Why do Parents Underinvest in their Children's Education? Evidence from China

Jiyuan (Jerry) Wang ${ }^{1,3}$ \& Rob Alessie ${ }^{2,3}$ \& Viola Angelini ${ }^{2,3}$
1. School of Insurance, Central University of Finance and Economics
2. Faculty of Economics and Business, University of Groningen
3. Netspar

Central University of
Finance \& Economics
university groningen

Introduction

- The traditional theory predicts that the optimal amount of human capital investments is determined by equating its marginal returns to the market return (see e.g. Becker (2009)).
- Many papers, however, found that parents often underinvest in the human capital of their children, especially in developing countries such as China (Psacharopoulos, 1985; Heckman, 2005).
- In this paper, we extend the theoretical model of (Raut and Tran, 2005) by including parental liquidity constraints and fixed costs of investment as two potential explanations for the underinvestment in education
- First, binding liquidity constraints might prevent the parents to invest sufficiently in the education of their children (see e.g. Barham et. al (1995)).
- Second, parents might face fixed costs when they perform such investments. One can think of the costs when the households have to pay for the children's preparation for the college entrance examination.

Model

- We extend the models from (Raut and Tran, 2005) by incorporating liquidity constraints faced by parents and educational fixed costs. The lifetime utility and budget constraint of the parent are:

$$
\begin{gather*}
\max _{c_{p 1}, c_{p 2}, T_{1}} u\left(c_{p 1}\right)+\beta\left[u\left(c_{p 2}\right)+\gamma_{p} \nu_{p}\left(c_{k 2}\right)\right] \tag{1a}\\
\text { s.t. } c_{p 1}=E_{p 1}-\left(s+n T_{1}+n C \mathbf{1}\left(T_{1}>0\right)\right) \\
c_{p 2}=(1+r) s+E_{p 2}+n T_{2} \\
s \geq 0 \\
T_{1} \geq 0
\end{gather*}
$$

- The child's problem

$\max _{c_{k 2}, T_{2} \geq 0} \nu\left(c_{k 2}\right)+\gamma_{k} u_{k}\left(c_{p 2}\right)$

s.t. $c_{k 2}=E_{k 2}\left(T_{1}, \tau\right)-T_{2}$,

- After solving for Nash equilibrium, we have the optimal level of human capital investment

$$
\begin{equation*}
\frac{\partial E_{k 2}\left(T_{1}, \tau\right)}{\partial T_{1}}=\frac{1+r}{\gamma_{p} \gamma_{k}}+\frac{\mu}{\nu^{\prime}\left(c_{p 2}\right) \beta \gamma_{p} \gamma_{k}} \tag{3}
\end{equation*}
$$

- and optimal old-age transfer from children to parent under fixed costs:

$$
T_{2}=\left\{\begin{array}{c}
\frac{\gamma_{k}}{\alpha \beta+\gamma_{k}} E_{k 2}+\frac{(1+r) \alpha \beta}{\gamma_{k}+\alpha \beta}\left[T_{1}-\frac{E_{p 1} 1}{n} \frac{E_{p 2}}{1+r}\right. \tag{4}\\
\frac{\gamma_{k}}{\gamma_{k}+1} E_{k 2}-\frac{1}{\gamma_{k}+1} \frac{E_{p 2}}{n} \text { if } \mu>0(s=0)
\end{array}\right.
$$

Data

- We draw data from the China Health and Retirement Longitudinal Study (CHARLS) 2013
- T_{1} : College human capital investment by parents, and years of college schooling
- T_{2} : Net transfers from children to parents
- Liquidity index: using the Principle Component Analysis (PCA) approach to combine all six liquidity constraint indicators: (1) whether the family lived in a shack when the child was at college ages; (2) whether the income of the respondent was in the lowest 25% group of the sample when the child was at college ages; (3) whether the family had a shared toilet or a private one; (4) whether the family had a water closet or not; (5) whether the family was using clean water or not; (6) whether the family used electricity or not when children were at college ages
- $E_{k 2}$: children's current income
- $E_{p 1}+\frac{E_{p 2}}{1+r}$: Household lifetime income

Empirical Strategy

- To empirically test liquidity constraint, we predict children's marginal returns $M R_{i}$ to human cap ital investment and use the following specification

$M R_{i}=\beta_{0}+\beta_{1}$ HHInc $_{i}+\beta_{2}$ Num $_{i}+\beta_{3}$ NumSq $_{i}+\mathbf{z}_{i}^{\prime} \theta+\beta_{4} *$ Cons $_{i}+$

Cons $_{i} \times\left(\beta_{5}\right.$ HHInc $_{i}+\beta_{6}$ Num $\left._{i}+\beta_{7} N u m S q_{i}+\mathbf{z}_{i}^{\prime} \delta\right)+u_{i}$,
(5)

- To empirically test fixed costs, we directly translate model (4) into an econometric model
- The results for liquidity constraint and fixed costs can be found in Table 1 and 2 respectively

Conclusions

- We first extend the theoretical model by (Raut and Tran, 2005) and we then empirically test the model predictions using data from the 2013 China Health and Retirement Longitudinal Study (CHARLS)
- The results show some evidence that binding liquidity constraints can affect the decision of the parents to invest in their children's college education.
- The results provide support for the importance of fixed costs in human capital investment decisions.

Empirical Results

VARIABLES	(1) MR (Years of College Schooling)	(2) MR (HC Investment)
Liquidity Index	$\begin{gathered} 0.219 \\ (0.158) \end{gathered}$	$\begin{aligned} & -0.240 \\ & (3.166) \end{aligned}$
HH Income	$\begin{gathered} 0.00981 \\ (0.00637) \end{gathered}$	$\begin{aligned} & 0.175^{*} \\ & (0.102) \end{aligned}$
Years of Schooling (Parent)	$\begin{gathered} 0.00946 * * * \\ (0.00171) \end{gathered}$	$\begin{gathered} 0.0892 * * * \\ (0.0334) \end{gathered}$
Num. of Children	$\begin{gathered} -0.0573 * * * \\ (0.0119) \end{gathered}$	$\begin{gathered} -0.709 * * * \\ (0.255) \end{gathered}$
Num. Children Squared	$\begin{gathered} 0.00579 * * * \\ (0.00156) \end{gathered}$	$\begin{aligned} & 0.0808^{* *} \\ & (0.0352) \end{aligned}$
HH Income \times Liquidity Index	$\begin{aligned} & -0.00223 \\ & (0.00241) \end{aligned}$	$\begin{gathered} -0.0351 \\ (0.0407) \end{gathered}$
Years of Schooling (Parent) \times Liquidity Index	$\begin{aligned} & -0.000968 \\ & (0.00127) \end{aligned}$	$\begin{gathered} 0.0205 \\ (0.0254) \end{gathered}$
Num. Children \times Liquidity Index	$\begin{gathered} 0.00752 \\ (0.00930) \end{gathered}$	$\begin{gathered} -0.165 \\ (0.178) \\ \hline \end{gathered}$
Num. Children Squared \times Liquidity Index	$\begin{aligned} & -0.00106 \\ & (0.00131) \end{aligned}$	$\begin{aligned} & 0.00762 \\ & (0.0278) \end{aligned}$
Macroeconomic Control		
Admission Rate	0.176*** (0.0666)	$\begin{aligned} & -1.165 \\ & (1.261) \end{aligned}$
Admission Rate \times Liquidity Index	$\begin{gathered} -0.0736 \\ (0.0613) \end{gathered}$	$\begin{gathered} 1.016 \\ (1.013) \end{gathered}$
Constant	$\begin{gathered} -0.302 \\ (0.220) \end{gathered}$	$\begin{gathered} -2.809 \\ (4.369) \end{gathered}$
Other Controls	YES	YES
Other Controls * Liquidity Index	YES	YES
Observations	17,311	17,311
R-squared	0.125	0.091
Log likelihood	-14993	-66456
Chow Test (F-statistic)	2.884	3.820
P-value Chow Test	0.0000	0.0000

Table 1: Tests for Liquidity Constraint

Table 2: Tests for Fixed Costs

References

- Becker, G. S. (2009). Human capital: A theoretical and empirical analysis, with special reference to education. Uni versity of Chicago press.
- Psacharopoulos, G. (1985). Returns to education: A further international update and implications. Journal of Human resources, 583-604.
- Raut, L. K., \& Tran, L. H. (2005). Parental human capital investment and old-age transfers from children: Is it a loan contract or reciprocity for Indonesian families? Journal of Development Economics, 77(2), 389-414.
- Heckman, J. J. (2005). China's human capital investment. China Economic Review, 16(1), 50-70.
- Barham, V., Boadway, R., Marchand, M., \& Pestieau, P. (1995). Education and the poverty trap. European Economic Review, 39(7), 1257-1275.

