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Abstract: A patient seller interacts with a sequence of myopic consumers. Each consumer decides
whether to trust the seller after observing a bounded number of the seller’s past actions and some
or all previous consumers’ choices. With positive probability, the seller is a type that commits to
play his Stackelberg action. I show that consumers’ ability to observe other consumers’ choices can
lead to reputation failures: There exist equilibria where every consumer imitates her predecessor with
high probability and the patient seller receives his minmax payoff. Furthermore, the seller receives his
minmax payoff in all equilibria where consumers do not trust him in the first period and do not trust
him when the worst action profile occurred in the period before. In an extension where every con-
sumer observes all previous consumers’ choices and an unboundedly informative private signal about
the seller’s current-period action, the seller receives at least his Stackelberg payoff in all equilibria.
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1 Introduction

Economists have recognized that consumers’ choices are influenced by other consumers’ choices (Baner-

jee 1992, Bichandarni, Hirshleifer and Welsh 1992). This is the case in some informal markets in

developing countries, where there is limited product standard enforcement and firms’ records are often

unavailable or incomplete due to the lack of record-keeping institutions. When a consumer has limited

information about the seller’s past records, she might benefit from observing other consumers’ choices

since those consumers may know something about the seller that she does not know.

This paper examines how consumers’ observational learning affects sellers’ returns from building

reputations. My main result demonstrates the fragility of reputation effects when consumers can

observe other consumers’ choices but can only observe a limited number of the seller’s past actions.
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I study a repeated game between a patient seller and a sequence of myopic consumers, arriving one

in each period and each plays the game only once. Players’ stage-game payoffs satisfy a monotone-

supermodularity condition. A leading example that satisfies my condition is the product choice game:1

seller \ consumer Trust No Trust

High Effort 1, 2 −cN , 1

Low Effort 1 + cT ,−1 0, 0

where cN , cT > 0.

I use this example to illustrate my results throughout this section. The seller observes the past

actions of all players, and is either a strategic type who maximizes his discounted average payoff, or a

commitment type who plays his Stackelberg action (in the example, it is high effort) in every period.

My modeling innovation is that every consumer observes the seller’s actions in the last K ∈ N

periods and consumers’ actions in the last M ∈ N ∪ {+∞} periods. I assume that K is finite and

M ≥ 1. My assumption fits when consumers learn about the seller both via observational learning—

from which they learn about previous consumers’ choices, and via word-of-mouth communication with

other consumers—from which they learn about the seller’s actions against these consumers. I require

that each consumer can observe at least her immediate predecessor’s action, and can talk to at most

K predecessors due to constraints on her time and attention.

My main result, Theorem 1, shows that when the probability of commitment type is below some

cutoff, there exist equilibria where the patient seller receives his minmax payoff. This stands in contrast

to Fudenberg and Levine (1989)’s theorem, which shows that the patient seller receives at least his

Stackelberg payoff in all equilibria when consumers can observe the entire history of his actions.

Intuitively, the seller receives a low payoff when the first consumer does not trust him and every

consumer imitates her predecessor with high probability. This is because the seller receives a low stage-

game payoff in the first period and imitation makes consumers’ actions as well as the seller’s payoffs

persistent. Imitation is feasible when consumers can observe their predecessors’ choices. Imitation can

be rationalized when each consumer observes at most a bounded number of the seller’s actions.

In contrast, when consumers can observe the seller’s entire history, imitating a predecessor who

did not trust the seller is not incentive compatible. This is because after sufficiently many periods

where consumers believe that the seller is likely to exert low effort but ends up observing high effort,

consumers’ posterior belief will attach probability close to one to the commitment type. After that,

they will have a strict incentive to trust the seller. I also use an example to show that when consumers

1Following Mailath and Samuelson (2015, page 168), I interpret “Trust” as purchasing a premium product or a
customized product and “No Trust” as purchasing a standardized product. Under this interpretation, future consumers
may observe the seller’s effort even when the current-period consumer does not trust the seller.
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cannot observe any other consumer’s action, the seller receives at least his Stackelberg payoff in all

equilibria. This implies that consumers’ observational learning may hurt the seller.

The mechanism behind my result hinges on consumers imitating their predecessors and consumers

not trusting newly arrived sellers who have no past record, both of which are plausible as suggested by

existing empirical findings. On consumers’ imitation, Cai, Chen and Fang (2009) and Zhang (2010)

find that people imitate their predecessors when they decide what food to buy and whether to accept

a kidney transplant. On consumers not trusting newly arrived sellers, Michelson et al. (2021) find that

a large fraction of sampled farmers in Tanzania suspect that the fertilizers sold in local markets are

adulterated and their pessimistic beliefs about the seller’s integrity persist over time.

Although Theorem 1 only displays one equilibrium under which reputation effects fail, several

lessons apply more broadly. First, I show that the seller receives his minmax payoff in all equilibria

that satisfy the following refinement: (1) consumers do not trust him when the worst action profile

(L,N) occurred in the period before, and (2) consumers do not trust him in the first period. The first

requirement is rather standard, which is satisfied both by my low-payoff equilibrium and by some equi-

libria where the seller receives a high payoff, such as grim-trigger equilibrium. The second requirement

is satisfied by my low-payoff equilibrium but is violated by grim-trigger equilibrium, since grim-trigger

requires consumers do trust the seller in the first period. While there are applications where consumers

trust newly arrived sellers, there are also situations where my no initial trust condition fits better.

Second, in my low-payoff equilibrium, if the seller exerts high effort in every period, (1) consumers

never herd on action N , and (2) the seller receives a high undiscounted average payoff. I show that

consumers cannot herd on N in any equilibrium under any prior belief and any discount factor. This

stands in contrast to the canonical social learning results where inefficiencies are caused by herding.

If each consumer observes all previous consumers’ choices (i.e., M = +∞), then in all equilibria

under any prior belief and any discount factor, the seller’s undiscounted average payoff from exerting

high effort in every period is at least K
K+1 times his Stackelberg payoff plus 1

1+K times his minimal

stage-game payoff. When this guaranteed undiscounted payoff is greater than the seller’s minmax

payoff 0, a reputation-building seller can eventually secure a strictly positive payoff. This does not

contradict Theorem 1 since the time it takes for the seller to secure this positive payoff can depend

on his discount factor. For example, in my low-payoff equilibrium, it takes longer for a more patient

seller to switch consumers’ actions from N to T . It is the prolonged process of trust building that

wipes out the seller’s benefit from being more patient.

Next, I consider an extension where in addition to what she observes in the baseline model, each

consumer also observes an informative private signal about the seller’s current-period action whose
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distribution satisfies a monotone likelihood ratio property. Motivated by canonical social learning

models, I focus on the case where each consumer observes all previous consumers’ choices (M = +∞).

Theorem 2 shows that the seller can secure his Stackelberg payoff in all equilibria when consumers’

private signals are unboundedly informative about the seller’s Stackelberg action. In the product choice

game, unbounded informativeness means that some signals are arbitrarily more likely to occur under

high effort compared to that under low effort. This unboundedly informative private signal guarantees

a positive lower bound on the informativeness of every consumer’s action about the seller’s current-

period action. Importantly, this lower bound does not depend on the seller’s discount factor. Since

every consumer can observe all previous consumers’ choices, the argument in Fudenberg and Levine

(1992) implies that the patient seller can secure his Stackelberg payoff in all equilibria.

In contrast, Theorem 3 shows that the seller receives his minmax payoff in some equilibria when

consumers’ private signals are not unboundedly informative about his Stackelberg action and the prior

probability of commitment type is below some cutoff.2 Intuitively, when consumers believe that the

seller is likely to exert low effort, observing the realization of a boundedly informative signal cannot

convince them to trust the seller. Similar to the baseline model, consumers have incentives to imitate

their predecessors when each consumer observes at most a bounded number of the seller’s actions, and

the seller receives a low payoff when he is not trusted in the first period.

2 Baseline Model

Time is discrete, indexed by t = 0, 1, . . . A long-lived player 1 (he, e.g., a seller) with discount factor

δ ∈ (0, 1) interacts with an infinite sequence of short-lived player 2s (she, e.g., consumers), arriving

one in each period, each plays the game only once, with 2t denoting player 2 who arrives in period t.

In period t, player 1 chooses at ∈ A and player 2t chooses bt ∈ B. I assume that both A and B are

finite sets. Player i ∈ {1, 2}’s stage-game payoff is ui(at, bt). Let BR2(a) ⊂ B be player 2’s best reply

to a. Player 1’s (pure) Stackelberg action is arg maxa∈A

{
minb∈BR2(a) u1(a, b)

}
.

Assumption 1. Player 1 has a unique best reply to every pure action b ∈ B. Player 2 has a

unique best reply to every pure action a ∈ A. Player 1 has a unique Stackelberg action.

Since A and B are finite sets, Assumption 1 is satisfied for generic (u1, u2). Let a∗ be player 1’s

Stackelberg action. I focus on games with monotone-supermodular payoffs, which have been studied

in the reputation literature by Phelan (2006), Ekmekci (2011), and Liu (2011).

2When player 1 has three or more actions, Theorem 3 requires a more demanding condition compared to the consumers’
private signals not being unboundedly informative about the seller’s Stackelberg action.
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Assumption 2. Players’ stage-game payoffs (u1, u2) are monotone-supermodular if there exist a

complete order on A, �A, and a complete order on B, �B, such that:

1. Player 1’s payoff function u1(a, b) is strictly decreasing in a and is strictly increasing in b.

2. Player 2’s payoff function u2(a, b) has strictly increasing differences in (a, b).

3. Player 1’s Stackelberg action a∗ is not the lowest element of A.

The product choice game in the introduction satisfies Assumption 2 once we rank players’ actions

according to H �A L and T �B N . This is because consumers have stronger incentives to trust

the seller when the seller exerts higher effort, the seller prefers to exert low effort but benefits from

consumers’ trust, and the seller’s Stackelberg action H differs from his lowest-cost action L.

Before choosing at, player 1 observes all the past actions (a0, ..., at−1, b0, ..., bt−1) and his perfectly

persistent type ω ∈ {ωs, ωc}. Let ωc stand for a commitment type who plays a∗ in every period. Let ωs

stand for a strategic type who maximizes his discounted average payoff
∑∞

t=0(1− δ)δtu1(at, bt). That

is, player 1’s payoff is normalized so that the weight on his period-t payoff is (1− δ)δt and the sum of

weights is 1. Let π0 ∈ (0, 1) be the prior probability of the commitment type.

My modeling innovation is on player 2’s information structure. I assume that there exist K ∈ N

and M ∈ N ∪ {+∞} such that for every t ∈ N, player 2t can observe player 1’s actions in the last

K periods (amax{0,t−K}, ..., at−1) and player 2’s actions in the last M periods (bmax{0,t−M}, ..., bt−1),

where M = +∞ means that every player 2 can observe the entire history of her predecessors’ choices.3

1. I assume that K is finite.4 That is, every consumer observes a bounded number of the seller’s

actions. This stands in contrast to the reputation model of Fudenberg and Levine (1989) where

every consumer observes the entire history of the seller’s actions (i.e., K = +∞).

2. I assume that M ≥ 1. That is, every consumer can observe at least her immediate predecessor’s

action. This stands in contrast to existing reputation models with limited memories such as Liu

(2011) and Liu and Skzypacz (2014) where consumers cannot observe other consumers’ choices.

Let Hi be the set of player i ∈ {1, 2}’s private histories. Strategic-type player 1’s strategy is

σ1 : H1 → ∆(A). Player 2s’ strategy is σ2 : H2 → ∆(B). The solution concept is Perfect Bayesian

equilibrium (or PBE or equilibrium), which consists of a strategy for the strategic-type player 1, a

strategy for player 2s, and a system of beliefs that satisfy the standard requirements.

3If M = +∞, then every player 2 can infer calender time from her history. If M is finite, then player 2t cannot infer
calendar time when t ≥M . My main result, Theorem 1, applies (1) when M = +∞, (2) when M is finite and player 2s
cannot directly observe calender time, and (3) when M is finite but player 2s can directly observe calendar time.

4My three theorems extend to the case where K = 0. The proof of Theorem 2 remains the same while the constructive
proofs of Theorems 1 and 3 need to be modified. The details are available upon request.
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3 Main Result

Recall that a∗ is player 1’s Stackelberg action. Let b∗ ≡ BR2(a∗). Player 1’s Stackelberg payoff is

u1(a∗, b∗). Let a′ be the lowest element of A. Let b′ ≡ BR2(a′). The first two parts of Assumption 2

imply that u1(a′, b′) is player 1’s minmax payoff in the sense of Fudenberg, Kreps and Maskin (1990).

Assumption 1 and the third part of Assumption 2 imply that a∗ 6= a′ and u1(a′, b′) < u1(a∗, b∗).

Theorem 1. Suppose players’ payoff functions u1 and u2 satisfy Assumptions 1 and 2, then there

exists a cutoff discount factor δ(u1, u2) ∈ (0, 1).5 For every K ∈ N, there exists an upper bound on

the prior probability of commitment type π0 > 0, such that for every π0 < π0 and δ > δ(u1, u2), there

exists an equilibrium in which player 1’s discounted average payoff equals his minmax payoff u1(a′, b′).

According to Theorem 1, there are equilibria in which the patient seller receives his minmax payoff

when the prior probability of commitment type is below some cutoff, each consumer observes a limited

number of the seller’s actions, and can observe some or all previous consumers’ choices.

The existence of low-payoff equilibria stands in contrast to the reputation result in Fudenberg

and Levine (1989), which shows that the patient seller receives at least his Stackelberg payoff in all

equilibria when every consumer observes the entire history of the seller’s actions (i.e., K = +∞). This

applies regardless of π0 and regardless of how many predecessors’ actions each consumer can observe.

Consumers’ ability to observe their predecessors’ choices (i.e., M ≥ 1) is also needed for my

result. Proposition 4 in Section 3.4 shows that in the product choice game where players’ actions are

strategic complements, i.e., 0 < cT < cN , the patient seller receives at least his Stackelberg payoff in

all equilibria when K = 1 and M = 0. The comparison between this case and the case where M ≥ 1

suggests that consumers’ ability to observe other consumers’ choices can hurt the seller.

The proof is in Appendix A. In what follows, I construct a class of equilibria in the product choice

game where the seller’s payoff equals his minmax payoff 0. I call them imitation equilibria.

Proof of Theorem 1 in the Product Choice Game: For any q ∈ (0, 1
2 ], I construct an equilibrium when

π0 ≤
( q

2

)K( q
2−q
)
≡ π0 and δ ≥ max{ cT

cT +1 ,
cN
cN+1} such that: (1) Player 2t’s action depends only on

(at−1, bt−1), which takes five values ∅ (i.e., t = 0), (H,T ), (H,N), (L, T ), or (L,N); (2) Player 1’s

action in period t depends only on (at−1, bt−1) and his reputation πt, which is the probability player 2t’s

belief assigns to the commitment type after observing (amax{0,t−K}, ..., at−1) and (bmax{0,t−M}, ..., bt−1).

5Player 1’s discount factor needs to be above some cutoff δ, which ensures that the strategic type has an incentive
to play the Stackelberg action although doing so gives him a lower stage-game payoff. In the product choice game,
δ(u1, u2) = max{ cT

cT+1
, cN
cN+1

}. In Appendix A, I discuss how large δ needs to be in monotone-supermodular games.
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1. When t = 0 or (at−1, bt−1) = (L,N), player 2t plays N and the strategic-type player 1 plays H

with probability pt such that πt + (1− πt)pt = q.

2. When (at−1, bt−1) = (H,N), player 2t plays T with probability r1 ≡ 1−δ
δ cN and the strategic-

type player 1 plays H with probability pt such that πt + (1−πt)pt = 1/2. In the last step of this

proof, I verify that πt ≤ q/2, which implies that pt ∈ [q/2, 1].

3. When (at−1, bt−1) = (L, T ), player 2t plays T with probability r2 ≡ 1− 1−δ
δ cT and the strategic-

type player 1 plays H with probability pt such that πt + (1− πt)pt = 1/2.

4. When (at−1, bt−1) = (H,T ), player 2t plays T and player 1 plays H.

Player 1’s continuation value depends only on (at−1, bt−1), which is denoted by V (at−1, bt−1). One can

verify that V (H,T ) = 1, V (L,N) = V (∅) = 0, V (H,N) = 1−δ
δ cN , and V (L, T ) = 1− 1−δ

δ cT .

Next, I verify players’ incentive constraints at every (at−1, bt−1). It is straightforward to check that

player 2t best replies to player 1’s action at every (at−1, bt−1). For player 1’s incentives,

1. When t = 0 or (at−1, bt−1) = (L,N), player 1’s discounted average payoff from playing L is 0 and

his discounted average payoff from playing H is (1−δ)(−cN )+δV (H,N) = 0 = V (L,N) = V (∅).

2. When (at−1, bt−1) = (H,N), player 1’s discounted average payoff from playing L is

(1− δ)u1(L, r1T + (1− r1)N) + δ{r1V (L, T ) + (1− r1)V (L,N)} =
1− δ
δ

cN = V (H,N),

and his discounted average payoff from playing H is

(1− δ)u1(H, r1T + (1− r1)N) + δ{r1V (H,T ) + (1− r1)V (H,N)} =
1− δ
δ

cN = V (H,N).

3. When (at−1, bt−1) = (L, T ), player 1’s discounted average payoff from playing L is

(1− δ)u1(L, r2T + (1− r2)N) + δ{r2V (L, T ) + (1− r2)V (L,N)} = 1− 1− δ
δ

cT = V (L, T ),

and his discounted average payoff from playing H is

(1− δ)u1(H, r2T + (1− r2)N) + δ{r2V (H,T ) + (1− r2)V (H,N)} = 1− 1− δ
δ

cT = V (L, T ).

4. When (at−1, bt−1) = (H,T ), player 1’s discounted average payoff from playing H is 1, and his

discounted average payoff from playing L is no more than 1.
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In the last step, I show that at every history where (at−1, bt−1) 6= (H,T ), there exists pt ∈ [0, 1]

that satisfies the requirement in my construction. For this purpose, I only need to show that πt ≤ q/2

whenever (at−1, bt−1) 6= (H,T ), since this implies that pt ∈ [q/2, 1] whenever (at−1, bt−1) 6= (H,T ).

If at−1 = L, then player 2t’s belief attaches zero probability to the commitment type. If (at−1, bt−1) =

(H,N), then player 2t’s belief attaches positive probability to the commitment type only when

(amax{0,t−K}, ..., at−1) = (H, ...,H) and (bmax{0,t−M}, ..., bt−1) = (N,N, ..., N). This is because con-

ditional on player 1 being the commitment type (i.e., he plays H in every period), player 2t plays T

when bt−1 = T . I use π∗t to denote the probability player 2t’s belief assigns to the commitment type

after observing (amax{0,t−K}, ..., at−1) = (H, ...,H) and (bmax{0,t−M}, ..., bt−1) = (N,N, ..., N).

I show that π∗t ≤ q/2 by induction on t ∈ N. First, π∗0 = π0 ≤ q/2 since π0 ≤
( q

2

)K( q
2−q
)
. Suppose

π∗s ≤ q/2 for every s ≤ t − 1. The induction hypothesis implies that in every period before t, the

probability that the strategic type plays H is at least q/2. Let Pωs(·) be the probability measure

induced by the equilibrium strategy of the strategic type. Let Pωc(·) be the probability measure

induced by the commitment type. Let Et be the event that (amax{0,t−K}, ..., at−1) = (H, ...,H). Let

Ft be the event that (bmax{0,t−M}, ..., bt−1) = (N, ..., N). According to Bayes rule,

π∗t
1− π∗t

/ π0

1− π0
=
Pωc(Et ∩ Ft)
Pωs(Et ∩ Ft)

=
Pωc(Et)

Pωs(Et)
· P

ωc(Ft|Et)
Pωs(Ft|Et)

. (3.1)

Since the strategic type plays H with probability at least q/2 in every period before t, and N occurs

with lower probability under the strategy of type ωc compared to that under type ωs, we have

Pωc(Et)

Pωs(Et)
≤ (q/2)−K and

Pωc(Ft|Et)
Pωs(Ft|Et)

≤ 1. (3.2)

When π0 ≤
( q

2

)K( q
2−q
)
, (3.1) and (3.2) imply that π∗t ≤ q/2. This verifies that the constructed

strategies are feasible and incentive compatible, under which player 1’s payoff is 0.

According to the consumers’ strategy in imitation equilibria, consumer-t plays N with probability

1 or close to 1 when bt−1 = N , and plays T with probability 1 or close to 1 when bt−1 = T . Hence,

imitation equilibria describe situations where the first consumer does not trust the seller and every

subsequent consumer imitates her predecessor with high probability.

I explain the mechanism behind Theorem 1 using the product choice game. Intuitively, allowing

consumers to observe other consumers’ choices has two effects. First, it provides consumers information

about the seller’s type, which may help the seller to build reputations. Second, it enables consumers to

imitate their predecessors, by which I mean consumer-t using strategy bt = bt−1 for every t ≥ 1. This
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hurts the seller’s reputational incentives since consumers’ imitation reduces the impact of the seller’s

action on future consumers’ actions. Consumers’ imitation can lead to reputation failures when the

first consumer does not trust the seller, since the seller receives a low stage-game payoff in the first

period and imitation makes consumers’ actions persistent. Imitation is feasible as long as M ≥ 1. I

argue that consumers’ imitation can be rationalized when K is finite no matter how large M is.

As a benchmark, imitation is not incentive compatible when every consumer observes the seller’s

entire history. This is because for every t ∈ N, either consumer-t believes that at = H with probability

more than 1/2, in which case she has a strict incentive to play T , or the probability consumer t + 1

attaches to the commitment type after she observes at = H is at least two times the probability

consumer-t attaches to the commitment type. When the seller plays H in every period, there can be

at most a finite number of consumers who have incentives to imitate a predecessor who played N .

In contrast, consumers’ imitation behaviors can be rationalized when each consumer observes a

bounded number of the seller’s actions and the probability of commitment type is below some cutoff:

1. Consumers may not be convinced that H will be played in the future after observing H in at

most K periods. This is because even when consumer-t believes that H will be played with

probability less than 1/2, consumer t+ 1’s posterior belief may not be greater than consumer-t’s

since she cannot observe at−K . When the seller plays H in every period, consumers after period

K obtain the same information from the seller’s actions. Unlike the canonical reputation models,

there can be infinitely many consumers who are concerned that the seller is likely to be strategic

and will play L in the future. This is reflected in the first part of (3.2), that Pωc (Et)
Pωs (Et)

≤ (q/2)−K .

2. Although consumers can learn from other consumers’ choices, the additional information each

consumer obtained from these choices never discourages her from imitating her immediate pre-

decessor. In particular, when a consumer’s immediate predecessor played N , observing other

consumers’ choices can only lower the seller’s reputation, which encourages this consumer to

imitate by playing N as well.6 This is reflected in the second part of (3.2), that Pωc (Ft|Et)
Pωs (Ft|Et)

≤ 1.

One technical subtlety is that the seller’s payoff is 0 even when δ → 1, which suggests that an

arbitrarily patient seller’s payoff is sensitive to the first consumer’s action. For intuition, let us take

K = 1. When the strategic seller exerts effort, he sacrifices his current-period payoff in exchange for

a higher continuation value, so he has a stronger incentive to do so when he is more patient or when

consumers are less likely to imitate—since the seller can boost his continuation value only when the

6If each of the last M consumers played N , then the seller’s reputation does not increase after the current consumer
observes these M consumers’ choices. If at least one of the last M consumers played T but the most recent one played
N , then the current consumer can rule out the commitment type after observing these M consumers’ choices.



3 MAIN RESULT 10

next consumer does not imitate. Hence, it is harder for consumers to distinguish between the two

types when the strategic seller is more patient. In imitation equilibria, this logic is reflected by the

observation that consumers cannot distinguish between the two types when the seller’s action affects

the next consumer’s action with probability more than O(1 − δ), or equivalently, when consumers

imitate with probability less than 1−O(1− δ). Hence, the maximal probability of imitation increases

with δ, so in the worst case scenario, it takes more time for a more patient seller to obtain consumers’

trust. The prolonged process of trust building cancels out the positive effects of being more patient.

The key features of imitation equilibria are: consumers not trusting newly arrived sellers who have

no past record and consumers imitating their predecessors, the plausibility of both are supported by

empirical evidence. On consumers’ imitation, Cai, Chen and Fang (2009) find that consumers imitate

each other in the Chinese food market. Zhang (2010) finds that patients are more likely to refuse a

kidney that has been refused by earlier patients, even conditional on the objective quality of kidneys.

Cai, De Janvry and Sadoulet (2015) find that farmers in rural China are more likely to purchase

weather insurance when they were told that other farmers have purchased the insurance.7

My no initial trust condition fits some informal markets in developing countries. For example,

Michelson et al. (2021) find that many farmers in Tanzania suspect that the fertilizers sold in local

markets are adulterated and their pessimistic beliefs about the seller’s integrity persists over time.

Such persistent mistrust contributes to the under-adoption of fertilizers.

Although details about farmers’ information structures are not available, my result suggests a

plausible explanation for the persistent mistrust between farmers and sellers. In terms of the fitness

of my model, first, farmers’ payoffs depend on the seller’s action, namely, whether the seller has

adulterated products currently sold on the market. Second, farmers are myopic, that is, they won’t

trust the seller if they believe that his products are adulterated and won’t punish the seller if they

believe that his products are authentic. Although some farmers may buy multiple times, they are

unlikely to sacrifice their current-period profits since most of them have low income and may not

afford to do so. Third, I require that every farmer observes the choice of her predecessor and a limited

number of the seller’s actions. This is plausible when farmers live close to each other—so that it is

easy to observe other farmers’ recent choices, and farmers have limited memories about the seller’s

actions. My result suggests a rationale for persistent mistrust when farmers do not trust the seller in

the beginning due to a pessimistic prior, and are unwilling to trust the seller even after they observe

him supplying authentic products in a bounded number of periods.

7Cai, De Janvry and Sadoulet (2015) write on page 82 that “...when we told farmers about other villagers decisions,
these decisions strongly influenced their own take-up choices...”, and “...if information on other villagers decisions can
be revealed in complement to the performance of the network, it can have a large impact on adoption decisions...”
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In what follows, I address several issues related to Theorem 1. Section 3.1 introduces a refinement

under which the patient player receives his minmax payoff in all equilibria that satisfy this refinement.

Sections 3.2 and 3.3 explain the connections between Theorem 1 and existing results on social learning

and reputation formation. Section 3.4 uses an example to explain why consumers’ ability to observe

previous consumers’ choices is not redundant for Theorem 1.

3.1 Equilibrium Refinement that Selects Low-Payoff Equilibria

Theorem 1 shows that the seller receives his minmax payoff in some equilibria. In this section, I

introduce a refinement such that the seller receives his minmax payoff in all equilibria that satisfy

this refinement. Let ht2 be player 2t’s history. Let A′ ≡ {a ∈ A s.t. b′ = BR2(a)}. By definition of b′,

player 1’s lowest action a′ belongs to A′. Assumptions 1 and 2 imply that A′ consists of all of player

1’s actions that are below some cutoff and that player 1’s Stackelberg action a∗ does not belong to A′.

Proposition 1. Suppose (u1, u2) satisfies Assumptions 1 and 2. For every (δ, π0) ∈ (0, 1)2, player

1’s payoff equals his minmax payoff u1(a′, b′) in every PBE that satisfies the following refinement:

1. Punishment following bad outcome: For every t ≥ 1, σ2(ht2) = b′ when bt−1 = b′ and

at−1 ∈ A′.

2. No initial trust: Player 2 plays b′ in period 0.

The proof is in Appendix B. In the product choice game, my refinement requires that (1) consumer-t

does not trust the seller when the worst action profile (L,N) occurred in period t−1, and (2) consumers

do not trust a seller who newly arrives and has no past record.

Among the two conditions in my refinement, punishment following bad outcome is rather standard.

It is satisfied not only by imitation equilibria but is also satisfied by some equilibria where the seller

receives a high payoff, such as equilibria where consumers use grim-trigger strategies.

My no initial trust condition is satisfied by imitation equilibria but is violated by grim-trigger

equilibria, since grim-trigger requires consumers do trust the seller in the first period. The extent to

which consumers trust newly arrived sellers depends on the application. While there are situations

where grim-trigger fits better, there are also situations where most consumers do not trust newly

arrived sellers or trust newly arrived sellers with low probability, as suggested by the evidence I cited

earlier. Hence, no initial trust or more generally low initial trust is plausible.

In the online appendix, I examine the robustness of my refinement result. I show that in every

equilibrium that satisfies punishment following bad outcome, player 1’s discounted average payoff is
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no more than u1(a′, b′) conditional on b′ being played in period 0, and his discounted average payoff

cannot significantly exceed u1(a∗, b∗) when δ is close to 1 and π0 is close to 0. Hence, there exists a

real-valued function γ(π0, δ) ∈ [0, 1] that converges to 0 when δ is close to 1 and π0 is close to 0, such

that for every ε ∈ [0, 1] and every equilibrium that satisfies punishment following bad outcome and

player 2 playing b′ with probability 1− ε in period 0, player 1’s equilibrium payoff is no more than

(1− ε)u1(a′, b′) + ε
{
γ(π0, δ) max

(a,b)∈A×B
u1(a, b) + (1− γ(π0, δ))u1(a∗, b∗)

}
.8 (3.3)

In the product choice game, the payoff upper bound in (3.3) implies that in every equilibrium that

satisfies punishment following bad outcome, (1) the seller’s payoff must be close to his minmax payoff

if he is trusted with probability close to 0 in the first period, and (2) when the seller is patient and

the prior probability of commitment type is below some cutoff, he may receive his Stackelberg payoff

only if he is trusted with probability close to one in the first period.

3.2 Connections with Canonical Social Learning Models

The imitation equilibria constructed in the proof of Theorem 1 are reminiscent of the canonical results

on social learning. In Banerjee (1992), Bichandarni, Hirshleifer and Welsh (1992), and Smith and

Sørensen (2000), a sequence of myopic players chooses their actions sequentially after observing all

predecessors’ actions and a private signal of an exogenous state. Inefficiencies take the form of herding

in the sense that myopic players ignore their private signals and imitate their immediate predecessors.

My model is analogous once we view (amax{0,t−K}, ..., at−1) as player 2t’s private signal. The

conceptual difference is that in my model, the myopic players’ payoffs depend only on the patient

player’s endogenous actions but not on the patient player’s type. The myopic players never herd on

action N in imitation equilibria since their actions are responsive to the seller’s action in the period

before. Proposition 2 shows that the no bad herd conclusion applies more generally. Formally, I say

that player 2s herd on action b at ht ≡ (as, bs)s≤t−1 if player 2s play b at ht and at every successor of

ht. Let π(ht) ∈ [0, 1] be the probability player 2’s belief at ht assigns to the commitment type.

Proposition 2. Suppose players’ payoffs satisfy Assumption 1, then for every (δ, π0) ∈ (0, 1)2,

every b 6= b∗, and every equilibrium, player 2s cannot herd on b at any history ht with π(ht) > 0.

The proof is in Appendix C. Proposition 2 implies that as long as player 1 imitates the commitment

8When π0 is below some cutoff and δ is arbitrarily close to 1, there exist equilibria that satisfy punishment following
bad outcome and ε initial trust where player 1’s payoff is arbitrarily close to (3.3). This implies that my payoff upper
bound is tight in the sense that it can be approximately attained by some equilibria.
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type, player 2s can never herd on any action that does not best reply to a∗ regardless of player 1’s

discount factor, player 2’s prior belief, and the equilibrium we focus on. This implies that reputation

failure cannot be caused by myopic players herding on actions that give the patient player a low payoff.

For a heuristic explanation, once player 2s herd on action b 6= b∗, the strategic-type player 1 cannot

affect player 2s’ future actions, so he has no intertemporal incentive. As a result, the strategic-type

player 1 will not play a∗ when a∗ is not a best reply to b in the stage game.9 This implies that player

2 will learn that player 1 is the commitment type upon observing a∗, and hence, will have a strict

incentive to play b∗. This contradicts the presumption that player 2s herd on action b, that is not b∗.

3.3 Connections with Canonical Reputation Models

Fudenberg and Levine (1992) show that a patient player can secure his Stackelberg payoff in all

equilibria if (1) with positive probability, he is a commitment type who plays his Stackelberg action in

every period, and (2) every short-run player can observe the entire history of some noisy signal that

can statistically identify the patient player’s action. An elegant proof of their result is provided by

Gossner (2011). The key is to show that for any δ ∈ (0, 1) and any Bayes Nash equilibrium (σ1, σ2),

E(a∗,σ2)
[ ∞∑
t=0

d
(
yt(·|a∗)

∣∣∣∣∣∣yt(·))] ≤ − log π0, (3.4)

where yt(·) is the equilibrium distribution of player 2’s signals about at, yt(·|a∗) is the distribution of

player 2’s signals about at conditional on player 1 being the commitment type, d(·||·) is the Kullback-

Leibler divergence between two distributions, and E(a∗,σ2)[·] is the expectation operator when player 1

plays a∗ in every period and player 2 plays σ2. When player 2’s signals can identify player 1’s actions,

d
(
yt(·|a∗)

∣∣∣∣yt(·)) is bounded away from 0 whenever player 2t does not have a strict incentive to play

b∗. Inequality (3.4) implies that in expectation, there can be at most a bounded number of periods

in which player 2s do not have strict incentives to play b∗. Importantly, this upper bound does not

depend on δ. This explains why player 1’s equilibrium payoff is at least u1(a∗, b∗) when δ → 1.

Fudenberg and Levine (1992)’s model is analogous to mine when M = +∞, i.e., every consumer

can observe the entire history of her predecessors’ actions. This is because each consumer’s action

can be viewed as an informative signal about the seller’s past actions, so observing the entire history

of consumers’ choices can be viewed as observing the entire history of some noisy signal about the

seller’s actions. Inequality (3.4) applies to imitation equilibria of my model once we take yt(·) as the

9In the case where a∗ is player 1’s myopic best reply to b, both types of player 1 play a∗ in equilibrium after player
2s herd on action b. When both types of player 1 play a∗, player 2 has a strict incentive to play b∗, which is not b.
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equilibrium distribution of bt+1 and yt(·|a∗) as the distribution of bt+1 conditional on player 1 being

the commitment type. Consumer-t + 1’s action can statistically identify the seller’s action in period

t, so d
(
yt(·|a∗)

∣∣∣∣yt(·)) > 0 when player 2t does not have a strict incentive to play b∗.

However, the distribution of bt+1 in imitation equilibria is such that d
(
yt(·|a∗)

∣∣∣∣yt(·))→ 0 as δ → 1.

This stands in contrast to Fudenberg and Levine (1992)’s model in which d
(
yt(·|a∗)

∣∣∣∣yt(·)) is bounded

away from zero whenever player 2t does not have a strict incentive to play b∗. As a result, inequality

(3.4) cannot rule out situations where the expected number of periods in which player 2 has no incentive

to play b∗ grows without bound as δ → 1. This is indeed the case in imitation equilibria, where the

prolonged process of reputation building cancels out the positive effects of increased patience.

The above discussion unveils an interesting feature of imitation equilibria: Although the patient

player can eventually guarantee a high continuation value by exerting high effort in every period, his

discounted average payoff equals his minmax payoff. Intuitively, each player 2’s action is informative

about her observations of player 1’s past actions, and every player 2 can observe the entire history of

player 2s’ actions. As a result, either player 2t strictly prefers to play b∗, or all future player 2s learn

something about player 1’s type from bt. The arguments in Gossner (2011) imply that there exist at

most a finite number of periods where player 2 does not have a strict incentive to play b∗. Therefore,

the patient player 1 can eventually secure a high continuation value by playing a∗ in every period. This

logic generalizes to all equilibria when every consumer can observe all of her predecessors’ choices.

Proposition 3. Suppose M = +∞ and players’ payoffs satisfy Assumptions 1 and 2.10 For every

(δ, π0) ∈ (0, 1)2 and every strategy profile (σ1, σ2) that is part of a PBE, we have

lim inf
t→∞

1

t
E(a∗,σ2)

[ t−1∑
s=0

u1(as, bs)
]
≥ K

K + 1
u1(a∗, b∗) +

1

K + 1
u1(a∗, b′). (3.5)

When π0 is small and δ is large, there exists an equilibrium such that (3.5) holds with equality.

According to Proposition 3, the informed player’s undiscounted average payoff from playing the

Stackelberg action is at least a fraction K
K+1 of his Stackelberg payoff plus a fraction 1

K+1 of some low

payoff u1(a∗, b′). This is true for all equilibria, all discount factors, and all prior beliefs. This lower

bound is tight in the sense that it can be attained by some equilibria when π0 is small and δ is large.

When the right-hand-side of (3.5) is strictly greater than u1(a′, b′), the patient player 1 can guar-

antee an asymptotic payoff that is strictly greater than his minmax payoff by playing a∗ in every

period. The only way to reconcile this conclusion and Theorem 1 is that when player 1 plays a∗ in

10I show in the online appendix that Proposition 3 is not true when M is finite, in the sense that there exist equilibria
where player 1’s undiscounted average payoff from imitating the commitment type equals his minmax payoff u1(a′, b′).
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every period, it takes more time for him to secure this high asymptotic payoff when δ is larger. It is

the prolonged process of reputation building that cancels out the direct effects of increased δ.

The proof of Proposition 3 is in Appendix D. For a heuristic explanation, Assumption 2 implies

that a∗ is suboptimal for player 1 in the stage game. Therefore, for every t ∈ N, either the strategic

type has no incentive to play a∗ in period t, or (bt+1, ..., bt+K) is informative about at. In the first case,

players 2t+1 to 2t+K learn that player 1 is committed after observing at = a∗. By playing a∗ in every

period, player 1’s average payoff from period t to t + K is at least a fraction K
K+1 of his Stackelberg

payoff plus 1
K+1 times his minimal stage-game payoff. In the second case, all future player 2s observe

an informative signal about at given that M = +∞. According to the arguments in Fudenberg and

Levine (1992) and Gossner (2011), player 2s’ posterior beliefs attach probability close to 1 to the

commitment type after a finite number of periods with learning. The two parts together imply that

player 1’s asymptotic payoff is no less than the right-hand-side of (3.5).

3.4 Detrimental Effects of Consumers’ Observational Learning

I focus on the product choice game where 0 < cT < cN , i.e., players’ actions are strategic complements.

I show that the patient seller’s payoff is arbitrarily close to his Stackelberg payoff 1 in all equilibria

when every consumer can only observe the seller’s action in the period before but cannot observe any

other consumer’s action, i.e., (K,M) = (1, 0).11 This stands in contrast to Theorem 1, which shows

that the seller receives his minmax payoff 0 in some equilibria when every consumer can also observe

her immediate predecessor’s action (i.e., M ≥ 1). The comparison between these two conclusions

suggests that consumers’ ability to observe other consumers’ choices can hurt the patient seller.

Since M = 0, consumers may not know calendar time t. Each consumer has a prior belief about

t, observes the seller’s action in the period before, and updates her belief about t using Bayes Rule.

For example, if a consumer observes at−1 = ∅, then she knows that t = 0; if she observes at−1 = H or

at−1 = L, then her posterior belief about t is not degenerate. I provide an interpretation of the seller’s

discount factor δ in order to make consumers’ prior belief about calendar time well-defined.

1. Let δ1 ∈ (0, 1) be the seller’s survival rate, namely, the seller survives in the next period with

probability δ1, and exits the market with probability 1− δ1 after which the game ends.

2. Let δ2 ∈ (0, 1) be the seller’s time preference, namely, the seller is indifferent between one unit

of payoff in period t and δ2 unit of payoff in period t− 1.

11Liu and Skrzypacz (2014) study the case where the seller’s cost is greater when consumers trust him, i.e., 0 < cN < cT .
Section 4 of Sperisen (2018) studies the case where cN = cT .
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By definition, δ = δ1δ2. Under this interpretation of the seller’s discount factor, consumers’ prior

belief attaches probability (1− δ1)δt1 to the calendar time being t.12

Proposition 4. Suppose in the product choice game, 0 < cT < cN and (K,M) = (1, 0). For every

π0 > 0, there exists δ ∈ (0, 1), such that when δ > δ, the seller’s payoff is at least δ − (1 − δ)cN in

every PBE.

The proof is in Appendix E. In the online appendix, I generalize this result to a class of games

where players’ actions are strategic complements. Intuitively, M = 0 implies that bt only affects the

seller’s stage-game payoff in period t, K = 1 implies that the seller has an incentive to play at−1 = H

only if it increases consumer-t’s probability of playing T , and cN > cT implies that the seller has a

stronger incentive to play at = H if consumer-t plays T with higher probability. I consider two cases:

1. When playing H does not increase the probability of being trusted in the next period, the

strategic seller has no incentive to play H. This implies that consumers will be convinced that

the seller is the commitment type after observing action H, and will have a strict incentive to

play T . Hence, the strategic seller can secure his Stackelberg payoff by playing H in every period.

2. When playing H increases the probability of being trusted in the next period, I show in Appendix

E that when δ1 is close to 1, either consumer-t has a strict incentive to play T when at−1 = H,

or the seller has an incentive to play H in period t when at−1 = L.13 The seller obtains at

least his Stackelberg payoff in the first case. In the second case, since the seller’s stage-game

payoff function is strictly supermodular and consumer-t plays T with higher probability when

at−1 = H, the seller must have a strict incentive to play H when at−1 = H as long as he has

a weak incentive to play H when at−1 = L. If the strategic-type seller has a strict incentive to

play H when at−1 = H, then consumer-t has a strict incentive to play T when at−1 = H.

The two cases together imply that the patient seller receives payoff at least 1 in all equilibria.

In contrast, allowing consumers to observe their predecessors’ choices leads to a richer set of feasible

strategies for the consumers and as a result, a larger set of equilibria. Allowing both players to observe

previous consumers’ choices also weakens the implication of supermodular stage-game payoffs, since

players can coordination their continuation plays on these commonly observed actions. Hence, it is not

12When δ1 = 1, consumers have an improper uniform prior belief about calendar time. When δ1 < 1, consumers’ prior
belief about calendar time is well-defined. Fixing δ, the values of δ1 and δ2 do not affect Theorem 1.

13Intuitively, when the strategic seller has no incentive to play H in period t when at−1 = L, he will never play H if
he has played L before. When δ1 is close to 1, consumers’ beliefs attach probability close to 1 to the calendar time t
being large. If at−1 = H for some large enough t, then either the seller is the commitment type, or he is the strategic
type who plays H in the long run. In both cases, consumers have strict incentives to play T after observing action H.
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necessarily the case that the seller has a stronger incentive to exert high effort when consumers trust

him with higher probability in the current period. This leads to equilibria where the seller receives a

low payoff, such as the imitation equilibria constructed in the proof of Theorem 1.

4 Extension: Reputation with Contemporaneous Information

Motivated by the social learning models of Banerjee (1992), Bichandarni, Hirshleifer and Welsh (1992),

and Smith and Sørensen (2000), I study an extension where each player 2 observes player 1’s actions

in the last K periods, the entire history of player 2s’ actions (i.e., M = +∞), and a private signal st

about player 1’s current-period action at. Whether player 1 can observe st is irrelevant for my results.

Let st ∈ S where S is a countable set. Let f(st|at) be the probability of st when player 1’s action is at.

I restrict attention to signal distributions that satisfy a monotone likelihood ratio property (MLRP).

MLRP. The distribution of player 2’s private signal satisfies MLRP if there exists a complete

order on S, �S, such that f(s|a)f(s′|a′) ≥ f(s′|a)f(s|a′) for every a �A a′ and s �S s′.

I replace �A, �B, and �S with � in order to simplify notation. Whether player 1 can guarantee

his Stackelberg payoff in all equilibria depends on whether player 2’s private signal is unboundedly

informative about player 1’s Stackelberg action a∗.

Unbounded Informativeness. Player 2’s private signal is unboundedly informative about a∗ if

for every L > 0, there exists s ∈ S, such that f(s|a∗) > Lf(s|a) for every a 6= a∗.

My notion of unbounded informativeness is similar to that in Smith and Sørensen (2000).14 When

S is a finite set, unbounded informativeness requires the existence of s∗ ∈ S such that f(s∗|a) > 0 if

and only if a = a∗. When S is countably infinite, f(·|a) can have full support for every a ∈ A, as long

as there exists a sequence {sn}n∈N ⊂ S such that limn→+∞
f(sn|a∗)
f(sn|a) = +∞ for every a 6= a∗.

For an interpretation of st, consider a regulator who only has the budget to inspect an ε fraction of

sellers in every period and can issue certificates to the ones that are being inspected. The certificate can

be modeled as the private signal st when the current-period consumer can notice the certificate before

deciding what to buy. MLRP implies that the seller is more likely to obtain a good certificate when

he exerts higher effort. If S is a finite set, then consumers’ private signal is unboundedly informative

about a∗ when the seller can obtain a good certificate only if he plays a∗. This is the case, for example,

when the certificate reveals the seller’s action with probability ε > 0.

14First, when S is infinite, I allow for, but does not require, signal realizations that can perfectly rule out some of player
1’s actions, while Smith and Sørensen (2000) require the signal distribution to have full support conditional on every
state. Second, I restrict attention to S that is countable while Smith and Sørensen (2000) allow S to be uncountable.
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Theorem 2. Suppose players’ payoffs satisfy Assumptions 1 and 2, every player 2 can observe all

previous player 2s’ choices, player 2’s private signal satisfies MLRP, and is unboundedly informative

about a∗. Then for every prior belief π0 > 0 and constant ε > 0, there exists δ∗ ∈ (0, 1) such that

player 1’s payoff is at least u1(a∗, b∗)− ε in all equilibria when δ > δ∗.

For every a 6= a∗, a∗ is not strongly separable from a if there exists ε > 0 such that f(s|a) ≥ εf(s|a∗)

for every s ∈ S. If player 2’s private signal is unboundedly informative about a∗, then there exists

no a 6= a∗ such that a∗ is not strongly separable from a. However, player 2’s private signal not being

unboundedly informative about a∗ does not imply that a∗ is not strongly separable from some a 6= a∗.

Theorem 3 shows a partial converse of Theorem 2 when player 2s’ private signals cannot strongly

separate the Stackelberg action a∗ from the lowest action a′.

Theorem 3. Suppose players’ payoffs satisfy Assumptions 1 and 2, every player 2 can observe all

previous player 2s’ choices, player 2’s private signal satisfies MLRP, and a∗ is not strongly separable

from a′. For every K ∈ N, there exists π0 ∈ (0, 1) such that for every π0 < π0 and δ large enough,

there exists an equilibrium where player 1’s payoff is u1(a′, b′).

The proofs are in Appendix F. Theorem 2 implies that the patient player can guarantee his S-

tackelberg payoff in all equilibria when each of his opponents can observe the entire history of their

predecessors’ choices and an unboundedly informative private signal about the patient player’s current-

period action.15 Theorem 3 extends the reputation failure result of Theorem 1 to situations where K

is finite, M is infinite, and player 2t observes a private signal about at before choosing bt.

When |A| = 2, every signal distribution satisfies MLRP. Since Assumption 2 requires that a∗ 6= a′,

we have A = {a∗, a′}. The private signal is not unboundedly informative about a∗ if and only if a∗ is

not strongly separable from a′. Hence, the private signal being unboundedly informative about a∗ is

both necessary and sufficient for player 1 to secure his Stackelberg payoff in all equilibria.16

The above conclusion is reminiscent of a well-known result in Bichandarni, Hirshleifer and Welsh

(1992) and Smith and Sørensen (2000). They show that in canonical social learning models where

there are two states, every myopic player has a finite number of actions, and all players share the same

payoff function, the myopic players’ actions are asymptotically efficient if and only if their private

signals are unboundedly informative about the payoff-relevant state.17

15Theorem 2 only establishes a common property of all equilibria but does not establish the existence of equilibrium.
When S is infinite, the existence of equilibrium does not follow from the canonical result of Fudenberg and Levine (1983).
I provide a constructive proof for the existence of equilibrium in Appendix F.2.

16When |A| ≥ 3, MLRP cannot be dropped and the condition in Theorem 3 cannot be replaced by “the private signal
not being unboundedly informative about a∗”, or “a∗ is not strongly separable from a† for some a† /∈ {a∗, a′}”.

17Lee (1993) shows that asymptotic efficiency can be achieved under boundedly informative signals when players have
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My model differs from Smith and Sørensen (2000) since the myopic players’ payoffs depend only on

the action profile but do not depend on the persistent state—which is player 1’s type in my model. My

analysis focuses on the patient player’s discounted average payoff instead of his asymptotic payoff or

the asymptotic outcome. In fact, the myopic players asymptotically learning about the persistent state

is neither necessary nor sufficient for the patient player to receive a high discounted average payoff. It

is not necessary since player 2’s payoff depends only on the action profile but not on player 1’s type.

For example, suppose player 2s believe that the strategic-type player 1 plays a∗ in every period, they

cannot learn about player 1’s type but player 1 can receive his Stackelberg payoff u1(a∗, b∗) by playing

a∗ in every period. It is not sufficient since in imitation equilibria, player 1’s asymptotic payoff is

u1(a∗, b∗) but his discounted average payoff is u1(a′, b′) no matter how patient he is.

I sketch the proof of Theorem 2 in the case where S is finite, under which there exists s∗ ∈ S such

that f(s∗|a) > 0 if and only if a = a∗.18

A rough intuition is that player 2t observing an unboundedly informative private signal st about

at guarantees a positive lower bound on the informativeness of player 2t’s action bt about at. Unlike

imitation equilibria where the informativeness of bt about at−1 vanishes to 0 as δ goes to 1, the

informativeness of bt about at is bounded away from zero for all δ ∈ (0, 1). Since every player 2 can

observe all of her predecessors’ actions, the arguments in Fudenberg and Levine (1992) and Gossner

(2011) imply that the patient player receives at least his Stackelberg payoff in all equilibria.

A more detailed explanation proceeds in two steps, which highlights the role of unbounded infor-

mativeness and MLRP. First, I examine whether player 2t’s action is informative about her private

signal st. Intuitively, bt can be uninformative about st for two reasons: (1) player 2t is unwilling to

play b∗ no matter which st she observes, and (2) player 2t is willing to play b∗ no matter which st

she observes. Since st is unboundedly informative about a∗, player 2 has a strict incentive to play b∗

when she observes st = s∗. This rules out the first possibility. When player 2t is willing to play b∗ no

matter which st she observes, player 1’s stage-game payoff is u1(a∗, b∗) when he plays a∗ in period t.

Second, I examine whether player 2t’s action is informative about player 1’s type. When player 1’s

action choice is binary, i.e., A ≡ {a∗, a′}, player 2t is willing to play b∗ if and only if f(st|a∗)
f(st|a′) is above

some cutoff. This implies that Pr(bt = b∗|at = a∗)− Pr(bt = b∗|at = a′) ≥ 0. Since player 2t plays b∗

a rich set of actions (e.g., a continuum). When the states, actions, and signals can be ordered such that players’ payoffs
satisfy single-crossing differences, Kartik, Lee and Rappoport (2021) show that asymptotic efficiency can be achieved as
long as the signal distribution satisfies directionally unbounded beliefs, which is weaker than unbounded informativeness.

18When S is infinite and the signal is unboundedly informative about a∗, there exists a nonempty subset S(π) ⊂ S for
every π ∈ (0, 1) such that when the prior probability of commitment type is at least π before player 2t observes st, she
has a strict incentive to play b∗ after observing any st ∈ S(π). See Lemma F.1 in Appendix F for details.
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after observing s∗ which occurs if and only if player 1 plays a∗, there exists c > 0 such that

Pr(bt = b∗|at = a∗)− Pr(bt = b∗|at = a′) ≥ c(1− Pr(bt = b∗|at = a∗)), (4.1)

i.e., the informativeness of bt about at is bounded from below by some positive function of 1−Pr(bt =

b∗|at = a∗). For every ν ∈ (0, 1), when Pr(bt = b∗|at = a∗) ≤ 1 − ν, the strategic type plays a∗ with

probability bounded away from 1, so the informativeness of bt about player 1’s type is bounded from

below by a strictly positive function of ν.

When player 1 has three or more actions, player 2t’s incentive to play b∗ can no longer be summa-

rized by a likelihood ratio. As a result, player 2t’s action can be uninformative about player 1’s type

even when the private signal is unboundedly informative about a∗ and bt is informative about st. I

provide a counterexample in Section 4.1. Nevertheless, when the private signal satisfies MLRP, bt is

informative about player 1’s type in every period where Pr(bt = b∗|at = a∗) 6= 1.

Formally, for every α ∈ ∆(A) and β : S → ∆(B), let γ(α, β) ∈ ∆(B) be the distribution of b

induced by (α, β). I show in Lemma F.2 of Appendix F that there exists c > 0 such that for every

ν ∈ (0, 1), every α ∈ ∆(A) such that a∗ belongs to the support of α, and every β that best replies

to α, if the probability of b∗ under γ(a∗, β) is less than 1 − ν, then the Kullback-Leibler divergence

between γ(α, β) and γ(a∗, β) is at least cν2. This implies that when player 1 imitates the commitment

type, either b∗ occurs with probability at least 1− ν under (a∗, β), or the informativeness of bt about

player 1’s type, measured by the Kullback-Leibler divergence between the distribution induced by the

equilibrium strategy and the distribution induced by the commitment type, is bounded away from 0.

Back to the discussion on the connections between my results and the canonical reputation results

in Section 3.3. Inequality (3.4) also applies to my model with contemporaneous private signals once

we view yt(·) as the equilibrium distribution of bt and yt(·|a∗) as the distribution of bt conditional on

player 1 being the commitment type. The above discussion implies that when player 2’s private signal

is unboundedly informative about a∗ and satisfies MLRP, there exists a strictly increasing function

g : [0, 1]→ R+ such that g(0) = 0 and d
(
yt(·|a∗)

∣∣∣∣yt(·)) > g(ν) when player 2t plays b∗ with probability

less than 1 − ν. Inequality (3.4) implies that for every ν ∈ (0, 1), the expected number of periods

where Pr(bt = b∗|at = a∗) < 1 − ν is bounded from above and this upper bound depends only on ν

and is independent of δ. Hence, for every ν > 0, there exists δ ∈ (0, 1) such that when δ > δ, player 1

receives at least a fraction 1− ν of u1(a∗, b∗) when he plays a∗ in every period.
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4.1 Conditions in Theorems 2 and 3

Bounded Informativeness: I use an example to explain why “a∗ is not strongly separable from

a′” in Theorem 3 cannot be replaced by a weaker condition that “consumers’ private signal st is not

unboundedly informative above a∗”. Suppose players’ stage-game payoffs are

- b∗ b′

a 1, 4 −2, 0

a∗ 2, 1 −1, 0

a 3,−2 0, 0

Let S ≡ {s, s∗, s}, with f(s|a) = 2/3, f(s∗|a) = 1/3, f(s|a∗) = 1/3, f(s∗|a∗) = 2/3, and f(s|a) = 1.

One can verify that players’ stage-game payoffs are monotone-supermodular when player 1’s actions

are ranked according to a � a∗ � a, and player 2’s actions are ranked according to b∗ � b′. When

signal realizations are ranked according to s � s∗ � s, the signal distribution satisfies MLRP, and is

not unboundedly informative about a∗. Player 1’s payoff is at least 2 in every equilibrium. This is

because when he plays a∗, player 2 observes either s∗ or s, and has a strict incentive to play b∗.

Not Strongly Separable from Other Actions: I use an example to explain why in Theorem 3,

“a∗ is not strongly separable from a′” cannot be replaced by “a∗ is not strongly separable from a† for

some a† /∈ {a∗, a′}”. Suppose player 1’s stage-game payoff is given by the following matrix:

- b∗ b† b′′ b′

a∗ 5 −2 −3 −4

a† 6 −1 −2 −3

a′′ 7 2 1 −1

a′ 8 3 2 0

Player 2’s stage-game payoff function is such that b∗ is a strict best reply to a∗, b† is a strict best reply

to a†, b′′ is a strict best reply to a′′, and b′ is a strict best reply to a′.

Suppose S ≡ {s∗, s′′, s′} such that f(s′|a′) = 1 and f(s′|a) = 0 for every a 6= a′. For every

s ∈ {s∗, s′′} and a ∈ {a∗, a†, a′′}, we have f(s|a) > 0, and f(s∗|a)
f(s′′|a) is strictly increasing in a.

Players’ stage-game payoffs satisfy Assumptions 1 and 2 once we rank player 1’s actions according

to a∗ � a† � a′′ � a′ and player 2’s actions according to b∗ � b† � b′′ � b′. The signal distribution

satisfies MLRP once we rank the signal realizations according to s∗ � s′′ � s′. Player 1’s Stackelberg

action is a∗, which is not strongly separable from a†.
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Player 1’s commitment payoff from a† is −1, which is strictly less than his minmax payoff 0. Hence,

there exists no equilibrium in which player 1’s payoff equals his commitment payoff from a†.

Next, I show there is no equilibrium where player 1’s payoff equals his minmax payoff 0. Since player

1 is the commitment type with positive probability, both s∗ and s′′ occur with positive probability

in period 0. Since both s∗ and s′′ occur on the equilibrium path, player 2’s action is supported in

{b∗, b†, b′′} after she observes s∗ or s′′. Suppose player 1 plays a′′ in period 0, player 20 observes either

s∗ or s′′, so her action is supported in {b∗, b†, b′′}. This implies that player 1’s stage-game payoff in

period 0 is at least 1 and his expected continuation value after playing a′′ is at least 0 in any PBE.

Hence, player 1’s discounted average payoff is strictly greater than his minmax payoff 0 in all PBEs.

One can obtain a higher payoff lower bound under the following refinement of PBE: For every

history ht no matter whether it is on-path or off-path, player 2t’s posterior belief about at after

observing st is supported in A(st) ≡
{
a ∈ A

∣∣f(st|a) > 0
}

. In every PBE that satisfies this refinement,

suppose player 1 deviates and plays a′′ in every period, then at every history, player 2 must be playing

some mixed action supported in {b∗, b†, b′′}. Hence, player 1’s discounted average payoff from playing

a′′ in every period is at least 1, so his equilibrium payoff in every refined PBE must be no less than 1.

MLRP: In order to demonstrate that MLRP is not redundant, consider the following game:

- b∗ b′

a 1, 4 −2, 0

a∗ 2, 1 −1, 0

a 3,−2 0, 0

Let S ≡ {s, s∗, s}, with f(s∗|a∗) = 2/3, f(s|a∗) = 1/3, f(s|a) = 1, f(s|a) = 1/3, and f(s|a) = 2/3.

Players’ payoffs satisfy Assumptions 1 and 2 when player 1’s actions are ranked according to

a � a∗ � a and player 2’s actions are ranked according to b∗ � b′. Player 1’s Stackelberg action is a∗,

his Stackelberg payoff is 2, st is unboundedly informative about a∗. However, MLRP is violated.

I construct an equilibrium where player 1’s payoff is 1, which is bounded below his Stackelberg

payoff 2. The strategic-type player 1 plays a mixed action that depends only on player 2’s posterior

belief about his type. If player 2’s posterior belief assigns probability π to the commitment type, then

the strategic-type player 1 plays α(π) ∈ ∆(A) such that (1−π) ·α(π)+π ·a∗ = 0.5 ·a∗+0.25 ·a+0.25 ·a.

Player 2t plays b∗ if st ∈ {s∗, s}, and plays b′ if st = s.

This strategy profile is an equilibrium since player 1’s expected stage-game payoff is 1 no matter

which action he plays, and his continuation value is independent of his current-period action. Player 2
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has a strict incentive to play b∗ after observing s or s∗, and has an incentive to play b′ after observing

s. Regardless of player 1’s type, the probability with which player 2 plays b∗ in each period is 2/3.

In the above example, bt is uninformative about player 1’s type despite the probability of bt = b∗

is bounded away from 1. As a result, even when player 1 builds a reputation for playing a∗, player 2

can still play b′ with significant probability in unbounded number of periods. This explains why the

patient player’s equilibrium payoff is bounded below his Stackelberg payoff in some equilibria.

5 Concluding Remarks

I examine a patient seller’s returns from building reputations when consumers have limited access to

his past records and can learn from other consumers’ choices.

My main result shows that consumers’ observational learning can lead to reputation failures. This

is because observing other consumers’ choices enables consumers to imitate their predecessors, and

consumers’ imitation behaviors can be rationalized when each of them observes at most a bounded

number of the seller’s actions. When every consumer imitates her predecessor with high probability,

the seller receives a low payoff as long as he receives a low stage-game payoff in the first period. I also

show that the seller receives his minmax payoff in all equilibria where consumers do not trust him

when he first arrives and do not trust him when the worst action profile occurred in the period before.

In contrast, the seller receives at least his Stackelberg payoff in all equilibria when each consumer

also observes a unboundedly informative private signal about his current-period action. I conclude by

reviewing the related literature on social learning and reputation formation.

Social Learning: In the case where M = +∞, my model is analogous to a social learning model

where a sequence of myopic players observes their predecessors’ choices and some private signals (e.g.,

the long-run player’s actions in the last K periods) in order to forecast the long-run player’s current-

period action. This stands in contrast to the social learning models in Banerjee (1992), Bichandarni,

Hirshleifer and Welsh (1992), Lee (1993), Smith and Sørensen (2000), Bose, Orosel, Ottaviani and

Vesterlund (2006), and Kartik, Lee and Rappoport (2021) in which a sequence of myopic players

learns about an exogenous payoff-relevant state, rather than some endogenous actions.

Due to differences in the object to learn, the myopic players asymptotically learn about the patient

player’s type is neither sufficient nor necessary for the patient player to receive a high discounted

average payoff in my model. The differences in the object to learn also leads to different forms of

inefficiencies. In canonical social learning models, inefficiencies arise when myopic players ignore their
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private signals and herd on some inefficient action. In contrast, the myopic players can never herd on

any action other than b∗ in any equilibrium of my baseline model.19

In terms of research question, I examine the effects of social learning on a patient player’s discounted

average payoff. This stands in contrast to existing results that focus on players’ asymptotic beliefs,

players’ asymptotic rates of learning (e.g., Gale and Kariv 2003, Hann-Caruthers, Martynov and

Tamuz 2018, Harel, Mossel, Strack and Tamuz 2021), and players’ asymptotic payoffs (e.g., Rosenberg

and Vieille 2019).20 As demonstrated by the imitation equilibria in the constructive proof of Theorem

1, the patient player’s discounted average payoff can be low even though his asymptotic payoff is high.

My paper is also related to social learning models with bounded memories. Drakopoulos, Ozdaglar

and Tsitsiklis (2012) study a model where a sequence of myopic players learns about an exogenous

state. Every player observes a private signal and the actions of her last M predecessors. They show

that learning is possible when M ≥ 2 but not when M = 1. In contrast, the myopic players in

my model are learning about the endogenous behaviors of a strategic long-run player instead of an

exogenous state. As a result, the informativeness of their private signal (which is the patient player’s

actions in the last K periods in my model) is also endogenous. In contrast to their conclusion which

highlights the distinction between the case where M = 1 and the case where M ≥ 2, the values of K

and M do not play an important role here as long as K is finite and M is at least one.

Reputation Failure: Theorem 1 is related to the literature on reputation failures. Schmidt (1993),

Cripps and Thomas (1997), and Chan (2000) assume that the uninformed player is forward-looking.

They show that reputation fails in the sense that there exist equilibria in which the informed player

receives a low payoff. The takeaway from their analysis is that the informed player’s patience helps

reputation building while the uninformed player’s patience hurts reputation building.

In contrast, my analysis highlights another effect, that the informed player’s patience makes it

hard for his opponents to distinguish between the commitment type and the strategic type. This

effect does not affect the patient player’s payoff when his opponents observe his entire history, but

plays an important role when each of his opponents only observes a bounded number of his actions.

When each uninformed player receives limited information, there is a rationale for her to imitate her

19Logina, Lukyanov and Shamruk (2019) study a social learning model in which every myopic player observes a
private signal about a patient player’s action. They show that the patient player exerts high effort only when the myopic
players’ beliefs are intermediate. Their logic is similar to the one in Banerjee (1992) and Bichandarni, Hirshleifer and
Welsh (1992). Board and Meyer-ter-Vehn (2020) study a model of innovation adoption in which players learn about a
persistent exogenous state, and characterize the rate of learning under different network structures.

20Rosenberg and Vieille (2019) bound the discounted sum of a sequence of myopic players’ payoffs when they learn
about an exogenous state. Che and Hörner (2018) and Smith, Sørensen and Tian (2021) characterize mechanisms that
maximize a sequence of myopic players’ discounted average payoff when they learn about an exogenous payoff-relevant
state. None of these papers examine what happens when players learn about the endogenous actions of a patient player.
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predecessor, and her imitation behaviors wipe out the seller’s returns from building reputations.

Ely and Välimäki (2003), Ely, Fudenberg and Levine (2008), and Deb, Mitchell and Pai (2021)

focus on participation games where the uninformed player(s) can take an action under which the

informed player receives his minmax payoff and future uninformed players cannot learn about his

current-period action.21 This lack-of-identification problem leads to equilibria with low payoffs. Deb

and Ishii (2021) show that lack-of-identification occurs when uninformed players do not know the

monitoring structure. In contrast, the uninformed players cannot shut down learning in my model

and consumers’ actions in imitation equilibria can statistically identify the seller’s past actions.

Bai (2021) studies a model where the seller is either a low-cost type who may exert effort or a

high-cost type who never exerts effort. Every consumer observes a noisy signal of the seller’s effort

and communicates the realized signal to all future consumers. She shows that the low-cost type has no

incentive to exert effort when (1) δ is low, (2) consumers’ prior belief attaches low enough probability

to the low-cost type, and (3) the fixed cost of establishing a reputation is high enough. In contrast,

reputation effects fail in my model since consumers have limited observation of the seller’s past actions

and can observe previous consumers’ choices. I introduce a refinement and show that the seller’s payoff

equals his minmax payoff in all equilibria that satisfy this refinement, no matter how patient he is.

Reputation Models with Limited Memory: Liu (2011) and Liu and Skrzypacz (2014) study

reputation models where consumers observe a bounded number of the seller’s actions but cannot

observe other consumers’ choices.22 I show that consumers’ ability to observe other consumers’ choices

can lead to qualitatively different predictions. First, my reputation failure result needs consumers

to observe other consumers’ choices, as demonstrated by the comparison between Theorem 1 and

Proposition 4. Second, in terms of players’ equilibrium behaviors, the reputation cycles in Liu and

Skrzypacz (2014) cannot arise in my model due to consumers’ observational learning.

In Kaya and Roy (2020), a long-lived seller has persistent private information about his quality

and decides whether to accept a myopic consumer’s offer in every period. Quality affects both the

seller’s production cost and consumers’ valuations. That is, values are interdependent in their model.

When each consumer observes a bounded number of the seller’s past actions but cannot observe

previous consumers’ price offers, they show that longer records can hurt the high-quality seller due

to the low-quality seller’s incentive to imitate. In contrast, the consumers’ payoffs in my model do

21Levine (2021) studies a model where signals are less informative when the uninformed players do not participate.
22Heller and Mohlin (2018) and Bhaskar and Thomas (2019) study repeated games with random matching in which

players cannot observe their opponents’ actions taken more than K periods ago. They show that cooperation is sus-
tainable in repeated prisoner’s dilemma when payoffs are supermodular but not when payoffs are submordular, and that
cooperation is sustainable in games with one-sided moral hazard when observations of opponents’ past play are noisy.
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not directly depend on the seller’s type and each consumer can observe at least one other consumer’s

action in addition to a bounded number of the seller’s actions. In contrast to their conclusion that

longer memories of the seller’s actions may hurt the high-quality seller, I show that consumers’ ability

to observe other consumers’ choices can also hurt the seller.
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A Proof of Theorem 1

Since a∗ 6= a′, a′ is the lowest action, and u1(a, b) is strictly decreasing in a, we know that u1(a′, b′) <

u1(a∗, b∗). I normalize player 1’s payoff function by setting u1(a′, b′) = 0 and u1(a∗, b∗) = 1. Assump-

tion 2 implies that u1(a, b′) < 0 for every a � a′ and u1(a, b∗) > 1 for every a ≺ a∗.

Let q be the largest q ∈ [0, 1] such that b′ is not player 2’s strict best reply to mixed action

qa∗ + (1 − q)a′. Let q be the smallest q ∈ [0, 1] such that b∗ is not player 2’s strict best reply to

mixed action qa∗ + (1 − q)a′. Assumption 1 implies that b∗ is a strict best reply to a∗ and b′ is

a strict best reply to a′. Hence 0 < q < q < 1 and there exist b∗∗ 6= b′ and b′′ 6= b∗ such that

{b∗∗, b′} ⊂ BR2(qa∗ + (1 − q)a′) and {b∗, b′′} ⊂ BR2(qa∗ + (1 − q)a′). Assumption 2 implies that

b∗ � b′′, b∗∗ � b′, and b∗ � b′. I consider the following three cases separately.

Case 1: b∗ = b∗∗ and b′ = b′′.

Case 2: b∗ � b′′ � b∗∗ � b′.

Case 3: b∗ � b′′ = b∗∗ � b′.

First, I construct equilibria in which (1) player 1’s ex ante payoff is 0, (2) player 2t’s action depends

only on (at−1, bt−1), (3) player 1’s action in period t depends only on (at−1, bt−1) and player 2’s

posterior belief about player 1’s type, (4) player 1 plays either a∗ or a′ on the equilibrium path, and

(5) if at−1 /∈ {a′, a∗}, then the continuation play proceeds as if (at−1, bt−1) = (a′, bt−1). Since u1(a, b)

is strictly in a and a′ is player 1’s lowest action, the strategic-type player 1 strictly prefers a′ to actions

other than a∗ and a′ at any private history. I comment on δ(u1, u2) by the end of this section.

Case 1: b∗ = b∗∗ and b′ = b′′ In this case, q = q ≡ q. The construction resembles that in the

product choice game after replacing H with a∗, L with a′, T with b∗, and N with b′.

1. When (at−1, bt−1) = (a′, b′) or ∅. Player 2 plays b′. The strategic type player 1 mixes between

a∗ and a′. His probability of playing a∗, denoted by pt, satisfies πt + (1− πt)pt = q.

2. When (at−1, bt−1) = (a∗, b′). Player 2 plays b∗ with probability −1−δ
δ u1(a∗, b′) and plays b′ with

complementary probability. The strategic type player 1 mixes between a∗ and a′. His probability

of playing a∗, denoted by pt, satisfies πt + (1− πt)pt = q.

3. When (at−1, bt−1) = (a′, b∗). Player 2 plays b∗ with probability 1−(1−δ)u1(a′,b∗)
δ and plays b′ with

complementary probability. The strategic type player 1 mixes between a∗ and a′. His probability

of playing a∗, denoted by pt, satisfies πt + (1− πt)pt = q.
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4. When (at−1, bt−1) = (a∗, b∗), player 2 plays b∗ and player 1 plays a∗.

Suppose π0 ≤
(
q
2

)−K−1
. Verifying players’ incentive constraints and that player 2’s posterior belief

attaches probability less than q/2 to the commitment type at every history where (at−1, bt−1) 6= (a∗, b∗)

follows from the same steps as in the product choice game, which I omit in order to avoid repetition.

Case 2: b∗ � b′′ � b∗∗ � b′ Consider the following strategy profile, which is parameterized by

r(a∗, b′), r(a∗, b′′), r(a′, b∗), and r(a′, b∗∗), all of them belong to (0, 1) and will be specified later on.

Recall that πt is player 2t’s belief about the commitment type.

1. When (at−1, bt−1) = (a′, b′) or (a′, b′′) or ∅. Player 2 plays b′. The strategic type player 1 mixes

between a∗ and a′. He plays a∗ with probability pt such that πt + (1− πt)pt = q.

2. When (at−1, bt−1) = (a∗, b′). Player 2 plays b∗∗ with probability r(a∗, b′) and b′ with comple-

mentary probability. The strategic type player 1 mixes between a∗ and a′. He plays a∗ with

probability pt such that πt + (1− πt)pt = q.

3. When (at−1, bt−1) = (a∗, b′′). Player 2 plays b∗∗ with probability r(a∗, b′′) and b′ with comple-

mentary probability. The strategic type player 1 mixes between a∗ and a′. He plays a∗ with

probability pt such that πt + (1− πt)pt = q.

4. When (at−1, bt−1) = (a′, b∗). Player 2 plays b∗ with probability r(a′, b∗) and b′′ with comple-

mentary probability. The strategic type player 1 mixes between a∗ and a′. He plays a∗ with

probability pt such that πt + (1− πt)pt = q.

5. When (at−1, bt−1) = (a′, b∗∗). Player 2 plays b∗ with probability r(a′, b∗∗) and b′′ with comple-

mentary probability. The strategic type player 1 mixes between a∗ and a′. He plays a∗ with

probability pt such that πt + (1− πt)pt = q.

6. When (at−1, bt−1) = (a∗, b∗) or (a∗, b∗∗). Player 2 plays b∗ and player 1 plays a∗.

Player 2’s incentive constraint at every history is satisfied. Next, I compute player 1’s continuation

value in period t for every (at−1, bt−1), which I denote by V (at−1, bt−1). Then I verify player 1’s

incentive constraints. From the descriptions of players’ strategies from (1) to (6), we know that V (∅) =

V (a′, b′) = V (a′, b′′) = 0 and V (a∗, b∗∗) = V (a∗, b∗) = 1. Player 1’s indifference at (at−1, bt−1) = (a′, b′)

implies that

V (a∗, b′) = −1− δ
δ

u1(a∗, b′). (A.1)
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Since (1 − δ)u1(a∗, b′) + δV (a∗, b′) = (1 − δ)u1(a′, b′) + δu1(a′, b′) = 0, player 1 is indifferent when

(at−1, bt−1) ∈ {(a′, b′′), (a∗, b′), (a∗, b′′)} if and only if

(1− δ)u1(a′, b∗∗) + δV (a′, b∗∗) = (1− δ)u1(a∗, b∗∗) + δV (a∗, b∗∗) = (1− δ)u1(a∗, b∗∗) + δ, (A.2)

which implies that

V (a′, b∗∗) = 1− 1− δ
δ

(
u1(a′, b∗∗)− u1(a∗, b∗∗)︸ ︷︷ ︸

>0

)
. (A.3)

Let V (a′, b∗) be such that player 1 is indifferent when (at−1, bt−1) = (a∗, b∗). This yields:

V (a′, b∗) =
1− (1− δ)u1(a′, b∗)

δ
. (A.4)

According to (A.4), player 1 is indifferent when (at−1, bt−1) ∈ {(a∗, b∗∗), (a′, b∗), (a′, b∗∗)} if and only if

(1− δ)u1(a∗, b′′) + δV (a∗, b′′) = (1− δ)u1(a′, b′′) + δV (a′, b′′) = (1− δ)u1(a′, b′′). (A.5)

This yields:

V (a∗, b′′) =
1− δ
δ

(
u1(a′, b′′)− u1(a∗, b′′)︸ ︷︷ ︸

>0

)
. (A.6)

Next, I pin down variables r(a∗, b′), r(a∗, b′′), r(a′, b∗), and r(a′, b∗∗).

1. r(a∗, b′) is pinned down by:

V (a∗, b′)︸ ︷︷ ︸
positive but close to 0

= r(a∗, b′)
(

(1− δ)u1(a∗, b∗∗) + δ V (a∗, b∗∗)︸ ︷︷ ︸
=1

)
.

Such r ∈ [0, 1] exists since 0 < V (a∗, b′) < (1−δ)u1(a∗, b∗∗)+ δV (a∗, b∗∗) when δ is large enough.

2. r(a∗, b′′) is pinned down by:

V (a∗, b′′)︸ ︷︷ ︸
positive but close to 0

= r(a∗, b′′)
(

(1− δ)u1(a∗, b∗∗) + δV (a∗, b∗∗)
)
.

Such r ∈ [0, 1] exists since 0 < V (a∗, b′′) < (1−δ)u1(a∗, b∗∗)+δV (a∗, b∗∗) when δ is large enough.
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3. r(a′, b∗) is pinned down by:

V (a′, b∗)︸ ︷︷ ︸
less than but close to 1

= r(a′, b∗) + (1− r(a′, b∗))
(

(1− δ)u1(a∗, b′′) + δ V (a∗, b′′)︸ ︷︷ ︸
positive but close to 0

)
.

Such r ∈ [0, 1] exists since (1− δ)u1(a∗, b′′) + δV (a∗, b′′) < V (a′, b∗) < 1 when δ is large enough.

4. r(a′, b∗∗) is pinned down by:

V (a′, b∗∗)︸ ︷︷ ︸
less than but close to 1

= r(a′, b∗∗) + (1− r(a′, b∗∗))
(

(1− δ)u1(a∗, b′′) + δ V (a∗, b′′)︸ ︷︷ ︸
positive but close to 0

)
.

Such r ∈ [0, 1] exists since (1− δ)u1(a∗, b′′) + δV (a∗, b′′) < V (a′, b∗) < 1 when δ is large enough.

When the prior probability of commitment type is less than π0 where π0 is given by

π0

1− π0
=
(q

2

)K+1
, (A.7)

player 2’s posterior belief attaches probability less than q/2 to the commitment type at every history

where (at−1, bt−1) /∈ {(a∗, b∗), (a∗, b∗∗)}. This implies that the strategic type player 1 plays a∗ with

probability at least q/2 at every history, and that his mixed action at every history is well-defined.

Case 3: b∗ � b′′ = b∗∗ � b′ I write b′′ instead of b∗∗. Consider the following strategy profile,

parameterized by s(a∗, b′), s(a∗, b′′), s(a′, b∗), and s(a′, b∗∗).

1. When (at−1, bt−1) = (a′, b′) or ∅. Player 2 plays b′. The strategic type player 1 mixes between

a∗ and a′. He plays a∗ with probability pt such that πt + (1− πt)pt = q.

2. When (at−1, bt−1) = (a∗, b′). Player 2 plays b
′′

with probability s(a∗, b′) and b′ with comple-

mentary probability. The strategic type player 1 mixes between a∗ and a′. He plays a∗ with

probability pt such that πt + (1− πt)pt = q.

3. When (at−1, bt−1) = (a′, b′′). Player 2 plays b′′ with probability s(a′, b′′) and b′ with comple-

mentary probability. The strategic type player 1 mixes between a∗ and a′. He plays a∗ with

probability pt such that πt + (1− πt)pt = q.

4. When (at−1, bt−1) = (a∗, b′′). Player 2 plays b∗ with probability s(a∗, b′′) and b′′ with comple-

mentary probability. The strategic type player 1 mixes between a∗ and a′. He plays a∗ with

probability pt such that πt + (1− πt)pt = q.



A PROOF OF THEOREM 1 31

5. When (at−1, bt−1) = (a′, b∗). Player 2 plays b∗ with probability s(a′, b∗∗) and b′′ with comple-

mentary probability. The strategic type player 1 mixes between a∗ and a′. He plays a∗ with

probability pt such that πt + (1− πt)pt = q.

6. When (at−1, bt−1) = (a∗, b∗). Player 2 plays b∗ and player 1 plays a∗.

According to (1) and (6), V (∅) = V (a′, b′) = 0 and V (a∗, b∗) = 1. Player 1’s indifference at

(a′, b′) implies that V (a∗, b′) = −1−δ
δ u1(a∗, b′). Let V (a′, b∗) = 1−(1−δ)u1(a′,b∗)

δ , under which player 1 is

indifferent between a∗ and a′ when (at−1, bt−1) = (a∗, b∗).

Since (1−δ)u1(a∗, b′)+δV (a∗, b′) = (1−δ)u1(a′, b′)+δV (a′, b′) and (1−δ)u1(a∗, b∗)+δV (a∗, b∗) =

(1−δ)u1(a′, b∗)+δV (a′, b∗) under these continuation values, the strategic type of player 1 is indifferent

at (a∗, b′), (a′, b′′), (a∗, b′′), and (a′, b∗) if and only if

(1− δ)u1(a∗, b′′) + δV (a∗, b′′) = (1− δ)u1(a′, b′′) + δV (a′, b′′). (A.8)

Assumption 2 implies that u1(a′, b′′) > u1(a∗, b′′), u1(a∗, b′′) < u1(a∗, b∗) and u1(a′, b′′) > u1(a′, b′).

Lemma A.1. There exists γ ∈ (0, 1) ∩ (u1(a∗, b′′), u1(a′, b′′)) such that

γ(1− u1(a∗, b′′)) ≥ (1− γ)u1(a′, b′′). (A.9)

Proof. Consider two cases separately. First, suppose u1(a′, , b′′) ≤ 1. By setting γ = u1(a′, b′′),

γ(1− u1(a∗, b′′)) = u1(a′, b′′)(1− u1(a∗, b′′)) > u1(a′, b′′)(1− u1(a′, b′′)).

The intermediate value theorem implies that (A.9) holds for some γ that is strictly less than u1(a′, b′′)

but is strictly greater than u1(a∗, b′′). Second, suppose u1(a′, b′′) > 1. By setting γ = 1, the left-

hand-side of (A.9) is strictly positive while the right-hand-side of (A.9) is 0. The intermediate value

theorem implies that (A.9) holds for some γ that is strictly less than 1 but is strictly greater than

u1(a∗, b′′)

Pick γ ∈ (0, 1)∩ (u1(a∗, b′′), u1(a′, b′′)) that satisfies (A.9) and set player 1’s continuation values at

(a∗, b′′) and (a′, b′′) to be

V (a∗, b′′) =
1

δ

(
γ − (1− δ)u1(a∗, b′′)

)
(A.10)

and

V (a′, b′′) =
1

δ

(
γ − (1− δ)u1(a′, b′′)

)
. (A.11)
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These continuation values satisfy player 1’s incentive constraint (A.8), and moreover,

V (a∗, b′′) > (1− δ)u1(a∗, b′′) + δV (a∗, b′′) = γ = (1− δ)u1(a′, b′′) + δV (a′, b′′) > V (a′, b′′).

When δ is close to 1, both V (a∗, b′′) and V (a′, b′′) are bounded away from 0 and 1, and moreover,

V (a′, b′′) < u1(a′, b′′) and V (a∗, b′′) > u1(a∗, b′′).

Next, I pin down the values of s(a∗, b′), s(a∗, b′′), s(a′, b∗), and s(a′, b′′) so that player 1 receives

these continuation values. Recall that V (a∗, b′) = −1−δ
δ u1(a∗, b′) and V (a′, b∗) = 1−(1−δ)u1(a′,b∗)

δ , and

the values of V (a∗, b′′) and V (a′, b′′) are given by (A.10) and (A.11).

1. s(a∗, b′) is pinned down by:

V (a∗, b′)︸ ︷︷ ︸
positive but close to 0

= s(a∗, b′)
(

(1− δ)u1(a∗, b′′) + δ V (a∗, b′′)︸ ︷︷ ︸
bounded away from 0

)
.

Such s ∈ [0, 1] exists since 0 < V (a∗, b′) < (1− δ)u1(a∗, b′′) + δV (a∗, b
′′
) when δ is large enough.

2. s(a′, b′′) is pinned down by:

V (a′, b′′) = s(a′, b′′)
(

(1− δ)u1(a′, b′′) + δV (a′, b′′)
)
.

Such s ∈ [0, 1] exists since 0 < V (a′, b′′) < (1− δ)u1(a′, b′′) + δV (a′, b′′) when δ is large enough.

3. s(a∗, b′′) is pinned down by:

V (a∗, b′′) = s(a∗, b′′) + (1− s(a∗, b′′))
(

(1− δ)u1(a∗, b′′) + δV (a∗, b′′)
)
.

Such s ∈ [0, 1] exists since (1− δ)u1(a∗, b′′) + δV (a∗, b′′) < V (a∗, b′′) < 1 when δ is large enough.

4. s(a′, b∗) is pinned down by:

V (a′, b∗)︸ ︷︷ ︸
close to but less than 1

= s(a′, b∗) + (1− s(a′, b∗))
(

(1− δ)u1(a∗, b′′) + δ V (a∗, b′′)︸ ︷︷ ︸
bounded away from 1

)

Such s ∈ [0, 1] exists since (1− δ)u1(a∗, b′′) + δV (a∗, b′′) < V (a′, b∗) < 1 when δ is large enough.

Next, I show that player 2’s posterior belief attaches probability less than q/2 to the commitment type

at every history where (at−1, bt−1) 6= (a∗, b∗). The key step is Lemma A.2.

Lemma A.2. If γ satisfies (A.9), then s(a′, b′′) + s(a∗, b′′) ≥ 1.
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Proof. According to the expressions of player 1’s continuation value, we have

s(a∗, b′′) =
V (a∗, b′′)− γ

1− γ
and s(a′, b′′) =

V (a′, b′′)

γ
. (A.12)

Therefore, s(a′, b′′) + s(a∗, b′′) ≥ 1 if and only if

V (a∗, b′′)− γ
1− γ

+
V (a′, b′′)

γ
≥ 1

which is equivalent to (1−γ)V (a′, b′′) ≥ γ(1−V (a∗, b′′)). Plugging in (A.10) and (A.11), this inequality

is equivalent to γ(1− u1(a∗, b′′)) ≥ (1− γ)u1(a′, b′′), which is (A.9).

Since player 2 plays b′′ with probability 1− s(a∗, b′′) when (at−1, bt−1) = (a∗, b′′) and plays b′′ with

probability s(a′, b′′) when (at−1, bt−1) = (a′, b′′), Lemma A.2 implies that

Pr(bt+1 = b′′|bt = b′′, at = a′) ≥ Pr(bt+1 = b′′|bt = b′′, at = a∗). (A.13)

Therefore, the likelihood ratio between the commitment type and the strategic type does not increase

when player 2 observes bt+1 = b′′ conditional on bt = b′′. Back to the proof of πt ≤ q/2 whenever

(at−1, bt−1) 6= (a∗, b∗), we only need to consider histories such that at−1 = a∗. Assume π0 < π0 where

π0 is given by
π0

1− π0
=
(q

2

)K+1 q

2− q
. (A.14)

1. At histories where (at−1, bt−1) = (a∗, b′), then the same argument as that in Section 3 implies

that when π0 is no more than π0 defined in (A.14), player 2’s posterior belief attaches probability

less than q/2 at every such history.

2. At histories where (at−1, bt−1) = (a∗, b′′), then player 2’s posterior belief about the commitment

type is strictly positive only if (at−K , ..., at−1) = (a∗, ..., a∗) and there exists s ≤ t − 1 such

that bτ = b′ for every τ < s and bτ = b′′ for every t − 1 ≥ τ ≥ s. Let Et be the event

that (at−K , ..., at−1) = (a∗, ..., a∗), let Fs,t be the event that (b0, ..., bt−1) = (b′, ..., b′, b′′, b′′, ..., b′′)

where the first b′′ occurs in period s. Let π∗s,t be the posterior probability of commitment type

conditional on Et ∩ Ft. According to Bayes rule,

π∗s,t
1− π∗s,t

/ π0

1− π0
=
Pωc(Et ∩ Ft)
Pωs(Et ∩ Ft)

=
Pωc(Et)

Pωs(Et)
· P

ωc(Ft|Et)
Pωs(Ft|Et)

. (A.15)
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The first term on the right-hand-side of (A.15) is no more than (q/2)−K . For every n < s, let

ln ≡
Pωc(an = a′|Et, (b0, ..., bn−1) = (b′, ..., b′))

Pωs(an = a′|Et, (b0, ..., bn−1) = (b′, ..., b′))
(A.16)

and for every n ≥ s, let

ln ≡
Pωc(an = a′′|Et, (b0, ..., bn−1) = (b′, ..., b′))

Pωs(an = a′′|Et, (b0, ..., bn−1) = (b′, ..., b′))
(A.17)

According to Bayes rule, the second term on the right-hand-side of (A.15) equals Πt−1
i=0li. Ac-

cording to Lemma A.2, ln ≤ 1 for every n 6= s. Since π0 ≤ π0, we have π∗s,t ≤ q/2 for every t ≤ s.

Since πt ≤ maxs≤t π
∗
s,t, we have πt ≤ q/2 for every t ≤ s. Since the unconditional probability

with which player 1 plays a∗ is at least q in every period and π∗s,s ≤ q/2, we have ls ≤ (q/2)−1.

This implies that πt ≤ q/2 for every t ∈ N, which concludes the proof.

Remark: I provide sufficient conditions for the cutoff discount factor δ(u1, u2). Recall we adopt the

normalization that u1(a∗, b∗) = 1 and u1(a′, b′) = 0. In Case 1, the cutoff discount factor is:

δ(u1, u2) = max
{ −u1(a∗, b′)

1− u1(a∗, b′)
, 1− 1

u1(a′, b∗)

}
.

In Case 2, the cutoff discount factor is pinned down by V (a∗, b′) ≤ (1−δ)u1(a∗, b∗∗)+δ, V (a∗, b′′) ≤ (1−

δ)u1(a∗, b∗∗)+δ, (1−δ)u1(a∗, b′′)+δV (a∗, b′′) ≤ V (a′, b∗), and (1−δ)u1(a∗, b′′)+δV (a∗, b′′) ≤ V (a′, b∗),

where V (a∗, b′), V (a′, b∗∗), V (a′, b∗) and V (a∗, b′′) are given by (A.1), (A.3), (A.4), and (A.6). In Case

3, the cutoff discount factor is pinned down by V (a∗, b′) ≤ (1 − δ)u1(a∗, b′′) + δV (a∗, b
′′
), V (a′, b′′) ≤

(1−δ)u1(a′, b′′)+δV (a′, b′′), (1−δ)u1(a∗, b′′)+δV (a∗, b′′) ≤ V (a∗, b′′), and (1−δ)u1(a∗, b′′)+δV (a∗, b′′) ≤

V (a′, b∗), where V (a∗, b′) = −1−δ
δ u1(a∗, b′), V (a′, b∗) = 1−(1−δ)u1(a′,b∗)

δ , and the values of V (a∗, b′′) and

V (a′, b′′) are given by (A.10) and (A.11).

B Proof of Proposition 1

For every t ≥ 1, let Ĥt be the set of period-t histories where b′ and actions in A′ were played from

period 0 to period t − 1. In every PBE that satisfies no initial trust, player 2 plays b′ in period 0.

Since M ≥ 1, player 20 knows that calendar time is 0 from her history (since she observes no action

at all). Hence, player 20’s incentive to play b′ implies that the strategic-type player 1 must be playing

some action in A′ with positive probability in period 0.
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I show that for every t ≥ 1 and at every ht ∈ Ĥt, the strategic-type player 1 has an incentive to

play some action in A′ at ht. Since ht ∈ Ĥt, we have at−1 ∈ A′ and bt−1 = b′. Punishing following bad

outcome implies that player 2t plays b′ at ht.

Suppose by way of contradiction that at some ht ∈ Ĥt, the strategic-type player 1 has no incentive

to play any action in A′, then player 2t’s incentive to play b′ at ht (due to punishment following bad

outcome) implies that there exists h̃s such that (1) player 2t cannot distinguish between ht and h̃s,

and (2) the strategic-type player 1 plays some action in A′ with positive probability at h̃s. In another

word, some action in A′ is player 1’s best reply at h̃s but not at ht. Since player 1’s best replies at ht

and h̃s are different, it must be the case that there exists τ ≥ t, such that player 2τ can distinguish

between ht and h̃s. Since τ ≥ t, this contradicts the presumption that player 2t cannot distinguish

between ht and h̃s.

Hence, there exists a best reply for the strategic-type player 1, denoted by σ∗1, that plays some

pure action in A′ in period 0 and plays some pure action in A′ at every ht ∈ Ĥt for every t ∈ N, from

which he obtains his equilibrium payoff when player 2s play their equilibrium strategy. Since player 2

plays b′ in period 0, punishment following bad outcome implies that player 2 plays b′ in every period if

player 1 plays according to σ∗1. Since u1(a, b) is strictly decreasing in a, player 1’s discounted average

payoff from playing his best reply σ∗1 is no more than u1(a′, b′).

C Proof of Proposition 2

First, I establish the result when M = +∞. Suppose by way of contradiction that player 2s herd on

b 6= b∗ at ht, then the strategic type has no intertemporal incentive at ht and at every ht∗ that differs

from ht only in {a0, ..., at−K}. In equilibrium, strategic-type player 1 plays his myopic best reply to

b at those histories. Consider two cases. First, suppose BR1(b) = {a∗}, then in equilibrium, both

types of player 1 play a∗ at ht and at every ht∗ that differs from ht only in {a0, ..., at−K}. As a result,

player 2t has a strict incentive to play b∗ instead of b at ht. This contradicts the presumption that

b 6= b∗. Second, suppose BR1(b) 6= {a∗}, then in equilibrium, the strategic type has no incentive to

play a∗ at ht and at every ht∗ that differs from ht only in {a0, ..., at−K}. Since π(ht) > 0, player 2t+1’s

belief attaches probability 1 to the commitment type if she observes at = a∗, and player 1’s actions

from period t − K + 1 to t − 1 and player 2’s actions from period 0 to t − 1 are given according to

ht. Therefore, player 2t+1 plays b∗ following the aforementioned observation, which contradicts the

presumption that they herd on b 6= b∗.

Next, I establish the result when M is finite and is at least one. Suppose by way of contradiction
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that player 2s herd on b 6= b∗ at ht. Since K and M are both finite, player 2t’s action must be

measurable with respect to (amax{0,t−K}, ..., at−1, bmax{0,t−M}, ..., bt−1). For every t ≥ max{M,K},

(at−K , ..., at−1, bt−M , ..., bt−1), and ht ≡ (as, bs)s≤t−1, there exists hT � ht such that player 2’s action

at hT coincides with her action at (at−K , ..., at−1, bt−M , ..., bt−1). Therefore, player 2s herding on

b 6= b∗ at any ht ≡ (as, bs)s≤t−1 implies that they play b in every period after max{K,M}. Hence, the

strategic-type player 1 has no intertemporal incentive after period T . Consider two cases. Suppose

BR1(b) 6= {a∗}, then the strategic type has no incentive to play a∗, so player 2 attaches probability 1

to the commitment type after observing a∗, which means that player 2 has a strict incentive to play

b∗. This contradicts the presumption that they herd on action b 6= b∗. Suppose BR1(b) 6= {a∗}, then

in equilibrium, the strategic type has no incentive to play a∗ and player 2 has a strict incentive to play

b∗. This contradicts the presumption that they herd on action b 6= b∗.

D Proof of Proposition 3

I establish the lower bound on player 1’s undiscounted average payoff in Section D.1. I construct an

equilibrium in which player 1’s asymptotic payoff equals the right-hand-side of (3.5) in Section D.2.

D.1 Lower Bound on Undiscounted Average Payoff

Consider the strategic-type’s payoff when he deviates and imitates the commitment type. For every

β ∈ ∆(B) and a ≺ a∗, Assumption 2 implies that u1(a∗, β) < u1(a, β). Let ht ≡ {as, bs}t−1
s=0. For every

t ∈ N and a ∈ A, let Et(a, b
t) be the event that (1) player 1 plays a in period t, (2) player 1 has played

a∗ from period t −K + 1 to t − 1, (3) player 1 plays according to σ1 starting from period t + 1, and

(4) the history of player 2’s actions until period t is bt ≡ (b0, ..., bt−1). For every τ ∈ {1, 2, ...,K} and

ht ≡ (a∗, ..., a∗, bt), let yτt (·|a, ht) ∈ ∆(B) be the distribution of bt+τ conditional on event Et(a, b
t),

and let yt(·|a, ht) ∈ ∆(BK) be the distribution of (bt+1, ..., bt+K) conditional on event Et(a, b
t). Let

u1 and u1 be player 1’s highest and lowest feasible stage-game payoffs, respectively, and let || · || be

the total variation norm. If

||yt(·|a∗, ht)− yt(·|a, ht)|| ≤
1− δ

2δ(u1 − u1)

(
u1(a, β)− u1(a∗, β)

)
, (D.1)

then the strategic-type player 1 has a strict incentive to play a instead of a∗ at ht as well as at every

history ht∗ that differs from ht only in terms of {a0, ..., at−K}. The latter is because the distribution

of {bt+1, ..., bt+K} does not depend on {a0, ..., at−K} since they cannot be observed by players 2t+1 to
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2t+K . Let

∆ ≡ 1− δ
2Kδ(u1 − u1)

min
β∈∆(B),a≺a∗

{
u1(a, β)− u1(a∗, β)

}
. (D.2)

Since

||yτt (·|a∗, ht)− yτt (·|a, ht)|| ≤ ||yt(·|a∗, ht)− yt(·|a, ht)|| ≤
K∑
s=1

||yst (·|a∗, ht)− yst (·|a, ht)||,

inequality (D.1) holds when ||yτt (·|a∗, ht)− yτt (·|a, ht)|| ≤ ∆ for every τ ∈ {1, 2, ...,K}. Let H(a∗,σ2) be

the set of public histories that occur with positive probability when player 1 plays a∗ in every period

and player 2 plays σ2. I partition H(a∗,σ2) into two subsets, H(a∗,σ2)
0 and H(a∗,σ2)

1 :

1. If there exists a ≺ a∗ such that ||yτt (·|a∗, ht)− yτt (·|a′, ht)|| ≤ ∆ for every τ , then ht ∈ H(a∗,σ2)
0 .

2. If for every a ≺ a∗, there exists τ such that ||yτt (·|a∗, ht)− yτt (·|a′, ht)|| ≥ ∆, then ht ∈ H(a∗,σ2)
1 .

For every ht ∈ H(a∗,σ2)
0 , the strategic type has a strict incentive not to play a∗ at ht, which means

that player 2 attaches probability 1 to the commitment type after observing a∗ at ht. For every

τ ∈ {1, 2, ...,K}, every on-path history ht+τ � ht such that a∗ has been played from period t to

t+ τ − 1, player 2 has a strict incentive to play b∗ at ht+τ . This in addition to the fact that player 2

plays an action at least as large as b′ at every on-path history implies that for every ht ∈ H(a∗,σ2)
0 , we

have:
1

K + 1
E(a∗,σ2)

[ t+K∑
s=t

u1(as, bs)
∣∣∣ht] ≥ K

K + 1
u1(a∗, b∗) +

1

K + 1
u1(a∗, b′). (D.3)

For every ht ∈ H(a∗,σ2)
1 , there exists a constant γ > 0 such that for every α ∈ ∆(A) such that b ≺ b∗

best replies against α, we have ||yt(·|a∗, ht)− yt(·|α, ht)|| ≥ γ∆. The Pinsker’s inequality implies that

d
(
yt(·|α, ht)

∥∥∥yt(·|a∗, ht)) ≥ 2γ2∆2. (D.4)

for every such α ∈ ∆(A). For every equilibrium (σ1, σ2) and every τ ∈ {0, 1, ...,K},

E(a∗,σ2)
[ ∞∑
s=0

d
(
ys(K+1)+τ (·|σ1(hs(K+1)+τ ), hs(K+1)+τ )

∥∥∥ys(K+1)+τ (·|a∗, hs(K+1)+τ )
)]
≤ − log π0. (D.5)

Inequalities (D.4) and (D.5) together imply that:

E(a∗,σ2)
[ ∞∑
s=0

1
{
hs(K+1)+τ ∈ H(a∗,σ2)

1 and σ2(hs(K+1)+τ ) ≺ b∗
}]
≤ − log π0

2γ2∆2
(D.6)
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I derive a lower bound for lim inft→∞
1
tE

(a∗,σ2)
[∑t−1

s=0 u1(as, bs)
]

using inequalities (D.3) and (D.6).

For every τ ∈ {0, 1, ...,K}, let

Hτ0 ≡
{
ht
∣∣∣∃hs(K+1)+τ ∈ H(a∗,σ2)

0 such that ht � hs(K+1)+τ and t ∈ [s(K + 1), s(K + 1) +K]
}
,

let

Hτ1 ≡
{
hs(K+1)+τ ∈ H(a∗,σ2)

1

∣∣∣s ∈ N
}
,

and let Hτ ≡ Hτ0 ∪Hτ1 . By definition, H(a∗,σ2) =
⋃K
τ=0Hτ . An important observation is that for every

τ, τ ′ ∈ {0, 1, ...,K} with τ 6= τ ′,

Hτ1 ∩Hτ
′

1 = {∅} and Hτ0 ∩Hτ
′

0 = {∅}. (D.7)

The former is straightforward. For the latter, suppose by way of contradiction that ht ∈ Hτ0 ∩ Hτ
′

0

with τ < τ ′, there exist hs and hs+τ
′−τ such that ht % hs+τ

′−τ � hs, hs ∈ Hτ0 , t − s ≤ K, and s − τ

is divisible by K + 1. On one hand hs ∈ Hτ0 and τ ′ − τ ≤ K implies that σ1(hs+τ
′−τ ) = a∗. On the

other hand hs+1 ∈ Hτ ′0 implies that σ1(hs+τ
′−τ ) 6= a∗. This leads to a contradiction.

For every τ ∈ {0, 1, ...,K}, inequality (D.3) implies that player 1’s expected average payoff at

histories in Hτ0 is at least the right-hand-side of (3.5). Since Hτ0 ∩ Hτ
′

0 = {∅} for every τ 6= τ ′, it

implies that player 1’s expected average payoff at histories in
⋃K
τ=0Hτ0 is at least the right-hand-side

of (3.5). For every τ ∈ {0, 1, ...,K}, (D.6) implies that player 1’s expected average payoff at histories

belonging to set Hτ1
∖⋃K

s=0Hs0 is at least u1(a∗, b∗). Since Hτ1 ∩Hτ
′

1 = {∅} for every τ 6= τ ′, it implies

that player 1’s expected average payoff at histories in
⋃K
s=0Hs1

∖⋃K
s=0Hs0 is at least u1(a∗, b∗). The

two parts imply that

lim inf
t→∞

1

t
E(a∗,σ2)

[ t−1∑
s=0

u1(as, bs)
]
≥ K

K + 1
u1(a∗, b∗) +

1

K + 1
u1(a∗, b′).

D.2 Tightness of Lower Bound

When payoffs are monotone-supermodular, (a′, b′) is the unique stage-game Nash equilibrium. Let π0

be the largest real number in (0, 1) such that b′ best replies against the mixed action π0◦a∗+(1−π0)◦a′.

Consider the following construction when π0 ∈ (0, π0). At every on-path history (the set of on-path

histories can be derived recursively),

• if t is divisible by K + 1, then player 1 plays a′ and player 2 plays b′ in period t;
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• if t is not divisible by K + 1, then player 1 plays a∗ and player 2 plays b∗ in period t.

I partition off-path histories into three subsets. For every period t public history such that:

• (1) there exists no r < t, such that br 6= b∗ and r is not divisible by K + 1; (2) there exists no

s < t such that bs 6= b′ and s is divisible by K + 1; (3) player 2 observes player 1 playing an

off-path action in period t−1, then players play (a∗, b∗) if t is divisible by K+1, and play (a′, b′)

if t is not divisible by K + 1.

• (1) there exists no r < t, such that br 6= b∗ and r is not divisible by K + 1, but (2) there exists

s < t such that bs 6= b′ and s is divisible by K + 1. If t− 1 is divisible by K + 1, bt−1 = b∗ while

at−1 6= a∗, then play (a′, b′) in period t. If t− 1 is divisible by K + 1, bt−1 = b∗ while at−1 = a∗,

then play (a∗, b∗) in period t if and only if ξt > 1/2 and play (a′, b′) in period t otherwise. If

t− 1 is not divisible by K + 1, or bt−1 6= b∗, then play (a∗, b∗) if t is not divisible by K + 1 and

play (a′, b′) if t is divisible by K + 1.

• there exists r < t, such that br 6= b∗ and r is not divisible by K + 1, then play (a′, b′) in all

subsequent periods.

Player 1’s undiscounted time-average payoff from playing a∗ in every period equals the right-hand-side

of (3.5). I verify players’ incentive constraints. Since b∗ best replies to a∗ and b′ best replies to a′,

player 2’s incentive constraints are satisfied. I verify player 1’s incentives. At every on-path ht,

• If t+1 not divisible by K+1 and t is not divisible by K+1, then the strategic type’s continuation

value from playing a∗ in period t is at least

V ≡ u1(a′, b′) + δu1(a∗, b∗) + δ2u1(a∗, b∗) + ...+ δKu1(a∗, b∗)

1 + δ + ...+ δK
, (D.8)

while his continuation value from playing any other action is u1(a′, b′). This verifies his incentive

to play a∗ when δ is above some cutoff.

• If t+ 1 not divisible by K + 1 and t is divisible by K + 1, then the strategic type’s continuation

values from playing a∗ and a′ are the same, equal V , while his continuation value from playing

other actions is u1(a′, b′). He has a strict incentive to play a′ since a′ best replies to b′.

• If t + 1 is divisible by K + 1, then the strategic type’s continuation value from playing a∗ in

period t is at least V . If he deviates and plays at, then consider his incentive in period t+ 1 at

off-path history (ht, at, bt = b∗).
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Since player 2 plays b∗ in period t+ 1 after observing player 1’s deviation in period t, player 1’s

continuation value from playing a∗ in period t + 1 is at least 1
2V + 1

2u1(a′, b′). This is because

player 2 will play b∗ with probability 1/2 in period t+ 2, after which player 1 will be forgiven for

his deviation. Player 1’s continuation value from playing actions other than a∗ in period t+ 1 is

u1(a′, b′). Therefore, he has a strict incentive to play a∗ in period t + 1 following his deviation

in period t, and his continuation value in period t when he deviates is strictly lower than V .

E Proof of Proposition 4

Player 2’s strategy is represented by a triple (r∅, rH , rL), where rx is the probability with which she

plays T when at−1 = x for x ∈ {∅, H, L}. First, I show that rH > rL. Suppose by way of contradiction

that rH ≤ rL, then the strategic-type player 1 has no incentive to play H. After player 2 observes

at−1 = H, she infers that player 1 is the commitment type for sure and has a strict incentive to play

T , which implies that rH = 1. Since rH ≤ rL, we have rL = 1 as well. However, since player 2t knows

that player 1 is the strategic type after observing at−1 = L and the strategic-type player 1 has no

incentive to play H, we know that rL = 0. This contradicts the previous conclusion that rL = 1.

Since player 2t’s strategy depends only on at−1, starting from period 1, player 1’s continuation

value depends only on whether at−1 = L or at−1 = H. Let V (L) and V (H) be these continuation

values, respectively. Player 1 has an incentive to play H when at−1 = H if and only if (1 − δ)(rH +

(1− rH)(−cN )) + δV (H)− (1− δ)(1 + cT )rH − δV (L) ≥ 0, or equivalently,

δ

1− δ
(V (H)− V (L)) ≥ cT rH + cN (1− rH). (E.1)

Similarly, player 1 has an incentive to play H when at−1 = L if and only if

δ

1− δ
(V (H)− V (L)) ≥ cT rL + cN (1− rL). (E.2)

Since rH > rL and cN > cT , the right-hand-side of (E.2) is strictly greater than the right-hand-side of

(E.1), which implies the following two statements:

• If player 1 is indifferent between H and L when at−1 = L, then player 1 has a strict incentive to

play H when at−1 = H.

• If player 1 is indifferent between H and L when at−1 = H, then player 1 has a strict incentive

to play L when at−1 = L.
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I consider several cases separately. First, suppose player 1 has a strict incentive to play L when

at−1 = H, then he also has a strict incentive to play L when at−1 = L. Then by observing at−1 = H,

player 2 infers that player 1 is the commitment type and has a strict incentive to play T , which implies

that rH = 1. A strategic type player 1 can guarantee discounted average payoff at least δ − (1− δ)cN

by playing H in every period.

Next, suppose player 1 has a strict incentive to play H when at−1 = H, then after player 2 observes

at−1 = H, she knows that player 1 will play H regardless of his type and will have a strict incentive

to play T . As a result, rH = 1. A strategic type player 1 can guarantee discounted average payoff at

least δ − (1− δ)cN by playing H in every period.

The above reasoning implies that in every equilibrium where the strategic-type player 1 receives a

payoff strictly less than δ − (1 − δ)cN , the strategic-type player 1 is indifferent when at−1 = H and

strictly prefers to play L when at−1 = L, and moreover, rH < 1. I show that there is no such equilibria

when δ1 is close to 1, which is the case when δ is close to 1. Let pt be the probability of the event:

Et ≡
{

Player 1 is the strategic type and plays H in period t
}
.

Since the strategic type strictly prefers to play L in period t when at−1 = L, we have 1−π0 ≥ p0 ≥ p1 ≥

p2 ≥ ... Since player 2’s prior belief attaches probability π0 to the commitment type and probability

δt1(1− δ1) to the calendar time being t, she prefers N to T after observing at−1 = H only if

+∞∑
t=1

(1− δ1)δt1(π0 + 2pt − pt−1) ≤ 0. (E.3)

Since π0 +2pt−pt−1 ≤ π0
2 only if pt−1−pt ≥ pt+ π0

2 ≥
π0
2 , there can be at most T ≡

⌈
2(1−π0)
π0

⌉
periods

where π0 + 2pt − pt−1 ≤ π0
2 . Since π0 + 2pt − pt−1 ≥ −1, we have

+∞∑
t=1

(1− δ1)δt1(π0 + 2pt − pt−1) ≥ −(δ1 − δT+1
1 ) + δT+1

1

π0

2
. (E.4)

The right-hand-side of (E.4) is strictly positive when δ1 is close to 1, which contradicts (E.3). Since

δ < δ1, the above contradiction implies that such equilibria do not exist when δ is close to 1.
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F Proofs in Section 4

Appendix F.1 shows Theorem 2. Appendix F.2 establishes the existence of equilibrium when the

private signal is unboundedly informative, M = +∞, and δ is large. Appendix F.3 shows Theorem 3.

F.1 Proof of Theorem 2

I start from Lemma F.1 which shows that in every equilibrium, if player 1 plays a∗ in every period, then

there exists η > 0 that depends only on the distribution over private signals and the prior probability

of commitment type π0, such that the probability with which player 2 plays b∗ with probability at

least η in every period is close to 1.

Lemma F.1. Suppose the private signal is unboundedly informative about a∗. For every π0 > 0

and ε > 0, there exists η > 0, such that in every equilibrium (σ1, σ2),

Pr
{

Pr(bt = b∗) ≥ η for every t ∈ N
∣∣∣(a∗, σ2)

}
≥ 1− ε. (F.1)

Proof. Let p∗ ∈ (0, 1) be such that player 2 has a strict incentive to play b∗ when she believes that

player 1 plays a∗ with probability more than p∗. For every π > 0, there exists M(π) > 0 such that

when the prior belief attaches probability more than π to a∗ and the signal realization s is such that

f(s|a∗) > M(π)f(s|a) for every a 6= a∗, the posterior belief after observing s attaches probability more

than p∗ to a∗. Let l0 ≡ 1−π0
π0

, l∗ ≡ l0/ε, π∗ ≡ 1
l∗+1 , let S(π∗) ⊂ S be the set of signal realizations such

that f(s|a∗) > M(π∗)f(s|a) for every a 6= a∗, and let η ≡
∑

s∈S(π∗) f(s|a∗). Since the private signal is

unboundedly informative, S(π∗) is non-empty and f(s|a∗) > 0 for every s ∈ S(π∗). Therefore, η > 0.

Let πt be the probability of commitment type after player 2t observes {b0, ..., bt−1}, but not

st and {amax{0,t−K}, ..., at−1}. Let π̃t be the probability of commitment type after player 2t ob-

serves {b0, ..., bt−1} and {amax{0,t−K}, ..., at−1}, but not st. By definition, if {amax{0,t−K}, ..., at−1} =

{a∗, ..., a∗}, then π̃t ≥ πt. Under the probability measure induced by (a∗, σ2), {1−πt
πt
}t∈N is a non-

negative supermartingale. The Doob’s Upcrossing Inequality implies that when the prior belief is π0,

the probability of the event {πt ≥ π∗ for all t ∈ N} is at least 1 − ε. Since player 2t has a strict

incentive to play b∗ after she observes st ∈ S(π̃t), and moreover π̃t ≥ πt, we have S(π∗) ⊂ S(π̃t) when

πt ≥ π∗. The probability of event {Pr(bt = b∗) ≥ η for every t ∈ N} is at least 1− ε.

Next, I show that in every period where the probability of commitment type is more than π∗ but

player 2 plays b∗ with ex ante probability less than 1 − ν, one can bound the informativeness of bt

about player 1’s type from below by a strictly positive function of ν.
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Lemma F.2. Suppose the private signal is unboundedly informative about a∗, and satisfies MLRP.

For every π∗ ∈ (0, 1), there exists c > 0 such that for every ν ∈ (0, 1), α ∈ ∆(A) with α(a∗) > π∗, and

β : S → ∆(B) that best replies to α. If γ(a∗, β)[b∗] < 1− ν, then d
(
γ(α, β)

∥∥γ(a∗, β)
)
> 2cν2.

Proof. Since u2(a, b) has strictly increasing differences and the distribution over private signals satisfies

MLRP, Topkis Theorem implies that every β that best replies to some α must be monotone, i.e., for

every s � s′ and b ∈ B, if β(s) attaches positive probability to b, then β(s′) attaches zero probability to

every b′ smaller than b. Therefore, it is without loss of generality to focus on player 2’s pure strategies

taking the form of β : S → B.

When πt > π∗, player 2t has a strict incentive to play b∗ after observing s ∈ S(π∗), where S(π∗) is

the set of signal realizations such that f(s|a∗) > f(s|a)M(π∗) for every a 6= a∗. At every history ht,

there exists an interval [s, s] ⊂ S such that β(s) = b∗ if and only if s ∈ [s, s], and moreover, β(s) � b∗

for every s � s, and β(s) ≺ b∗ for every s ≺ s. By definition, S(π∗) ⊂ [s, s]. Let S∗ ≡ [s∗, s∗] be a

non-empty interval that is a subset of S(π∗). Since the signal distribution satisfies MLRP, we know

that f(s|a∗) > f(s|a)M(π∗) for every s � s∗ and a � a∗, and f(s|a∗) > f(s|a)M(π∗) for every s � s∗

and a ≺ a∗.

Let A be the set of actions that are strictly higher than a∗ and let A be the set of actions that

are strictly lower than a∗. For every α ∈ ∆(A), let α′ ∈ ∆(A) be the distribution over A conditional

on a 6= a∗. If supp(α) ∩ A 6= {∅}, then let α ∈ ∆(A) be the distribution over A conditional on

a ∈ supp(α) ∩A. If supp(α) ∩A 6= {∅}, then let α ∈ ∆(A) be the distribution over A conditional on

a ∈ supp(α) ∩A. By definition, there exists λ ∈ [0, 1] such that α′ = λα+ (1− λ)α.

Suppose γ(a∗, β)[b∗] < 1 and ||γ(α′, β)− γ(a∗, β)|| = D, then

∑
s�s

f(s|a∗) ≥ −D + λ
∑
s�s

f(s|α),
∑
s≺s

f(s|a∗) ≥ −D + (1− λ)
∑
s≺s

f(s|α), (F.2)

and

−D+
∑

s∈[s,s]\S∗
f(s|a∗)+

∑
s∈S∗

f(s|a∗) ≤ λ
∑
s∈S∗

f(s|α)+(1−λ)
∑
s∈S∗

f(s|α)+λ
∑

s∈[s,s]\S∗
f(s|α)+(1−λ)

∑
s∈[s,s]\S∗

f(s|α).

Let η ≡
∑

s∈S∗ f(s|a∗). Since f(s|a∗) > f(s|a)M(π∗) for every s ∈ S∗ and a 6= a∗,

−D+η(1− 1

M(π∗)
)+

∑
s∈[s,s∗)

f(s|a∗)+
∑

s∈(s∗,s]

f(s|a∗) ≤ λ
∑

s∈[s,s]\S∗
f(s|α)+(1−λ)

∑
s∈[s,s]\S∗

f(s|α). (F.3)
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Since the distribution over private signals satisfies MLRP,

∑
s�s f(s|a∗)∑
s�s f(s|α)

≤
∑

s∈(s∗,s] f(s|a∗)∑
s∈(s∗,s] f(s|α)

and

∑
s≺s f(s|a∗)∑
s≺s f(s|α)

≤
∑

s∈[s∗,s) f(s|a∗)∑
s∈[s∗,s) f(s|α)

.

The above inequalities together with (F.2) imply that

∑
s∈(s∗,s]

f(s|a∗) ≥
∑

s∈(s∗,s] f(s|α)
∑

s�s f(s|a∗)∑
s�s f(s|α)

≥ λ
∑

s�s f(s|a∗)
D +

∑
s�s f(s|a∗)

∑
s∈(s∗,s]

f(s|α) (F.4)

and ∑
s∈[s,s∗)

f(s|a∗) ≥ (1− λ)

∑
s≺s f(s|a∗)

D +
∑

s≺s f(s|a∗)
∑

s∈[s,s∗)

f(s|α) (F.5)

Plugging (F.4) and (F.5) back to (F.3), we obtain

η(1− 1

M(π∗)
)−λ

∑
s∈[s,s∗)

f(s|α)−(1−λ)
∑

s∈(s∗,s]

f(s|α) ≤ D
{

1+
λ

D +
∑

s�s f(s|a∗)
+

1− λ
D +

∑
s≺s f(s|a∗)

}
.

(F.6)

First, I show that the left-hand-side of (F.6) is greater than η/2 when M is large enough. Without

loss of generality, I index the elements of S as {..., s−1, s0, s1, ...} such that si ≺ sj for every i < j.

Consider three cases, depending on the limit of set S∗ as M → +∞.

1. If there exist m,n ∈ N such that limM→+∞ S
∗ = [sm, sn], then there exists k ∈ N such that

sk ∈ S∗ for every M ∈ R+. As a result, η is bounded from below by f(sk|a∗) for every M , which

implies that the left-hand-side of (F.6) is more than η/2 when M is large enough.

2. If the limit of S∗ is unbounded from above, then f(s|a∗) ≥ f(s|a)M for every a � a∗ and s ∈ S,

which leads to a contradiction unless A is empty. Therefore, λ = 0 and (s∗, s] is an empty set,

and the left-hand-side of (F.6) is η(1− 1
M(π∗)), which is greater than η/2 when M(π∗) is large.

3. If the limit of S∗ is unbounded from below, then similarly, the left-hand-side of (F.6) is η.

Next, I bound the term 1+ λ
D+

∑
s�s f(s|a∗) + 1−λ

D+
∑

s≺s f(s|a∗) from above. Since {b∗} = BR2(a∗), we know

that for every b � b∗, there exists r∗ ∈ R+ such that b ∈ BR2(α) only if α(A)/α(a∗) ≥ r∗, and for

every b ≺ b∗, there exists r∗ ∈ R+ such that b ∈ BR2(α) only if α(A)/α(a∗) ≥ r∗. When α(a∗) ≥ π∗,

Bayes rule implies that

λ(1− π∗)
∑

s�s f(s|α)

π∗
∑

s�s f(s|a∗)
≥ r∗ and

(1− λ)(1− π∗)
∑

s≺s f(s|α)

π∗
∑

s≺s f(s|a∗)
≥ r∗.
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As a result,

1 +
λ

D +
∑

s�s f(s|a∗)
+

1− λ
D +

∑
s≺s f(s|a∗)

≤ 1 +
π∗

1− π∗
(r∗ + r∗).

Let R ≡ 1 + π∗

1−π∗ (r
∗ + r∗). Inequality (F.6) then implies that ||γ(α′, β)− γ(a∗, β)|| = D ≥ η

2R . Since

γ(a∗, β)[b∗] < 1− ν, then there exists c > 0 such that α(a∗) ≤ 1− cν, and therefore,

||γ(α, β)− γ(a∗, β)|| ≥ cν||γ(α′, β)− γ(a∗, β)|| ≥ cν η

2R
.

The Pinsker’s inequality leads to a lower bound on the KL-divergence between γ(α, β) and γ(a∗, β).

Let ht ≡ {b0, ..., bt−1, amax{0,t−K}, ..., at−1, ξt} be player 2t’s information before observing st. Let

g(ht) be the probability of bt = b∗ at ht. Let g(ht, ωc) be the probability of bt = b∗ at ht conditional

on player 1 being the commitment type.

Lemma F.2 bounds the speed of learning at ht from below. This implies a lower bound on the

speed of learning when future player 2s observe b∗ in period t, given that she knew that the probability

with which player 2t plays b∗ is no more than g(ht). However, future player 2s’ information does not

nest that of player 2t’s, since they do not observe {at−K , ..., at−1}. As a result, they cannot interpret

bt in the same way as player 2t does.

For every s, t ∈ N with s > t, I provide a lower bound on the informativeness of bt about player 1’s

type from the perspective of player 2s, as a function of the informativeness of bt from the perspective

of player 2t. This together with Lemma F.2 establishes a lower bound on the informativeness of bt

from the perspective of future player 2s as a function of the probability that bt 6= b∗. Using the entropy

approach in Gossner (2011), one can obtain the lower bound on player 1’s equilibrium payoff.

Let π(ht) be the probability with which player 2’s belief attaches to the commitment type at ht.

By definition, π(h0) = π0. For every strategy profile σ, let Pσ be the probability measure over H

induced by σ, let Pσ,ωc be the probability measure induced by σ conditional on player 1 being the

commitment type, and let Pσ,ωs be the probability measure induced by σ conditional on player 1 being

the strategic type. One can the write the posterior likelihood ratio as

π(ht)

1− π(ht)

/ π0

1− π0

=
Pσ,ωc(b0)

Pσ,ωs(b0)
· P

σ,ωc(b1|b0)

Pσ,ωs(b1|b0)
· ... · P

σ,ωc(bt−1|bt−2, ..., b0)

Pσ,ωs(bt−1|bt−2, ..., b0)
· P

σ,ωc(at−K , ..., at−1|bt, bt−1, ..., b0)

Pσ,ωs(at−K , ..., at−1|bt, bt−1, ..., b0)
(F.7)
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Furthermore, for every ε > 0 and every t, we know that:

Pσ,ωc

(
πσ(b0, b1, ...bt−1) < επ0

)
≤ ε 1− π0

1− π0ε
, (F.8)

in which πσ(b0, b1, ...bt−1) is player 2’s belief about player 1’s type after observing (b0, ..., bt−1) but

before observing player 1’s actions and st. For every ε > 0, let

ρ∗(ε) ≡ επ0

1− cε
. (F.9)

If πσ(b0, b1, ...bt−1) ≥ επ0 and player 2t believes that bt = b∗ occurs with probability less than 1−ε after

observing (amax{0,t−K}, ..., at−1) = (a∗, ..., a∗), then under probability measure Pσ, the probability of

(amax{0,t−K}, ..., at−1) = (a∗, ..., a∗) conditional on (b0, ..., bt−1) is at least ρ∗(ε).

In order to show this, suppose by way of contradiction that the probability with which (at−K , ..., at−1) =

(a∗, ..., a∗) is strictly less than ρ∗(ε) conditional on (b0, ..., bt−1). According to (F.9), after observing

(at−K , ..., at−1) = (a∗, ..., a∗) in period t and given that πσ(b0, b1, ...bt−1) ≥ επ0, π(ht) attaches prob-

ability strictly more than 1 − cε to the commitment type. As a result, player 2 in period t believes

that a∗ is played with probability at least 1 − cε at ht. This contradicts presumption that she plays

b∗ with probability less than 1− ε.

Next, I study the believed distribution of bt from the perspective of player 2s conditional on the

event that πσ(b0, b1, ...bt−1) ≥ επ0. Let P(σ, t, s) ∈ ∆(∆(AK)) be player 2’s signal structure in period

s(≥ t) about (at−K , ..., at−1) under equilibrium σ. For every small enough η > 0, given that P(σ, t)

attaches probability at least ρ∗(ε) to (amax{0,t−K}, ..., at−1) = (a∗, ..., a∗), the probability with which

P(σ, t, s) attaches to event (amax{0,t−K}, ..., at−1) = (a∗, ..., a∗) occurring with probability less than

ηρ∗(ε) is bounded from above by:

ηρ∗(ε)(1− ρ∗(ε))
(1− ηρ∗(ε))ρ∗(ε)

= η
1− ρ∗(ε)
1− ρ∗(ε)η

. (F.10)

Let g(t|hs) be player 2’s belief about the probability with which b∗ is played in period t when she

observes hs. Let g(t, ωc|hs) be her belief about the probability with which b∗ is played in period

t conditional on player 1 being committed. When player 2t believes that (amax{0,t−K}, ..., at−1) =

(a∗, a∗, ..., a∗) occurs with probability more than ηρ∗(ε), we have:

g(t|hs) ≤ 1− εηρ∗. (F.11)



F PROOFS IN SECTION 4 47

Applying (F.11), we obtain a lower bound on the KL-divergence between g(t, ωc|hs) and g(t|hs). This

is the lower bound on the speed with which player 2s at hs will learn through bt = b∗ about player

1’s type, which applies to all events except for one that occurs with probability less than η 1−ρ∗
1−ρ∗η .

Therefore, for every ε and π0, there exists δ∗ ∈ (0, 1) such that when δ > δ∗, strategic-type player 1’s

discounted average payoff by playing a∗ in every period is at least:

(
1− ε− ε 1− π0

1− π0ε

)
u1(a∗, b∗) +

(
ε+ ε

1− π0

1− π0ε

)
min
b∈B

u1(a∗, b)− ε. (F.12)

Let ε→ 0 and δ → 1, (F.12) implies that with probability at least 1− ε, player 1’s discounted average

payoff from playing a∗ in every period is at least (1 − ε)u1(a∗, b∗). Take ε → 0, one can obtain that

the patient player’s discounted average payoff is at least u1(a∗, b∗) in every equilibrium.

F.2 Existence of Equilibrium

I establish the existence of equilibrium when the private signal is unboundedly informative about a∗,

K ≥ 1, and δ is large enough. For every s ∈ S, let a(s) ≡ mina∈A{f(s|a) > 0} and let b(s) ∈ B be

player 2’s strict best reply to a(s). For every a ∈ A, let v(a) ≡
∑

s∈S f(s|a)u1(a, b(s)). Let

S′ ≡
{
s ∈ S

∣∣∣∃a ≺ a∗ such that f(s|a) > 0
}

and S∗ ≡
{
s ∈ S

∣∣∣f(s|a∗) > 0
}
.

When S′ ∩ S∗ 6= {∅}, we have
∑

s∈S′ f(s|a) > 0 for every a � a∗, and let p∗ ≡ mina�a∗
∑

s∈S′ f(s|a).

I show that the following strategy profile and belief constitute a Perfect Bayesian equilibrium.

• If t = 0, or t ≥ 1, (b0, ..., bt−1) = (b∗, ..., b∗) and at−1 = a∗, then player 1 plays a∗, player 2t

believes that at = a∗ upon receiving any st ∈ S∗ and plays b∗, and believes that at = a(st) upon

receiving any st /∈ S∗ and plays b(st).

• At any other history, player 2t believes that at = a(st) upon receiving any st ∈ S, and plays

b(st). Player 1 plays arg maxa∈A v(a) in period t if there exists τ < t such that bτ 6= b∗. At

histories where there exists no τ < t such that bτ 6= b∗ but at−1 6= a∗, player 1 plays a∗ if

(1− δ)v(a∗) + δ
∑
s∈S′

f(s|a∗) max
a∈A

v(a) + δ
∑
s/∈S′

f(s|a∗)u1(a∗, b∗)

≥ max
ã6=a∗

{(1− δ)v(ã) + δ
∑

s∈(S\S∗)∪S′ f(s|ã) maxa∈A v(a)

1− δ
∑

s∈S∗\S′ f(s|ã)

}
(F.13)
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and plays the following action if inequality (F.13) is violated:

arg max
ã6=a∗

{(1− δ)v(ã) + δ
∑

s∈(S\S∗)∪S′ f(s|ã) maxa∈A v(a)

1− δ
∑

s∈S∗\S′ f(s|ã)

}
.

Player 2’s strategy is optimal given her belief. Player 2’s belief at on-path history respects Bayes Rule

since every period t on-path history satisfies (b0, ..., bt−1) = (b∗, ..., b∗) and at−1 = a∗, in which case

both types of player 1 play a∗ and player 2t believes that at = a∗ upon observing any st ∈ S∗. I verify

player 1’s incentive constraints by considering two cases separately.

1. Suppose S′∩S∗ = {∅}, i.e., the distribution over private signals is such that f(s|a) = 0 for every

a ≺ a∗ and s ∈ S satisfying f(s|a∗) > 0. In period t, player 1’s stage-game payoff from playing

a∗ is u1(a∗, b∗). When he plays any a 6= a∗, player 2t plays a(st) at any history after observing

any st that occurs with positive probability under a, from which player 1’s stage-game payoff is

no more than u1(a,BR2(a)), which is no more than u1(a∗, b∗).

2. Suppose S′ ∩ S∗ 6= {∅}. Player 1’s continuation value from playing a∗ is u1(a∗, b∗) at every

on-path history. Suppose he makes a one-shot deviation and plays a � a∗ at an on-path history,

then his stage-game payoff is no more than max{u1(a, b∗), u1(a,BR2(a))}, which is no more than

u1(a∗, b∗), and his continuation value is no more than u1(a∗, b∗), which means that he cannot

strictly profit from such a deviation. Suppose he makes a one-shot deviation and plays a ≺ a∗

at an on-path history, then his stage-game payoff is no more than u1(a′, b∗) and his continuation

value is at most

max
{

max
a�a∗

u1(a, b∗), (1− δ)u1(a′, b∗) + δp∗max
a∈A

v(a) + δ(1− p∗)u1(a∗, b∗)
}
, (F.14)

where the first term is player 1’s maximal continuation value when he plays a � a∗ at histories

where player 2 has not played actions other than b∗ but player 1’s action in the previous period

is not a∗, and the second term is player 1’s maximal continuation value when he plays a � a∗

at such histories. The value of maxa�a∗ u1(a, b∗) is strictly less than u1(a∗, b∗) since u1(a, b)

strictly decreases in a, the value of maxa∈A v(a) is strictly less than u1(a∗, b∗) since a∗ is player

1’s unique Stackelberg action, S∗ ∩ S′ 6= {∅}, and u1(a, b) strictly increases in b. Therefore,

(F.14) is strictly less than u1(a∗, b∗) when δ is large enough. It implies that when δ is large

enough, playing a′ is not a profitable one-shot deviation.

When at−1 6= a∗ but there is no τ < t such that bτ 6= b∗, notice that the left-hand-side of (F.13)
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is player 1’s continuation value from playing a∗, and the right-hand-side is his continuation

value from playing ã 6= a∗. This verifies his incentive constraint. When there exists τ < t

such that bτ 6= b∗, player 2 plays b(s) upon observing s, and it is optimal for player 1 to play

arg maxa∈A v(a).

F.3 Proof of Theorem 3

I establish Theorem 3 by modifying the constructive proof of Theorem 1. Without loss of generality, I

focus on signal distributions such that f(·|a′) 6= f(·|a∗). This is because when a∗ and a′ generates the

same distribution over private signals, the constructive proof of Theorem 1 still applies. In order to

avoid repetition, I focus on the case in which b∗ = b∗∗ and b′ = b′′. The other two cases can be shown

similarly. When b∗ = b∗∗ and b′ = b′′, there exists q∗ ∈ (0, 1) such that b∗ is a strict best reply to

qa∗+ (1− q)a′ if and only if q > q∗, and b′ is a strict best reply to qa∗+ (1− q)a′ if and only if q < q∗,

and player 2 is indifferent between b∗ and b′ when player 1’s action is q∗a∗ + (1− q∗)a′. Without loss

of generality, I adopt the normalization that u1(a∗, b∗) = 1 and u1(a′, b′) = 0. Let

S′ ≡
{
s ∈ S

∣∣∣f(s|a′) > 0
}
.

Since a∗ is not strongly separable from a′, f(s|a∗) > 0 only if s ∈ S′. Recall that S is a completely

ordered set. For every β : S → ∆{b∗, b′}, I say that β is monotone if for every s � s′ with s, s′ ∈ S′,

β(s′) attaches positive probability to b∗ implies that β(s) attaches probability 1 to b∗, and β(s) attaches

positive probability to b′ implies that β(s′) attaches probability 1 to b′. For every monotone β, let

f1(β) be the probability of action b∗ when player 1 plays a∗ and player 2 responds according to β, and

let f0(β) be the probability of action b∗ when player 1 plays a′ and player 2 responds according to β.

Let

F ≡
{

(f0, f1) ∈ [0, 1]2
∣∣∣there exist α ∈ ∆{a∗, a′} and monotone β such that

β best replies to α and f0(β) = f0, f1(β) = f1

}
.

Since a∗ is not strongly separable from a′,

1. There exists ε > 0 that depends only on the signal distribution such that f0(β) ≥ εf1(β) for

every monotone β, and f0(β) ≤ (1− ε)f1(β) for every monotone β satisfying f0(β) < ε.23

2. For every f0 ∈ [0, 1], there exists f1 ∈ [0, 1] such that (f0, f1) ∈ F .

23If there exists s′ ∈ S such that f(s′|a′) > 0 and f(s′|a∗) = 0, then f0(β) ≤ (1− ε)f1(β) for every monotone β.
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3. There exists a continuous and strictly increasing function g : [0, 1] → [0, 1] with g(0) = 0 and

g(1) = 1 such that (x, g(x)) ∈ F for every x ∈ [0, 1].

4. There exists q > 0 such that when player 1 plays qa∗+ (1− q)a′, β(s) = b′ for all s ∈ S is player

2’s best reply.

Let Φ be the set of monotone β, let β be the constant mapping such that β(s) = b∗ for every s ∈ S,

and let β be the constant mapping such that β(s) = b′ for every s ∈ S. Let ht ≡ (b0, ..., bt−1) be the

history of player 2’s actions. Let H be the set of ht, which also contains the null history ∅.

Consider the following strategy profile in which player 1 only plays a∗ and a′ on the equilibrium

path. Players’ on-path behaviors are characterized by α : H × {a∗, a′} → ∆{a∗, a′} and φ : H ×

{a∗, a′} → Φ where α is player 2t’s belief about at after observing {at−K , ..., at−1} and {b0, ..., bt−1}

but before observing st, and φ is player 2t’s strategy that maps her private signals to a distribution

over {b∗, b′}. Both φ and α depend only on the history of player 2’s actions as well as player 1’s action

in the period before. According to the properties of monotone β, one can replace φ : H×{a∗, a′} → Φ

with f0 : H×{a∗, a′} → [0, 1] and f1 : H×{a∗, a′} → [0, 1] such that (f0(ht, at−1), f1(ht, at−1)) ∈ F for

every ht ∈ H and at−1 ∈ {a∗, a′}. Let V (ht, at−1) be the strategic type player 1’s continuation value

at (ht, at−1) under the above strategy profile. Similar to the proof of Theorem 1, I require functions

α, φ, and V to satisfy the following conditions:

1. α(∅) = qa∗ + (1− q)a′, φ(∅) = β, and V (∅) = 0.

2. For every ht ∈ H such that bt−1 = b∗ and b′ has not occurred after the first time b∗ occurred, we

have α(ht, a∗) = a∗, φ(ht, a∗) = β, and V (ht, a∗) = 1.

The values of functions f0, f1, and V at other histories are defined as follows. When t = 1, V (b′, a′) = 0

and V (b′, a∗) = −1−δ
δ u1(a∗, b′), which implies that player 1 is indifferent between a∗ and a′ in period

0. For every t ≥ 2 and on-path ht such that bt−1 = b′, player 1’s incentive constraint requires him to

be indifferent between a∗ and a′, which gives:

V (ht, a) = f0(ht, a)
(

(1− δ)u1(a′, b∗) + δ V (ht, b∗, a′)︸ ︷︷ ︸
=1

)
+ (1−f0(ht, a))

(
(1− δ)u1(a′, b′) + δV (ht, b′, a′)

)

= f1(ht, a)
(

(1− δ)u1(a∗, b∗) + δV (ht, b∗, a∗)︸ ︷︷ ︸
=1

)
+ (1− f1(ht, a))

(
(1− δ)u1(a∗, b′) + δV (ht, b′, a∗)

)
.

I show that for every V (ht, a) ∈ [0,−1−δ
δ u1(a∗, b′)], there exist f0, f1, V (ht, b′, a′), V (ht, b′, a∗) and

V (ht, b∗, a′) that satisfy the above incentive constraint, and moreover, (f0, f1) ∈ F , V (ht, b∗, a′) = 1
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and

V (ht, b′, a′), V (ht, b′, a∗) ∈
[
0,−1− δ

δ
u1(a∗, b′)

]
.

Let f∗1 ∈ [0, 1] be such that

f∗1 + (1− f∗1 )(1− δ)u1(a∗, b′) = −1− δ
δ

u1(a∗, b′),

and let f∗0 be such that (f∗0 , f
∗
1 ) ∈ F . Such f∗1 exists since u1(a∗, b′) < u1(a′, b′) = 0. Consider two

cases. First, consider the case in which

f∗0 ((1− δ)u1(a′, b∗) + δ) > −1− δ
δ

u1(a∗, b′). (F.15)

Then there exists V (ht, b′, a∗) ∈ [0,−1−δ
δ u1(a∗, b′)] such that when f1(ht, a) satisfies

f1(ht, a) + (1− f1(ht, a))
(

(1− δ)u1(a∗, b′) + δV (ht, b′, a∗)
)

= −1− δ
δ

u1(a∗, b′), (F.16)

and f0(ht, a) satisfies (f0(ht, a), f1(ht, a)) ∈ F , I show that when δ is close enough to 1, we have

f0(ht, a)
(

(1− δ)u1(a′, b∗) + δ
)
< −1− δ

δ
u1(a∗, b′).

Let v ≡ −1−δ
δ u1(a∗, b′) and suppose by way of contradiction that the above inequality is not true for

any δ close to 1, then
f0(ht, a)

1− f0(ht, a)
>

v

(1− δ)u1(a′, b∗) + δ − v
.

When V (ht, b′, a∗) = −1−δ
δ u1(a∗, b′), we have f1(ht,a)

1−f1(ht,a) = v
1−v . This implies that

f0(ht, a)

1− f0(ht, a)

/ f1(ht, a)

1− f1(ht, a)
>

v

(1− δ)u1(a′, b∗) + δ − v

/ v

1− v
, (F.17)

with the right-hand-side converging to 1 as δ goes to 1. Since f0 ≤ (1 − ε)f1 for every (f0, f1) ∈ F

such that f0 is small enough, and according to (F.16), f1(ht, a) converges to 0 as δ → 1, there exists

δ ∈ (0, 1) such that for every δ > δ,

f0(ht, a)

1− f0(ht, a)

/ f1(ht, a)

1− f1(ht, a)
< 1− ε

2
. (F.18)

Inequalities (F.17) and (F.18) contradict each other. The intermediate value theorem implies the

existence of f0, f1, V (ht, b′, a′), V (ht, b′, a∗) and V (ht, b∗, a′) that satisfy my requirements.
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Second, consider the case in which

f∗0 ((1− δ)u1(a′, b∗) + δ) ≤ −1− δ
δ

u1(a∗, b′).

I show that there exists V (ht, b′, a′) ∈ [0,−1−δ
δ u1(a∗, b′)] such that when V (ht, b∗, a′) = 1, V (ht, b′, a∗) =

0, f1(ht, a) given by

f1(ht, a) + (1− f1(ht, a))(1− δ)u1(a∗, b′) = −1− δ
δ

u1(a∗, b′),

and f0(ht, a) is such that (f0(ht, a), f1(ht, a)) ∈ F , the incentive constraint is satisfied. Suppose by

way of contradiction that the above statement is not true, then when V (ht, b′, a′) = −1−δ
δ u1(a∗, b′),

we have the following inequality

f0(ht, a)
(

(1− δ)u1(a′, b∗) + δ
)
− (1− f0(ht, a))(1− δ)u1(a∗, b′) < −1− δ

δ
u1(a∗, b′). (F.19)

Let v ≡ −1−δ
δ u1(a∗, b′), we have f1(ht, a) = v(1+δ)

1+δv and since a∗ is not strongly separable from a′, we

have

f0(ht, a) ≥ εv(1 + δ)

1 + δv
.

I bound the value of the following expression from below

ε
v(1 + δ)

1 + δv

(
(1− δ)u1(a′, b∗)︸ ︷︷ ︸

>0

+δ
)

+
(

1− εv(1 + δ)

1 + δv

)
δv − v,

which is at least

ε
v(1 + δ)

1 + δv
+
(

1− εv(1 + δ)

1 + δv

)
δv − c = v

{ε(1 + δ)

1 + δv
(1− δv)− (1− δ)

}
Since v → 0 as δ → 1 and ε > 0 is independent of δ, the right-hand-side is strictly greater than 0

when δ is close enough to 1. This contradicts the presumption that (F.19), and the intermediate value

theorem implies that the incentive constraint can be satisfied by some V (ht, b′, a′) ∈ [0,−1−δ
δ u1(a∗, b′)],

V (ht, b∗, a′) = 1, and V (ht, b′, a∗) = 0. The two cases together provide an algorithm that defines the

continuation values such that V = 1 when b∗ was played the period before, and V ∈ [0,−1−δ
δ u1(a∗, b′)]

when b′ was played the period before.

Next, I specify players’ strategies at off-path histories and verify that player 1 has no incentive to

play any action other than a∗ and a′. For every st /∈ S′, player 2 believes that player 1’s action is
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a′ and plays b′. If player 2t observes that at−1 /∈ {a∗, a′} , then player 2t believes that at = a′ and

plays b′. I show that under this belief and player 2’s off-path strategies, player 1 does not have a strict

incentive to play actions other than a∗ and a′ at any on-path history. When his continuation value

V (ht, a) is 0, player 2 plays b′ no matter which signal he observes, so player 1’s payoff is strictly greater

by playing his lowest action a′ compared to any action a† /∈ {a∗, a′}. When V (ht, a) = 1, player 1’s

continuation value is at most −1−δ
δ u1(a∗, b′) in period t+ 1 if he plays a† /∈ {a∗, a′} in period t, which

is strictly less than his payoff from playing a∗. Since V (ht, a) ∈ [0,−1−δ
δ u1(a∗, b′)]∪{1} at any on-path

history, I only need show that player 1 has no incentive to play a† when V (ht, a) ∈ (0,−1−δ
δ u1(a∗, b′)].

For every (f0, f1) ∈ F , there exists a monotone β such that f0(β) = f0 and f1(β) = f1. Let f †(β) be

the probability of b∗ if player 1 plays a† and player 2 plays β when s ∈ S′ and plays a′ if s /∈ S′. Since

f satisfies MLRP, we have f †(β) < f1(β). Player 1’s expected payoff from playing a† is at most

f †(β)
(

(1− δ)u1(a†, b∗)− (1− δ)u1(a∗, b′)
)
− (1− f †(β))(1− δ)u1(a†, b′)︸ ︷︷ ︸

<0

(F.20)

which is a strictly increasing function of f †(β). Since V (ht, b′, a∗) ≤ −1−δ
δ u1(a∗, b′), we have f1(β) ≤

V (ht, a). Therefore, (F.20) is at most f1(β)(1 − δ)(u1(a†, b∗) − u1(a∗, b′)), which is no more than

V (ht, a)(1 − δ)(u1(a†, b∗) − u1(a∗, b′)), which is strictly less than V (ht, a) when δ is close to 1. This

implies that player 1 has no incentive to play actions other than a∗ and a′.

I verify that when the prior probability of commitment type satisfies π0 ≤
( q

2

)K( q

2−q
)
, player 2’s

posterior belief is uniformly bounded below q/2 at every history such that the previous period action

profile is not (a∗, b∗). When player 1 plays a∗ in every period from 0 to t, the history of player 2’s actions

cannot switch from b∗ to b′. Therefore, at every history in period t ≥ 1 where the previous period

action profile is not (a∗, b∗), player 2’s posterior belief attaches positive probability to the commitment

type if and only if ht = {b′, ..., b′} and (at−K , ..., at−1) = (a∗, ..., a∗). Let πt be the posterior probability

of commitment type at such a history. I show that πt ≤ q/2 by induction on calender time t. When

t = 0, π0 ≤ q/2 since π0 ≤
( q

2

)K( q

2−q
)
. Suppose πs ≤ q/2 for every s ≤ t− 1. Since the unconditional

probability with which player 1 plays a∗ is at least q in every period and the induction hypothesis

requires that πs ≤ q/2 for every s ≤ t−1, the probability with which the strategic type plays H at each

of those histories before period t must be at least q/2. Let Pωs(·) be the probability measure induced

by the equilibrium strategy of the strategic type. Let Pωc(·) be the probability measure induced by

the commitment type. Let Et be the event that (amax{0,t−K}, ..., at−1) = (a∗, ..., a∗). Let Ft be the



REFERENCES 54

event that (b0, ..., bt−1) = (b′, ..., b′). According to Bayes rule,

πt
1− πt

/ π0

1− π0
=
Pωc(Et ∩ Ft)
Pωs(Et ∩ Ft)

=
Pωc(Et)

Pωs(Et)
· P

ωc(Ft|Et)
Pωs(Ft|Et)

.

Since the strategic type plays a∗ with probability at least q/2 in every period before t and N occurs

with weakly lower probability under the strategy of type ωc compared to that under type ωs, we have

Pωc(Et)

Pωs(Et)
≤ (q/2)−K and

Pωc(Ft|Et)
Pωs(Ft|Et)

≤ 1.

Since π0 ≤
( q

2

)K( q

2−q
)
, the above two inequalities together imply that πt ≤ q/2.
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