Monetary Policy Interactions: The Policy Rate, Asset Purchases, and Optimal Policy with an Interest Rate Peg

Isabel Gödl-Hanisch (UND)

Ronald Mau (UM)

Jonathan Rawls (UND)

Motivation and Research Questions

• Balance sheet policy is now standard

- Examples: QE1/2/3 and the Covid-19 monetary policy response
- Federal Reserve balance sheet expanded by \$400 billion in 2019 with policy rate above zero before any Covid news

• Research questions:

- What does optimal dual instrument monetary policy look like?
- The "divine coincidence" holds with dual instrument policy
- Acts as a simultaneous inflation, output gap, and term premium target
- 2 Can balance sheet policy sustain a policy rate peg?
- YES! However, the welfare costs are high.
- Four times more costly, in fact, compared to fixing the balance sheet and enacting optimal interest rate policy
- 3 How should the policy rate respond to balance sheet expansion?
- Matters for: Monetary policy design and transmission; emphasis on the policy rate lower bound and "lift-off"

The Paper in a Nutshell

- Uses theoretical model to address the above questions
- New Keynesian model with three structural equations
- Nominal short-term rate and balance sheet size are policy instruments
- 2 Model is simple by design for theoretical analysis
- simplifies to an AS/AD summary of the transmission of balance sheet policy

The Varying Equilibrium Effects of Balance Sheet Policy Timing

New Keynesian Model with Finance

Term premium augmented IS and Phillips Curves:

$$x_{t} = \mathbb{E}_{t} x_{t+1} - \left(r_{t} - \mathbb{E}_{t} \pi_{t+1} - \overline{C}_{b} \frac{\beta}{1 - \beta \kappa} \mathbb{E}_{t} \Delta t p_{t+1} - r_{t}^{*} \right)$$

$$\pi_{t} = \gamma x_{t} + \beta \mathbb{E}_{t} \pi_{t+1} + \gamma \frac{\overline{C}_{b}}{1 + \eta} \frac{\beta}{1 - \beta \kappa} t p_{t}$$

Term premium definition, linear function of:

$$tp_t = f\left(x_t, r_t^*, \pi_t, \{r_{t+j}\}_{j=0}^{\infty}, \theta_t, \theta_{t-1}, re_t, re_{t-1}, tp_{t-1}\right)$$

- Expectations hypothesis bond price, or forward looking path of the policy rate
- θ_t , financial capacity shock ($\theta_t \uparrow \Rightarrow t p_t \downarrow$)
- re_t , central bank balance sheet size $(re_t \uparrow \Rightarrow tp_t \downarrow)$

Dual Instrument Policy

Proposition 1: Absent endogenous balance sheet policy, the divine coincidence fails due to term premium variability.

Proposition 2: There exists endogenous balance sheet policy that stabilizes the output gap, inflation, and the term premium, the equivalent of divine coincidence in this economy.

Corollary: The policy rate equals the natural rate when balance sheet policy supports term premium stabilization.

The Effects of Shocks with Optimal Dual Instrument Policy

THE UNIVERSITY of VISSISSIPPI. 1848

Endogenous Balance Sheet Policy

Consider the model with short-term debt, $\kappa = 0$, and balance sheet policy given by:

$$re_t = \frac{1}{\overline{b}^{cb}} \left(v_x x_t + v_{tp} t p_t \right)$$

Proposition 3: The necessary and sufficient condition for a rational expectations equilibrium to be unique under a policy rate peg when debt is short-term and balance sheet policy responds to output gap and term premium fluctuations is that:

$$\frac{1+v_{tp}}{\overline{C}_b} < v_x < \frac{\left(1+v_{tp}\right)\left(1+\eta\right)}{\overline{C}_b} - \eta$$

Welfare Comparisons across Monetary Policies

where λ_i is the argument satisfying:

$$W_i^s = W(\lambda_i) = \frac{1}{1-\beta} \left[\ln \{ (1-\lambda_0)C \} + \psi_b \ln C_b - \psi \frac{N^{1+\eta}}{1+\eta} \right]$$

"Fixed wedges" refers to dual instrument policy following:

$$tp_t = \pi_t = 0$$

The final column considers inflation targeting interest rate policy with balance sheet policy following Sims et al. (2021):

$$re_t = -\frac{1 - \overline{b}^{cb}}{\overline{b}^{cb}} \theta_t$$

Contact Information

- Emails: ihanisch@nd.edu; rrmau@olemiss.edu; jrawls@nd.edu
- Websites: sites.google.com/nd.edu/ihanisch; sites.google.com/view/ronmau