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To what extent do low-carbon technologies (and incentives) change the behaviors of firms? In
what ways do directed low-carbon technologies impact the pass-through of carbon costs? What do
distributive effects derived from the use of low-carbon technologies look like? As we move towards
low-carbon energy systems, answers to these questions are necessary in order to inform ambitious
climate policy targets. Traditionally, sound methodological approaches focus representing tech-
nologies on the supply side or the merit order, and firms usually compete on quantity [Acemoglu,
Kakhbod, and Ozdaglar, 2017]. However, over the past decade, renewable zero-carbon technolo-
gies have been finding progressively more space in the merit order, benefiting from the preferential
treatment by a mandatory offtake of feed-in regulation. Thus, analogous to an exogenous demand
reduction, there are more instances of firms that produce energy with conventional plants, such
as coal or gas, facing prices below marginal costs. In addition, the flexibility of commercial and
household demand is currently experiencing a significant upturn. Hence, analyzing the heteroge-
neous effects of technology on demand and supply sides is essential to further understanding the
transition to low-carbon energy systems.

Our paper puts forward a novel approach to representing technology; this model can also be used
to approximate electricity systems that include a demand response in their operations. We derive
our approach from empirical industrial organization models that measure the extent of market power
and test their conduct parameters. We apply our model using as case study the German day-ahead
electricity market during the third phase of the Emission Trading System (ETS). Operating under
one of the most ambitious national climate targets within the European Union, firms in Germany
need to adapt their bidding strategies under a uniform price scheme in order to thrive, as they are
facing challenges from the massive amount of renewables entering the market. We thus use this
case study to examine technology as a source of product differentiation.

Joskow and Schmalensee [1987] argue that “Production technologies are straightforward and well
understood”. Traditionally, the mix of technologies making up the merit order has been represented
as a set of discrete step functions, which can be used to solve equilibrium models with methods
such as supply function equilibria (SFE), Cournot-Nash equilibrium, or various collusive equilibria.
These identifications have been widely used to approximate the supply curve when bid data are
available and power plants show seemingly low uncertainty levels of operational availability. And
the rationale for using the Cournot model to fit generation behavior to firms is supported by the
notion that “market power on the part of sellers is the ability profitably to maintain prices above
competitive levels by restricting output below competitive levels” [Werden, 1996]. But, under the
energy transition, electricity systems artificially restrict output from fossil fuels; they prioritize the
use of of electricity from renewables, which entails certain production, thereby pushing fossil fuels
to the right of the merit order. This dynamic creates spaces in which prices are below competitive
levels leaving room for the exploration of other kinds of behaviors. Moreover, understanding how
more heterogeneous technologies might impact the elasticities of demand and supply at off-peak
and peak hours is no longer straightforward. In this sense, our paper explores the research gap
concerning the strategic implications and distributional impacts appearing as the result of directed
efforts to propel the energy transition.

In Germany, the electricity sector is central to decarbonization packages proposed by climate
policy. Climate policy in Germany can be subsumed under the generic term “energy system trans-
formation” (“Energiewende”), which integrates various reform packages and laws. In general, the
Energiewende largely addresses the transformation of energy conversion to carbon emission-free
technologies, but it also includes providing ongoing support to more loosely related policies, such
as the decomissioning of nuclear plants. The main pillars of this effort are supporting zero-emission



renewables (mainly wind and solar), coupling the electricity sector with the heating and transporta-
tion sectors and scaling down coal use, as well as demand-side policies such as increased efficiency of
appliances, demand reduction and demand-side flexibility. Within the realm of the Energiewende,
the German Federal Government has introduced targets to reduce carbon emissions by 90 percent,
compared to 1990 levels, by 2050. In other words, by the mid-21st century, carbon emissions lev-
els will be comparable to pre-industrial levels, such as those around 1850 [Giitschow, Jeffery, and
Gieseke, 2019]. To achieve this target, Germany expects to increase its share of renewable energy
-in gross power consumption- by a minimum of 35 percent by 2020, 50 percent by 2030, and 80
percent by 2050, among other sectoral targets. Under the Coal Exit plan, the federal government
scheduled the retirement of lignite plants by 2038. Thereby, 3224 MW of a total of 8 units will
leave by 2022, 6173 MW of a total of 11 units will leave by 2029, and 9242 MW of a total of 11
units by 2038 [Umweltbundesamt, 2020]. The Klimaschutzprogramm 2030 proposes a carbon price
floor of 35 € per tCO- and a carbon price ceiling of 60 € per tCOy by 2026. It also expands the
carbon pricing scheme to cover the transportation and heating sectors [Bundesregierung, 2020].

Related literature.- Our paper relates to the line of research in empirical industrial organization
that approximates marginal cost estimates of industries which lack production costs (or bid) data,
such as Rosse [1970] in the newspaper industry, Genesove and Mullin [1998] in the sugar industry,
and Wolfram [1999] in the electricity industry. We also build on models that assume a functional
form for an aggregate demand with differentiated products, a type of conduct, and a functional
form for the supply side [Berry, Levinsohn, and Pakes, 1995]. To solve our simultaneous equation
system [Koopmans, 1945], we rely on the generalized method of moments (GMM), as in Conlon
and Gortmaker [2019]. With much different electricity market conditions to Britain, as studied by
Wolfram [1999], we consider that the increasing uncertainty on the demand and production sides’
due to the expansion of intermittent renewable technologies or due to flexible demand response in
the future, give us sufficient reason to succumb to the temptation to fit the electricity day-ahead
market into a Bertrand model with product differentiation (referred to as the Bertrand model,
method, or equilibrium from here on). Doraszelski, Lewis, and Pakes [2018] fit the frequency
regulation market in Britain, governed mainly by fossil fuel technologies, into a Bertrand model
that approximates an uncertain demand using a logit functional form. Our model fits demand into
a random logit that considers the load factor variable as random, and we include plants that operate
with renewable technology. We also represent the supply side using a linear functional form, which
gives us flexibility to estimate the pass-through of input costs. To assess the question of whether
assuming a defined functional form on the demand side imposes too strong of an assumption that
could limit the soundness of our model, we test it in a similar way as to Genesove and Mullin [1998],
Bresnahan [1989], and Wolfram [1999]. Thus, we compare our model to the SFE method, which
serves as a benchmark model. To further extend the pass-through insights of Fabra and Reguant
[2014], our model generalizes the computation of equilibrium by accounting for endogenous changes,
which also enables us to investigate the distributive effects of welfare. We can also directly compare
our estimates to Hintermann [2016], who studied the pass though of CO5 emissions costs in the
German electricity day-ahead market during Phase 3 of the Emissions Trading System (ETS), using
the SFE method and a reduced form of prices on marginal input costs. Regarding the distribution
of welfare, we follow the theoretical implications in Weyl and Fabinger [2009] and Bulow and
Klemperer [2009].

n the future, renewable technologies could incorporate economic storage solutions in order to mitigate the
intermittency of renewables.



Our results show that although magnitudes differ between both models, we find rather similar
daily patterns, as both models converge at off-peak hours, thus supporting a monopolistic competi-
tive equilibrium. The results were robust when we included ramping costs and renewables forecasts.
This implies that producers react differently to changes in different cost categories, and compensate
between fuel and CO; costs. Letting our model function as lower-bound estimates, consumers are
better off under a counterfactual scenario with a carbon price floor up to €25/tCOsq, but the higher
burden of incidence still falls on producers, particularly at the morning peak. These findings suggest
that a suitable form of compensation could be to transfer some of the COs revenues to promote
the upgrading or replacing of less flexible technologies, with more flexible ones.

The remainder of the article has the following structure. Section 1 summarizes the relevant
electricity market characteristics in Germany, and the market data that enable us to construct the
demand and supply sides. Section 2 describes the methodology we use for measuring the pass-
through of input costs, test the conduct parameter, and assess welfare effects. Section 3 presents
the results of this empirical study. Section 4 concludes by discussing further implications and the
limitations.

1 Explaining the context and data

1.1 Market context

Total installed capacity in Germany at the beginning of 2018 was 217.6 GW, of which 112.5 GW,
or roughly 52 percent, comprised renewable sources. Aggregate capacity supplied an electricity
demand of 556.5 TWh. Generators can make independent or correlated decisions on three markets,
so that the price signal is formed by the forward, day-ahead, and intraday markets. There are
two ways to exchange electricity between generators and distributors, namely the over-the-counter
(OTC) market and the exchange markets. The European Energy Exchange (EEX) operates the
long-range and short-range forward markets. The long-range forward market accepts hourly average
transactions from the previous month of delivery for up to 6 years, while the short-range forward
market accepts hourly adjustments only during the month of delivery. The European Power Ex-
change (EPEX) operates the day-ahead and intraday markets 24/7. The intraday market functions
the previous day of delivery up to 15 minutes before the actual delivery of electricity (and 5 min-
utes before delivery within the respective control zones). The balancing market allows for primary,
secondary and tertiary control operations that have a bidding period of one week prior to delivery,
with the exception of the minutes reserve market (secondary control energy), which is called for
tender on a daily basis .

We study the German day-ahead electricity market and the incidence of technology sources on
its price formation, both on the supply and demand sides. In this market, blind auctions allow
hourly adjustment of load profiles one day prior to delivery, with hour one starting at midnight.
Firms may simultaneously submit up to 256 price and quantity combinations for each of the 24
hours of the following day. Bids aggregate a portfolio of units with different technologies (multi-
unit auction), pooling together combinations of coal, gas, hydro, wind, solar, etc. These bids
make up an increasing step-wise function capped between -500 €/MW and 3000 €/MW, allowing
minimum price and volume increments up to 0.1€/MWh and 0.1 MW, respectively. Once the gate
is closed, bids are ordered in ascending order, from the lowest cost to the highest cost offer, each



block containing a minimum of two hours of the day. Figure 1 shows the matching of aggregated
bids resulting in a uniform market-clearing price for the AT-DE-LU bidding zone?. A week prior
to delivery, ENTSO-e also receives forecasts on the production of electricity from solar, as well as,
both wind offshore and wind onshore. If there are any significant changes in weather conditions, the
information is updated more frequently. In our data, electricity production comprises on average
the following technologies: lignite 22 percent, wind onshore 14 percent, nuclear 12 percent, coal
12 percent, hydro 8 percent, solar 7 percent, biomass 7 percent, oil or similar 6 percent, gas 5
percent, wind offshore 2.6 percent, pumped storage 2.4 percent, and other renewables 0.3 percent.
In our period of analysis, the incidence of electricity production from intermittent renewables was 24
percent, compared to 46 percent from fossil fuels, on average. We represent a total of 35 companies
in the analysis, with five of the largest being RWE, Vatenfall, EnBW, Uniper, and Engie, together
accounting for 44 percent of the shares of electricity demand on average.

Yet, the EU ETS market is another mechanism affecting the formation of the day-ahead elec-
tricity prices through CO, prices. In this data, the average load factor of electricity production®
was 78 percent for lignite, 41 percent for coal, 24 percent for gas, and 21 percent for oil. For 2017
and 2018, the Umweltbundesamt (Office for the Environment) registered emission factors of 0.40
tons/MW h for lignite, 0.34 tons/MW h for coal, 0.27 tons/MWh for oil, and 0.20 tons/M W h for
gas, on average.

1.2 Data

Equilibrium data.- We gathered hourly data from public and private sources from January 2017
to September 2018. Aggregate demand, electricity production and day-ahead prices are from the
SMARD database provided by the German regulator. The electricity production figures from
each of our 119 plants are from AURORA and ENTSO-e databases. These plants have installed
capacities above 100 MW, and their electricity generation sums to 55 percent of total domestic
demand. For the SFE method, we also consider the remaining plants as aggregates, in order to
represent the entire system capacity. For the SFE model, we use wind speed and solar radiation
data from the Deutscher Wetterdienst as controls. For the Bertrand model, the technologies of
plants we model include: pump storage, hydro, nuclear, lignite, coal, gas, oil, solar, wind offshore
and onshore. We use commodity prices (coal, gas and oil) as supply instruments. We use the ARA
spot price (CIF without transportation fees), the Gaspool price, and the Brent crude oil price for
Germany, all of which we convert to euros per MWh thermal. Since commodities register prices only
on weekdays, we consider the last weekday available as the value for weekends and holidays. CO4
spot prices are from the EEX database under EUSP contracts. We shift the day-ahead electricity
price one day after, to match it to electricity production in both models. Our demand instrument
uses data on temperature, sourced from the Deutscher Wetterdienst database. We collected data
on CO4 emission rates of fossil fuels from the Umweltbundesamt. For both models, we employ heat
rates and installed capacities per plant from the Open Power Project database. Finally, meters
sometimes do not register hourly measurements of electricity production, temperature, wind speed
or solar radiation. When these are point estimates, we take the average of the previous and following
hours. But longer periods of time with missing data and the fact that logit models cannot account

2The AT-DE-LU bidding zone split, leaving Austria to bear the congestion costs since October 1st 2018, which
also defines the end of our period of analysis.

3Load factor is electricity generation as a percentage of the maximum feasible generation. To determine the
latter, we compare the nameplate capacity of the plant to the operational maximum, and use the maximum of the
two values.



Table 1: Descriptive statistics

Mean Standard deviation Min. Max.

Day-ahead price (€/MWh) 37.855 17.368 —81.950  163.520
Coal prices (€/MWh) 11.197 0.900 9.540 12.870
Gas prices (€/MWh) 18.890 3.141 14.760 29.400
Oil prices (€/MWh) 31.646 4.598 23.910  41.930
CO; prices (€/MWh) 9.399 5.070 4.350 25.190
Fuel costs (€/MWh) 39.726 17.309 1.000  130.402
COs costs (€/MWh) 6.056 4.051 0.000  24.732
Installed capacity (MW) 906.606 1569.495 0.000 4211.460
Residual demand (GW) 14.119 11.022 —14.824 50.577
Wind speed (m/s) 3.391 2.012 0.000 24.100
Solar radiation (J/cm?) 476.488 772.802 0.000  3790.000
Market share 0.008 0.015 0.000 0.348
Load factor 0.532 0.312 0.000 1.000
Temperature (°) 10.667 8.492 —30.000 37.700
Observations 951,223

Fuel costs equal fuel price multiplied by the heat-rate factor. CO2 costs equal CO»
prices multiplied by the heat-rate factor and corresponding emission factor.

for zero shares, cause a loss of 39 percent of a total of 1,556,877 observations. Table 1 describes the
variables we use to construct the supply and demand curves.

Since we do not observe hourly heat production from combined heat power (CHP) plants, we
use data from four main sources: hourly heat profiles (for space and water heating) of industrial
and residential consumers, monthly data of net heat production from coal and gas, annual data
of heat production from coal and gas CHP plants, and actual hourly electricity production from
coal and gas. We obtain this data from public sources such as the Open Power Project and the
Genesis database from the Statistisches Bundesamt. We also use technical data of generation units
to observe the capacity used as heat recovery, extraction-condensing or back pressure.* To further
understand the trends and their evolution in our dataset, Figure 2 shows day-ahead and input
prices during 2017 and 2018. Interestingly, after the federal government reached agreements about
the legal framework for the implementation of the fourth phase of the ETS at the end of year 2017,
COq prices reveal a nuanced increasing tendency. The variation in day-ahead prices is more volatile
than the variation of input prices. To further examine this source of variation, Figure 3 shows the
variation in wind and solar electricity production, compared to total demand. To better understand
how seasonal daily variations influence electricity demand, we divide the day into three blocks of
hours; an off-peak block from 20:00 to 06:00 (night), a peak 1 of block from 6:00 to 13:00 (morning),
and a peak 2 of block from 13:00 to 20:00 (afternoon).

A closer look at input costs.- For the SFE method, we construct the supply curve of the day-ahead
market, using estimates of fuel, COg, and O&M costs. These form the input costs of our thermal
plants for coal, gas and oil technologies. For both models, we compute fuel costs by multiplying
input prices by the heat rate® of each plant. Whenever we do not find data on specific heat rates,

4If the technology of a given generation unit is heat recovery or back pressure, it will have to produce heat and
electricity in a fixed ratio, and, consequently, treat electricity production as must-run (or one degree of freedom). If it
is extraction-condensing, it can variably switch between heat and electricity generation (or two degrees of freedom).
5The heat-rate unit is the percentage from a MWh electricity divided by MWh per fuel.



we calculate them as in Hintermann [2016]. We estimate COq costs as the product of CO4 prices,
heat rates, and CO, emissions factors. In Table 10 of the Appendix® we describe in detail, plant
capacities as of 2017 and 2018, and average heat rates. Table 2 shows the pool of plants used in
both models. Electricity production from our lignite plants account for 25 percent of electricity
demand, followed by coal with 13 percent on average. Some plants were decommissioned during
the period of analysis. To estimate of the pass-through of input costs, we also need to observe
the price-setting plant. Without individual bid data on all plants, we can estimate the equilibrium
outcomes for both models as described in the following section.

2 An alternative model for measuring pass-through under
renewables expansion

We represent the day-ahead electricity market as a set of multi-unit auctions where there are
i = {1,..., N} bidders (or firms). These firms own j = {1,...,J} electricity plants (with j # k)
registering hourly market observations t = {1,...,T} per k = {1,..., K} technologies. We model a
market in which bidders trade electricity as a good differentiated in terms of technological charac-
teristics. In this market, there is a set of hourly supply and demand offers (in MWh) submitted for
the following day in which bidder ¢ maximizes his profits by choosing a bidding strategy that is a
best response to the distribution of all other opposing bids he faces [Guerre, Perrigne, and Vuong,
2000]. We approximate the aggregate demand function as a set of market shares following a random
distribution, model the supply side as a linear function of costs, and run 50 Monte Carlo simula-
tions per equilibrium [Berry, 1994]. The source of heterogeneity is then captured in the load factor
parameter. We add to this an additional source of uncertainty: we also test whether the supplier’s
bids account for the information of weather forecasts. We solve demand and supply sides jointly as
in Conlon and Gortmaker [2019]. To assess the performance of our model, we also compare it to
the SFE method, where demand is inelastic, as in Wolfram [1999]. Like Borenstein, Bushnell, and
Wolak [2002], we assume perfect arbitrage; that is, any effect of arbitrage due to the interaction
of other electricity markets, such as the futures, intraday, or balancing markets, is symmetrically
distributed. In other words, all markets are similarly competitive on average.

2.1 Structural framework

We approximate a random demand model at hourly levels, representing 119 plants with capacities
higher than 100 MW, shown in our previous Table 2. These plants correspond to a pool of inside
goods and account for 55 percent of the electricity market production. The rest of the market is
the outside good, which is mainly composed of solar, biomass and wind onshore technologies.

Let the shares s;; or the probability of a set of operational plants j for firms 7 in an hour ¢ be

P(yjt = 1|aps, BXj4;0) = 554 = /dijt(apt + BXjt + pije)dpijedeije, (1)

6This table presents average heat rates for 74 fossil fuel plants, and the remaining pool of plants lower than 100
MW. However, for the merit-order construction under the SFE method, we consider heat rates for each of the 74
plants and the remaining of the pool as a weighted average per technology.



where d;j; takes the value 1 if it is an inside good, or 0 of it is an outside good; and ¢;;; is a
distributed IID type I error (Gumbel). After we integrate over heterogeneous technologies, we get

o — / exp(apy + BXj + pje)
L=
! 1+ Zj:l exp(apy + BXke + firt)

where p; is the hourly day-ahead electricity price and X; is a vector of observable control vari-
ables. We include as controls weekly, monthly, and yearly dummies. 6 is a vector containing the
load factors (our random variable) affecting the unobservables contained in the error term g, This
parameter allows us to calculate demand elasticities driven by technology availability (instead of
shares).

T (e 0)dpje, (2)

We characterize profits of firm ¢ with j plants facing ¢; costs in market M;" as
max [ [ = (o — ¢je) Mysju(pr, Xje, €545 0) (3)
P

and, solving the first-order conditions, we obtain

OM; syt (D, Xkt €xe: 6)

M;sji(pe, Xji, €513 0) + ope

(pt - Ck) =0 (4)
since s;¢/(s%;pt) = 1/1;¢, with ;¢ equal to the markup, we solve for marginal costs

Cjt = Pt — Njt (5)

and we approximate the marginal costs of the supply side as
cjt = VVjt + @ji (6)

where Vj; is a vector that contains the parameters of fuel (y1), CO2 (72), and ramping (vy3)
costs. wj; is the unobservable (to the econometrician) error term. After inverting the shares, we
obtain

Wit = Pt — Njt — ’YVjt
&t = 050 — BXje + apy

and, with &;; equal to the structural error, and J;; equal to the mean utility of j in market t, we
construct supply and demand-side moments as

oy = [N )
1/NY w1 25,
where Zﬁ is a temperature variable that we use as an instrument on the demand side. Zﬁ is

a vector of instruments that we use to orthogonalize the supply side, such as, coal, gas, and CO4
prices. Using a weight matrix (W), it is solved as follows

(7)

“In this case, the market size variable (M) is exogenous, due to the intermittency of renewables. Markets represent
different hours of the day.



ming(e) = Ng(e) Wy (o)

Finally, to assess the incidence on welfare, we compute total producer (PS) and consumer (CS)
surpluses as
PS = Z(pjt — Cjt)sjt (8)
it
and, with w; equal to the integration weights in market ¢, we obtain

cS = Z - log(1+ Zj exp|—BXjt + apy + €;¢:))

o
t,i v

2.2 Comparing our model to a traditional one

Constructing the benchmark model.- In this section, we assess the performance of our model com-
pared to the SFE method. To approximate the availability of a plant’s capacities, we use the actual
maintenance schedule and outage records per plant from ENTSO-e to obtain the probabilities that
a fossil fuel technology is able to operate at a given hour. Using these probabilities, we ran 100
Monte Carlo simulations similar to Borenstein et al. [2002]. Once we obtain cost and quantity pairs
for each plant, we construct the merit order for each hour by ordering of the cost of each plant in
an ascending manner and accumulating their capacities. Next, to estimate the equilibrium point,
an inelastic residual demand® intersects our merit order. An important additional adjustment to
capacities, necessary in the German electricity market, is to identify coal and gas plants that are
able to produce heat as a by-process (CHP plants®). To reflect conditions in the German electricity
system, we construct an artificial must-run CHP plant with a cost of €1/MWh. The actual coal
and gas CHP plants reduce their capacities by the remaining proportion of heat production, divided
by the actual production of electricity from coal or gas, respectively'®. The remaining proportions
then become probabilities for running a Monte Carlo simulation of 100 trials. To verify this model,
we compare actual production to our marginal plant estimations as in Hintermann [2016].

Comparing this benchmark model with our model, we compute an elasticity-adjusted markup v
as in Bresnahan [1989], Genesove and Mullin [1998], and Wolfram [1999] to normalize our markups
as follows

/
Pt — Cyy

e = ( )t (10)
bt
where ¢, is the demand elasticity parameter at a given hour. We also know that

6= Dy (11)

where the parameter D,, is the slope of the short-run residual demand for the SFE model. As
we do not observe this value using this method, we assume a slope of -125 as in Wolfram [1999]. In

8Similar to other studies, the residual demand is defined by the difference in total demand minus must-run. Total
demand is defined by domestic demand plus imports minus exports and pump storage. Must-run is defined by the
sum of wind onshore, wind offshore, solar, biomass, hydro, lignite, nuclear and other renewable technologies such as
waste [Hintermann, 2016].

9We excluded oil plants due to their low incidence in the merit order, as well as in heat production.

10We also model this artificial CHP plant in the Bertrand model.



comparison, our model allows us to directly estimate ¢; as the aggregated elasticities of demand at
each hour, which we use to compute the adjusted-elasticity parameter (1);).

We also compare our estimates to an approximation of ¢ points toward a Cournot equilibrium.
¥ is equal to 1 if firms are joint profit maximizers, 1/N if firms play a Cournot strategy, and 0 if it
is perfect competition or a Bertrand equilibrium. For example, if the German day-ahead electricity
market were a Cournot oligopoly of 20 firms, we compare 1, to 0.05.

3 Understanding and discussing results

3.1 Pass-through costs

In this section, we compare the traditional SFE model to the described Bertrand model by com-
paring pass-through results of fuel, CO5, and ramping costs in Table 3. First, we discuss base
estimations for the SFE and the Bertrand models in columns (1) and (3). We then include dynamic
ramping costs in columuns (2) and (4) to explore how this additional information might affect our
base estimations.

Base regressions.- Using the traditional model, the results in column (1) of Table 6 suggest full
pass-through of fuel costs to electricity prices at night (off-peak); that is, a €1 increase in fuel costs
produces a €1.41 increase in electricity prices. The tendency rises to €1.77 during the morning
(peak 1), and to €1.83 in the afternoon (peak 2). In contrast, a €1 increase in COsz costs produces
a €0.79 increase in electricity prices at night, followed by €0.32 during mornings, and €0.38 in
the afternoon. When we use the Bertrand model in column (3) of Table 6, we observe the same
daily tendency for fuel costs, though with lower magnitudes between €0.62 and €0.69. However,
pass-through of CO4 costs results in a different daily pattern and higher magnitudes with respect to
the traditional model. We observe a pass-through of CO4 costs of €1.55 at night, a maximum value
in the morning €1.91, and a €1.80 increase in electricity prices due to COs costs in the afternoon.

For both models, the daily pattern for pass-through of fuel costs seems to follow the shape of
the average residual demand and price curves, although with different magnitudes. More interest-
ingly, estimates of pass-through of COs costs using the SFE method contrast markedly with the
differentiated Bertrand method, not only in magnitudes but, also in daily patterns. One possible
explanation is that we allow the representation of the load as a random variable in the Bertrand
model, which is not possible using the aggregated SFE model. To illustrate this, Figure 5 shows
the construction of average demand over the three segments of the day for the Bertrand model,
which allows for demand function convexity. With (log) convex demand functions, pass trough will
c.p. be larger (see Weyl and Fabinger [2009]). In our case, this daily pattern for pass-through of
COg costs following demand curvature seems to be reinforced by renewable production from wind
and solar. With high renewable production, wind and solar will reduce residual demand served
by conventional plants and shift the equilibrium to regions with less elastic demand (and flatter
supply-curve segments). In this way, electricity prices would be more sensitive to CO4 costs under
the Bertrand model than under the traditional model, with pass-through exceeding 1.

We could also consider that a different use of fossil fuel technologies during the day and night
could have an impact on demand elasticities. But as we show in panel A of Figure 6, during this
period of time, we do not observe evidence of average fuel switching over the course of a day. We
also see that the most responsive technology with respect to flexibility requirements is coal, followed
by gas, lignite, and oil. Lignite costs are exogenous to the electricity market, but their electricity
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production is the most intensive during this period. It is important to note that we include lignite
as part of the must-run technologies that we exclude from the residual demand in the SFE model.
In the Bertrand model, we include lignite plants and their costs as part of the panel dataset, but we
apply a cost restriction of €24.99/MWh. This restriction ensures that the computation of marginal
costs is bounded to coal, gas, and oil. This has a similar effect as using a CHP dummy in the case
of the SFE model. Similar to the observed tendency in average electricity production, panel B of
Figure 6 shows that average CO5 emissions from lignite was the highest, followed by coal, and then
by similar magnitudes for gas and oil.

It is important to note that the explanatory variables and instruments we use on the supply
and demand side already include seasonal effects in the Bertrand model. We also perform further
robustness checks on this model using hour fixed effects and week and month of sample dummies
(included in Table 8 of the Appendix), but we clearly see a loss of explanatory power in the coeffi-
cients. For the SFE model, we present estimations including time dummies in Table 6, because it is
unclear whether seasonality effects are also included in the instruments we use for the supply side.
However, for these regressions, we see an increase in the standard deviations of the coefficients,
as reported in Hintermann [2016]. For this reason, we also include additional estimations without
time dummies in Table 7 of the Appendix.

Dynamic ramping cost regressions.- Columns (2) and (4) of Table 6 show the results when we
include ramping costs in the base regressions. We observe that electricity prices become less sensitive
to fuel costs in both models. With respect to COsz costs, we observe in both models that electricity
prices become more constant throughout the day. In the SFE model, ramping-cost coefficients are
negative in the morning and afternonn, implying that these costs tend to reduce electricity prices.
Under the Bertrand model, ramping costs are almost insignificant. To gain a better picture of
these pass-through results, in Figure 1 we include average electricity prices, demand, and renewable
production from wind and solar.

With respect to the treatment of ramping costs over time, we use three inputs: ramp-up limits
and heat conditions per generation unit, unit ramping costs per generation unit or technology, and
the time a given generation unit requires to effectively reach the required output. First, we obtain
the capacity change (MW) relative to the previous hour. Then, we assign ramping costs only to
capacity changes that lie within a feasible operational interval. For the upper limit of the interval,
we identify the maximum MW increase that each generation unit or plant can achieve in an hour
from the data we observe. We compare this maximum to the plant’s nominal capacity, in order
to verify that each generation unit is close to the ramp-up percentage that is expected from each
technology; see percentage ramp up in Table 4. We do this to ensure that the gradients we obtain
in our sample data reflect real operation and not a low-operational bound. Because the ramp-up
increase cannot be zero, we also apply a lower limit, which is similar to a minimum operational
requirement!!. In our case, we consider this as 20 percent of the nominal capacity of a unit or plant
in our study. For the sake of simplicity, we assume that ramping costs correspond to hot operational
conditions, that is, the time gap between the stop and the start is less than 8 hours.!? Second, we
extrapolate estimates of ramping costs corresponding to warm conditions for different technologies

1We do not observe minimum ramp-up or ramp-down rates.

12 As a better approximation, one could also observe the time gap between the stop and start of a given generation
unit. This would mean that other operational conditions such as warm (with a time gap between 8 and 50 hours)
and cold (with a time gap longer than 50 hours) could also be represented [Boldt, Hankel, Laurisch, Lutterbeck, Oei,
Sander, Schroder, Schweter, Sommer, and Sulerz, 2012]. This has an impact on costs, because colder start-ups are
more expensive.
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[Lin, Schmid, and Weisbach, 2017] to hot conditions using the start-up times shown in Table 5. We
rely on those average estimations, because we do not observe data for start-up fuel requirement,
depreciation, and maintenance, due to wear and tear for each generation unit or plant. Third, be-
cause start-up operations form a gradual gradient with time rates that differ between technologies,
we assign ramping costs along the gradient, using hot start-up times (h < 8) as shown in Table 5.
Finally, we also assigned ramping costs to stops in a similar manner, considering gradient duration
times per technology.

We compare two different situations as a result the two methodologies used. First, using the
SFE model, there would be an inflationary effect on electricity prices due to fuel costs. This seems
to be consistent with the shape of the residual demand. Electricity prices would seem to be less
sensitive with respect to COq costs (results show incomplete pass-through). Moreover, when we
compare regression (1) to (3), it is evident that expectations of lower renewable production increase
the pass-through of fuel and COs costs, with the exception of COy costs at peak hours. These
results differ from similar studies that found almost full pass-through of CO5 costs at peak hours
[Fabra and Reguant, 2014], [Hintermann, 2016]. One explanation is that generators might reduce
price bids and, thereby, the measured pass-through of COs costs for competing with renewables
at peak hours and avoiding being shut down [Bushnell, Mansur, and Saravia, 2008]. Looking at
forecast regressions, expectations of more renewables in the morning (compared to other times of
day), further reduces pass-through of COs costs, though at only a 5 percent level of significance.
The Bertrand model results tell a different story. Although in this case, the pass-through of fuel
costs also follows the daily pattern of the residual demand, this would not cause an inflationary
effect on electricity prices. Furthermore, CO2 costs would cause an even higher inflationary effect,
especially in the morning, when the production of electricity from renewables is also the highest.
Thus, this would imply that the demand would not be the only factor affecting electricity prices; so
would the production of electricity from renewables. This is to be expected, because the renewables’
priority feed-in means that renewable production acts like an exogenous negative demand shock.

Both models coincide in terms of result patterns, when including ramping costs, although the
pass-through of ramping cost magnitudes differ per se. Considering ramping costs reduces pass-
through estimations in all cases except for fuel costs increasing in the afternoon and COq costs
increasing in the morning.

Although Weyl and Fabinger [2009] show that considering a functional form for the demand side
could lead to bias in pass-through estimations, Genesove and Mullin [1998] estimate cost parameters
under different demand-side forms and examine bias in cost coefficients under different elasticity-
adjusted markups. In their case study, they find that cost estimates are much less accurate when
fitting the model to a monopoly rather than perfect competition. Wolfram [1999] also finds that
the SFE method predicts higher prices than direct measures of marginal costs. To explore the
performance of both models in more detail, we discuss the implications of both conduct parameters
in the following section using the regressions that include ramping costs, as these would be the less
biased estimates [Reguant, 2014].
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Figure 1: Pass-through of fuel and COq costs with ramping costs. Average price, total demand,
residual demand, and renewables from January 2, 2017 to September 30, 2018

13



3.2 Testing the conduct parameter

In this section we compare markups, elasticities, and elasticity-adjusted markups in Table 2, so as
to test the performance of the traditional SFE model relative to the Bertrand model. Under the
SFE model, we obtain a higher average markup (mksppg) in the morning but lower at night and
during the afternoon (negative). When we compare mkspg and mkgertrand markups, we observe a
different pattern, with lower markups under the Bertrand model. Assuming a demand slope equal
to -125, we obtain slightly higher elasticity estimates (¢1) at peak hours compared to off-peak hours.
With these inputs we compute elasticity-adjusted markups (¢1), which reveals on what side of the
conjectural variation spectrum (between 0 and 1) we are leaning. In the morning and afternoon,
estimations suggest a Cournot competition of 36 and 37 firms respectively. At night we would
observe a stronger tendency toward a Bertrand competition (52 firms).

In contrast, using the Bertrand model we observe the highest average markup at night, followed
by an equal magnitude the rest of the day. The elasticity results (¢2) are lower at night and increase
in absolute values during the afternoon and morning, with the more elastic value in the morning.
Elasticity-adjusted markups follow the same pattern between both models, with the highest value
in the morning. Interestingly, with respect to conjectural variations, elasticity-adjusted markups
obtained with the Bertrand model suggest fewer firms competing in the morning and afternoon
than the traditional model of 14 and 16 firms respectively. At night, our model shows a stronger
tendency towards a Bertrand competition (111 firms) than under the SFE model.

Table 2: Comparing elasticity-adjusted markups

SFE model Bertrand model
mksrg ¢1 wl mkBertrand ¢2 wQ
off-peak  0.284 —0.100 0.019 0.342 —0.009 0.029
(26.894) (0.033) (0.018) (0.169) (0.074) (0.020)
peakl 1.451 —0.101 0.033 0.227 —0.530 0.106
(67.142) (0.050) (0.030) (0.134) (0.225) (0.016)
peak2 —0.307 —0.101 0.030 0.226 —0.495 0.099

(15.339)  (0.053) (0.030)  (0.142)  (0.214) (0.015)

We estimate markups for coal, gas and, oil for both methodologies.
For the aggregated SFE, we assume a slope of -125 as in Wolfram
[1999]. We examine the conduct parameter by focusing only on pa-
rameters for technologies that run on fossil fuels.

Overall, the estimations we run in this section are closer at night or off-peak hours for both mod-
els. The main differences in estimations occur at peak hours. Moreover, looking at the elasticity-
adjusted markups in both models at off-peak hours, suggests that the conduct parameter is closer
to a Bertrand or perfect competition game. Markups more intuitively follow the residual demand at
the morning peak in the SFE model. However, in addition to the implications of having a different
conduct parameter under the Bertrand model, including technology differentiation, which allows
for more convex demand curvatures at peak hours, might help explain the difference in markups in
the Bertrand model.
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3.3 Distributive effects on welfare

Since the Bertrand model allows us to compare producer and consumer surpluses against pass-
through costs, in this section, we analyze their distribution for the ramping cost regressions. Or-
dering average Bertrand markups in an increasing manner (off-peak, peak 2, and peak 1), we could
reasonably expect these demand-induced effects to carry over to the welfare estimations. We see
that the lowest gains for both sides occur in the mornings, followed by the afternoon, and with
the highest gains occurring at night, especially for consumers (see Figure 8). It is important to
note that average welfare estimations per block of hours are calculated using the entire market of
inside goods (recall from Section 2, that this is 55% of the German electricity market), including
almost all technologies in the system. One reason for the high value of consumer surplus at night
might be that demand is less elastic and less convex during this period, which is closer to the SFE
assumptions.

Whether fuel costs or COs costs (or both) are the costs that might result in full pass-through
or in an inflationary effect on prices, if we let the Bertrand model results function as a lower bound
for welfare estimations (or an average), there could still be latitude to compensate producers.
Consumer surpluses appear to be high particularly at off-peak hours, when the highest proportion
of renewables are off the grid.

To analyze the empirical consequences of maximum and fixed carbon price controls on welfare, we
construct nine synthetic counterfactuals using two methods, and use our simultaneous equilibrium
model of Section 2.1. In the first method, we apply constraints to our data to examine how this
restriction alter the estimations. To examine the effects of a maximum carbon price, we separate
the data into three categories: Hours or markets that registered carbon costs up to €10/tCOso,
up to €20/tCO5 and up to €25/tCO2 (which are also our base and ramping costs regressions).
To examine the effects of a minimum carbon price, we separate the data into additional three
categories: Hours or markets that registered carbon costs higher than €10/tCOs2, higher than
€20/tCO4 and higher than €25/tCOs. In the second method, we apply a uniform carbon price of
€25/tC0O4, €60/tCO5 and €100/tCO,. Assumptions in the second method include replacing the
COg costs that were lower than the caps we apply during our sample period and we calculate prices
endogenously.

First method for counterfactuals with mazimum carbon price levels of €10/tCOs, €20/tCO4
compared to carbon price levels up to €25/tC0Oy

Figure 7 shows an inverse effect between the levels of carbon prices and the pass-through of CO4
costs, while the pass-through of fuel costs remain almost constant under all counterfactuals. On the
contrary, Figure 8 shows a proportional effect between the levels of carbon prices and the welfare of
producers and retailers. Consequently, at low carbon prices, fuel and C O3 costs were passed through
to electricity prices with a higher magnitude than at high carbon prices. This resulted in less welfare
on both sides at lower carbon prices. If we consider the dataset as an scenario with no ETS price
control, these findings, under Bertrand competition, are consistent with theoretical findings in Weyl
and Fabinger [2009] and Bulow and Klemperer [2009], where under perfect competition, consumers
would be better off without a price control under high pass-through of COs costs. We see in Figure
9 that marginal costs and electricity prices were proportional to the level of carbon prices. However,
we see a change in production levels between 2017 and 2018. In 2017, we observe similar shares
of electricity production under all counterfactuals; whereas in 2018, lower carbon prices coincided
with higher shares of electricity production, particularly of fossil fuels (see Figure 10). In contrast,
higher carbon prices show a more nuanced increase in the shares of electricity producton in 2018.
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We also observe an upward trend in electricity prices and marginal costs in 2018 compared to 2017.
This upward trend in electricity prices and EU ETS prices coincided with the EU ETS reform that
reduced the number of free allowances in the system since April 2018 [EP, 2018]. Consumers are
slightly better off than producers under these counterfactuals. Although both actors are worst off
during peak hours, the higher incidence would still fall to producers, particularly when there are
more renewables in the system.

Second method for counterfactuals with carbon price levels of €25/tCOs, €60/tCO4, and €100/tCO,

In this section we investigate the incidence of uniform and higher carbon prices considering that the
production of electricity from must-run and renewable sources is able to substitute fossil fuel pro-
duction without operational restrictions under the same level of demand and fuel prices. Recall that
we apply a marginal cost restriction of €24.99/tCO, in our regressions'®. We calculate electricity
prices and shares endogenously. With fixed EU ETS prices, Figure 12 shows that higher carbon
prices reduce the pass-through of fuel costs and increase the pass-through of COy. The welfare
of producers remain almost constant under all counterfactuals and is almost similar to retailers at
peak hours. Higher carbon prices reduce producer’s surplus mainly at off-peak hours. Under these
scenarios, the higher incidence still falls on producers, reducing their gains mainly at off-peak hours.
For retailers, higher carbon prices reduce welfare mainly in the afternoon and off-peak hours with
the exception of the counterfactual where carbon prices reach €100/tCOs where we observe a higher
level of welfare. One reason for this is that at uniform carbon prices of €100/tCO the counterfac-
tual produces electricity mainly on must-run sources, with lower levels of renewables compared to
the counterfactual of €60/tCOg2, and no production from fossil fuels (see Figure 15). This is the
main cause of the retailer gains under €100/tCO4 at peak hours (see Figure 16). Another reason
is that the pass-though of fuel costs under this level of carbon prices is also lower compared to the
other scenarios.

4 Conclusions

In this article we explore the use of a random demand specification with technology as a source
of product differentiation, in order to investigate the impact of input costs on electricity prices.
We test our model using data from the German day-ahead electricity market. Future flexible
demand assumptions in our model are partly supported by the existence of virtual power plants
and decentralized electricity generation pilots promoted by the German government as part of
the transition to a low-carbon system. Moreover, similar to Nelson, McCracken-Hewson, Whish-
Wilson, and Bashir [2018], we assumed that under the transition to a low-carbon economy and
beyond, electricity is better represented as a heterogeneous good.

Since we do not observe bid data, we compare our methodology to the traditional SFE method,
which serves as a benchmark. Our methodology also allows for the direct estimation of elasticities,
which are implicitly assumed under the SFE methodology, as well as the analysis of distributive
effects, using reduced form regression analysis. In this sense, we contribute to the literature with
three findings. First, we cannot reject the hypothesis that renewable technology affects the curvature
of the demand side. This is evident in Figure 1, where we show different pass-through estimates
of fuel and CO5 costs under both methodologies, and Figure 6 where we see a representation

13To reduce computation time from 10 days to a day, we present the regressions of these counterfactuals for off-peak
hours applying a marginal cost restriction of €9.99/tCOz, whih does not alter our results significantly
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of curvatures at off-peak, peak 1, and peak 2 hours. In a future where renewables dominate the
production of electricity, and more flexibility options also enable a more elastic demand, it would be
more relevant to improve the representation of the demand side. Moreover, this carries implications
for revising utilities’ regulations and operations. Although we find two different explanations for the
inflationary effect of fuel and COx costs in electricity prices in Section III, under both methodologies,
it seems relevant to keep track of the residual demand and renewable production curves in order to
approximate pass-through of input-cost estimates.

Second, we reject Bertrand competition at peak hours more strongly than at off-peak hours.
If we allow these estimations to function as a minimum-bound study, despite the difference in
magnitudes, we see that average daily patterns in both models are rather similar. Higher renewable
levels in the morning peak seem to be consistent with the ability to exercise market power profitably
under the SFE method. However, we also observe losses in the afternoon, when renewable levels
are slightly less than in the morning. Whether higher renewable expansion causes higher market
power is beyond the scope of our analysis. Under the Bertrand method, higher profits are obtained
at off-peak hours rather than peak hours, even though fewer firms compete at peak hours. This
also supports the rejection of this model at peak hours.

It is important to note that at peak hours, as renewables expand, in addition to fewer firms
competing, it is also more likely that we find fewer quantities of residual demand to capture.

Third, we find that consumers are better off with a carbon price ceiling up to €25/tCO5. Higher
carbon price levels coincided with higher electricity prices and lower pass-through estimates and a
small increase in welfare for consumers and producers at peak hours in all counterfactuals. However,
overall, the higher burden of the incidence still falls on the producer side, particularly at the morning
peak. This suggests that the merit-order effect is still more predominant in the electricity market
rather than the ETS scheme, at these carbon and electricity price levels. Moreover, at these
fuel price levels we didn’t observe interfuel substitution between carbon and gas. Interestingly,
compared to 2017, we observe a pronounced spike in electricity production at carbon price levels
of euro10/tCO4 in 2018, which also coincided with an more nuanced upward trend in electricity
prices. Thus, carbon price levels impacted electricity production more strongly than electricity
prices. Under the uniform price of carbon counterfactuals up to eurol00/tCO2 we see that the
system relays highly on must-run sources which translates also in gains for retailers. This confirms
the central role of must-run technologies and the importance of increasing the levels of flexibility
in a low-carbon electricity system.

One form of compensation could be to transfer some of the COs revenue to promote upgrading
or replacing less flexible technologies, with more flexible and cleaner ones. Another option could
be to allow multi-part bid auctions that include ramping costs, as proposed in Jha and Leslie
[2020]. However, for uniform price electricity systems such as in Germany, this could lead to
higher system costs and market power exercise, due to the existence of inefficient signals of network
congestion, which is likely to interfere with efficient outcomes. Another option from the consumer
side would be that regulations for utilities allow more flexible demand responses and pricing schemes.
Considering the co-benefits from carbon policies in addition to welfare considerations could provide
a more comprehensive benefit-cost analysis. This may include discounted social carbon costs and
co-benefits such as health benefits and other spillovers derived from a reduction of greenhouse gases
in the electricity sector. Yet, this analysis is outside the scope of this study.

Some limitations of the alternative methodology could be improved by exploring a Cournot
model with technology as a source of product differentiation. The conduct parameter could be
tested more precisely using actual bid data.
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Figure 9: Electricity prices, shares and marginal costs daily averages up to €10/tCOq, €20/tCO2
and €25/tCO;
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Figure 10: Shares of renewables, must-run and fossil fuels up to €10/tCOs,

€25/tC0,
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Figure 11: Producer surpluses of renewables, must-run and fossil fuels up to €10/tCO4, €20/tCO2

and €25/tCO5
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Figure 12: Pass-through of fuel and CO2 costs for counterfactuals with fixed carbon prices of
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Figure 14: Electricity prices, shares and marginal costs daily averages with fixed carbon prices of
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Table 3: Fossil fuel generation data used to construct the merit order

Technology Net capacity Heat rate
(MW) (1/efficiency)
2017 2018
Coal 25,274 24,695 2.47
Steam turbine 25,274 24,695 2.47
CCGT — — —
Natural Gas 15,571 15,578 2.02
Combustion engine — —
Steam turbine 1,812 1,812 2.67
OCGT 637 637 241
CCGT 13,122 13,129 1.87
Oil 1,246 1,246 2.82
Steam turbine 1,106 1,106 2.73
OCGT 140 140 3.02
CCGT — - -
Other fuels 600 600 2.45
rest Coal 2,761 938 2.53
Steam turbine 2,261 438 2.59
CCGT 500 500 2.24
rest Natural Gas 20,705 19,436 2.44
Combustion engine 58 56 2.17
Steam turbine 7,395 7,082 2.65
OCGT 1,767 1,656 2.40
CCGT 11,485 10,642 1.88
rest Oil 2,919 2,919 2.84
Steam turbine 1,236 1,236 2.71
OCGT 1,001 1,001 3.11
CCGT 682 682 2.63
rest Other fuels 3,299 3,217 2.82

We adjust capacities given by Bnetza(SMARD) by -142MW
from year 2017 and 2018 to match the data, assuming that
the changes in capacity between these years were due only
to the retirement of plants >100 MW.
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Table 4: Plants analyzed in this study with capacities higher than 100 MW

Technology Plant
CHP must-run 1
Coal

Gas steam turbine
Gas OCGT

Gas CCGT

Hydro

Nuclear

Lignite

Oil steam turbine
0Oil OCGT

Other fossil fuel
Other renewables
Pump storage
Wind offshore
Wind onshore
Total plants

I
[a]

ot

o

w

== 00 = N = N~ O NN

—
©

We model an artificial must-run combined heat
power plant (CHP plant), see Section II.B. OCGT
refers to open cycle gas turbine and CCGT refers
to combined cycle gas turbine. The category “other
fossil fuel” corresponds to a gas-fired plant using as
fuels blast furnace gas, coke oven gas, or natural
gas. The category “other renewables” corresponds
to waste.

Table 5: Assumptions for ramping-costs regressions

Technology  Start-up condition % ramp-up  hot ramping costs
8 < h <50 h <8 €/MWh
Coal 4.0 1.5 66.67 19.60
Gas 1.5 0.5 100.00 9.44
Gas CCGT 3.0 1.0 100.00 11.96
Lignite 5.0 2.0 50.00 15.92
Oil 3.0 1.0 100.00 9.44

Gas and oil values apply to steam turbines and OCGT technologies. Val-
ues adapted from Boldt et al. [2012] and Lin et al. [2017]. CHP is excluded
from ramping costs, because their contribution to flexibility has so far been
insignificant. Biomass, pump and hydro are also excluded from ramping
assumptions, because we do not observe their opportunity costs, and to-
gether, and they sum on average 18 percent of total production. Nuclear
technology registered only small variations in production during this pe-
riod of analysis.
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Table 6: Pass-through results

aggregated SFE Bertrand model
(1) (2) Obs (3) (4)  Markets
Fuel costs (1)
off-peak 1.406™** 1.131***5,693 0.62*** 0.577** 5,439
(0.110) (0.130) (0.005) (0.003)
peakl 1771 1.480%* 4,099 0.677"** 0.675"** 3,837
(0.120) (0.160) (0.009) (0.009)
peak2 1.832*** 1.694***4,099 0.689"** 0.689** 3, 806
(0.090) (0.160) (0.009) (0.009)
CO2 costs (v2)
off-peak 0.789*** 0.497* 5,693 1.553*** 1.630"**5, 439
(0.110) (0.200) (0.021) (0.010)
peakl 0.317* 0.483** 4,099 1.905"** 1.903"7*3, 837
(0.140) (0.160) (0.006) (0.006)
peak2 0.378"* 0.437" 4,099 1.795%** 1.795** 3, 806
(0.120) (0.200) (0.006) (0.006)
Ramping costs (y3)
off-peak 1.711* 5,693 0.034"** 5,439
(1.630) (0.003)
peakl —3.061""*4,099 0.041%* 3,837
(3.180) (0.006)
peak2 —18.979* 4,099 0.009 3,806
(7.940) (0.007)
F-test 192.9 129.6
J-test 25.871 —
R? / GMM Obj. 0.365 — 1.96E+04 1.97E+05
Ramping costs No Yes No Yes

We report the lowest F-tests, and highest J-tests for off-peak, peakl, and peak2 sub-
samples. All regressions for the SFE methodology include hour FE, day of the week
dummies, and month sample. In addition, we control for CHP units being marginal
and hourly negative residual demands. For both cases, we apply a low-cost bound of
€24.99/MWh. For the SFE model we also control for wind speed and solar radiation,
but coefficients do not differ significantly.
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Table 7: Pass-through additional interactions, SFE model

(1) (2) 3) (4) () (6) Obs

Fuel costs (v1)

off 1.378 1.386 0.788 1.135 1.171 1.152 5,693
(0.110)  (0.110)  (0.070)  (0.130)  (0.160)  (0.150)

peakl 1.797 1.800 1.319 1.507 1.333 1.333 4,099
(0.130) (0.130) (0.090) (0.130) (0.150) (0.150)

peak?2 1.853 1.871 1.376 1.493 1.584 1.587 4,099

(0.100) (0.100) (0.070) (0.090) (0.210) (0.160)

CO costs (v2)

off 0.820 0.842 1.166 0.582 0.520" 0.543** 5,693
(0.110) (0.110) (0.080) (0.170) (0.220) (0.200)

peakl 0.353" 0.350" 0.785 0.304(x)  0.597 0.597 4,099
(0.150) (0.150) (0.130) (0.200) (0.170) (0.170)

peak? 0.422 0.410 0.839 0.538 0.586" 0.579"* 4,099

(0.120) (0.120) (0.110) (0.140) (0.210) (0.210)
Ramping costs (ys)

off 0.629(x)  0.581(%)5,693
(1.420) (1.380)

peakl —0.665(x) —0.676(%)4,099
(3.090) (3.070)

peak? ~16.207*  —16.418" 4,099

(7.730) (7.710)

F-test 286.2 257.1 199.6 142.5 158.9

J-test 32.2 31.9 17.9 4.757 -

R? 0.452 0.344 0.127 - -

Hour FE No Yes Yes Yes No Yes
Wind No No Yes No No No
Solar No No No Yes No No
Ramping costs No No No No Yes Yes
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Table 8: Pass-through additional interactions, Bertrand model

0 ® ) Obs

Fuel costs (v1)

off 0.590 0.575 0.754 6,053
(0.003) (0.030) (0.006)

peakl 0.655 0.777 0.777 4,162
(0.006) (0.002) (0.002)

peak2 0.659 0.781 0.781 4,163
(0.006) (0.003) (0.003)

COs costs (v2)

off 1.630 1.652 2.282 6,053
(0.011) (0.018) (0.007)

peakl 2.055 2.423 2.423 4,162
(0.008) (0.007) (0.007)

peak2 1.955 2.308 2.308 4,163
(0.008) (0.008) (0.011)

price (B)

off —0.141 —0.121 2.277 6,053
(0.006) (0.006) (0.011)

peakl —0.136 171.864 187.300 4,162
(0.005) (5.918) (6.208)

peak?2 —0.138 39.690 32.890 4,163
(0.006) (152.6) (162.000)

load factor ()

off 228.50 20.46 —0.052 6,053
(32.09) (0.744) (24.44)

peakl 5.691 1079.610 1752.000 4,162
(4.372) (171.864) (3.311)

peak2 7.896 1299.00 1337.000 4,163
(7.332) (8145.00) (9699.000)

GMM Objective 2.32E+04 2.31E404 3.13E404

Hour FE No Yes Yes

Weekday No No Yes

Month No No Yes

Regression (1) showing additional parameter results for base regression (4)
in Table 3.
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Figure 17: Causal diagram of drivers analyzed in this study
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