs that are precluded by the theoretical 

model (see Panel (B) in Figure 4). That said, while these returns decline by more than two 

times (from 23.5%, 95%CI: 21.2%; 25.8%, in 1981/82 to 9.56%, 95%CI: 7.53%; 11.59%, in 

2005/06), they are positive at any observed year, both by type of innovation and combined. 

Finally, I found that the effects of medical innovations decline the higher the education level 

that is contrary to the theoretical formulation (see Figure 5). These effects are equal to 22.92–

24.78% (95%CI: 21.58%; 26.78%) for individuals whose completed their education at 

compulsory school, and drop by two-thirds for those with a higher education level (the mean 

effect for the latter being 7.33%). 

 [Figure 4 and 5 are about here] 

b. Validity of the DDD design 

As mentioned in Section III, the main identification assumptions of the DDD framework 

is that the control group provides a valid counterfactual (the “parallel trends” assumption) 

and that the potential outcomes and treatments of different groups are independent 

(“independent groups”) across underlying DD comparisons. Both assumptions are essentially 

untestable, but in the following I provide suggestive evidence of their plausibility. 

So far, to assure the plausibility of the “parallel trends” assumption, I have matched 

treated and not-yet-treated individuals within specific disease groups and gender and have 

 
34 I also estimated the heterogeneous effects of medical innovations with regard to severity of disease, 

and found that in general they increase the more nights that are spent in hospital (see Appendix D 

Figure). It can just be noted that the effects are disproportionately stronger for individuals discharged 

on the same day after admission, and this is driven by the larger share of circulatory cases. 
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tested the resulting groups for the absence of the pre-trends separately. One should bear in 

mind that the estimates for the coefficients and standard errors from these specifications may 

differ from those produced in the pooled sample due to a weighting problem (see Goodman-

Bacon, 2021, for details). Even though the visual analysis by event years across different 

comparison groups showed a similar development in their outcomes, it is important to 

conduct a formal test. First, I performed the t-test for the pre-trends in the final estimation 

sample in total and by broad disease groups, comparing both treated and control groups 

(Appendix E Table E1) and groups across different levels of medical innovations (Table E2). 

Second, I ran the event study specification of Eq.4 for family income (Table E3) and its 

sources (Table E4). The results from the above tests show no differential pre-treatment trends 

(at t=-2) for either two-way or three-way differences. Finally, as suggested by Goodman-

Bacon (2021), forthcoming, I included a more saturated set of fixed effects, namely disease 

group-by-sex-by-event year effects, in the event-study and DDD specification and received 

almost identical results (see Table 4 columns 1 and 2). In sum, results indicate that the 

“parallel trends” assumption is likely to hold.  

[Table 4 is about here] 

As I have previously mentioned, the “independent groups” assumption is likely to hold 

in the setting of this paper because the first-year lags of drug approvals and granted patents 

were plausibly exogenous to the decision of hospitalization. However, one may argue that the 

uptake of health insurance and care can induce medical innovation (e.g., Lleras-Muney and 

Lichtenberg, 2005; Acemoglu et al., 2006). Correlation between individuals treated in 

different years may also arise mechanically, because the levels of medical innovations have 

been constructed as cumulative series. I elaborated the plausibility of the “independent 

groups” assumption with several checks. I first detrended the panel of medical innovations 

within each disease group to obtain their white noise component and used the latter in the 
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models (see Table 4 columns 3 and 4). I next estimated the models by looking at medical 

innovations of exclusively international origin that more likely approximated exogenous 

shocks (see Table 4 columns 5 and 6, cf. Papageorgiou et al., 2007).35 I also estimated the 

models with the 5 and 10-year lags instead (and reported the latter), which should exacerbate 

the endogeneity problem, if any exists. As can be seen, the results from these three checks are 

very similar to the main ones. 

The “independent groups” assumption should also hold for the event of a health shock, 

and this is likely because the individual’s probability of becoming ill in the modern context 

should not be dependent on that of other individuals. However, the definition of a health 

shock in this study is based on inpatient hospitalizations that might be a decreasing function 

of the availability of hospital beds over the study period (Swift et al., 2018). Even though the 

way in which this paper’s estimation sample is formed has partially ruled this out (i.e. by 

focusing on individuals who had not been recently hospitalized and who have been matched 

within 2 years of treatment of each other), I made several checks. First, I included individuals 

who experienced potentially similar health shocks but were left outside the estimation 

sample, at an accelerated rate over time, such as individuals treated in emergency units (see 

Table 4 columns 9 and 10) or outpatient care units (see Table 4 columns 11 and 12).36 

 
35 For the new molecular entities, these include only those related to the directly imported drugs. For 

patents, these include patents granted to non-Swedish applicants.  

36 To account for the hospitalizations in emergency units, I have included individuals who died due to 

one of the diagnoses specified in this analysis but who had not been treated in hospital prior to their 

death. In another check, I have added data on the outpatient care visits, available during the period 

2000 to 2007. To achieve a fair benchmark, the estimates from the latter sample should be compared 

to the year-specific effects of medical innovations (cf. Panel B of Figure 4).   
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Second, I matched hospitalized individuals to the pool of those hospitalized due to symptoms 

or external causes in the future, which are potentially relevant matches for both acute and 

chronic diseases (see Table 4 columns 13 and 14).37 In sum, the results presented in Table 4 

for these models are similar to the main results, bearing in mind the magnitude of the baseline 

health shock (i.e. due to hospitalization).38 

 Finally, while the empirical approach of identifying the heterogeneous economic effects 

of medical innovations via interactions with theoretically motivated variables is absolutely 

correct, the estimation sample may hide important interactive effects of innovations across 

several individual variables. To carry out such a data-driven search for the valuable 

interactions, I implemented model-based recursive partitioning following Zeileis et al. 

(2008). This machine-learning algorithm adaptively partitions the estimation sample based on 

the fitted model (in this case the model is estimated according to Eq.4) with respect to the 

variables of interest (i.e., a broad group of diagnoses, the year of hospitalization, the age at 

hospitalization, education level and sex) using a greedy forward search.39 Appendix G 

 
37 They include chapters XVIII (R00–R99), XIX (S00–T98), and XX (V01–Y98) in the ICD-10 and 

the equivalent chapters in earlier revisions. Construction of a control group is the same as in the main 

analysis (see Section III and Section IV.c).   

38 All the models included into Table 4 have successfully passed the tests for non-linear pre-treatment 

trends (see Appendix F Table).   

39 To apply a linear regression model equivalent to the model in the main analysis (Eq.4), I subtracted 

individual fixed effects (αi) from all dependent and independent variables used in this equation. All 

partitioning variables were treated as categorical with categories identical to those used in the main 

analysis (unordered categories for broad groups of diagnoses and sex, and ordered categories for the 

year of hospitalization, the age at hospitalization, and years of schooling). To avoid overfitting with 

such a large dataset as mine, I applied both a p-value of 0.001 for detection of parameter instability 
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presents the resulting linear-regression trees for the impact of drug approvals and granted 

patents on disposable family income. Results support the presence of the main heterogeneity 

in the impact of medical innovations with regard to severity of disease as measured using a 

broad disease group (cancers, circulatory, and the rest) and completed education 

(compulsory/junior secondary education only or higher education levels). 

c. Comparison to previous studies 

A comparison of this paper’s results to the previous findings is not easy if we are to 

understand the total effects of medical innovations. The main reason for this is the dominance 

of the cost-and-benefit analysis estimates for measuring productivity in healthcare – estimates 

that are far from being causal and tend to give extremely different results for different 

populations. Yet, the magnitudes of the effects in this paper are in annual terms compatible 

with the median positive productivity growth effects of healthcare expenditures found in 

these studies. I have presented the total (aggregate) effects of medical innovations in terms of 

one SD change (14.8%, 95% CI: 14.4%; 15.1%), which is roughly similar to the overall 

increase in medical innovations in 1981–2006. Hence, the row estimates for β3 in percentage 

terms may approximate the annual impact of drugs and patents: their joint impact amounts to 

0.69% (95% CI: 0.67%; 0.72%). This magnitude lies in a range of service-based and disease-

based productivity measures reviewed, for instance, in Sneiner and Malinovskaya (2016).40 

Importantly, I found that the total effects of medical innovations are positive. This accords 

 
and post-pruning with the Bayes Information Criteria. To be able to grasp the decision rules of a tree, 

I also set up the depth of the tree to be not more than four, so that at its maximum the number of 

nodes would be roughly equivalent to the number of subgroups used in the main analysis.   

40  Since the main outcome is disposable income, the effects of medical innovations can be interpreted 

as productivity effects.   
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with Fonseca et al. (2021) and Cutler et al. (2021) who estimated the positive aggregate 

productivity growth of medical care to be 0.7% and 1.5% per year respectively. In contrast to 

the above studies, the total effect of medical innovations found in this paper can be seen as 

plausibly causal. 

Regarding the heterogeneous effects of medical innovations, I was able first of all to 

compare these to the studies reporting heterogeneous effects by subsamples. While no study 

has examined the heterogeneous returns to medical innovations in the same level of detail as 

given in this paper, my findings align well with the studies that look at their different 

dimensions. The heterogeneity is large across disease groups, which is similar to findings in 

Cutler et al. (2021). In agreement with previous studies, total returns are positive yet 

decreasing over time (cf. Cutler, Rosen, Vijan, 2006), although they are negative for chronic 

diseases with low insurance eligibility (cf. Bloom et al., 2020). The only finding of note is 

that returns are larger for those with a lower education level, which is at odds with previous 

studies (e.g. Jeon and Pohl, 2019). In this paper, the treatments are defined through inpatient 

hospitalizations, not diagnoses, within the universally publicly insured population where 

efficiency in the consumption of medical care is likely to be less important in determining 

health outcomes.  

Second, the amount of detail in the data made it easy for me to estimate the effects for 

single groups of diseases (in addition to broader groups reported in the main body) and 

compare these to the previous studies (see these estimates in Appendix H). In doing so, I was 

able to support previous findings from quasi-experimental studies for other contexts in that I 

found the positive effects of innovations in selected single disease groups, such as 19% 

(95%CI: 16%; 22%) for prostate cancer, 54% (95%CI: 44%; 64%) for breast cancer, 33% 

(95%CI: 31%; 36%) for ischemic heart disease, and 8% (95%CI: 2%; 15%) for treatment of 

infectious arthropathies. Additionally, I find causal effects for conditions for which previous 
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studies were able to provide only the associations, such as 4% (95%CI: 1%; 8%) for 

hypertension, 9% (95%CI: 6%; 12%) for heart failure, 41% (95%CI: 36%; 46%) for 

cerebrovascular disease, and 11% (95%CI: 6%; 15%) for mental and behavioural disorders 

due to alcohol and other substance use.41 Moreover, many other innovations against specific 

diseases, which were not previously studied, were efficient. They include the majority of 

cancers and nervous diseases, several diseases of digestive and urinary systems, the majority 

of respiratory diseases, certain metabolic diseases, and bacterial and viral diseases including 

tuberculosis (these estimates are available upon request). 

VI. Conclusions 

This paper provides novel evidence on the plausibly causal total and heterogeneous 

economic returns to medical innovations. The empirical strategy used in this paper made it 

possible to estimate the impact of medical innovation on economic outcomes as an 

innovation-induced reduction in economic loss due to the onset of a specific disease. I show 

 
41 For a comparison, studies found a statistically significant impact of single medical innovations or 

single diseases include the following (experimental or quasi-experimental studies are marked with 

asterisk): Jeon and Pohl* (2019) (the impact of drugs and therapies on economic outcomes of prostate 

and breast cancer survivors), Stephens and Toohey* (2018) (the impact of the multiple interventions 

aimed at reducing coronary heart disease on economic outcomes of the trial participants), Cutler, 

Landrum, Stewart (2006) (the impact of intensive medical care on disability reductions), Duggan 

(2005) (the impact of antipsychotic drugs on the prevalence of the extrapyramidal symptoms among 

the mentally ill), Cutler et al. (2007) (the impact of antihypertensive drugs on survival), Thirumurthy 

et al.* (2008) (the impact of the antiretroviral therapy, used to treat AIDS, on labour outcomes), 

Garthwaite* (2012) and Bütikofer et al.* (2018) (the impact of Cox-2 inhibitors, used to treat 

arthropathies, on labour outcomes), and Epstein et al. (2013) (the impact of minimally invasive 

surgery, used to treat cardiovascular disease and diseases of genital organs, on sickness absence).    
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that medical innovations, such as new molecular entities, therapies, surgeries and diagnostics 

against particular diseases in a set of around 90 groups, yield a relatively large positive 

impact on family disposable income, 15% in aggregate or 0.7% annually. Consistent with the 

theoretical model for family health production, medical innovations increase not only own 

income and labour supply at its extensive and intensive margins but also a spouse’s income. 

The heterogeneity of returns to medical innovations is large and present with regard to 

severity of disease, year at hospitalization, and education level. While the returns to medical 

innovations are positive in aggregate throughout the period 1981–2006, they turn negative for 

several chronic diseases with low insurance eligibility.  

In terms of policy implications, this research has important conclusions. First, this study 

shows that medical innovations can be regarded as investments with high (diminishing) 

returns. Since the growth in innovations in medical care surpasses the growth in health 

indicators or real income at the population level, any mere comparisons of the two would lead 

to the opposite, erroneous, conclusion (cf. Fuchs, 2004; Bloom et al., 2020). Second, the 

effects of medical innovations appear not only for the receiver of the treatment but also for 

the spouse. They emerge because the resources available for health production of the 

individual are not only own income but also total family income. However, the direction of 

the spouse’s response to medical innovations differs with regard to the severity of 

individual’s disease, suggestively due to the differences in insurance eligibility. This likely 

points to the weakness of the existing health insurance schemes to fully compensate for the 

negative consequences of less severe diseases (McClellan, 1998). Finally, the economic 

effects of medical innovations are not allocated equally across population groups. This has 

implications not only for the overall improvements in health and income but also for the 

equity (e.g., Cutler et al., 2012), a fact that the current policy makers have failed to fully 

recognize.       
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Table 1. Descriptive statistics for the estimation sample 
 

Observations Mean SD 
l1.drugs 6,110,797 16.3565 13.7442 
l1.patents 6,110,797 324.4560 537.7418 
post 6,110,797 0.4022 0.4903 
post x l1.drugs 6,110,797 6.5729 11.8383 
post x l1.patents 6,110,797 130.3870 376.0248 
DDidst 6,110,797 0.1997 0.3998 
DDidst x l1.drugs 6,110,797 3.2687 8.9762 
DDidst x l1.patents 6,110,797 64.8316 273.0323 
ihs family disposable income 6,110,797 12.9713 1.2003 
ihs own disposable income 6,110,797 12.4975 1.6273 
ihs spouse’s disposable income 6,110,797 9.0041 5.7642 
ihs own labour income 6,110,797 11.7791 3.7679 
ihs sickness absence payments 5,869,111 3.8184 4.9327 
ihs unemployment benefits payments 6,110,797 0.2389 1.5051 
ihs disability pension payments 5,869,111 0.9547 3.2587 
ihs own capital income 6,110,797 -1.2053 8.0664 
cancers 6,110,797 0.0955 0.2939 
circulatory diseases 6,110,797 0.2431 0.4290 
mental diseases 6,110,797 0.0742 0.2621 
nervous diseases 6,110,797 0.0357 0.1855 
digestive diseases 6,110,797 0.1836 0.3871 
musculoskeletal diseases 6,110,797 0.0486 0.2150 
urinary diseases 6,110,797 0.1024 0.3032 
respiratory diseases 6,110,797 0.0698 0.2548 
metabolic diseases 6,110,797 0.0434 0.2038 
diseases of bloodforming organs 6,110,797 0.0069 0.0828 
diseases of sense organs 6,110,797 0.0472 0.2121 
diseases of skin 6,110,797 0.0147 0.1202 
infectious/parasitic diseases 6,110,797 0.0348 0.1834 

 

 

  



Table 2. DDD estimates: Impact of medical innovations in 1981–2006 on ihs family income in ages 40–60 Sweden 

 Both Sexes Both Sexes Men Men Women Women 
 (1) (2) (3) (4) (5) (6) 
post 0.04124*** 0.04933*** 0.04391*** 0.05401*** 0.03790*** 0.04422*** 
 (0.00127) (0.00096) (0.00194) (0.00148) (0.00157) (0.00118) 
post x l1.drugs 0.00044***  0.00039***  0.00051***  
 (0.00006)  (0.00010)  (0.00007)  

DDidst -0.35575*** -0.27581*** -0.37148*** -0.29744*** -0.33444*** -0.24980*** 
 (0.00344) (0.00250) (0.00496) (0.00367) (0.00472) (0.00333) 
DDidst x l1.drugs 0.00683***  0.00668***  0.00683***  
 (0.00014)  (0.00022)  (0.00017)  

post x l1.patents  -0.00000  -0.00001***  0.00001*** 
  (0.00000)  (0.00000)  (0.00000) 
DDidst x l1.patents  0.00010***  0.00010***  0.00010*** 
  (0.00000)  (0.00001)  (0.00000) 
Constant 13.13115*** 13.13115*** 13.10940*** 13.10940*** 13.15700*** 13.15701*** 
 (0.00042) (0.00042) (0.00061) (0.00061) (0.00055) (0.00055) 
       
1 SD of l1.drugs /l1.patents 13.7442 537.7418 13.1586 516.0485 14.3734 562.4148 
1 SD x effect x 100% 9.39% 5.38% 8.79% 5.16% 9.82% 5.62% 
95% lower CI 9.01% 5.37% 8.22% 4.15% 9.34% 5.61% 
95% upper CI 9.76% 5.39% 9.36% 6.17% 10.30% 5.63% 
       
Individual (experimental) FEs yes yes yes yes yes yes 
Observations 6,110,797 6,110,797 3,319,071 3,319,071 2,791,726 2,791,726 
R-squared 0.00868 0.00741 0.00846 0.00748 0.00923 0.00756 
Number of individuals 1,239,384 1,239,384 673,469 673,469 565,915 565,915 

Note: Models are estimated according to Eq.4. Robust standard errors clustered at individual (experimental) level are in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 



 

Table 3. DDD estimates: Impact of medical innovations in 1981–2006 on the sources of ihs family income in ages 40–60 Sweden 

 Ihs Own Disposable Income Ihs Spouse’s Disposable Income Ihs Own Labour Income Ihs Sickness Absence Payments Ihs Unemployment Benefits Payments Ihs Disability Pension Payments Ihs Own Capital Income 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (14) (15) 

post 0.06186*** 0.06416*** -0.16551*** -0.11185*** -0.14486*** -0.12495*** -0.25355*** -0.20297*** 0.00173 0.00065 0.24661*** 0.26002*** -0.42092*** -0.33744*** 
 (0.00218) (0.00164) (0.00534) (0.00398) (0.00412) (0.00311) (0.00736) (0.00551) (0.00198) (0.00149) (0.00314) (0.00239) (0.01008) (0.00773) 

post x l1.drugs -0.00022**  0.00322***  0.00024  0.00432***  -0.00004  0.00186***  0.00778***  

 (0.00010)  (0.00026)  (0.00021)  (0.00034)  (0.00008)  (0.00015)  (0.00051)  

DDidst -0.08155*** -0.05750*** -0.50040*** -0.39166*** -0.18606*** -0.11664*** 2.78908*** 2.93590*** 0.30461*** 0.28513*** 0.09449*** 0.10075*** 0.02875** 0.01883* 
 (0.00341) (0.00251) (0.00870) (0.00647) (0.00618) (0.00461) (0.01163) (0.00890) (0.00366) (0.00281) (0.00469) (0.00360) (0.01420) (0.01089) 

DDidst x l1.drugs 0.00240***  0.00826***  0.00553***  -0.00346***  -0.00305***  0.00012  -0.00061  

 (0.00015)  (0.00040)  (0.00030)  (0.00054)  (0.00015)  (0.00023)  (0.00072)  

post x l1.patents  -0.00002***  -0.00000  -0.00005***  0.00007***  0.00000  0.00005***  0.00014*** 
  (0.00000)  (0.00001)  (0.00001)  (0.00001)  (0.00000)  (0.00000)  (0.00001) 

DDidst x l1.patents  0.00005***  0.00008***  0.00006***  -0.00060***  -0.00009***  -0.00001**  -0.00000 
  (0.00000)  (0.00001)  (0.00001)  (0.00001)  (0.00000)  (0.00001)  (0.00002) 

Constant 12.48253*** 12.48253*** 9.12254*** 9.12253*** 11.85484*** 11.85484*** 3.32680*** 3.32476*** 0.18768*** 0.18767*** 0.81862*** 0.81850*** -1.09088*** -1.09093*** 
 (0.00043) (0.00043) (0.00111) (0.00111) (0.00080) (0.00080) (0.00159) (0.00159) (0.00048) (0.00048) (0.00065) (0.00065) (0.00190) (0.00190) 

               

1 SD of l1.drugs /l1.patents 13.7442 537.7418 13.7442 537.7418 13.7442 537.7418 13.8578 545.7905 13.7442 537.7418 13.8578 545.7905 13.8578 545.7905 

1 SD x effect x 100% 3.30% 2.69% 11.35% 4.30% 7.60% 3.23% -4.79% -32.75% -4.19% -4.84% 0.17% -0.55% -0.85% 0.00% 

95% lower CI 2.89% 2.68% 10.28% 3.25% 6.79% 2.17% -6.26% -33.82% -4.60% -4.85% -0.46% -1.62% -2.80% -2.14% 

95% upper CI 3.70% 2.70% 12.43% 5.36% 8.41% 4.28% -3.33% -31.68% -3.79% -4.83% 0.79% 0.52% 1.11% 2.14% 

               

Individual (experimental) FEs yes yes yes yes yes yes yes yes yes yes yes yes yes yes 

Observations 6,110,797 6,110,797 6,110,797 6,110,797 6,110,797 6,110,797 5,869,111 5,869,111 6,110,797 6,110,797 5,869,111 5,869,111 6,110,797 6,110,797 

R-squared 0.00062 0.00054 0.00663 0.00601 0.00357 0.00333 0.06920 0.07010 0.00846 0.00854 0.02070 0.02069 0.00129 0.00121 

Number of individuals 1,239,384 1,239,384 1,239,384 1,239,384 1,239,384 1,239,384 1,239,336 1,239,336 1,239,384 1,239,384 1,239,336 1,239,336 1,239,384 1,239,384 

Note: Models are estimated according to Eq.4. Robust standard errors clustered at individual (experimental) level are in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 

 

  



Table 4. DDD estimates: Robustness analyses of the impact of medical innovations in 1981–2006 on ihs family income in ages 40–60 Sweden 

 Adding disease X sex X  
event-year FEs Detrended Innovations International Innovations  

Only 
10-Year Lags of  
Innovations 

Adding the Died  
to the Treated 

Adding Outpatient  
Register (2000–2007) 

Symptoms and External  
Causes as Controls 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

post 1.04732 0.75594 0.04265*** 0.04935*** 0.04197*** 0.04685*** 0.04092*** 0.04811*** 0.04104*** 0.04953*** 0.06928*** 0.07432*** 0.04437*** 0.04891*** 
 (.) (.) (0.00120) (0.00095) (0.00123) (0.0009) (0.00124) (0.00093) (0.00127) (0.00097) (0.00279) (0.00186) (0.00122) (0.00092) 

post x l1.drugs 0.00026*  0.00041***  0.00106***  0.00070***  0.00046***  0.00011  0.00051***  
 (0.00015)  (0.00006)  (0.00017)  (0.00009)  (0.00006)  (0.00008)  (0.00006)  

DDidst -0.36762*** -0.28407*** -0.34477*** -0.28301*** -0.36791*** -0.26412*** -0.37097*** -0.26923*** -0.35513*** -0.27554*** -0.06799*** -0.04985*** -0.36936*** -0.28226*** 
 (0.00339) (0.00247) (0.00326) (0.00252) (0.00352) (0.00235) (0.00348) (0.0024) (0.00344) (0.0025) (0.00453) (0.00299) (0.00324) (0.00235) 

DDidst x l1.drugs 0.00716***  0.00703***  0.02010***  0.01166***  0.00681***  0.00102***  0.00694***  
 (0.00014)  (0.00014)  (0.00038)  (0.00021)  (0.00014)  (0.00013)  (0.00013)  

post x l1.patents  -0.00003***  -0.00000  0.00001***  0.00000  0.00000  0.00000  0.00001*** 
  (0.00000)  (0.00000)  (0.00000)  (0.00000)  (0.00000)  (0.00000)  (0.00000) 

DDidst x l1.patents  0.00010***  0.00012***  0.00015***  0.00016***  0.00010***  0.00002***  0.00008*** 
  (0.00000)  (0.00000)  (0.00001)  (0.00001)  (0.00000)  (0.00000)  (0.00000) 

Constant 12.14490 12.44863 13.13112*** 13.13113*** 13.13114*** 13.13116*** 13.13114*** 13.13115*** 13.12893*** 13.12893*** 13.34204*** 13.34204*** 13.12792*** 13.12793*** 
 (.) (.) (0.00042) (0.00042) (0.00042) (0.00042) (0.00042) (0.00042) (0.00042) (0.00042) (0.00045) (0.00045) (0.00039) (0.00039) 

               

1 SD of l1.drugs /l1.patents 13.7442 537.7418 13.39201 543.5962 5.0666 291.8543 9.4257 308.4032 13.7242 537.4985 17.3743 748.0260 13.8096 552.1995 

1 SD x effect x 100% 9.84% 5.38% 9.41% 6.52% 10.18% 4.38% 10.99% 4.93% 9.35% 5.37% 1.77% 1.50% 9.58% 4.42% 

95% lower CI 9.46% 5.37% 9.05% 6.52% 9.81% 3.81% 10.60% 4.33% 8.97% 5.36% 1.33% 1.49% 9.23% 4.41% 

95% upper CI 10.22% 5.39% 9.78% 6.52% 10.56% 4.95% 11.38% 5.54% 9.72% 5.38% 2.21% 1.51% 9.94% 4.43% 

               

Individual (experimental) FEs yes yes yes yes yes yes yes yes yes yes yes yes yes yes 

Observations 6,110,797 6,110,797 6,110,797 6,110,797 6,110,797 6,110,797 6,110,797 6,110,797 6,149,619 6,149,619 2,731,000 2,731,000 7,112,891 7,112,891 

R-squared 0.03939 0.03864 0.00867 0.00770 0.00894 0.00733 0.00930 0.00739 0.00862 0.00735 0.00191 0.00183 0.00917 0.00781 

Number of individuals 1,239,384 1,239,384 1,239,384 1,239,384 1,239,384 1,239,384 1,239,384 1,239,384 1,249,051 1,249,051 553,349 553,349 1,442,305 1,442,305 

Note: Models are estimated according to Eq.4 with modifications described in Section V.c. Robust standard errors clustered at individual (experimental) level are in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 

 

 



 

Figure 1. Development of medical innovations by disease and broad disease groups in 1981–2006 
Sweden 

Note: The connected lines denote the mean number of cumulative medical innovations in each broad disease group. The dotted lines denote 
the number of cumulative medical innovations in each single disease group. 

 



Figure 2. Development of ihs family income by event years for treated and control groups (without αi), both sexes 



Figure 3. Heterogeneous DDD estimates: Impact of medical innovations on ihs family disposable income and its sources by cause of hospitalization (by broad 
groups) 

(A) Family disposable income (B) Own disposable income

(C) Own labour income (D) Spouse’s disposable income



 

Figure 4. Heterogeneous DDD estimates: Impact of medical innovations on ihs family disposable 
income by age (at) and year of hospitalization 

 

(A) Age at hospitalization 

(B) Year of hospitalization 



 

Figure 5. Heterogeneous DDD estimates: Impact of medical innovations on ihs family disposable 
income by education level 
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Appendix A 

Table – Disease groups used in the study 

Group  
number 

Group name Broad group name 

1 Malignant neoplasms of lip, oral cavity and pharynx cancer 
2 Malignant neoplasm of oesophagus cancer 
3 Malignant neoplasm of stomach cancer 
4 Malignant neoplasm of small intestine, colon, rectosigmoid junction, rectum, anus and anal 

canal 
cancer 

5 Malignant neoplasm of liver and intrahepatic bile ducts cancer 
6 Malignant neoplasm of gallbladder cancer 
7 Malignant neoplasm of pancreas cancer 
8 Malignant neoplasm of respiratory and intrathoracic organs cancer 
9 Malignant neoplasm of bone and articular cartilage cancer 
10 Melanoma and other malignant neoplasms of skin cancer 
11 Malignant neoplasms of mesothelial and soft tissue cancer 
12 Malignant neoplasm of breast cancer 
13 Malignant neoplasms of vulva, vagina, cervix uteri, corpus uteri and parts of uterus cancer 
14 Malignant neoplasms of ovary and placenta cancer 
15 Malignant neoplasms of penis, prostate, testis and other male genital organs cancer 
16 Malignant neoplasm of kidney, renal pelvis and ureter cancer 
17 Malignant neoplasm of bladder cancer 
18 Malignant neoplasms of eye and adnexa, meninges, brain, spinal cord, cranial nerves and other 

parts of central nervous system 
cancer 

19 Malignant neoplasms of thyroid gland, adrenal gland, and other endocrine glands cancer 
20 Hodgkin's disease cancer 
21 Non-Hodgkin's lymphoma cancer 
22 Malignant immunoproliferative diseases, multiple myeloma and malignant plasma cell 

neoplasms 
cancer 

23 Leukaemia cancer 
24 In situ neoplasms cancer 
25 Benign neoplasms cancer 
26 Acute rheumatic fever and chronic rheumatic heart diseases circulatory diseases 
27 Hypertensive diseases circulatory diseases 
28 Ischaemic heart diseases circulatory diseases 
29 Pulmonary heart disease and diseases of pulmonary circulation circulatory diseases 
30 Pericarditis circulatory diseases 
31 Endocarditis and myocarditis and cardiomyopathy circulatory diseases 
32 Cardiac arrhythmias and heart failure circulatory diseases 
33 Cerebrovascular diseases circulatory diseases 
34 Diseases of arteries, arterioles and capillaries circulatory diseases 
35 Diseases of veins, lymphatic vessels and lymph nodes, not elsewhere classified circulatory diseases 
36 Organic, including symptomatic, mental disorders and Alzheimer disease. Systemic atrophies. mental diseases 
37 Mental and behavioural disorders due to use of alcohol and other substances mental diseases 
38 Schizophrenia, schizotypal and delusional disorders mental diseases 
39 Mood (affective) disorders mental diseases 
40 Neurotic, stress-related and somatoform disorders mental diseases 
41 Disorders of adult personality and behaviour mental diseases 
42 Mental retardation. Disorders of psychological development, behavioral and emotional 

disorders 
mental diseases 

43 Inflammatory diseases of the central nervous system nervous diseases 
44 Demyelinating diseases of the central nervous system   nervous diseases 
45 Epilepsy   nervous diseases 
46 Migraine and other headache syndromes nervous diseases 
47 Sleep disorders   nervous diseases 
48 Nerve, nerve root and plexus disorders, polyneuropathies and myneuropathies nervous diseases 
49 Diseases of oesophagus, stomach and duodenum digestive diseases 
50 Diseases of appendix digestive diseases 
51 Hernia digestive diseases 
52 Inflammatory bowel disease and other diseases of intestines digestive diseases 
53 Diseases of peritoneum digestive diseases 
54 Diseases of liver digestive diseases 
55 Diseases of gallbladder, biliary tract and pancreas digestive diseases 
56 Infectious arthropathies musculoskeletal diseases 
57 Rheumatoid and juvenile arthritis. Gout musculoskeletal diseases 
58 Arthrosis and systemic connective tissue disorders musculoskeletal diseases 
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59 Deforming dorsopathies, osteopathies and chondropathies. Disorders of muscles musculoskeletal diseases 
60 Glomerular diseases and renal tubulo-interstitial diseases. Renal failure urinary diseases 
61 Urolithiasis urinary diseases 
62 Other diseases of the urinary system urinary diseases 
63 Diseases of male genital organs urinary diseases 
64 Diseases of female pelvic organs urinary diseases 
65 Diseases of upper respiratory tract respiratory diseases 
66 Pneumonia, other acute lower respiratory infections and diseases of pleura respiratory diseases 
67 Chronic obstructive pulmonary disease and chronic bronchitis respiratory diseases 
68 Asthma   respiratory diseases 
69 Diabetes mellitus   metabolic diseases 
70 Disorders of thyroid gland   metabolic diseases 
71 Disorders of other endocrine glands   metabolic diseases 
72 Obesity and other hyperalimentation, metabolic disorders metabolic diseases 
73 Nutritional anaemias   diseases of bloodforming organs 
74 Haemolytic anaemias   diseases of bloodforming organs 
75 Coagulation defects, purpura and other haemorrhagic conditions   diseases of bloodforming organs 
76 Disorders of eyelid, lacrimal system and orbit, conjunctiva, sclera, cornea, iris, ciliary body, 

choroid and retina. 
diseases of sense organs 

77 Cataract, disorders of lens diseases of sense organs 
78 Glaucoma diseases of sense organs 
79 Disorders of globe, optical nerve and visual pathways, ocular muscles, accommodation and 

refraction, and blindness 
diseases of sense organs 

80 Diseases of external and middle ear diseases of sense organs 
81 Diseases of inner ear diseases of sense organs 
82 Infections of the skin diseases of skin 
83 Bullous disorders, dermatitis and eczema, urticaria and erythema   diseases of skin 
84 Intestinal infectious diseases   infectious and parasitic diseases 
85 Tuberculosis   infectious and parasitic diseases 
86 Bacterial diseases. Erysipelas. Meningitis infectious and parasitic diseases 
87 Sexually transmitted diseases infectious and parasitic diseases 
88 Viral infections infectious and parasitic diseases 
89 Viral hepatitis infectious and parasitic diseases 
90 HIV infectious and parasitic diseases 
91 Protozoal diseases infectious and parasitic diseases 
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Appendix B 

Table – Results of the t-test on non-linear pre-trends in responses of ihs family income to a health shock by a disease group (β2 is unrelated to future outcomes) 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
 

event-year -2 0.02520 -0.00457 -0.00806 0.00466 0.04412 -0.05514 -0.00170 -0.00078 0.01786 -0.00419 -0.01174 -0.00752** -0.01042 0.00061 -0.00094 
 

 
(0.02265) (0.02328) (0.02442) (0.00794) (0.03441) (0.07470) (0.02100) (0.01267) (0.02140) (0.01027) (0.02220) (0.00374) (0.00824) (0.00648) (0.00766) 

 

event-year 0 0.08399*** -0.02042 0.05932** 0.02060** 0.05260* 0.02646 -0.00703 0.02828* -0.04282 0.04087*** 0.04394*** 0.03341*** 0.03896*** 0.03058*** 0.04017***  
(0.02097) (0.06145) (0.02309) (0.00983) (0.03164) (0.02125) (0.03110) (0.01586) (0.05046) (0.01098) (0.01452) (0.00394) (0.00793) (0.00997) (0.01032) 

 

event-year 1 0.05492** -0.01758 0.08362*** 0.04821*** 0.10414*** -0.00509 0.02942 0.08297*** -0.05395 0.05763*** 0.05739*** 0.06014*** 0.05256*** 0.04018*** 0.08219***  
(0.02772) (0.05180) (0.02045) (0.01050) (0.03624) (0.02663) (0.02903) (0.01392) (0.05707) (0.01583) (0.01549) (0.00433) (0.00836) (0.01199) (0.01025) 

 

event-year -2 x treated 0.00149 -0.00263 0.00551 -0.00914 -0.04147 0.06291 -0.02875 0.00648 0.01833 -0.00294 0.02506 0.00164 0.01517 -0.00773 -0.00267 
 

 
(0.03327) (0.02915) (0.02818) (0.01171) (0.03809) (0.07601) (0.03315) (0.01811) (0.04112) (0.01389) (0.03197) (0.00495) (0.01068) (0.01171) (0.01158) 

 

event-year 0 x treated -0.73653*** -3.31909*** -4.03894*** -1.26400*** -8.04393*** -6.63848*** -6.67887*** -4.14736*** -1.43776** -0.61039*** -1.10626*** -0.17274*** -0.29028*** -0.73759*** -0.33897***  
(0.08846) (0.32452) (0.18601) (0.05190) (0.42741) (0.47606) (0.23049) (0.10469) (0.60996) (0.05394) (0.17181) (0.01148) (0.02879) (0.06042) (0.03723) 

 

event-year 1 x treated 
 
 
 
 
  

-1.55342*** -8.00268*** -5.86686*** -2.16355*** -9.31445*** -9.91839*** -10.16359*** -6.67137*** -2.87579*** -0.95737*** -1.92576*** -0.39720*** -0.73547*** -1.85194*** -0.72338***  
(0.12654) (0.46035) (0.25124) (0.06580) (0.79760) (0.72999) (0.34758) (0.14291) (0.81273) (0.06578) (0.22616) (0.01582) (0.04290) (0.09103) (0.05041) 

 

Constant 13.04808*** 13.07371*** 13.14901*** 13.20873*** 13.10995*** 13.00971*** 13.16590*** 13.06175*** 13.06472*** 13.17992*** 13.24386*** 13.23581*** 13.10761*** 13.15437*** 13.37691***  
(0.01731) (0.05097) (0.02840) (0.00890) (0.05781) (0.06578) (0.03157) (0.01604) (0.10860) (0.00956) (0.03009) (0.00226) (0.00578) (0.01152) (0.00679) 

 

Observations 12,998 3,097 10,346 59,328 2,064 1,721 7,885 33,405 494 28,732 4,693 217,867 52,720 26,061 38,471 
 

R-squared 0.06535 0.42037 0.31669 0.10656 0.58853 0.55069 0.53798 0.34992 0.15892 0.04114 0.09364 0.01253 0.03041 0.0943 0.02619 
 

Number of experimental IDs 2,656 643 2,177 12,121 448 370 1,695 7,012 102 5,871 962 43,888 10,668 5,294 7,792 
 

t-test: event-year -2 x treated =0 0.964 0.928 0.845 0.435 0.277 0.408 0.386 0.721 0.657 0.832 0.433 0.74 0.156 0.509 0.818 
 

                 
 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
 

event-year -2 0.00280 -0.01770 0.00574 0.02863 0.01068 -0.02584** -0.05437 -0.00504 0.00500 -0.00392* 0.00747 -0.00301 -0.00068 0.00827 -0.02188 
 

 
(0.01266) (0.01509) (0.01246) (0.01774) (0.01540) (0.01210) (0.04058) (0.01912) (0.00475) (0.00214) (0.01238) (0.00644) (0.00296) (0.00761) (0.01506) 

 

event-year 0 0.02918 0.07541*** 0.05296*** 0.04394** -0.01103 0.02017 0.04064 0.06342*** 0.05022*** 0.03773*** -0.05930 0.01964** 0.04144*** 0.04745*** -0.00556 
 

 
(0.01950) (0.01599) (0.01955) (0.02041) (0.02573) (0.01710) (0.02650) (0.01380) (0.00549) (0.00237) (0.05424) (0.00797) (0.00334) (0.01044) (0.01717) 

 

event-year 1 0.07004*** 0.08437*** 0.06667*** 0.06520*** -0.00230 0.02750 0.07588** 0.05321*** 0.05842*** 0.05856*** 0.01553 0.04613*** 0.06009*** 0.06725*** -0.00176 
 

 
(0.01615) (0.02057) (0.02022) (0.02223) (0.03401) (0.02384) (0.03254) (0.01922) (0.00661) (0.00252) (0.04128) (0.00844) (0.00377) (0.01266) (0.02053) 

 

event-year -2 x treated -0.00207 0.03554* 0.01636 -0.02085 -0.01458 0.03239 0.04342 0.03373 0.01215* 0.00816*** -0.04873 -0.00520 0.00409 -0.00781 0.00465 
 

 
(0.02154) (0.01857) (0.01937) (0.01952) (0.02182) (0.02186) (0.04468) (0.02372) (0.00641) (0.00287) (0.05695) (0.00895) (0.00410) (0.01430) (0.02294) 

 

event-year 0 x treated -1.77790*** -0.42553*** -2.21334*** -0.33604*** -0.20258 -0.92105*** -0.81948*** -1.79161*** -0.65461*** -0.02094*** -0.16125 -0.04866*** -0.42319*** -0.49801*** -0.15942***  
(0.11855) (0.05379) (0.14065) (0.08764) (0.16809) (0.09155) (0.15664) (0.14127) (0.02524) (0.00395) (0.11948) (0.01376) (0.01123) (0.04520) (0.04738) 

 

event-year 1 x treated 
 
 
 
 
  

-2.43352*** -0.77475*** -4.45151*** -0.27593*** -0.46965* -1.63167*** -1.62889*** -3.04825*** -0.93350*** -0.02101*** -0.14599 -0.06880*** -0.18494*** -0.25111*** -0.13468***  
(0.13889) (0.07013) (0.19892) (0.07783) (0.24366) (0.11965) (0.21556) (0.18643) (0.02933) (0.00410) (0.09656) (0.01452) (0.00752) (0.03128) (0.04706) 

 

Constant 13.17702*** 13.14284*** 13.23309*** 13.21867*** 13.19133*** 13.18661*** 13.22988*** 13.21094*** 13.16925*** 13.22345*** 12.93736*** 13.09696*** 13.13281*** 13.20430*** 13.25322***  
(0.01908) (0.00993) (0.02387) (0.01422) (0.03221) (0.01607) (0.02824) (0.02387) (0.00434) (0.00079) (0.01937) (0.00268) (0.00171) (0.00674) (0.00816) 

 

Observations 14,673 21,378 12,248 5,603 1,106 14,229 4,576 9,931 135,735 536,388 3,200 103,021 502,948 34,342 15,413 
 

R-squared 0.12975 0.028 0.22847 0.01434 0.02239 0.07878 0.07242 0.15935 0.04227 0.00212 0.00592 0.00058 0.01424 0.01833 0.00419 
 

Number of experimental IDs 3,019 4,346 2,541 1,144 228 2,910 935 2,044 27,581 108,025 658 20,854 101,801 6,986 3,129 
 

t-test: event-year -2 x treated =0 0.924 0.0557 0.398 0.286 0.505 0.138 0.331 0.155 0.0581 0.00454 0.392 0.561 0.318 0.585 0.839 
 

                 
 

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 
 

event-year -2 -0.00411 0.00003 0.00104 0.01056 -0.00200 0.01003 -0.00890 -0.00476 -0.00136 -0.01328 0.09709*** 0.03840 0.02739 0.01003 -0.03824**  
(0.01129) (0.00452) (0.00415) (0.00957) (0.00333) (0.01689) (0.00758) (0.00935) (0.00723) (0.00840) (0.03642) (0.04038) (0.01989) (0.00938) (0.01568) 

 

event-year 0 0.05357*** 0.04755*** 0.03659*** 0.04812*** 0.03706*** 0.01002 -0.00712 -0.01386 0.02544*** 0.01136 0.00185 0.03608 0.06756*** 0.01886* 0.00764 
 

 
(0.01115) (0.00490) (0.00517) (0.01122) (0.00356) (0.01738) (0.00874) (0.01284) (0.00800) (0.00911) (0.05777) (0.06319) (0.02555) (0.01054) (0.01111) 

 

event-year 1 0.07783*** 0.07812*** 0.06396*** 0.07435*** 0.05927*** 0.00881 -0.02483** 0.00130 0.00396 0.02152** -0.04110 0.04806 0.08585*** 0.00605 0.02036 
 

 
(0.01220) (0.00556) (0.00556) (0.01240) (0.00380) (0.02161) (0.01025) (0.01522) (0.01084) (0.00996) (0.06458) (0.06263) (0.02641) (0.01923) (0.01402) 

 

event-year -2 x treated -0.00524 0.00187 -0.00168 -0.00593 0.00388 -0.02269 0.01015 -0.00085 0.01208 0.01381 -0.09983 -0.11323 0.00777 0.00525 0.03183* 
 

 
(0.01495) (0.00615) (0.00589) (0.01266) (0.00435) (0.02227) (0.01102) (0.01373) (0.01028) (0.01174) (0.06317) (0.07336) (0.02785) (0.01454) (0.01824) 

 

event-year 0 x treated -0.41423*** -0.23580*** -1.05637*** -0.58417*** -0.07083*** -0.49904*** -0.13915*** -0.09244*** -0.21783*** -0.17994*** -0.16068 -0.19997* -0.51168*** -0.05979* -0.24142***  
(0.03652) (0.01379) (0.02386) (0.04047) (0.00719) (0.06650) (0.01618) (0.02414) (0.01965) (0.01872) (0.10218) (0.11676) (0.08653) (0.03303) (0.03514) 
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event-year 1 x treated 
 
 
 
 
  

-0.24799*** -0.15133*** -0.36842*** -0.28503*** -0.07005*** -0.64386*** -0.12450*** -0.02021 -0.11068*** -0.13544*** -0.04440 -0.11147 -0.34079*** -0.02618 -0.25963***  
(0.02870) (0.01112) (0.01264) (0.02598) (0.00689) (0.07431) (0.01709) (0.02390) (0.01729) (0.01652) (0.09975) (0.10926) (0.06861) (0.03362) (0.03658) 

 

Constant 13.16978*** 13.21002*** 13.14763*** 13.03875*** 13.10451*** 13.08650*** 12.66890*** 12.53469*** 13.05938*** 12.98482*** 12.49749*** 12.37911*** 13.16485*** 13.15320*** 12.94399***  
(0.00580) (0.00227) (0.00332) (0.00610) (0.00134) (0.01133) (0.00321) (0.00457) (0.00342) (0.00342) (0.02061) (0.02252) (0.01382) (0.00619) (0.00632) 

 

Observations 44,487 203,803 239,628 51,165 287,771 17,836 180,418 63,253 94,061 89,486 5,287 3,098 10,188 13,561 27,324 
 

R-squared 0.01246 0.0056 0.05439 0.02267 0.00137 0.02613 0.00253 0.00119 0.00529 0.00451 0.00273 0.00274 0.01748 0.00078 0.01089 
 

Number of experimental IDs 9,024 41,242 48,744 10,409 58,425 3,639 36,730 12,940 19,083 18,265 1,104 636 2,078 2,771 5,594 
 

t-test: event-year -2 x treated =0 0.726 0.761 0.775 0.639 0.373 0.309 0.357 0.951 0.24 0.24 0.114 0.123 0.78 0.718 0.081 
 

                 
 

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 
 

event-year -2 0.01698** -0.00158 0.00442 -0.00936* -0.00490 0.00340 0.00835** -0.02189 -0.00220 0.00289 -0.00730 -0.00480 -0.00548 -0.00202 0.00343 
 

 
(0.00663) (0.01281) (0.00666) (0.00502) (0.00527) (0.00349) (0.00382) (0.02852) (0.01252) (0.00282) (0.01626) (0.00476) (0.00423) (0.00277) (0.00704) 

 

event-year 0 0.03869*** 0.09472*** 0.02447** 0.03037*** 0.03781*** 0.04228*** 0.05103*** 0.06013*** -0.02093 0.04212*** 0.05294*** 0.02794*** 0.04452*** 0.04226*** 0.04335***  
(0.00746) (0.01383) (0.00965) (0.00520) (0.00602) (0.00382) (0.00447) (0.01770) (0.01705) (0.00329) (0.01189) (0.00481) (0.00477) (0.00306) (0.00835) 

 

event-year 1 0.05797*** 0.13231*** 0.06074*** 0.04897*** 0.07762*** 0.06394*** 0.07255*** 0.03912 -0.00713 0.06933*** 0.07070*** 0.03891*** 0.08130*** 0.06207*** 0.04780***  
(0.00873) (0.01470) (0.00902) (0.00585) (0.00641) (0.00444) (0.00523) (0.02683) (0.01875) (0.00357) (0.01655) (0.00522) (0.00496) (0.00352) (0.01097) 

 

event-year -2 x treated -0.01343 0.00253 -0.01032 0.01452** 0.00289 0.00256 -0.00268 0.04619 -0.00755 -0.00209 0.01285 0.00847 0.00515 0.00704* 0.01371 
 

 
(0.00880) (0.01672) (0.01037) (0.00656) (0.00725) (0.00470) (0.00545) (0.03252) (0.01992) (0.00386) (0.02049) (0.00592) (0.00564) (0.00373) (0.00932) 

 

event-year 0 x treated -0.05307*** -0.05173** -0.07745*** -0.07458*** -0.01715* -0.02351*** -0.05795*** -0.31463*** -1.44466*** -0.07016*** -0.02525 -0.04019*** -0.03493*** -0.03316*** -0.12844***  
(0.01469) (0.02180) (0.01872) (0.00997) (0.00914) (0.00638) (0.00822) (0.09730) (0.07516) (0.00652) (0.02652) (0.00842) (0.00855) (0.00511) (0.01895) 

 

event-year 1 x treated 
 
 
 
 
  

-0.05759*** -0.06335*** -0.10801*** -0.09378*** -0.02714*** -0.02846*** -0.05804*** -0.23102*** -0.78331*** -0.09279*** -0.02787 -0.03793*** -0.04800*** -0.04135*** -0.11591***  
(0.01487) (0.02457) (0.01892) (0.01080) (0.00981) (0.00670) (0.00869) (0.08073) (0.05525) (0.00684) (0.03071) (0.00869) (0.00877) (0.00554) (0.02002) 

 

Constant 13.15244*** 13.28069*** 13.10919*** 13.05636*** 13.21610*** 13.09262*** 13.17805*** 13.20908*** 12.99230*** 13.18410*** 13.22180*** 13.11613*** 13.23406*** 13.18220*** 13.14490***  
(0.00290) (0.00480) (0.00345) (0.00195) (0.00189) (0.00132) (0.00165) (0.01532) (0.01100) (0.00126) (0.00569) (0.00166) (0.00165) (0.00107) (0.00356) 

 

Observations 75,929 31,834 59,322 206,881 157,152 265,276 250,891 4,700 31,888 411,905 17,837 121,618 157,521 466,556 71,363 
 

R-squared 0.0008 0.00531 0.00135 0.00109 0.00216 0.00171 0.00123 0.01128 0.07587 0.00131 0.00211 0.00087 0.0026 0.00133 0.00216 
 

Number of experimental IDs 15,418 6,419 12,075 41,929 31,796 53,767 50,666 962 6,559 83,057 3,620 24,581 31,807 94,240 14,503 
 

t-test: event-year -2 x treated =0 0.127 0.88 0.32 0.0269 0.691 0.586 0.623 0.156 0.705 0.588 0.531 0.153 0.361 0.059 0.141 
 

                 
 

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 
 

event-year -2 0.00104 -0.00130 0.00491 0.00394 -0.00291 0.00111 -0.00067 0.00525 0.00090 0.00450 0.00313 -0.00788 0.00286 0.02061 0.01268 
 

 
(0.00547) (0.00697) (0.00554) (0.00306) (0.00472) (0.00501) (0.01160) (0.00733) (0.00714) (0.00501) (0.02182) (0.01018) (0.01213) (0.02479) (0.01177) 

 

event-year 0 0.04710*** 0.04808*** 0.03585*** 0.05301*** 0.04712*** 0.03893*** 0.03651*** 0.02401*** 0.05567*** 0.03348*** 0.03582** 0.04034*** 0.02438 0.02708 0.01562 
 

 
(0.00612) (0.00625) (0.00693) (0.00419) (0.00489) (0.00584) (0.01297) (0.00926) (0.00729) (0.00617) (0.01584) (0.00862) (0.01573) (0.02392) (0.02407) 

 

event-year 1 0.07127*** 0.06869*** 0.05604*** 0.09243*** 0.06872*** 0.05766*** 0.03290** 0.04733*** 0.05814*** 0.05440*** 0.06579*** 0.04846*** 0.04764** 0.04822 0.05688***  
(0.00656) (0.00798) (0.00760) (0.00402) (0.00530) (0.00655) (0.01546) (0.01102) (0.00848) (0.00614) (0.01937) (0.01263) (0.01872) (0.02932) (0.01986) 

 

event-year -2 x treated 0.00594 0.00347 0.00056 -0.00469 0.00687 0.00336 0.01738 -0.00478 0.01706* -0.00051 -0.00349 0.00434 -0.01833 -0.03062 -0.03070 
 

 
(0.00735) (0.00850) (0.00776) (0.00426) (0.00630) (0.00694) (0.01659) (0.00985) (0.00921) (0.00683) (0.02626) (0.01401) (0.01871) (0.03158) (0.02234) 

 

event-year 0 x treated -0.02587*** -0.04277*** -0.02289** -0.01636*** -0.03175*** -0.25635*** -0.19146*** -0.10907*** -0.10300*** -0.03452*** -0.09942** -0.10853*** -0.07853** -0.32117*** -0.28926***  
(0.00970) (0.01176) (0.01129) (0.00623) (0.00786) (0.01583) (0.03538) (0.02335) (0.01419) (0.01030) (0.04268) (0.02252) (0.03085) (0.07560) (0.06898) 

 

event-year 1 x treated 
 
 
 
 
  

-0.03628*** -0.03925*** -0.02806** -0.02027*** -0.03457*** -0.25815*** -0.19311*** -0.10831*** -0.10479*** -0.02791*** -0.08987** -0.09192*** -0.15171*** -0.40743*** -0.27761***  
(0.01016) (0.01293) (0.01211) (0.00624) (0.00830) (0.01559) (0.03821) (0.02240) (0.01526) (0.01008) (0.03798) (0.02238) (0.04041) (0.08533) (0.05902) 

 

Constant 13.15881*** 13.27093*** 13.14053*** 13.31108*** 13.19818*** 13.11506*** 12.93727*** 13.03011*** 12.97382*** 13.17009*** 13.13482*** 13.12606*** 13.01476*** 13.05987*** 13.14755***  
(0.00203) (0.00239) (0.00232) (0.00127) (0.00163) (0.00277) (0.00652) (0.00411) (0.00283) (0.00206) (0.00782) (0.00422) (0.00621) (0.01346) (0.01092) 

 

Observations 147,713 82,259 101,713 222,832 178,285 178,166 27,068 43,132 119,552 92,183 13,127 40,420 23,436 9,730 9,032 
 

R-squared 0.0016 0.0018 0.00105 0.00579 0.00189 0.00719 0.00502 0.00207 0.0014 0.00147 0.00151 0.00157 0.00164 0.01176 0.01183 
 

Number of experimental IDs 29,952 16,620 20,595 44,790 36,078 36,124 5,518 8,800 24,307 18,727 2,676 8,221 4,766 1,991 1,845 
 

t-test: event-year -2 x treated =0 0.419 0.683 0.942 0.271 0.275 0.629 0.295 0.628 0.0641 0.94 0.894 0.757 0.327 0.332 0.17 
 

                 
 

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 
event-year -2 0.00440 0.01301 0.01915 0.02886** 0.00177 -0.01249* 0.00262 -0.00313 -0.00450 -0.02220 0.01220 0.00160 -0.02322* 0.02144 -0.04999 0.04265  

(0.00684) (0.01183) (0.01265) (0.01145) (0.00722) (0.00687) (0.01274) (0.00836) (0.00735) (0.04005) (0.00784) (0.01168) (0.01346) (0.02877) (0.07845) (0.06944) 
event-year 0 0.03172*** 0.02856* 0.03277** 0.04644*** 0.04353*** 0.04966*** 0.05881*** 0.03358*** 0.04175*** -0.09846* 0.03734*** 0.02843 0.04752*** 0.09667*** 0.06379 -0.12957  

(0.00862) (0.01520) (0.01312) (0.01434) (0.00760) (0.00668) (0.01433) (0.00866) (0.00832) (0.05390) (0.00980) (0.01801) (0.01540) (0.03171) (0.04908) (0.11004) 
event-year 1 0.06877*** 0.06790*** 0.03835** 0.07793*** 0.06540*** 0.08006*** 0.06542*** 0.03654*** 0.06823*** 0.02271 0.05715*** 0.03789** 0.08245*** 0.14511*** 0.45125 0.07057  

(0.00877) (0.01979) (0.01583) (0.01615) (0.00816) (0.00753) (0.01626) (0.01031) (0.00859) (0.03980) (0.01007) (0.01880) (0.01634) (0.03926) (0.41615) (0.09945) 
event-year -2 x treated -0.01228 -0.01592 -0.01493 -0.02870* 0.00758 0.01261 0.01134 0.01271 -0.00073 0.01630 -0.00686 0.00907 0.01908 -0.01191 0.13496 0.08148 
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(0.00937) (0.02098) (0.01484) (0.01545) (0.00916) (0.00850) (0.01681) (0.01084) (0.01083) (0.05700) (0.01092) (0.01869) (0.01841) (0.03737) (0.12870) (0.11173) 

event-year 0 x treated -0.01430 0.00826 -0.01705 -0.04581* -0.02368* -0.02446** -0.07743*** -0.01691 -0.05975*** 0.14229 -0.24942*** -0.04782* -0.08837*** -0.15228*** -3.83711*** 0.03577  
(0.01188) (0.02436) (0.01849) (0.02471) (0.01211) (0.01011) (0.02458) (0.01524) (0.01532) (0.10413) (0.02444) (0.02854) (0.02912) (0.05805) (1.18031) (0.17024) 

event-year 1 x treated 
 
 
 
 
  

-0.03454*** -0.03790 -0.04832* -0.05991** -0.04290*** -0.03503*** -0.05885** -0.01416 -0.03907*** -0.15167 -0.11249*** -0.09384*** -0.04614* -0.14861** -1.93687** -0.08150  
(0.01274) (0.03357) (0.02743) (0.02706) (0.01340) (0.01096) (0.02676) (0.01672) (0.01457) (0.13010) (0.01859) (0.03308) (0.02614) (0.06001) (0.91285) (0.15736) 

Constant 13.18173*** 12.95165*** 13.05045*** 13.15974*** 13.12386*** 13.25635*** 13.03690*** 13.05110*** 13.21741*** 12.82511*** 13.10734*** 13.07019*** 13.20781*** 12.86963*** 12.38742*** 12.99260***  
(0.00247) (0.00599) (0.00495) (0.00542) (0.00264) (0.00219) (0.00516) (0.00322) (0.00291) (0.02097) (0.00407) (0.00589) (0.00527) (0.01151) (0.16396) (0.03030) 

Observations 91,118 12,240 13,188 21,063 70,495 80,305 38,006 51,630 65,583 3,683 80,996 21,695 27,198 11,621 255 1,921 
R-squared 0.00147 0.00206 0.00117 0.00157 0.00163 0.00369 0.00096 0.00072 0.00162 0.00264 0.00531 0.00097 0.00236 0.00217 0.23675 0.00433 
Number of experimental IDs 18,458 2,484 2,690 4,294 14,354 16,250 7,747 10,525 13,336 760 16,432 4,451 5,541 2,388 54 402 
t-test: event-year -2 x treated =0 0.19 0.448 0.314 0.0634 0.408 0.138 0.5 0.241 0.947 0.775 0.53 0.627 0.3 0.75 0.299 0.466 

Note: Additionally to the terms reported in the table, models include (experimental) individual fixed effects. Event-years -3 and -1 are reference categories. Disease groups that were excluded from the 
estimation sample – as those that have not passed the test – are in bold. Standard errors clustered at a (experimental) individual level are in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 
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Figure B1 – Development of ihs family income by event years for treated and control groups (with αi), both sexes 
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Figure B2 – Development of the sources of ihs family income by event years for treated and control groups (with αi), 
both sexes 
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Figure B2 – Development of ihs family income by event years for groups by the level of l1.drugs (with αi), both sexes 
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Figure B3 – Development of ihs family income by event years for groups by the level of l1.patents (with αi), both sexes
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Appendix C 

Table C1 – DDD estimates: Impact of medical innovations in 1981–2006 on the sources of ihs family income for men in ages 40–60 Sweden 

 Ihs Own Disposable Income Ihs Spouse’s Disposable 
Income Ihs Own Labour Income Ihs Sickness Absence 

Payments 
Ihs Unemployment Benefits 
Payments 

Ihs Disability Pension 
Payments Ihs Own Capital Income 

post 0.04862*** 0.05603*** -0.10280*** -0.04087*** -0.16652*** -0.13085*** -0.23665*** -0.21289*** 0.00130 0.00081 0.20324*** 0.20076*** -0.57490*** -0.44402*** 
 (0.00289) (0.00219) (0.00723) (0.00538) (0.00538) (0.00411) (0.00969) (0.00731) (0.00305) (0.00233) (0.00376) (0.00295) (0.01410) (0.01083) 
post x l1.drugs 0.00011  0.00294***  0.00075***  0.00204***  0.00005  0.00100***  0.01288***  
 (0.00016)  (0.00037)  (0.00029)  (0.00044)  (0.00014)  (0.00018)  (0.00075)  

DDidst -0.10646*** -0.07705*** -0.50652*** -0.40986*** -0.21009*** -0.13554*** 2.92149*** 3.11660*** 0.38731*** 0.37413*** 0.09620*** 0.10682*** 0.05314*** 0.03044** 
 (0.00464) (0.00344) (0.01185) (0.00884) (0.00821) (0.00620) (0.01554) (0.01200) (0.00564) (0.00439) (0.00573) (0.00452) (0.01991) (0.01528) 
DDidst x l1.drugs 0.00334***  0.00693***  0.00614***  -0.00362*** -0.00349*** 0.00030  -0.00098  
 (0.00023)  (0.00057)  (0.00042)  (0.00074)  (0.00025)  (0.00028)  (0.00106)  

post x l1.patents  -0.00002***  -0.00005***  -0.00007***  0.00003**  0.00000  0.00006***  0.00023*** 
  (0.00000)  (0.00001)  (0.00001)  (0.00001)  (0.00000)  (0.00001)  (0.00002) 
DDidst x l1.patents  0.00007***  0.00004**  0.00007***  -0.00076*** -0.00013*** -0.00002**  0.00002 
  (0.00001)  (0.00002)  (0.00001)  (0.00002)  (0.00001)  (0.00001)  (0.00003) 
Constant 12.63420*** 12.63420*** 8.70217*** 8.70215*** 12.18627*** 12.18626*** 3.14804*** 3.14582*** 0.24087*** 0.24086*** 0.66272*** 0.66278*** -1.55617*** -1.55625*** 
 (0.00059) (0.00059) (0.00151) (0.00151) (0.00108) (0.00108) (0.00213) (0.00212) (0.00074) (0.00074) (0.00080) (0.00080) (0.00265) (0.00265) 
Observations 3,319,071 3,319,071 3,319,071 3,319,071 3,319,071 3,319,071 3,184,765 3,184,765 3,319,071 3,319,071 3,184,765 3,184,765 3,319,071 3,319,071 
R-squared 0.00059 0.00044 0.00574 0.00529 0.00459 0.00428 0.07537 0.07693 0.01100 0.01122 0.01703 0.01712 0.00202 0.00187 
Number of individuals 673,469 673,469 673,469 673,469 673,469 673,469 673,437 673,437 673,469 673,469 673,437 673,437 673,469 673,469 
Individual (experimental) FEs yes yes yes yes yes yes yes yes yes yes yes yes yes yes 
1 SD of l1.drugs /l1.patents 13.1586 516.0485 13.1586 516.0485 13.1586 516.0485 13.2729 523.62 13.1586 516.0485 13.2729 523.62 13.1586 516.0485 
1 SD x effect x 100% 4.39% 3.61% 9.12% 2.06% 8.08% 3.61% -4.80% -39.80% -4.59% -6.71% 0.40% -1.05% -1.29% 1.03% 
1 SD combined effect x 100%  8.01%  11.18%  11.69%  -44.60%  -11.30%  -0.65%  -0.26% 
1 SD combined SE x 100%  0.60%  1.28%  0.76%  1.44%  0.61%  0.64%  2.08% 
CI lower 95%  6.83%  8.68%  10.21%  -47.41%  -12.50%  -1.91%  -4.34% 
CI higher 95  9.18%  13.68%  13.17%  -41.79%  -10.10%  0.61%  3.83% 

Note: Models are estimated according to Eq.4. Robust standard errors clustered at individual (experimental) level are in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 
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Table C2 – DDD estimates: Impact of medical innovations in 1981–2006 on the sources of ihs family income for women in ages 40–60 Sweden 

 Ihs Own Disposable Income Ihs Spouse’s Disposable 
Income Ihs Own Labour Income Ihs Sickness Absence 

Payments 
Ihs Unemployment Benefits 
Payments 

Ihs Disability Pension 
Payments Ihs Own Capital Income 

post 0.07818*** 0.07394*** -
 

-
 

-0.11812*** -0.11651*** -
 

-
 

0.00193 0.00030 0.30758**
 

0.33113**
 

-
 

-
  (0.00335) (0.00249) (0.00795) (0.00593) (0.00639) (0.00476) (0.01125) (0.00835) (0.00237) (0.00177) (0.00519) (0.00387) (0.01442) (0.01100) 

post x l1.drugs -0.00061***  0.00395***  -0.00038  0.00644***  -0.00013  0.00227**
 

 0.00211***  
 (0.00014)  (0.00037)  (0.00030)  (0.00051)  (0.00010)  (0.00024)  (0.00069)  

DDidst -0.05224*** -0.03542*** -
 

-
 

-0.15672*** -0.09422*** 2.61465*** 2.72813*** 0.19711**
 

0.18031**
 

0.09126**
 

0.09345**
 

-0.00261 0.00318 
 (0.00508) (0.00369) (0.01285) (0.00950) (0.00939) (0.00692) (0.01751) (0.01327) (0.00438) (0.00331) (0.00765) (0.00575) (0.02024) (0.01547) 
DDidst x l1.drugs 0.00139***  0.00936***  0.00481***  -0.00227*** -0.00201*** -0.00002  -0.00008  
 (0.00020)  (0.00056)  (0.00043)  (0.00078)  (0.00018)  (0.00036)  (0.00097)  

post x l1.patents  -0.00002***  0.00005***  -0.00002***  0.00010***  -0.00000  0.00005**
 

 0.00004** 
  (0.00000)  (0.00001)  (0.00001)  (0.00001)  (0.00000)  (0.00001)  (0.00002) 
DDidst x l1.patents  0.00002***  0.00012***  0.00006***  -0.00044*** -0.00005*** -0.00001  -0.00002 
  (0.00001)  (0.00001)  (0.00001)  (0.00002)  (0.00000)  (0.00001)  (0.00003) 
Constant 12.30220**

 
12.30220**
 

9.62234*** 9.62232*** 11.46079**
 

11.46080**
 

3.53886*** 3.53692*** 0.12445**
 

0.12445**
 

1.00352**
 

1.00328**
 

-
 

-
  (0.00063) (0.00063) (0.00164) (0.00164) (0.00120) (0.00120) (0.00239) (0.00239) (0.00057) (0.00057) (0.00104) (0.00104) (0.00272) (0.00272) 

Observations 2,791,726 2,791,726 2,791,726 2,791,726 2,791,726 2,791,726 2,684,346 2,684,346 2,791,726 2,791,726 2,684,346 2,684,346 2,791,726 2,791,726 
R-squared 0.00095 0.00093 0.00794 0.00720 0.00254 0.00239 0.06233 0.06264 0.00536 0.00536 0.02504 0.02497 0.00063 0.00062 
Number of individuals 565,915 565,915 565,915 565,915 565,915 565,915 565,899 565,899 565,915 565,915 565,899 565,899 565,915 565,915 
Individual (experimental) 

 
yes yes yes yes yes yes yes yes yes yes yes yes yes yes 

1 SD of l1.drugs /l1.patents 14.3734 562.4148 14.3734 562.4148 14.3734 562.4148 14.4856 570.7715 14.3734 562.4148 14.4856 570.7715 14.3734 562.4148 
1 SD x effect x 100% 2.00% 1.12% 13.45% 6.75% 6.91% 3.37% -3.29% -25.11% -2.89% -2.81% -0.03% -0.57% -0.11% -1.12% 
1 SD combined effect x 

 
 3.12%  20.20%  10.29%  -28.40%  -5.70%  -0.60%  -1.24% 

1 SD combined SE x 100%  0.63%  0.98%  0.84%  1.61%  0.26%  0.77%  2.19% 
CI lower 95%  1.88%  18.28%  8.65%  -31.55%  -6.21%  -2.12%  -5.53% 
CI higher 95  4.36%  22.13%  11.93%  -25.25%  -5.19%  0.92%  3.05% 

Note: Models are estimated according to Eq.4. Robust standard errors clustered at individual (experimental) level are in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix D 

 

Figure – Heterogeneous DDD estimates: Impact of medical innovations on ihs family disposable income by the length to stay in a hospital
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Appendix E 

Table E1 – Results of the t-test on non-linear pre-trends in responses of ihs family income to a health shock by broad disease groups from a final estimation sample (β2 is 
unrelated to future outcomes) 

 Altogether Cancers Circulatory Mental Nervous Digestive 
Musculo- 
skeletal Urinary Respiratory  Metabolic 

D. of  
bloodforming  
organs 

D. of sense  
organs D. of skin Infectious 

event-year -2 -0.00004 -0.00456* -0.00043 -0.00536 0.00400 0.00290 -0.00531* 0.00266 -0.00030 0.00092 0.00906 0.00180 -0.00066 0.00162 
 (0.00081) (0.00239) (0.00165) (0.00406) (0.00415) (0.00178) (0.00313) (0.00226) (0.00306) (0.00412) (0.00920) (0.00357) (0.00724) (0.00466) 
event-year 0 0.03785*** 0.03589*** 0.03918*** 0.00341 0.03936*** 0.04182*** 0.03827*** 0.04712*** 0.04069*** 0.04464*** 0.02312** 0.04059*** 0.04430*** 0.03854*** 
 (0.00093) (0.00270) (0.00189) (0.00473) (0.00464) (0.00206) (0.00328) (0.00268) (0.00342) (0.00421) (0.01154) (0.00403) (0.00787) (0.00570) 
event-year 1 0.05913*** 0.05972*** 0.06253*** -0.00440 0.06304*** 0.06762*** 0.06333*** 0.07332*** 0.05966*** 0.05575*** 0.04976*** 0.07031*** 0.04880*** 0.06667*** 
 (0.00103) (0.00293) (0.00209) (0.00561) (0.00509) (0.00230) (0.00354) (0.00294) (0.00382) (0.00488) (0.01310) (0.00432) (0.00910) (0.00598) 
event-year -2 x treated 0.00213* 0.00372 0.00115 0.00634 -0.00242 -0.00039 0.00698* 0.00187 0.00493 0.00799 -0.02388* -0.00188 0.01210 0.00101 
 (0.00112) (0.00330) (0.00228) (0.00587) (0.00557) (0.00247) (0.00404) (0.00304) (0.00418) (0.00540) (0.01357) (0.00468) (0.00948) (0.00661) 
event-year 0 x treated -0.25361*** -0.98413*** -0.40943*** -0.17179*** -0.10540*** -0.08970*** -0.03655*** -0.03605*** -0.14357*** -0.07988*** -0.17991*** -0.02090*** -0.04258*** -0.13955*** 
 (0.00262) (0.01468) (0.00640) (0.00959) (0.01015) (0.00429) (0.00592) (0.00454) (0.00809) (0.00836) (0.02863) (0.00598) (0.01363) (0.01223) 
event-year 1 x treated -0.23238*** -1.47194*** -0.18551*** -0.12736*** -0.10854*** -0.07950*** -0.04285*** -0.03866*** -0.14441*** -0.07523*** -0.23639*** -0.03934*** -0.03310** -0.08387*** 
 (0.00245) (0.01744) (0.00424) (0.00952) (0.01008) (0.00410) (0.00614) (0.00476) (0.00805) (0.00863) (0.03229) (0.00662) (0.01487) (0.01054) 
Constant 13.13080*** 13.20313*** 13.13839*** 12.80599*** 13.13390*** 13.16037*** 13.18502*** 13.22320*** 13.12995*** 13.07319*** 13.05364*** 13.17099*** 13.04507*** 13.13059*** 
 (0.00045) (0.00247) (0.00097) (0.00181) (0.00190) (0.00079) (0.00116) (0.00092) (0.00147) (0.00164) (0.00520) (0.00129) (0.00287) (0.00216) 
Observations 6,110,797 583,626 1,485,778 453,439 218,158 1,121,812 296,976 625,880 426,651 265,282 42,198 288,409 89,636 212,952 
R-squared 0.00713 0.07139 0.01416 0.00334 0.00169 0.00142 0.00170 0.00186 0.00273 0.00109 0.00500 0.00187 0.00074 0.00211 
Number of experimental IDs 1,239,384 118,866 301,272 92,397 44,355 226,807 60,008 126,460 86,520 53,931 8,602 58,530 18,272 43,364 
t-test: event-year -2 x treated =0 0.0559 0.260 0.614 0.280 0.663 0.875 0.0843 0.540 0.238 0.139 0.0783 0.688 0.202 0.878 

Note: Additionally to the terms reported in the table, models include (experimental) individual fixed effects. Event-years -3 and -1 are reference categories. Standard errors clustered at a (experimental) 
individual level are in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 
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Table E2 – Results of the t-test on non-linear pre-trends in responses of ihs family income to changes in medical innovations (drugs and patents) by broad disease groups from 
a final estimation sample (β4 is unrelated to future outcomes) 

 Altogether Cancers Circulatory Mental Nervous Digestive 
Musculo- 
skeletal 

Urinary Respiratory  Metabolic 
D. of  
bloodforming  
organs 

D. of sense  
organs 

D. of skin Infectious 

(A) Drugs               

event-year -2 0.00090 0.00142 0.00116 -0.00338 0.00691 0.00129 -0.00253 0.00413 0.00067 0.01025*** 0.00483 -0.00029 0.00863 -0.00456 
 (0.00085) (0.00270) (0.00209) (0.00557) (0.00877) (0.00154) (0.00677) (0.00320) (0.00494) (0.00356) (0.01088) (0.00312) (0.01680) (0.00679) 

event-year 0 -0.14973*** -0.67605*** -0.30653*** -0.08816*** -0.00238 -0.00131 -0.00941 0.01854*** -0.07852*** 0.00427 -0.03325 0.02940*** 0.01083 0.02246** 
 (0.00218) (0.01314) (0.00662) (0.00882) (0.01593) (0.00250) (0.00999) (0.00446) (0.01032) (0.00557) (0.03123) (0.00399) (0.02482) (0.01139) 

event-year 1 -0.12459*** -0.93418*** -0.09646*** -0.09502*** 0.02970* 0.02548*** -0.00729 0.03096*** -0.06765*** 0.01840*** -0.05396* 0.04490*** 0.01068 0.04186*** 
 (0.00207) (0.01469) (0.00405) (0.00866) (0.01521) (0.00250) (0.01046) (0.00466) (0.01011) (0.00570) (0.03234) (0.00446) (0.02581) (0.01077) 

event-year -2 x l1.drugs 0.00001 -0.00044* -0.00005 0.00008 -0.00038 0.00021 0.00004 -0.00002 0.00004 -0.00031* -0.00080 0.00007 -0.00011 0.00033 
 (0.00004) (0.00024) (0.00012) (0.00029) (0.00079) (0.00016) (0.00033) (0.00011) (0.00013) (0.00016) (0.00080) (0.00017) (0.00058) (0.00031) 

event-year 0 x l1.drugs 0.00364*** 0.02544*** 0.00867*** 0.00029 -0.00109 -0.00031 0.00146*** 0.00043*** 0.00120*** -0.00001 -0.00356 0.00004 0.00041 -0.00271*** 
 (0.00009) (0.00102) (0.00030) (0.00047) (0.00141) (0.00023) (0.00049) (0.00015) (0.00024) (0.00024) (0.00302) (0.00022) (0.00084) (0.00058) 

event-year 1 x l1.drugs 0.00413*** 0.03333*** 0.00408*** 0.00168*** -0.00198 0.00032 0.00247*** 0.00095*** 0.00141*** -0.00004 -0.00148 0.00037 0.00074 -0.00088* 
 (0.00008) (0.00113) (0.00021) (0.00044) (0.00134) (0.00024) (0.00050) (0.00016) (0.00024) (0.00026) (0.00288) (0.00023) (0.00084) (0.00050) 

Constant 13.13137*** 13.20603*** 13.13911*** 12.80648*** 13.13421*** 13.16052*** 13.18510*** 13.22327*** 13.13031*** 13.07340*** 13.05428*** 13.17107*** 13.04519*** 13.13089*** 
 (0.00045) (0.00255) (0.00098) (0.00182) (0.00191) (0.00080) (0.00116) (0.00092) (0.00148) (0.00165) (0.00526) (0.00129) (0.00288) (0.00217) 

Observations 6,110,797 583,626 1,485,778 453,439 218,158 1,121,812 296,976 625,880 426,651 265,282 42,198 288,409 89,636 212,952 

R-squared 0.00301 0.03609 0.00703 0.00170 0.00015 0.00033 0.00141 0.00167 0.00050 0.00012 0.00160 0.00165 0.00046 0.00090 

Number of experimental IDs 1,239,384 118,866 301,272 92,397 44,355 226,807 60,008 126,460 86,520 53,931 8,602 58,530 18,272 43,364 

t-test: event-year -2 x l1.drugs =0 0.740 0.0709 0.660 0.780 0.629 0.188 0.908 0.845 0.754 0.0628 0.317 0.660 0.855 0.278 

(B) Patents               

event-year -2 0.00129** -0.00160 0.00119 0.00055 0.00512 0.00302** -0.00135 0.00445** 0.00036 0.00769*** -0.00143 -0.00229 0.00648 -0.00140 
 (0.00064) (0.00272) (0.00163) (0.00354) (0.00359) (0.00145) (0.00312) (0.00199) (0.00290) (0.00298) (0.00804) (0.00272) (0.00593) (0.00489) 

event-year 0 -0.10416*** -0.52523*** -0.24522*** -0.08000*** -0.02413*** 0.04998*** 0.00840* 0.02506*** 0.00353 0.00722 -0.05415*** 0.02790*** 0.02552*** -0.00664 
 (0.00158) (0.01438) (0.00496) (0.00632) (0.00688) (0.00311) (0.00447) (0.00288) (0.00474) (0.00465) (0.01680) (0.00345) (0.00828) (0.00829) 

event-year 1 -0.07315*** -0.77166*** -0.06375*** -0.04812*** -0.00277 0.05596*** 0.01979*** 0.04917*** 0.02369*** 0.02079*** -0.06503*** 0.04561*** 0.02760*** 0.02777*** 
 (0.00148) (0.01615) (0.00316) (0.00600) (0.00679) (0.00266) (0.00472) (0.00302) (0.00481) (0.00478) (0.01965) (0.00387) (0.00926) (0.00769) 

event-year -2 x l1.patents -0.00000 -0.00002 -0.00000 -0.00000 -0.00001 -0.00000 -0.00000 -0.00000 0.00000 -0.00001* -0.00000 0.00002** -0.00000 0.00000 
 (0.00000) (0.00005) (0.00001) (0.00000) (0.00001) (0.00001) (0.00001) (0.00000) (0.00001) (0.00001) (0.00000) (0.00001) (0.00001) (0.00001) 

event-year 0 x l1.patents 0.00004*** 0.00137*** 0.00037*** -0.00000 0.00004** -0.00046*** 0.00006*** 0.00001** -0.00008*** -0.00001 -0.00002 0.00001 -0.00000 -0.00003*** 
 (0.00000) (0.00025) (0.00001) (0.00001) (0.00002) (0.00003) (0.00002) (0.00000) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) 

event-year 1 x l1.patents 0.00005*** 0.00259*** 0.00016*** -0.00003*** 0.00004** -0.00025*** 0.00011*** 0.00001*** -0.00008*** -0.00001 -0.00000 0.00003** 0.00000 -0.00000 
 (0.00000) (0.00028) (0.00001) (0.00001) (0.00002) (0.00002) (0.00002) (0.00000) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) 

Constant 13.13135*** 13.20599*** 13.13905*** 12.80646*** 13.13422*** 13.16045*** 13.18510*** 13.22326*** 13.13025*** 13.07340*** 13.05429*** 13.17107*** 13.04518*** 13.13090*** 
 (0.00045) (0.00255) (0.00098) (0.00182) (0.00191) (0.00079) (0.00116) (0.00092) (0.00148) (0.00165) (0.00526) (0.00129) (0.00287) (0.00217) 

Observations 6,110,797 583,626 1,485,778 453,439 218,158 1,121,812 296,976 625,880 426,651 265,282 42,198 288,409 89,636 212,952 

R-squared 0.00225 0.03232 0.00668 0.00173 0.00024 0.00483 0.00148 0.00159 0.00090 0.00012 0.00163 0.00167 0.00046 0.00077 

Number of experimental IDs 1,239,384 118,866 301,272 92,397 44,355 226,807 60,008 126,460 86,520 53,931 8,602 58,530 18,272 43,364 

t-test: event-year -2 x l1.patents =0 0.654 0.743 0.467 0.375 0.386 0.730 0.864 0.548 0.443 0.0901 0.528 0.0374 0.867 0.378 



16 
 

Note: Additionally to the terms reported in the table, models include (experimental) individual fixed effects. Event-years -3 and -1 are reference categories. Standard errors clustered at a (experimental) 
individual level are in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 
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Table E3 – Results of the t-test on non-linear pre-trends in responses of ihs family income to a health shock across levels of medical innovations (drugs and patents) by broad 
disease groups (β3 is unrelated to future outcomes) from a final estimation sample (an event-study specification of the DDD specification in the main body) 

 Altogether Cancers Circulatory Mental Nervous Digestive 
Musculo- 
skeletal 

Urinary Respiratory  Metabolic 
D. of  
bloodforming  
organs 

D. of sense  
organs 

D. of skin Infectious 

(A) Drugs                

event-year -2 0.00021 0.00073 -0.00054 -0.00779 0.00307 0.00036 -0.01412 0.00121 0.00772 0.00902* 0.02169* -0.00081 0.02134 -0.00873 
 (0.00124) (0.00390) (0.00305) (0.00751) (0.01349) (0.00224) (0.01056) (0.00474) (0.00700) (0.00527) (0.01318) (0.00483) (0.02503) (0.00963) 

event-year 0 0.03115*** 0.02864*** 0.02547*** -0.01265 0.06637*** 0.03805*** -0.01196 0.03588*** 0.01499* 0.04111*** 0.01880 0.04122*** 0.01686 0.03669*** 
 (0.00138) (0.00427) (0.00346) (0.00871) (0.01332) (0.00256) (0.01051) (0.00535) (0.00803) (0.00548) (0.02099) (0.00517) (0.02731) (0.01139) 

event-year 1 0.05147*** 0.04384*** 0.04332*** -0.01760* 0.07695*** 0.06421*** 0.01114 0.05164*** 0.03112*** 0.05355*** 0.04780** 0.06460*** 0.05817* 0.07124*** 
 (0.00154) (0.00467) (0.00377) (0.01038) (0.01567) (0.00284) (0.01111) (0.00583) (0.00926) (0.00649) (0.02312) (0.00576) (0.03080) (0.01212) 

event-year -2 x treated 0.00103 -0.00068 0.00256 0.00846 0.00727 0.00176 0.02258* 0.00564 -0.01450 0.00223 -0.03280 0.00101 -0.02522 0.00808 

 (0.00170) (0.00538) (0.00418) (0.01112) (0.01760) (0.00308) (0.01360) (0.00641) (0.00987) (0.00713) (0.02158) (0.00626) (0.03367) (0.01357) 

event-year 0 x treated -0.35758*** -1.39229*** -0.65778*** -0.14813*** -0.13600*** -0.07794*** 0.00563 -0.03413*** -0.18344*** -0.07246*** -0.10101 -0.02320*** -0.01052 -0.02702 

 (0.00431) (0.02547) (0.01303) (0.01752) (0.03163) (0.00498) (0.01992) (0.00889) (0.02044) (0.01108) (0.06175) (0.00796) (0.04942) (0.02263) 

event-year 1 x treated -0.35255*** -2.05754*** -0.27676*** -0.15347*** -0.09357*** -0.07696*** -0.03609* -0.04096*** -0.19555*** -0.06933*** -0.20145*** -0.03909*** -0.09369* -0.05753*** 

 (0.00415) (0.03010) (0.00811) (0.01730) (0.03036) (0.00500) (0.02091) (0.00931) (0.02017) (0.01139) (0.06500) (0.00891) (0.05149) (0.02149) 

event-year -2 x l1.drugs -0.00001 -0.00062* 0.00001 0.00015 0.00009 0.00037* 0.00044 0.00006 -0.00020 -0.00047* -0.00128 0.00017 -0.00076 0.00051 
 (0.00006) (0.00036) (0.00018) (0.00038) (0.00120) (0.00022) (0.00050) (0.00017) (0.00018) (0.00025) (0.00087) (0.00025) (0.00087) (0.00043) 

event-year 0 x l1.drugs 0.00041*** 0.00085** 0.00085*** 0.00102** -0.00250** 0.00055** 0.00251*** 0.00046** 0.00066*** 0.00021 0.00044 -0.00004 0.00095 0.00009 
 (0.00007) (0.00038) (0.00020) (0.00045) (0.00121) (0.00026) (0.00052) (0.00019) (0.00020) (0.00020) (0.00181) (0.00032) (0.00090) (0.00055) 

event-year 1 x l1.drugs 0.00047*** 0.00187*** 0.00119*** 0.00084 -0.00129 0.00050* 0.00260*** 0.00090*** 0.00073*** 0.00013 0.00020 0.00037 -0.00032 -0.00023 
 (0.00008) (0.00042) (0.00023) (0.00058) (0.00139) (0.00029) (0.00057) (0.00020) (0.00023) (0.00031) (0.00197) (0.00032) (0.00103) (0.00055) 

event-year -2 x treated x l1.drugs 0.00007 0.00051 -0.00009 -0.00014 -0.00090 -0.00031 -0.00078 -0.00016 0.00050* 0.00033 0.00090 -0.00019 0.00129 -0.00035 

 (0.00008) (0.00048) (0.00024) (0.00057) (0.00158) (0.00031) (0.00066) (0.00022) (0.00026) (0.00033) (0.00159) (0.00034) (0.00116) (0.00061) 

event-year 0 x treated x l1.drugs 0.00637*** 0.04832*** 0.01545*** -0.00151 0.00283 -0.00171*** -0.00210** -0.00008 0.00103** -0.00044 -0.00800 0.00015 -0.00111 -0.00560*** 

 (0.00017) (0.00198) (0.00060) (0.00094) (0.00280) (0.00047) (0.00097) (0.00031) (0.00047) (0.00048) (0.00598) (0.00044) (0.00167) (0.00116) 

event-year 1 x treated x l1.drugs 0.00733*** 0.06768*** 0.00566*** 0.00167* -0.00139 -0.00037 -0.00032 0.00010 0.00132*** -0.00035 -0.00355 -0.00001 0.00210 -0.00131 

 (0.00017) (0.00230) (0.00042) (0.00088) (0.00267) (0.00049) (0.00100) (0.00032) (0.00047) (0.00051) (0.00582) (0.00046) (0.00168) (0.00100) 

Constant 13.13078*** 13.20289*** 13.13836*** 12.80600*** 13.13390*** 13.16037*** 13.18504*** 13.22321*** 13.12996*** 13.07319*** 13.05364*** 13.17100*** 13.04507*** 13.13058*** 
 (0.00045) (0.00246) (0.00097) (0.00181) (0.00190) (0.00079) (0.00116) (0.00092) (0.00147) (0.00164) (0.00520) (0.00129) (0.00287) (0.00216) 

Observations 6,110,797 583,626 1,485,778 453,439 218,158 1,121,812 296,976 625,880 426,651 265,282 42,198 288,409 89,636 212,952 

R-squared 0.00886 0.08012 0.01679 0.00342 0.00173 0.00144 0.00190 0.00197 0.00295 0.00112 0.00520 0.00189 0.00081 0.00271 

Number of experimental IDs 1,239,384 118,866 301,272 92,397 44,355 226,807 60,008 126,460 86,520 53,931 8,602 58,530 18,272 43,364 

t-test: event-year -2 x treated =0 0.547 0.899 0.539 0.447 0.679 0.568 0.0969 0.378 0.142 0.754 0.129 0.872 0.454 0.551 

t-test: event-year -2 x l1.drugs =0 0.810 0.0885 0.964 0.681 0.943 0.0897 0.381 0.714 0.268 0.0537 0.141 0.501 0.385 0.240 

t-test: event-year -2 x treated x l1.drugs =0 0.420 0.292 0.713 0.812 0.571 0.319 0.239 0.474 0.0510 0.311 0.572 0.580 0.265 0.571 

(B) Patents               

event-year -2 0.00013 -0.00231 0.00008 -0.00297 -0.00066 0.00181 -0.00646 0.00496* -0.00048 0.00455 0.01203 -0.00474 0.00261 -0.00513 
 (0.00094) (0.00387) (0.00236) (0.00485) (0.00541) (0.00201) (0.00494) (0.00301) (0.00425) (0.00451) (0.01121) (0.00427) (0.00929) (0.00682) 

event-year 0 0.03769*** 0.02600*** 0.03132*** 0.00932 0.03830*** 0.04556*** 0.02239*** 0.04240*** 0.03929*** 0.04415*** 0.02258* 0.03596*** 0.02884*** 0.03322*** 
 (0.00104) (0.00429) (0.00269) (0.00582) (0.00562) (0.00249) (0.00479) (0.00339) (0.00452) (0.00482) (0.01337) (0.00460) (0.00956) (0.00819) 

event-year 1 0.06106*** 0.03964*** 0.05128*** 0.01300* 0.05390*** 0.07180*** 0.04110*** 0.07003*** 0.06161*** 0.05651*** 0.04901*** 0.06202*** 0.03628*** 0.06409*** 
 (0.00117) (0.00472) (0.00294) (0.00682) (0.00654) (0.00274) (0.00518) (0.00369) (0.00506) (0.00543) (0.01570) (0.00496) (0.01090) (0.00869) 
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event-year -2 x treated 0.00212* -0.00015 0.00165 0.00672 0.01119 0.00235 0.00997 -0.00103 0.00159 0.00603 -0.02637 0.00478 0.00738 0.00721 

 (0.00128) (0.00542) (0.00325) (0.00707) (0.00720) (0.00290) (0.00626) (0.00400) (0.00581) (0.00598) (0.01606) (0.00547) (0.01193) (0.00976) 

event-year 0 x treated -0.28078*** -1.08752*** -0.54913*** -0.17592*** -0.12297*** 0.00871 -0.02757*** -0.03431*** -0.07027*** -0.07276*** -0.15062*** -0.01581** -0.00629 -0.07806*** 

 (0.00314) (0.02789) (0.00979) (0.01254) (0.01365) (0.00609) (0.00891) (0.00575) (0.00942) (0.00924) (0.03332) (0.00689) (0.01649) (0.01645) 

event-year 1 x treated -0.26871*** -1.69400*** -0.22891*** -0.12049*** -0.11209*** -0.03043*** -0.04230*** -0.04149*** -0.07421*** -0.07068*** -0.22768*** -0.03267*** -0.01700 -0.07135*** 

 (0.00297) (0.03331) (0.00634) (0.01198) (0.01355) (0.00539) (0.00944) (0.00603) (0.00960) (0.00954) (0.03940) (0.00774) (0.01848) (0.01534) 

event-year -2 x l1.patents -0.00000 -0.00005 -0.00000 -0.00000 0.00002 0.00001 0.00001 -0.00000 0.00000 -0.00001 -0.00000 0.00003*** -0.00000 0.00001 
 (0.00000) (0.00007) (0.00001) (0.00001) (0.00001) (0.00001) (0.00002) (0.00000) (0.00001) (0.00001) (0.00000) (0.00001) (0.00001) (0.00001) 

event-year 0 x l1.patents 0.00000 0.00021*** 0.00004*** -0.00001 0.00000 -0.00003** 0.00008*** 0.00001** 0.00000 0.00000 0.00000 0.00002* 0.00002** 0.00001 
 (0.00000) (0.00008) (0.00001) (0.00001) (0.00002) (0.00002) (0.00002) (0.00000) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) 

event-year 1 x l1.patents -0.00001** 0.00042*** 0.00005*** -0.00002*** 0.00003** -0.00004** 0.00011*** 0.00000 -0.00000 -0.00000 0.00000 0.00004*** 0.00001 0.00000 
 (0.00000) (0.00009) (0.00001) (0.00001) (0.00002) (0.00002) (0.00002) (0.00000) (0.00001) (0.00001) (0.00001) (0.00002) (0.00001) (0.00001) 

event-year -2 x treated x l1.patents 0.00000 0.00008 -0.00000 -0.00000 -0.00005** -0.00002 -0.00002 0.00000 0.00001 0.00001 0.00000 -0.00004** 0.00000 -0.00001 

 (0.00000) (0.00010) (0.00001) (0.00001) (0.00002) (0.00002) (0.00002) (0.00000) (0.00001) (0.00001) (0.00001) (0.00002) (0.00001) (0.00001) 

event-year 0 x treated x l1.patents 0.00008*** 0.00219*** 0.00066*** 0.00001 0.00007* -0.00085*** -0.00005 -0.00000 -0.00016*** -0.00002 -0.00004 -0.00003 -0.00004*** -0.00008*** 

 (0.00000) (0.00049) (0.00003) (0.00001) (0.00003) (0.00006) (0.00004) (0.00000) (0.00002) (0.00002) (0.00003) (0.00002) (0.00001) (0.00002) 

event-year 1 x treated x l1.patents 0.00011*** 0.00468*** 0.00020*** -0.00001 0.00001 -0.00043*** -0.00000 0.00000 -0.00016*** -0.00002 -0.00001 -0.00004 -0.00002 -0.00002 

 (0.00000) (0.00058) (0.00002) (0.00001) (0.00004) (0.00004) (0.00004) (0.00001) (0.00002) (0.00002) (0.00002) (0.00003) (0.00002) (0.00002) 

Constant 13.13079*** 13.20313*** 13.13836*** 12.80598*** 13.13390*** 13.16028*** 13.18504*** 13.22320*** 13.12993*** 13.07319*** 13.05364*** 13.17100*** 13.04509*** 13.13059*** 
 (0.00045) (0.00247) (0.00097) (0.00181) (0.00190) (0.00079) (0.00116) (0.00092) (0.00147) (0.00164) (0.00520) (0.00129) (0.00287) (0.00216) 

Observations 6,110,797 583,626 1,485,778 453,439 218,158 1,121,812 296,976 625,880 426,651 265,282 42,198 288,409 89,636 212,952 

R-squared 0.00758 0.07240 0.01619 0.00343 0.00189 0.00965 0.00195 0.00189 0.00392 0.00113 0.00524 0.00193 0.00093 0.00251 

Number of experimental IDs 1,239,384 118,866 301,272 92,397 44,355 226,807 60,008 126,460 86,520 53,931 8,602 58,530 18,272 43,364 

t-test: event-year -2 x treated =0 0.0971 0.978 0.613 0.342 0.120 0.419 0.112 0.797 0.784 0.313 0.101 0.382 0.536 0.460 

t-test: event-year -2 x l1.patents =0 0.786 0.518 0.787 0.567 0.122 0.333 0.754 0.338 0.960 0.118 0.348 0.00598 0.716 0.230 

t-test: event-year -2 x treated x l1.patents =0 0.982 0.424 0.832 0.948 0.0103 0.157 0.531 0.308 0.480 0.539 0.637 0.0281 0.667 0.446 

Note: Additionally to the terms reported in the table, models include (experimental) individual fixed effects. Event-years -3 and -1 are reference categories. Standard errors clustered at a (experimental) 
individual level are in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 
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Table E4 – Results of the t-test on non-linear pre-trends in responses of the sources of ihs family income to a health shock across levels of medical innovations (drugs and 
patents) by broad disease groups (β3 is unrelated to future outcomes) from a final estimation sample (an event-study specification of the DDD specification in the main body) 

Variables Ihs Own Disposable Income Ihs Spouse’s Disposable Income Ihs Own Labour Income Ihs Sickness Absence Payments 
Ihs Unemployment 
Payments 

Ihs Disability Pension Payments Ihs Own Capital Income 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

event-year -2 0.00321 0.00131 0.00360 0.00168 0.00563* 0.01062*** 0.01557** 0.00641 -0.00002 -0.00175 -0.01385*** -0.01507*** 0.02468*** 0.00715 
 (0.00210) (0.00155) (0.00388) (0.00290) (0.00327) (0.00247) (0.00752) (0.00553) (0.00203) (0.00150) (0.00160) (0.00122) (0.00877) (0.00678) 

event-year 0 0.05134*** 0.05210*** -0.13231*** -0.08783*** -0.10410*** -0.08902*** -0.25142*** -0.21744*** -0.00356 -0.00440*** 0.18009*** 0.19142*** -0.31324*** -0.27164*** 
 (0.00236) (0.00177) (0.00523) (0.00390) (0.00424) (0.00320) (0.00824) (0.00612) (0.00224) (0.00168) (0.00278) (0.00212) (0.01078) (0.00828) 

event-year 1 0.07452*** 0.07708*** -0.19632*** -0.13476*** -0.18189*** -0.15382*** -0.24538*** -0.18425*** 0.00700*** 0.00454** 0.30401*** 0.31867*** -0.51213*** -0.39845*** 
 (0.00264) (0.00200) (0.00636) (0.00473) (0.00503) (0.00379) (0.00911) (0.00684) (0.00248) (0.00188) (0.00371) (0.00283) (0.01246) (0.00955) 

event-year -2 x treated 0.00399 0.00616*** 0.00017 0.00280 -0.00414 -0.00520 -0.06327*** -0.06933*** -0.00532* -0.00243 0.00241 0.00472*** -0.02817** -0.01311 
 (0.00286) (0.00213) (0.00545) (0.00407) (0.00460) (0.00346) (0.01060) (0.00782) (0.00287) (0.00213) (0.00226) (0.00172) (0.01217) (0.00940) 

event-year 0 x treated -0.08811*** -0.06186*** -0.49074*** -0.38706*** -0.17165*** -0.10181*** 3.74694*** 3.88978*** 0.41135*** 0.37895*** 0.01301*** 0.01965*** 0.01803 0.00108 
 (0.00392) (0.00285) (0.00920) (0.00685) (0.00658) (0.00489) (0.01323) (0.01004) (0.00442) (0.00333) (0.00411) (0.00314) (0.01519) (0.01167) 

event-year 1 x treated -0.07141*** -0.04825*** -0.51174*** -0.39551*** -0.20586*** -0.13692*** 1.74219*** 1.89676*** 0.18950*** 0.18599*** 0.18454*** 0.19095*** 0.01654 0.02578* 
 (0.00408) (0.00302) (0.01044) (0.00773) (0.00758) (0.00564) (0.01428) (0.01091) (0.00418) (0.00321) (0.00584) (0.00455) (0.01767) (0.01355) 

event-year -2 x l1.drugs -0.00014  0.00004  0.00039**  -0.00075**  -0.00008  0.00004  -0.00160***  

 (0.00010)  (0.00019)  (0.00016)  (0.00032)  (0.00008)  (0.00008)  (0.00047)  

event-year 0 x l1.drugs -0.00024**  0.00293***  0.00021  0.00297***  -0.00001  0.00158***  0.00376***  

 (0.00012)  (0.00025)  (0.00021)  (0.00037)  (0.00010)  (0.00014)  (0.00056)  

event-year 1 x l1.drugs -0.00029**  0.00353***  0.00053**  0.00517***  -0.00014  0.00216***  0.01073***  

 (0.00013)  (0.00031)  (0.00025)  (0.00041)  (0.00011)  (0.00018)  (0.00063)  

event-year -2 x treated x l1.drugs 0.00007  0.00011  -0.00006  -0.00014  0.00015  0.00003  0.00095  

 (0.00014)  (0.00027)  (0.00023)  (0.00046)  (0.00012)  (0.00011)  (0.00065)  

event-year 0 x treated x l1.drugs 0.00260***  0.00734***  0.00564***  -0.00533***  -0.00433***  0.00068***  -0.00039  

 (0.00017)  (0.00041)  (0.00031)  (0.00062)  (0.00019)  (0.00020)  (0.00079)  

event-year 1 x treated x l1.drugs 0.00224***  0.00930***  0.00542***  -0.00104  -0.00158***  -0.00050*  -0.00006  

 (0.00019)  (0.00048)  (0.00037)  (0.00065)  (0.00018)  (0.00027)  (0.00089)  

event-year -2 x l1.patents  -0.00000  0.00001  0.00000  -0.00001  0.00000  0.00001**  -0.00003** 
  (0.00000)  (0.00000)  (0.00000)  (0.00001)  (0.00000)  (0.00000)  (0.00001) 

event-year 0 x l1.patents  -0.00001***  0.00001  -0.00004***  0.00005***  0.00000  0.00005***  0.00006*** 
  (0.00000)  (0.00001)  (0.00001)  (0.00001)  (0.00000)  (0.00000)  (0.00001) 

event-year 1 x l1.patents  -0.00002***  -0.00001  -0.00006***  0.00008***  0.00000  0.00006***  0.00019*** 
  (0.00000)  (0.00001)  (0.00001)  (0.00001)  (0.00000)  (0.00001)  (0.00002) 

event-year -2 x treated x l1.patents  -0.00000  -0.00000  0.00000  0.00001  -0.00000  -0.00001*  0.00000 
  (0.00000)  (0.00001)  (0.00001)  (0.00001)  (0.00000)  (0.00000)  (0.00002) 

event-year 0 x treated x l1.patents  0.00005***  0.00005***  0.00007***  -0.00069***  -0.00012***  0.00001***  0.00003 
  (0.00000)  (0.00001)  (0.00001)  (0.00002)  (0.00000)  (0.00001)  (0.00002) 

event-year 1 x treated x l1.patents  0.00004***  0.00011***  0.00006***  -0.00051***  -0.00007***  -0.00004***  -0.00003 
  (0.00001)  (0.00001)  (0.00001)  (0.00002)  (0.00000)  (0.00001)  (0.00002) 

Constant 12.48133*** 12.48133*** 9.12079*** 9.12079*** 11.85171*** 11.85172*** 3.33752*** 3.33561*** 0.18867*** 0.18866*** 0.82241*** 0.82230*** -1.08819*** -1.08823*** 
 (0.00051) (0.00051) (0.00118) (0.00118) (0.00090) (0.00090) (0.00186) (0.00186) (0.00055) (0.00055) (0.00064) (0.00064) (0.00223) (0.00223) 

Observations 6,110,797 6,110,797 6,110,797 6,110,797 6,110,797 6,110,797 5,869,111 5,869,111 6,110,797 6,110,797 5,869,111 5,869,111 6,110,797 6,110,797 
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R-squared 0.00072 0.00065 0.00669 0.00606 0.00389 0.00366 0.08586 0.08676 0.01001 0.01006 0.02485 0.02486 0.00139 0.00127 

Number of experimental IDs 1,239,384 1,239,384 1,239,384 1,239,384 1,239,384 1,239,384 1,239,336 1,239,336 1,239,384 1,239,384 1,239,336 1,239,336 1,239,384 1,239,384 

t-test: event-year -2 x treated =0 0.163 0.00382 0.975 0.492 0.368 0.133 0 0 0.0640 0.253 0.284 0.00606 0.0207 0.163 

t-test: event-year -2 x l1.drugs =0 0.183  0.818  0.0139  0.0214  0.332  0.613  0.000587  

t-test: event-year -2 x treated x l1.drugs =0 0.601  0.676  0.790  0.755  0.199  0.771  0.144  

t-test: event-year -2 x l1.patents =0  0.661  0.115  0.339  0.191  0.566  0.0120  0.0273 

t-test: event-year -2 x treated x l1.patents =0  0.441  0.749  0.970  0.400  0.698  0.0902  0.900 

Note: Additionally to the terms reported in the table, models include (experimental) individual fixed effects. Event-years -3 and -1 are reference categories. Standard errors clustered at a (experimental) 
individual level are in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix F 

Table – Results of the t-test on non-linear pre-trends in the models for robustness analyses 

Variables Detrended Innovations International Innovations Only 10-Year Lags of Innovations 
Symptoms and External  
Causes as Controls 

Adding the Died to the Treated Adding Outpatient Register 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
event-year -2 0.00017 0.00006 0.00066 0.00003 -0.00042 0.00009 -0.00004 -0.00015 0.00056 0.00037 0.00066 0.00120 
 (0.00117) (0.00092) (0.00120) (0.00088) (0.00121) (0.00091) (0.00118) (0.00089) (0.00124) (0.00094) (0.00252) (0.00176) 
event-year 0 0.03240*** 0.03771*** 0.03148*** 0.03612*** 0.03086*** 0.03691*** 0.03348*** 0.03679*** 0.03102*** 0.03795*** 0.05325*** 0.05978*** 
 (0.00131) (0.00103) (0.00136) (0.00098) (0.00136) (0.00102) (0.00134) (0.00102) (0.00139) (0.00105) (0.00306) (0.00207) 
event-year 1 0.05301*** 0.06103*** 0.05290*** 0.05758*** 0.05069*** 0.05938*** 0.05524*** 0.06092*** 0.05143*** 0.06134*** 0.08574*** 0.08966*** 
 (0.00146) (0.00115) (0.00149) (0.00110) (0.00150) (0.00114) (0.00147) (0.00111) (0.00155) (0.00118) (0.00344) (0.00227) 
event-year -2 x treated 0.00110 0.00215* 0.00043 0.00231* 0.00165 0.00211* 0.00188 0.00259** 0.00074 0.00200 0.00063 0.00437* 
 (0.00161) (0.00126) (0.00165) (0.00120) (0.00166) (0.00124) (0.00161) (0.00120) (0.00170) (0.00128) (0.00352) (0.00242) 
event-year 0 x treated -0.34701*** -0.28610*** -0.37046*** -0.27055*** -0.37291*** -0.27532*** -0.36759*** -0.28457*** -0.35707*** -0.28041*** -0.06319*** -0.04677*** 
 (0.00408) (0.00316) (0.00444) (0.00295) (0.00438) (0.00301) (0.00404) (0.00294) (0.00431) (0.00314) (0.00525) (0.00349) 
event-year 1 x treated -0.34109*** -0.27787*** -0.36431*** -0.25543*** -0.36723*** -0.26100*** -0.36924*** -0.27744*** -0.35201*** -0.26862*** -0.07218*** -0.04988*** 
 (0.00394) (0.00303) (0.00423) (0.00278) (0.00420) (0.00284) (0.00391) (0.00281) (0.00415) (0.00298) (0.00551) (0.00359) 
event-year -2 x l1.drugs -0.00001  -0.00011  0.00004  -0.00002  -0.00003  -0.00004  
 (0.00006)  (0.00016)  (0.00009)  (0.00006)  (0.00006)  (0.00008)  
event-year 0 x l1.drugs 0.00038***  0.00103***  0.00064***  0.00041***  0.00041***  0.00010  
 (0.00007)  (0.00018)  (0.00010)  (0.00007)  (0.00007)  (0.00009)  
event-year 1 x l1.drugs 0.00043***  0.00101***  0.00078***  0.00061***  0.00049***  0.00010  
 (0.00008)  (0.00020)  (0.00011)  (0.00007)  (0.00008)  (0.00010)  
event-year -2 x treated x l1.drugs 0.00007  0.00027  0.00004  0.00005  0.00008  0.00011  
 (0.00009)  (0.00022)  (0.00012)  (0.00008)  (0.00008)  (0.00011)  
event-year 0 x treated x l1.drugs 0.00654***  0.01902***  0.01100***  0.00651***  0.00637***  0.00101***  
 (0.00017)  (0.00047)  (0.00026)  (0.00016)  (0.00017)  (0.00015)  
event-year 1 x treated x l1.drugs 0.00757***  0.02136***  0.01236***  0.00742***  0.00729***  0.00110***  
 (0.00017)  (0.00045)  (0.00025)  (0.00016)  (0.00017)  (0.00016)  
event-year -2 x l1.patents  -0.00000  -0.00000  -0.00000  -0.00000  -0.00000  -0.00000 
  (0.00000)  (0.00000)  (0.00000)  (0.00000)  (0.00000)  (0.00000) 
event-year 0 x l1.patents  0.00000  0.00001***  0.00001  0.00001***  -0.00000  -0.00001** 
  (0.00000)  (0.00000)  (0.00000)  (0.00000)  (0.00000)  (0.00000) 
event-year 1 x l1.patents  -0.00001**  0.00001***  -0.00000  0.00001***  -0.00001**  -0.00000 
  (0.00000)  (0.00000)  (0.00000)  (0.00000)  (0.00000)  (0.00000) 
event-year -2 x treated x l1.patents  -0.00000  -0.00000  0.00000  0.00000  0.00000  -0.00000 
  (0.00000)  (0.00000)  (0.00000)  (0.00000)  (0.00000)  (0.00000) 
event-year 0 x treated x l1.patents  0.00010***  0.00012***  0.00014***  0.00007***  0.00008***  0.00002*** 
  (0.00000)  (0.00001)  (0.00001)  (0.00000)  (0.00000)  (0.00000) 
event-year 1 x treated x l1.patents  0.00014***  0.00017***  0.00018***  0.00009***  0.00011***  0.00001*** 
  (0.00000)  (0.00001)  (0.00001)  (0.00000)  (0.00000)  (0.00000) 
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Constant 13.13076*** 13.13076*** 13.13076*** 13.13077*** 13.13078*** 13.13079*** 13.12754*** 13.12755*** 13.12853*** 13.12854*** 13.34154*** 13.34154*** 
 (0.00045) (0.00045) (0.00045) (0.00045) (0.00045) (0.00045) (0.00042) (0.00042) (0.00045) (0.00045) (0.00052) (0.00052) 
Observations 6,110,797 6,110,797 6,110,797 6,110,797 6,110,797 6,110,797 7,112,891 7,112,891 6,149,619 6,149,619 2,731,000 2,731,000 
R-squared 0.00885 0.00789 0.00911 0.00750 0.00947 0.00756 0.00933 0.00797 0.00879 0.00752 0.00212 0.00204 
Number of experimental IDs 1,239,384 1,239,384 1,239,384 1,239,384 1,239,384 1,239,384 1,442,305 1,442,305 1,249,051 1,249,051 553,349 553,349 
t-test: event-year -2 x treated =0 0.495 0.0881 0.795 0.0552 0.320 0.0898 0.243 0.0310 0.665 0.117 0.858 0.0713 
t-test: event-year -2 x l1.drugs =0 0.837  0.492  0.683  0.788  0.666  0.622  
t-test: event-year -2 x treated x l1.drugs =0 0.408  0.208  0.718  0.515  0.347  0.297  
t-test: event-year -2 x l1.patents =0  0.877  0.912  0.817  0.761  0.688  0.196 
t-test: event-year -2 x treated x l1.patents =0  0.979  0.760  0.974  0.850  0.978  0.708 

Note: Additionally to the terms reported in the table, models include (experimental) individual fixed effects. Event-years -3 and -1 are reference categories. Standard errors clustered at a (experimental) 
individual level are in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix G 

 

Figure G1 – Linear regression-based tree for the impact of medical innovations (l1.drugs) on ihs family disposable income. 
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Figure G2 – Linear regression-based tree for the impact of medical innovations (l1.patents) on ihs family disposable income. 
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Appendix H 

Table – DDD estimates for selected single diseases: Impact of medical innovations in 1981–2006 on the ihs family income in ages 40–60 Sweden 

 Prostate Cancer Breast Cancer Hypertensive diseases Ischaemic heart diseases 
 ihs family income ihs own income ihs family income ihs own income ihs family income ihs own income ihs family income ihs own income 

post 0.00937 0.00985 0.09506*** 0.09792*** 0.02963 0.05281*** -0.01970 -0.00040 -0.01216 0.00435 -0.00386 0.05359 0.02300*** 0.02421*** 0.05911*** 0.05378*** 
 (0.00724) (0.00749) (0.01838) (0.01871) (0.03753) (0.01534) (0.05678) (0.02567) (0.01761) (0.01788) (0.03048) (0.03315) (0.00776) (0.00595) (0.01258) (0.00971) 

post x l1.drugs 0.00320***  -0.00254*  0.00194  0.00403  0.00181***  0.00153  0.00144***  0.00004  
 (0.00058)  (0.00134)  (0.00232)  (0.00338)  (0.00068)  (0.00115)  (0.00043)  (0.00068)  

DDidst -0.47224*** -0.47515*** -0.14243*** -0.13907*** -1.73045*** -0.94086*** -0.91345*** -0.23122*** -0.11106*** -0.11696*** 0.04901 0.04544 -0.75891*** -0.64987*** -0.51214*** -0.41933*** 
 (0.02647) (0.02747) (0.03048) (0.03075) (0.19074) (0.07022) (0.17044) (0.05465) (0.03144) (0.03470) (0.04526) (0.05072) (0.02700) (0.02166) (0.02662) (0.02136) 

DDidst x l1.drugs 0.01512***  0.00790***  0.07345***  0.05167***  0.00214*  -0.00207  0.02314***  0.02080***  
 (0.00175)  (0.00207)  (0.01091)  (0.00974)  (0.00115)  (0.00167)  (0.00122)  (0.00125)  

post x l1.patents  0.00071***  -0.00062**  0.00024  0.00131**  0.00027  -0.00017  0.00025***  0.00006 
  (0.00013)  (0.00030)  (0.00043)  (0.00054)  (0.00017)  (0.00030)  (0.00006)  (0.00009) 

DDidst x l1.patents  0.00343***  0.00170***  0.01157***  0.00463***  0.00055*  -0.00045  0.00325***  0.00297*** 
  (0.00041)  (0.00047)  (0.00145)  (0.00112)  (0.00030)  (0.00044)  (0.00017)  (0.00018) 

Constant 13.23354*** 13.23354*** 12.36356*** 12.36356*** 13.37578*** 13.37566*** 12.86785*** 12.86783*** 13.09513*** 13.09512*** 12.41587*** 12.41582*** 13.13333*** 13.13334*** 12.55318*** 12.55318*** 
 (0.00215) (0.00215) (0.00238) (0.00238) (0.00662) (0.00661) (0.00516) (0.00518) (0.00237) (0.00236) (0.00356) (0.00356) (0.00162) (0.00162) (0.00161) (0.00161) 

Observations 217,867 217,867 217,867 217,867 38,471 38,471 38,471 38,471 103,021 103,021 103,021 103,021 502,948 502,948 502,948 502,948 

R-squared 0.01215 0.01191 0.00079 0.00075 0.02850 0.02952 0.00584 0.00338 0.00105 0.00083 0.00029 0.00034 0.01479 0.01497 0.00338 0.00358 

Number of individuals 43,888 43,888 43,888 43,888 7,792 7,792 7,792 7,792 20,854 20,854 20,854 20,854 101,801 101,801 101,801 101,801 

Individual (experimental) FEs yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes 

1 SD of l1.drugs /l1.patents 6.436942 27.05131 6.436942 27.05131 3.545197 24.24355 3.545197 24.24355 10.30004 40.7342 10.30004 40.7342 7.161477 51.14879 7.161477 51.14879 
1 SD x effect x 100% 9.73% 9.28% 5.09% 4.60% 26.04% 28.05% 18.32% 11.22% 2.20% 2.24% -2.13% -1.83% 16.57% 16.62% 14.90% 15.19% 
1 SD combined effect x 100%  19.01%  9.68%  54.09%  29.54%  4.44%  -3.97%  33.20%  30.09% 
1 SD combined SE x 100%  1.58%  1.84%  5.23%  4.39%  1.70%  2.48%  1.23%  1.28% 
CI lower 95%  15.91%  6.07%  43.85%  20.93%  1.11%  -8.83%  30.78%  27.57% 
CI higher 95  22.11%  13.29%  64.33%  38.15%  7.78%  0.90%  35.61%  32.60% 

 

    Table G1 Cont’d 

 Cardiac arrhythmias and heart failure 
 

Cerebrovascular diseases 
 

Diseases of arteries, arterioles and capillaries 
 

Mental and behavioural disorders due to use of alcohol and other 
substances 

  ihs family income ihs own income ihs family income ihs own income ihs family income ihs own income ihs family income ihs own income 

post -0.02750 0.01809* 0.00336 0.02076 0.01261 0.02074** 0.05153*** 0.05583*** 0.06846*** 0.07724*** 0.05043 0.05292* -0.02371 0.01210 0.01283 0.06143** 
 

(0.01764) (0.01021) (0.03059) (0.01731) (0.00995) (0.01038) (0.01803) (0.01859) (0.02595) (0.01994) (0.03597) (0.02848) (0.05898) (0.02217) (0.07324) (0.02635) 
post x l1.drugs 0.00315***  0.00205*  0.00388***  -0.00044  -0.00137  0.00050  0.00111  -0.00180  
 

(0.00064)  (0.00108)  (0.00102)  (0.00186)  (0.00339)  (0.00438)  (0.00621)  (0.00771)  
DDidst -0.36692*** -0.28976*** -0.14254*** -0.08145*** -1.18349*** -1.21691*** -0.61881*** -0.68695*** -0.53963*** -0.50059*** -0.25572*** -0.23008*** -0.25071*** -0.17362*** -0.28695*** -0.12734*** 
 

(0.04525) (0.02563) (0.04911) (0.02801) (0.04653) (0.04677) (0.04038) (0.04318) (0.07276) (0.05672) (0.06167) (0.05444) (0.09612) (0.03845) (0.10677) (0.04198) 
DDidst x l1.drugs 0.00599***  0.00384**  0.04672***  0.05104***  0.01294  0.02374***  0.01186  0.03146***  
 

(0.00152)  (0.00168)  (0.00419)  (0.00362)  (0.00871)  (0.00711)  (0.00996)  (0.01108)  
post x l1.patents  0.00014***  0.00013**  0.00021***  -0.00006  -0.00004  0.00000  -0.00002  -0.00004** 
 

 (0.00003)  (0.00005)  (0.00007)  (0.00013)  (0.00005)  (0.00006)  (0.00001)  (0.00002) 
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DDidst x l1.patents  0.00029***  0.00015*  0.00340***  0.00393***  0.00014  0.00036***  0.00002  0.00010*** 
 

 (0.00007)  (0.00008)  (0.00028)  (0.00026)  (0.00011)  (0.00010)  (0.00002)  (0.00003) 
Constant 13.21043*** 13.21043*** 12.59019*** 12.59020*** 13.14844*** 13.14842*** 12.47717*** 12.47714*** 13.04147*** 13.04145*** 12.45956*** 12.45956*** 12.66785*** 12.66781*** 12.28084*** 12.28076*** 
 

(0.00208) (0.00208) (0.00223) (0.00223) (0.00327) (0.00327) (0.00259) (0.00259) (0.00576) (0.00576) (0.00467) (0.00467) (0.00283) (0.00283) (0.00313) (0.00313) 
Observations 203,803 203,803 203,803 203,803 239,628 239,628 239,628 239,628 51,174 51,174 51,174 51,174 180,668 180,668 180,668 180,668 
R-squared 0.00534 0.00535 0.00092 0.00095 0.04143 0.04187 0.00524 0.00655 0.01770 0.01760 0.00135 0.00161 0.00256 0.00253 0.00018 0.00015 
Number of individuals 41,242 41,242 41,242 41,242 48,744 48,744 48,744 48,744 10,411 10,411 10,411 10,411 36,780 36,780 36,780 36,780 
Individual (experimental) FEs yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes 

1 SD of l1.drugs /l1.patents 6.979301 151.1118 6.979301 151.1118 4.219155 62.80019 4.219155 62.80019 3.368879 256.7495 3.368879 256.7495 1.482522 588.1559 1.482522 588.1559 
1 SD x effect x 100% 4.18% 4.38% 2.68% 2.27% 19.71% 21.35% 21.53% 24.68% 4.36% 3.59% 8.00% 9.24% 1.76% 1.18% 4.66% 5.88% 
1 SD combined effect x 100%  8.56%  4.95%  41.06%  46.22%  7.95%  17.24%  2.93%  10.55% 
1 SD combined SE x 100%  1.50%  1.68%  2.49%  2.24%  4.07%  3.51%  1.89%  2.41% 
CI lower 95%  5.63%  1.65%  36.18%  41.83%  -0.03%  10.36%  -0.77%  5.82% 
CI higher 95  11.50%  8.25%  45.95%  50.60%  15.94%  24.12%  6.63%  15.27% 

 

    Table G1 Cont’d 

 Schizophrenia, schizotypal and delusional disorders 
 

Mood (affective) disorders 
 

Infectious arthropathies Arthrosis and systemic connective tissue disorders 
  ihs family income ihs own income ihs family income ihs own income ihs family income ihs own income ihs family income ihs own income 

post 0.02376 0.01130 0.30430** 0.09945*** -0.01460 -0.00769 0.01977 0.12035** 0.03724 0.04659 -0.13650 -0.10006 0.02222 0.03795*** 0.14464*** 0.12032*** 
 (0.10539) (0.02691) (0.14292) (0.03771) (0.01670) (0.02129) (0.02788) (0.04771) (0.05918) (0.03020) (0.11820) (0.08717) (0.01403) (0.00861) (0.02884) (0.01822) 
post x l1.drugs -0.00130  -0.01357**  0.00102  0.00077  0.00188  0.01324*  0.00188***  -0.00296**  
 (0.00492)  (0.00661)  (0.00064)  (0.00092)  (0.00413)  (0.00795)  (0.00061)  (0.00123)  
DDidst 0.04311 -0.03087 -0.09061 0.06521 -0.19044*** -0.16666*** -0.04630 -0.04939 -0.30809** -0.12525 0.06718 0.09560 -0.03729 -0.03862** 0.05119 0.03274 
 (0.17341) (0.04611) (0.21644) (0.05779) (0.03639) (0.05302) (0.04136) (0.07567) (0.13028) (0.08058) (0.17175) (0.11875) (0.02545) (0.01576) (0.04378) (0.02780) 
DDidst x l1.drugs -0.00457  0.00946  0.00076  0.00201  0.01929**  -0.00441  -0.00027  -0.00191  
 (0.00801)  (0.00999)  (0.00122)  (0.00132)  (0.00873)  (0.01180)  (0.00107)  (0.00183)  
post x l1.patents  -0.00022  -0.00128**  0.00011  -0.00039*  0.00124  0.01087*  0.00009***  -0.00014*** 
 

 (0.00037)  (0.00051)  (0.00012)  (0.00023)  (0.00201)  (0.00591)  (0.00003)  (0.00005) 
DDidst x l1.patents  -0.00036  0.00071  -0.00001  0.00031  0.00669  -0.00648  -0.00002  -0.00008 
 

 (0.00062)  (0.00077)  (0.00026)  (0.00036)  (0.00525)  (0.00789)  (0.00005)  (0.00008) 
Constant 12.53303*** 12.53302*** 12.09120*** 12.09117*** 13.06065*** 13.06065*** 12.44551*** 12.44545*** 13.22154*** 13.22155*** 12.61755*** 12.61759*** 13.23313*** 13.23313*** 12.54123*** 12.54122*** 
 (0.00419) (0.00419) (0.00484) (0.00484) (0.00313) (0.00313) (0.00344) (0.00344) (0.00498) (0.00499) (0.00663) (0.00663) (0.00145) (0.00145) (0.00241) (0.00241) 
Observations 63,263 63,263 63,263 63,263 94,131 94,131 94,131 94,131 17,837 17,837 17,837 17,837 157,521 157,521 157,521 157,521 
R-squared 0.00068 0.00072 0.00189 0.00198 0.00478 0.00465 0.00084 0.00071 0.00344 0.00245 0.00144 0.00150 0.00235 0.00237 0.00256 0.00259 
Number of individuals 12,942 12,942 12,942 12,942 19,097 19,097 19,097 19,097 3,620 3,620 3,620 3,620 31,807 31,807 31,807 31,807 
Individual (experimental) FEs yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes 

1 SD of l1.drugs /l1.patents 2.769833 34.78858 2.769833 34.78858 13.16524 57.06547 13.16524 57.06547 2.857023 4.200988 2.857023 4.200988 6.870148 159.2471 6.870148 159.2471 
1 SD x effect x 100% -1.27% -1.25% 2.62% 2.47% 1.00% -0.06% 2.65% 1.77% 5.51% 2.81% -1.26% -2.72% -0.19% -0.32% -1.31% -1.27% 
1 SD combined effect x 100%  -2.52%  5.09%  0.94%  4.42%  8.32%  -3.98%  -0.50%  -2.59% 
1 SD combined SE x 100%  3.09%  3.85%  2.19%  2.69%  3.33%  4.73%  1.08%  1.79% 
CI lower 95%  -8.58%  -2.46%  -3.34%  -0.86%  1.80%  -13.25%  -2.63%  -6.09% 
CI higher 95  3.55%  12.64%  5.23%  9.69%  14.85%  5.28%  1.62%  0.92% 
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 Deforming dorsopathies, osteopathies and chondropathies 
 

Diseases of male genital organs 
 

Diseases of female pelvic organs 
 

HIV 
 ihs family income ihs own income ihs family income ihs own income ihs family income ihs own income ihs family income ihs own income 

post 0.01489** 0.02733*** 0.05227*** 0.06954*** 0.02290 0.03493*** 0.05909*** 0.05876*** 0.03497 0.04533*** 0.04986 0.05712* -0.43324 -0.70974 -0.37795 -0.64686 
 

(0.00624) (0.00538) (0.01030) (0.00920) (0.01461) (0.00982) (0.01963) (0.01301) (0.02276) (0.01562) (0.04365) (0.03001) (0.54844) (0.84106) (0.53885) (0.83108) 
post x l1.drugs 0.00145***  0.00032  0.00180  -0.00032  0.00098  0.00036  0.04497  0.04139  
 

(0.00024)  (0.00039)  (0.00134)  (0.00175)  (0.00061)  (0.00115)  (0.04697)  (0.04657)  
DDidst -0.02875*** -0.02901*** 0.01480 0.00975 -0.00593 -0.01540 0.00805 -0.00183 -0.04409 -0.03012 -0.00024 0.00471 -3.63504 -3.29495 0.44015 0.84992 
 

(0.01010) (0.00883) (0.01443) (0.01293) (0.02255) (0.01580) (0.02945) (0.01971) (0.03400) (0.02337) (0.05542) (0.03810) (2.95396) (3.66706) (0.64624) (0.95363) 
DDidst x l1.drugs -0.00041  -0.00080  -0.00167  -0.00105  0.00073  -0.00025  0.02767  -0.05009  
 

(0.00038)  (0.00055)  (0.00199)  (0.00268)  (0.00090)  (0.00146)  (0.16659)  (0.05068)  
post x l1.patents  0.00002***  -0.00001  0.00008  -0.00003  0.00005*  0.00001  0.00447  0.00418 
 

 (0.00000)  (0.00001)  (0.00009)  (0.00011)  (0.00003)  (0.00006)  (0.00469)  (0.00466) 
DDidst x l1.patents  -0.00001  -0.00001  -0.00009  -0.00002  0.00003  -0.00003  0.00043  -0.00545 
 

 (0.00001)  (0.00001)  (0.00014)  (0.00018)  (0.00004)  (0.00007)  (0.01536)  (0.00503) 
Constant 13.18272*** 13.18272*** 12.56455*** 12.56454*** 13.14229*** 13.14228*** 12.67301*** 12.67301*** 13.31162*** 13.31162*** 12.56104*** 12.56104*** 12.40196*** 12.40215*** 12.22417*** 12.22419*** 
 

(0.00090) (0.00090) (0.00130) (0.00130) (0.00195) (0.00195) (0.00250) (0.00250) (0.00107) (0.00107) (0.00187) (0.00187) (0.17507) (0.17512) (0.04956) (0.04932) 
Observations 466,576 466,576 466,576 466,576 101,713 101,713 101,713 101,713 222,832 222,832 222,832 222,832 255 255 255 255 
R-squared 0.00143 0.00134 0.00122 0.00125 0.00097 0.00095 0.00118 0.00117 0.00513 0.00513 0.00141 0.00141 0.19866 0.19697 0.03443 0.03812 
Number of individuals 94,244 94,244 94,244 94,244 20,595 20,595 20,595 20,595 44,790 44,790 44,790 44,790 54 54 54 54 
Individual (experimental) FEs yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes 

1 SD of l1.drugs /l1.patents 12.24771 803.7869 12.24771 803.7869 5.271199 79.13483 5.271199 79.13483 5.978831 125.1056 5.978831 125.1056 2.730056 7.438911 2.730056 7.438911 
1 SD x effect x 100% -0.50% -0.80% -0.98% -0.80% -0.88% -0.71% -0.55% -0.16% 0.44% 0.38% -0.15% -0.38% 7.55% 0.32% -13.67% -4.05% 
1 SD combined effect x 100%  -1.31%  -1.78%  -1.59%  -0.71%  0.81%  -0.52%  7.87%  -17.73% 
1 SD combined SE x 100%  0.93%  1.05%  1.53%  2.01%  0.73%  1.24%  46.89%  14.33% 
CI lower 95%  -3.13%  -3.84%  -4.58%  -4.64%  -0.63%  -2.95%  -84.04%  -45.82% 
CI higher 95  0.51%  0.27%  1.40%  3.22%  2.25%  1.90%  99.78%  10.36% 

 

Note: Models are estimated according to Eq.4. Robust standard errors clustered at individual (experimental) level are in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 
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