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Abstract

In this study, we show that principles of market justice guarantee equilibrium

existence and efficiency in a free economy. Chief among these principles is that

your pay should not depend on your name, and a more productive agent should not

earn less. We generalize our findings to economies with social justice and inclusion,

implemented in progressive taxation and redistribution, and guarantee a basic in-

come to unproductive agents. Our analysis uncovers a new class of strategic form

games by incorporating normative principles into non-cooperative game theory. Il-

lustrations include applications to exchange economies, surplus distribution in a

firm, and contagion and self-enforcing lockdown in a networked economy.
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1 Introduction

“For Aristotle, justice means giving

people what they deserve, giving each

person his or her due.”

Sandel [2010, P. 187]

It is generally acknowledged that justice is the foundation of a stable, cohesive, and

productive society. However, violations of fundamental principles that defined justice1 are

highly prevalent in real-life settings. For example, discriminations based on race, gender,

culture and several other factors have been widely documented (see, for instance, Reimers

[1983], Wright and Ermisch [1991], Sen [1992], Bertrand and Mullainathan [2004], An-

derson and Ray [2010], Pongou and Serrano [2013], Goldin et al. [2017], Bapuji et al.

[2020], Hyland et al. [2020], Card et al. [2020], Koffi and Wantchekon [Forthcoming],

and Advani et al. [Forthcoming, 2021]). These realities raise the fundamental question

of how basic principles of justice affect individual incentives, and whether such principles

can guarantee the stability and efficiency of contracts among private agents in a free and

competitive economy. That the literature has remained silent on this question is a bit

surprising, given the long tradition of ethical and normative principles in economic theory

and the relevance of these principles to the real world [Sen, 2009, Thomson, 2016]. The

main goal of this paper is to address this problem. In our treatment of this question,

we incorporate elementary principles of justice and ethics into non-cooperative game the-

ory. In doing so, we uncover a new class of strategic form games with a wide range of

applications to classical and more recent economic problems.

We precisely address the following questions:

A: How do principles of justice affect the stability of social interactions in a free econ-

omy?

B: Under which conditions do principles of justice lead to equilibrium efficiency?

To formalize these questions, we introduce a model of a free and fair economy, where

1The Merriam-Webster dictionary defines justice as “the maintenance or administration of what is

just especially by the impartial adjustment of conflicting claims or the assignment of merited rewards or

punishments.”
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agents freely (and non-cooperatively) choose their inputs, and the surplus resulting from

these input choices is shared following four elementary principles of justice, which are:

1. Anonymity: Your pay should not depend on your name.2

2. Local efficiency: No portion of the surplus generated at any profile of input choices

should be wasted.

3. Unproductivity: An unproductive agent should earn nothing.

4. Marginality: A more productive agent should not earn less.

It is generally agreed that these ideals form the core principles of market (or meritocratic)

justice, and are of long tradition in economic theory. They have inspired writers like

Rousseau [1762], Aristotle [1946], and authors like Rawls [1971], Shapley [1953], Young

[1985], Roemer [1998], De Clippel and Serrano [2008], Sen [2009], Sandel [2010], Thom-

son [2016], and Posner and Weyl [2018], among several others. However, a number of

empirical observations have suggested that the real world does not always conform to

these elementary principles of justice. For instance, studies have shown that anonymity

is violated in job hiring [Kraus et al., 2019, Bertrand and Mullainathan, 2004], in wages

[Charles and Guryan, 2008, Lang and Manove, 2011], in scholarly publishing [Laband and

Piette, 1994, Ellison, 2002, Heckman et al., 2017, Serrano, 2018, Akerlof, 2020, Card et al.,

2020], in school admission [Francis and Tannuri-Pianto, 2012, Grbic et al., 2015], in sexual

norm enforcement [Pongou and Serrano, 2013], in health care [Balsa and McGuire, 2001,

Thornicroft et al., 2007], in household resource allocations [Sen, 1992, Anderson and Ray,

2010], in scholarly citations [Card et al., 2020, Koffi, 2021], and in organizations [Small

and Pager, 2020, Koffi and Wantchekon, Forthcoming]. These studies generally show that

discrimination based on name, race, gender, culture, religion, and academic affiliation is

prevalent in these different contexts. Violations of basic principles of justice therefore raise

2Here, name designates any unproductive individual characteristic such as first and last names, skin

color, gender, religious or political affiliation, cultural background, etcetera. Anonymity means that a

person’s pay should not depend on their identity; in other words, given my input choice and that of others,

my pay should not vary depending on whether I am called “Emily/Greg” or “Lakisha/Jamal” [Bertrand

and Mullainathan, 2004], or depending on whether my skin color is black, white or green, or depending

on whether I am a man or a woman.
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the fundamental question of how these principles affect individual incentives, the stability

of social interactions, and economic efficiency.

We examine these questions through the lens of a model of a free and fair economy.

This model is a list E = (N,×j∈NXj, o, f, φ, (uj)j∈N), where N is a finite set of agents,

Xj a finite set of actions (or inputs) available to agent j, o = (oj)j∈N a reference profile

of actions, f a production (or surplus) function (also called technology) that maps each

action profile x ∈ ×j∈NXj to a measurable output f(x) ∈ R, φ an allocation scheme

that distributes any realized surplus f(x) to agents, and uj the utility function of agent

j. The reference point o can be interpreted as an unproduced endowment of goods (or

resources) that can be either consumed as such, or may be used in the production process

when production opportunities are specified. Agent j’s action set Xj can be interpreted

broadly, as we do not impose any particular structure on it other than it being finite.

It may be viewed as a capability set [Sen, 2009], or may represent the set of different

occupations (or functions) available to agent j based on agent j’s skills, or the set of

effort levels that agent j may supply in a production environment. The nature of the set

of actions can also be different for each agent. For each input profile x, the allocation

scheme φ distributes the generated surplus f(x) following the aforementioned principles

of anonymity, local efficiency, unproductivity, and marginality, and each agent j derives

utility from her payoff uj(x) = φj(f, x).3

To define an equilibrium concept that captures individuals’ incentives in a free and

fair economy, we first observe that any economy E induces a corresponding strategic form

game GE = (N,×j∈NXj, (uj)j∈N).4 Then, a profile of actions x∗ ∈ ×j∈NXj is said to

be an equilibrium in the free and fair economy E if and only if it is a pure strategy

Nash equilibrium of the game GE .

Theorem 1 shows that the four principles of market justice stated above guarantee the

3The formalization of these principles differ depending on the context. Ours is a generalization of

the classical formalization of Shapley [1953] and Young [1985] to our economic environment. Indeed, we

show that these four principles uniquely characterize a pay scheme that generalizes the classical Shapley

value (Proposition 1). This pay scheme is a multivariate function defined at each input profile x. Also,

uj(x) can be any increasing function of the payoff φj(f, x), and the functional form might be different

for each agent.
4The class of free and fair economies therefore defines a large class of games that can be characterized

as fair. Any strategic form game is either fair or unfair, and some unfair games are simply a monotonic

transformation of fair games.
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existence of an equilibrium. One implication of this finding is that fair rules guarantee the

existence of self-enforcing contracts between private agents in a free economy. Moreover,

from a purely theoretical viewpoint, the incorporation of normative principles into non-

cooperative game theory has led us to identify an interesting class of strategic form games

that always have a pure strategy Nash equilibrium in spite of the fact that each player has

a finite action set.5

Although a pure strategy equilibrium always exists in any free and fair economy, this

equilibrium may be Pareto-inefficient. We uncover a simple structural condition that

guarantees equilibrium Pareto-efficiency. More precisely, Theorem 2 shows that if the

technology is strictly monotonic, there exists a unique equilibrium, and this equilibrium is

Pareto-efficient. One direct implication of Theorem 2 is that fair rules yield production

stability and economic efficiency, given that action choices at the unique equilibrium are

pure strategies. Quite interestingly, we find that when a monotonic economy fails to

satisfy the principles of market justice, even if an equilibrium exists, it may be Pareto-

inefficient.6 A clear implication of this finding is that in the class of monotonic economies,

any allocation scheme that violates the principles of market justice is welfare-inferior to

the unique scheme that respects these principles.

Next, we extend our analysis to economies with social justice. The principles of

market justice imply that unproductive agents (for example, agents with severe disabilities)

should earn nothing. In most societies, however, social security benefits ensure that a basic

income is allocated to agents who, for certain reasons, cannot produce as much as they

would like to (see, for example, David and Duggan [2006], and Hanna and Olken [2018]).

To account for this reality, we extend our model to incorporate social justice or inclusion.

Generally, social justice includes solidarity and moral principles that individuals have equal

access to social rights and opportunities, and it requires consideration beyond talents and

skills since some agents have natural limitations, not allowing them to be productive.

5As is well known, a pure strategy Nash equilibrium does not exist in a finite strategic form game in

general [Nash, 1951]. A growing literature seeks to identify conditions under which a pure strategy Nash

equilibrium exists in a finite game (see, for example, Rosenthal [1973], Monderer and Shapley [1996],

Mallick [2011], Carmona and Podczeck [2020], and the references therein). But unlike our paper, this

literature has not approached this problem from a normative perspective. We therefore view our analysis

as a contribution.
6A clear example is the prisoner’s dilemma game. Economies that are modeled by such games are

monotonic, although their unique equilibrium is Pareto-inefficient.
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Social justice is incorporated into our model in the form of progressive taxation and

redistribution. At any production choice, a positive fraction (1−α) of output is taxed and

shared equally among all agents, and the remaining fraction (α) is allocated according

to the principles of market justice. It is direct that this allocation scheme satisfies the

principles of anonymity and local efficiency, but violates unproductivity and marginality

when α 6= 1. Income is redistributed from the high skilled and talented (or more productive

agents) to the least well-off. However, the income rank of a free and fair economy (without

social justice) is maintained, provided that the entire surplus is not taxed. We generalize

each of our results. In particular, Theorem 3 shows that a pure strategy equilibrium always

exists regardless of the tax rate. In line with Theorem 2, we also find in Corollary 1 that

if the production technology is strictly monotonic, there exists a unique equilibrium, and

this equilibrium is Pareto-efficient.7

We uncover additional results on the efficiency of economies with social justice. In

particular, Theorem 4 states that there exists a tax rate threshold above which there

exists a pure strategy Nash equilibrium that is Pareto-efficient, even if the economy is not

monotonic. Moreover, Theorem 5 shows that one can always change the reference point

of any non-monotonic free economy with social justice to guarantee the existence of an

equilibrium that is Pareto-efficient. Theorem 5 implies that if a free economy is able to

choose its reference point, then it can always do so to induce a Pareto-efficient outcome

that is self-enforcing.

We develop various applications of our model to classical and more recent economic

problems. In particular, we develop applications to exchange economies [Walras, 1954, Ar-

row and Debreu, 1954, Shapley and Shubik, 1977, Osborne and Rubinstein, 1994], surplus

distribution in a firm, and self-enforcing lockdown in a networked economy with contagion.

This variety of applications is possible because we impose no particular assumptions on

the structure of action sets, and the action set of each agent may be of a different nature.

7Following Monderer and Shapley [1996, Theorem 2.8, p. 131], we can use Lemma 1 to demonstrate

that any strategic form game derived from a free and fair economy or a free economy with social justice

admits a potential function. Therefore, the class of our strategic form games constitutes a sub-domain

of potential games. It follows that we can deduce the existence of a pure strategy Nash equilibrium

in Theorems 1 and 3 from Monderer and Shapley [1996, Corollary 2.2, p. 128] for finite potential

games. However, in our framework, we provide alternative proofs of existence, additional insights on

Pareto-efficiency, and a variety of applications.
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We start with applying our theory to a production environment where an owner of the firm

(or team leader) uses bonuses as a device to incentivize costly labor supply from rational

workers. Our analysis shows that in addition to guaranteeing equilibrium existence, the

owner can also achieve production efficiency, provided that the costs of labor supply are

not too high. Next, we provide an application to contagion in a networked economy in

which rational agents freely form and sever bilateral relationships. Rationality is captured

by the concept of pairwise-Nash equilibrium, which refines the Nash equilibrium. Using a

contagion index [Pongou and Serrano, 2013], we show how the costs of a pandemic can

induce self-enforcing lockdown. Finally, we recast the model of an exchange economy in

our framework, and show that our equilibrium is generally different from the Walrasian

equilibrium. This difference is in part explained by the fact that the Walrasian model

assumes linear pricing, whereas our model is fully non-parametric.

Contributions to the closely related literature. In this study, we propose a model

of a free and fair economy, defining a new class of non-cooperative games, and we apply

it to a variety of economic environments. We prove that four elementary principles of

distributive justice, of long tradition in economic theory, guarantee the existence of a pure

strategy Nash equilibrium in finite games. In addition, we show that when an economy

violates these principles, a pure strategy equilibrium may not exist. We extend this model

to incorporate social justice and inclusion. In this more general model, we also prove

several results on equilibrium existence and efficiency.

Our work contributes to several literatures. A closely related study to ours is the work

by Pongou and Tondji [2018]. They examine the existence of a pure strategy equilibrium in

a non-cooperative production game with Shapley payoffs, and they show that there exists

a pure strategy Nash equilibrium when the production technology f is a non-decreasing

function. Our setup is more general and it embeds the implications of social justice on

economic stability. For instance, our results on the existence of a pure strategy Nash equi-

librium in Theorems 1 and 3 require no monotonic property on the production function,

f . Our study is also related to studies of group incentives in multi-agent problems under

certainty. Holmstrom [1982] explores the effects of moral hazard in individual incentives

and efficiency in organizations with and without uncertainty. Like Holmstrom [1982], we

consider that in a free economy, any agent has the freedom to choose any action (or input)

from their set of strategies, and the combination of actions from agents generates a mea-
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surable output. However, unlike Holmstrom [1982], there is no uncertainty in the supply

of inputs, and we assume that our allocation scheme follows basic principles of justice. It

follows that our scope, analysis and applications are very different. Moreover, Holmstrom

[1982] finds an impossibility result in his setup (see, Holmstrom [1982, Theorem 1, p.

326]), but our analysis implies that this result does not extend when we consider princi-

ples of market justice in a framework with finite action sets. Moreover, Theorem 2 shows

that any free and fair economy which is strictly monotonic admits a unique equilibrium,

and this equilibrium is optimal and Pareto-efficient. Our findings therefore underscore the

role of justice in shaping individual incentives, stabilizing contracts among private agents,

and enhancing welfare.

By incorporating normative principles into non-cooperative game theory, we have in-

troduced a new class of finite strategic form games that always admit a Nash equilibrium in

pure strategies. We view our study as contributing to the small but growing literature that

seeks to uncover conditions under which a pure strategy Nash equilibrium exists in a non-

cooperative game with simultaneous moves. Nash [1951] shows a very prolific result on the

existence of equilibrium points in a finite non-cooperative games. Nash [1951] also shows

that there always exists at least one pure strategy equilibrium in finite symmetric games.

However, Nash [1951] was silent about the existence of pure strategy equilibrium in either

finite or infinite non-symmetric strategic form games. Subsequent research has searched

for sufficient and necessary conditions for the existence of pure strategy Nash equilibrium

in different structure of strategic form games. Early contributions in this respect include,

among others, Debreu [1952], Glicksberg [1952], Gale [1953], Schmeidler [1973], Mas-

Colell [1984], Khan and Sun [1995], Athey [2001] in continuous games; Rosenthal [1973]

in congestion games; Dasgupta and Maskin [1986a], Dasgupta and Maskin [1986b], Reny

[1999], Carbonell-Nicolau [2011], Reny [2016], Nessah and Tian [2016] in discontinuous

economic games; Monderer and Shapley [1996] in potential games; and Ziad [1999] in

fixed-sum games. In these studies, scholars use different concepts of continuity, convexity

and appropriate fixed point results along with some structures on utility functions to prove

the existence of a pure strategy Nash equilibrium. Other contributions that guarantee the

existence of equilibrium in pure strategies for finite games include, among others, Mallick

[2011], Carmona and Podczeck [2020], and the references listed therein. We follow a dif-

ferent approach from this literature. Unlike our study, this literature has not approached
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the issue of equilibrium existence in a non-cooperative game from a normative angle. We

also apply our theory to different economic environments, including surplus distribution in

a firm, exchange economies, and self-enforcing lockdown in networked economies facing

contagion.

Finally, in addition to the previous point, our work can also be viewed as contributing

to the Nash Program [Nash, 1953], which bridges non-cooperative and cooperative game

theory. However, we significantly depart from the main approach taken in this literature so

far. This approach has generally sought to define a non-cooperative game whose solution

coincides with the outcomes of a cooperative solution concept; see Serrano [2021] for

a recent survey on this literature. Our approach, on the contrary, follows the opposite

direction. It asks if equilibrium can be found in a strategic form game in which payoffs

obey natural axioms inspired by cooperative game theory.

The rest of this study is organized as follows. Section 2 introduces the model of a free

and fair economy. Section 3 proves the existence of a pure strategy Nash equilibrium in

a free and fair economy. Section 4 examines Pareto-efficiency in a free and fair economy.

Section 5 extends our model to incorporate social justice and inclusion, and generalizes

our results. Section 6 presents some applications of our analysis, and Section 7 concludes.

Some proofs are collected in an appendix.

2 A free and fair economy: definition, existence and

uniqueness

In this section, we introduce preliminary definitions and the key concepts of the study.

We then show that there exists a unique economy that is free and fair.

2.1 A free economy

A free economy is an economy where agents freely choose their actions and derive

utility from their pay. It is modeled as a list E = (N,×j∈NXj, (oj)j∈N , f, φ, (uj)j∈N).

N = {1, 2, ..., n} is a finite set of agents. Each agent j has a finite set of feasible actions

Xj. We refer to an action profile x = (xj)j∈N as an outcome, and denote the set ×j∈NXj

of outcomes by X. The reference outcome (also called reference point) is o = (oj)j∈N ;
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it can be interpreted as the inaction point, where agents do nothing or do not engage in

any sort of transactions with other agents. A production (or surplus) function (also called

technology) f transforms any choice x to a real number f(x) ∈ R, with f(o) = 0.8 We

denote by P (X) = {g : X → R, with g(o) = 0} the set of production functions on X.

φ : P (X) × X → Rn is a distribution scheme that assigns to each pair (f, x) a payoff

vector φ(f, x). At each input profile x, each agent j derives utility uj(x) = φj(f, x).9

2.2 A free and fair economy

A free and fair economy is a free economy E = (N,×j∈NXj, (oj)j∈N , f, φ, (uj)j∈N)

in which the surplus distribution scheme φ satisfies elementary principles of market jus-

tice. These principles, of long tradition in economic theory, are those of anonymity, local

efficiency, unproductivity, and marginality stated in the Introduction. These principles

are naturally interpreted, but their formalization varies depending on the context. A few

preliminary definitions and notations will be needed for their formalization in our setting.

Definition 1. Let x ∈ X a profile of actions. An outcome x′ ∈ X is a sub-profile of x if

either x′ = x or [x′i 6= xi =⇒ x′i = oi], for i ∈ N .

For each x ∈ X, we denote by ∆(x) the set of sub-profiles of x. Given a production

function f ∈ P (X), and an outcome x ∈ X, we define the function fx as the restriction

of f to ∆(x):

fx : ∆(x)→ R, such that fx(y) = f(y), for each y ∈ ∆(x).

Definition 2. Let i ∈ N . We define the relation ∆i
o on X by:

[x′ ∆i
o x] if and only if [x′ ∈ ∆(x) and x′i = oi].

Let x ∈ X be an outcome. We denote ∆i
o(x) = {x′ ∈ X : x′ ∆i

o x}, and by

Nx = {i ∈ N : xi 6= oi} the set of agents whose actions in x are different from their

reference points. We also denote |x| = |Nx| the cardinality of Nx.

8We normalize the surplus at the reference point to 0 for expositional purposes. It is possible that the

surplus realized at o is not zero, and in this case, f(x) should be interpreted as net surplus at x, that is,

the realized surplus at x minus the realized surplus at o. We assume the reference o to be exogenously

determined.
9As noted in the Introduction, uj(x) can be any increasing function of φj(f, x), where the functional

form may be different for each agent.
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Definition 3. Let f ∈ P (X), x ∈ X, and x′ ∈ ∆i
o(x). The marginal contribution of

agent i at a pair (x′, x) is:

mci(f, x
′, x) = f(x′−i, xi)− f(x′),

where (x′−i, xi) ∈ X is the outcome in which agent i chooses xi, and every other agent

j chooses x′j.

Definition 4. Let f ∈ P (X). Agent i is said to be unproductive if for each x ∈ X and

all x′ ∈ ∆i
0(x), mci(f, x

′, x) = 0.

A permutation π of N is a bijection of N into itself. We denote by Sn the set of

permutations of N . Let x ∈ X be a profile of inputs, and let πx ∈ Sn be a permutation

of N whose restriction to N\Nx is the identity function, that is πx(i) = i for each

i ∈ N\Nx. Remark that πx permutes only agents that are active in the profile x, and

is therefore equivalent to a permutation πx : Nx → Nx over Nx; we denote by Sxn the

set of such permutations. Let x ∈ X, πx ∈ Sxn , and y ∈ ∆(x). We define the profile

πx(y) = (πxj (y))j∈N , where

πxj (y) =

{
xj if yk 6= ok, j = πx(k)

oj if yk = ok, j = πx(k).

We now formalize the principles of market justice below.

Anonymity. An allocation φ satisfies x−Anonymity if for each i ∈ N and πx ∈ Sxn ,

φi(π
xfx, x) = φπx(i)(f

x, x), where πxfx(y) = fx(πx(y)), for y ∈ ∆(x).

The value φ satisfies Anonymity if φ satisfies x−Anonymity for all x ∈ X.

Local Efficiency.
∑
j∈N

φj(f, x) = f(x) for any f ∈ P (X) and x ∈ X.

Unproductivity. If agent i is unproductive, then φi(f, x) = 0 for each f ∈ P (X) and

x ∈ X.

Marginality. Let f, g ∈ P (X), and x an outcome. If

mci(f, x
′, x) ≥ mci(g, x

′, x) for each x′ ∈ ∆i
o(x)

for an agent i, then φi(f, x) ≥ φi(g, x).
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These axioms are interpreted naturally. Anonymity means that an agent’s pay does not

depend on their name. It states that every agent is treated the same way by the allocation

rule: if two agents exchange their identities, their payoffs will remain unchanged. An

important property that is implied by anonymity is symmetry (or non-favoritism), which

means that equally productive agents should receive the same pay. Local efficiency simply

requires that the surplus resulting from any input choice be fully shared among productive

agents participating in the economy. Unproductivity means that an agent whose marginal

contribution is zero at an input profile should get nothing at that profile. Marginality

means that, if the adoption of a new technology increases the marginal contribution of an

agent, that agent’s pay should not be lower under this new technology relative to the old

technology. In other words, more productive agents should not earn less compared to less

productive agents. Throughout the paper, we abbreviate the four principles as ALUM.

Definition 5. A free and fair economy is a free economy (N,X, o, f, φ, u) such that

the distribution scheme φ satisfies ALUM.

We have the following result.

Proposition 1. There exists a unique distribution scheme, denoted Sh, that satisfies

ALUM. For any production function f ∈ P (X), and any given outcome x ∈ X and

agent i ∈ N :

Shi(f, x) =
∑

x′∈∆i
o(x)

(|x′|)!(|x| − |x′| − 1)!

(|x|)!
mci(f, x

′, x). (1)

Proof of Proposition 1. See Appendix.

Remark that for each agent i, the value Shi(f, x) is interpreted as agent i’s average

contribution to output f(x). It can be easily shown that the allocation rule Sh generalizes

the classical Shapley value [Shapley, 1953]. In fact, to obtain the classical Shapley value,

one only has to assume that each agent’s action set is the pair {0, 1}; the classical

Shapley value is simply Shi(f, x) where x = (1, 1, ..., 1), which effectively corresponds to

the assumption that the grand coalition is formed. Our setting generalizes the classical

environment in three ways. First, it is not necessary to assume that all players have the

same action set. Second, the action set of a player may have more than two elements.

Third, the value can be computed for any input profile x, which effectively means that
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Shi(f, x) as a multivariate function of x. Our model also generalizes that in Pongou and

Tondji [2018] (when the environment is certain), Aguiar et al. [2018], and Aguiar et al.

[2020]. Following these latter studies, we will call Sh the Shapley pay scheme.

Below, we illustrate the notion of a free and fair economy, and provide an example of

a free economy that is unfair.

Example 1. Consider a small economy E = (N,X, o, f, φ, u), where N = {1, 2}, X1 =

{a1, a2}, X2 = {b1, b2, b3}, o = (a1, b1), X = X1 × X2, f is given by f(a1, b1) =

0, f(a1, b2) = 5 = f(a1, b3), f(a2, b1) = 2, and f(a2, b2) = 4 = f(a2, b3), and for each

x ∈ X, φ(f, x) = u(f, x) is given in Table 1 below:

Agent 1

Agent 2

b1 b2 b3

a1 (0, 0) (0, 5) (0, 5)

a2 (2, 0) (0.5, 3.5) (0.5, 3.5)

Table 1: A 2-agent free and fair economy

For each of the six payoff vectors presented in Table 1, the first component represents

agent 1’s payoff (for example, u1(f, (a2, b1)) = 2) and the second component represents

agent 2’s payoff (for instance, u2(f, (a2, b1)) = 0). We can check that for each x ∈ X,

u(f, x) = φ(f, x) = Sh(f, x). Therefore, E is a free and fair economy.

Agent 1

Agent 2

b1 b2 b3

a1 (0, 0) (2, 3) (3, 2)

a2 (1, 1) (3, 1) (2, 2)

Table 2: A 2-agent free and unfair economy

Now, we consider another economy E ′ with the same characteristics as in E except

for the distribution scheme φ that is replaced by a new scheme ψ described in Table 2.

In addition to the fact that ψ 6= Sh, it is straightforward to show that the distribution ψ

violates the marginality axiom. Therefore, E ′ is not a free and fair economy.

One of our goals in this study is to answer the question of whether principles of

justice (or fair principles) guarantee the existence of a pure strategy Nash equilibrium.
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We can observe that in the free and fair economy described by Table 1, there are two pure

strategy Nash equilibria, which are (a2, b2) and (a2, b3). However, the modified economy

E ′ represented by Table 2 admits no equilibrium in pure strategies. In the next section,

we will show that ALUM guarantee the existence of a pure strategy Nash equilibrium

in a free economy, and when an economy violates these principles, a pure strategy Nash

equilibrium may not exist.

3 Equilibrium existence in a free and fair economy

In a free and fair economy, agents make decisions that affect their payoff and the payoffs

of other agents. One natural question that therefore arises is whether an equilibrium exists.

In this section, we first show that a free economy can be modeled as a strategic form game

and use the notion of pure strategy Nash equilibrium [Nash, 1951] to capture incentives

and rationality. Our main result is that a strategic game derived from a free and fair

economy always admits a pure strategy Nash equilibrium.

3.1 A free and fair economy as a strategic form game

A strategic form game is a 3-tuple (N,X, v), where N is the set of players, X = ×j∈NXj

is the strategy space, and v : X → Rn is the payoff function. For each x ∈ X, vi(x) is

agent i’s payoff at strategy profile x, for each i ∈ N . A strategic form game is said to be

finite if the set of agents N is finite, and for each agent i, the set Xi of actions is also

finite.

A strategy profile x∗ ∈ X is a pure strategy Nash equilibrium in the game (N,X, v)

if and only if for all i ∈ N , vi(x
∗) ≥ vi(x

∗
−i, yi), for all yi ∈ Xi, where (x∗−i, yi) is the

strategy profile in which agent i chooses yi and every other agent j chooses x∗j .

A free economy E = (N,X, o, f, φ, u) generates a strategic form game GE = (N,X, uE),

where for each x ∈ X and each i ∈ N , uEi (x) = ui(f, x) = φi(f, x). In the case E is a

free and fair economy, then for each outcome x,
∑
j∈N

uEj (x) = f(x) since the distribution

scheme φ satisfies local efficiency. For this reason, when E is a free and fair economy, we

may refer to the production function f as the total utility function of the strategic form

game GE .

13



Definition 6. Let E = (N,X, o, f, φ, u) be a free economy. A profile x∗ ∈ X is an

equilibrium if and only if x∗ is a pure strategy Nash equilibrium in the strategic form game

GE .

3.2 Existence of an equilibrium

In this section, we state and prove the main result of this section.

Theorem 1. Any free and fair economy E = (N,X, o, f, φ, u) admits an equilibrium.

The proof of Theorem 1 uses the concept of a cycle of deviations that we introduce

below.

Definition 7. Let G = (N,X, v) be a strategic form game and Lk = (x1, x2, ..., xk) be

a list of outcomes, where each xl ∈ X (l = 1, ..., k) is a pure strategy. The k-tuple Lk is

a cycle of deviations if there exist agents j1, ..., jk ∈ N such that

xl+1 = (xl−jl , x
l+1
jl

) and vjl(x
l+1) > vjl(x

l)

for each l = 1, ..., k, and xk+1 = x1.

Example 2. In the strategic form game represented in Table 3, consider the list L4 =

(x1, x2, x3, x4), where x1 = (c, a), x2 = (d, a), x3 = (d, b), and x4 = (c, b).

Agent 1

Agent 2

a b

c (0, 4) (3, 0)

d (1, 0) (0, 2)

Table 3: A 2-agent game that admits a cycle of deviations

L4 forms a cycle of deviations. Indeed, agent 1 has an incentive to deviate from x1

to x2. By doing so, agent 1 receives an excess payoff of 1. Similarly, agent 2 receives an

excess payoff of 2 by deviating from x2 to x3. Agent 1 receives an excess payoff of 3 by

deviating from x3 to x4; and agent 2 receives an excess payoff of 4 by deviating from x4

to x1. The sum of excess payoffs in the cycle L4 is therefore equal to 10.

In the strategic form game in Table 4, the sum of excess payoffs in any cycle of

outcomes equals 0. Therefore, the game does not admit a cycle of deviations. The profile

x∗ = (a2, b3) is the only pure strategy Nash equilibrium of the game.

14



Agent 1

Agent 2

b1 b2 b3 b4

a1 (0, 0) (0, 0) (0, 12) (0, 6)

a2 (13, 0) (13
2
,−13

2
) (3

2
, 1

2
) (4,−3)

a3 (3, 0) (8, 5) (−1, 8) (−1, 2)

Table 4: A 2-agent game with Shapley payoffs

Note that the game in Table 4 is generated from a free and fair economy. From

Definition 7, a sufficient condition for a finite strategic form game to admit a pure strategy

Nash equilibrium is the absence of a cycle of deviations. The sum of excess payoffs in

any cycle of deviations has to be strictly positive, as illustrated in Table 3 in Example

2. Such an example of a cycle of deviations can not be constructed in a strategic form

game generated from a free and fair economy (see Table 4 in Example 2). We have the

following result.

Lemma 1. Let E = (N,X, o, f, φ, u) be a free and fair economy, and GE = (N,X, uE)

the strategic form game generated by E . Then, the sum of excess payoffs in any cycle of

deviations in GE equals 0.

Lemma 1 states that in the strategic form game GE generated by a free and fair

economy, the sum of excess payoffs in any cycle of deviations equals 0. In the proof of

Lemma 1, we show that the sum of excess payoffs in any cycle of the game GE is zero,

which is equivalent to the game having a potential function; see Monderer and Shapley

[1996, Theorem 2.8, p. 131].

Proof of Lemma 1. In this proof, we simply denote the payoff function uE by u. Let

Lk = (x1, x2, ..., xk) be a cycle of deviations in the game GE , and let agents j1, ..., jk ∈ N
be the associated sequences of defeaters. We denote by S(Lk, u) the sum of excess payoffs

in the cycle Lk:

S(Lk, u) = ujk(x1)− ujk(xk) +
k−1∑
l=1

[ujl(x
l+1)− ujl(xl)].

We show that in the game GE

S(Lk, u) = 0.
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For each agent i ∈ N , let Ri be a total order on the set Xi such that oiRixi for all

xi ∈ Xi. For each outcome x ∈ X, define

fx(T, y) =

{
|Nx| if Nx ⊆ T and xiRiyi for all i ∈ Nx

0 otherwise

for all T ⊆ N and y ∈ X.

We also define the following production function:

fx(z) = fx(N
z, z) for all z ∈ X.

Note that the family {fx, x ∈ X\{o}} forms a basis of the set of production functions

on the the same set of players N , same set of outcomes X, and same reference outcome

o. Therefore, there exists (αx)x∈X\{o} such that

f(z) =
∑
x∈X

αxfx(z) for all z ∈ X. (2)

Furthermore, each fx, x ∈ X, is the total utility function of a strategic form game

with Shapley utilities Gx = (N,X, vx), where for each i ∈ N , vxi is given by

vxi (z) =

{
1 if i ∈ Nx, Nx ⊆ N z, xjRjzj for all j ∈ Nx

0 otherwise.
for all z ∈ X.

Step 1. We show that the sum of excess payoffs of the cycle Lk equals 0 in each

strategic form game Gx. First observe that vxi ≡ 0 for all i /∈ Nx, and vxi ≡ vxj for all

i, j ∈ Nx. This means that the sum of excess payoffs in any cycle of the game Gx, and

in particular in the cycle Lk, equals the sum of excess payoffs of any i ∈ Nx, which is

obviously 0.

Step 2. We show that S(Lk, u) = 0.

Using equation (2), f =
∑
x∈X

αxfx, we have that u =
∑
x∈X

αxv
x. Given that S(Lk, vx) =

0 for each outcome x, we can deduce that S(Lk, u) = 0.

Now, we derive the proof of Theorem 1.

Proof of Theorem 1. From Lemma 1, the game GE admits no cycle of deviations. As GE

is finite, we conclude that GE admits a pure strategy Nash equilibrium.

The principles of market justice that define a free and fair economy are only sufficient

conditions for the existence of a pure strategy Nash equilibrium. However, an economy

that violates ALUM may not have a pure strategy Nash equilibrium.
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4 Equilibrium efficiency in a free and fair economy

In Section 3.2, Theorem 1 proves the existence of a pure strategy equilibrium in a free

and fair economy. However, there is no guarantee that each equilibrium is Pareto-efficient.

For instance, consider the strategic form game described in Table 4 in Example 2. The

game admits a unique pure strategy Nash equilibrium x∗ = (a2, b3) with Sh(f, x∗) =

(3
2
, 1

2
). However, the equilibrium x∗ is Pareto-dominated by the strategy x = (a3, b2) with

Sh(f, x) = (8, 5). Below, we provide two conditions on the production function that

address this issue. The first condition—weak monotonicity—guarantees the existence of

a Pareto-efficient equilibrium in a free and fair economy, and the second condition—strict

monotonicity—guarantees that there is a unique equilibrium and that this equilibrium

is Pareto-efficient. Importantly, we also find that in a free economy that is not fair,

these monotonicity conditions do not guarantee the existence of an equilibrium that is

Pareto-efficient. Before presenting these results, we need some definitions.

Let E = (N,X, o, f, φ, u) be a free economy, and for i ∈ N , we denote X−i =
n∏

j=1, j 6=i
Xj.

Definition 8. An order R defined on X is semi-complete if for all i ∈ N and x−i ∈ X−i,
the restriction of R to Ai is complete, where Ai = {x−i} ×Xi.

Definition 9. f ∈ P (X) is:

1. weakly monotonic if there exists a semi-complete order R on X such that for any

x, y ∈ X, if x R y, then f(x) ≤ f(y).

2. strictly monotonic if there exists a semi-complete order R on X such that for any

x, y ∈ X, [x R y and x 6= y] implies f(x) < f(y).

Definition 10. A free and fair economy E = (N,X, o, f, φ, u) is weakly (resp. strictly)

monotonic if f is weakly (resp. strictly) monotonic.

We have the following result.

Theorem 2. A weakly monotonic free and fair economy E = (N,X, o, f, φ, u) admits

an equilibrium that is Pareto-efficient. If E is strictly monotonic, then, the equilibrium is

unique and Pareto-efficient.
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Proof of Theorem 2. The result in Theorem 2 follows from the fact that each agent i’s

payoff Shi(f, x) at x depends only on the marginal contributions {f(y−i, xi)−f(y), y ∈
∆i
o(x)} of that agent at x. Since f is weakly monotonic, the underlying semi-complete

relation, say R, satisfies the following condition: there exists x ∈ X such that f reaches

its maximum at x, and for all i ∈ N and x−i ∈ X−i, we have x R (x−i, xi). Therefore,

each marginal contribution of agent i at a given outcome x is less than or equal to his or

her corresponding marginal contribution at the outcome (x−i, xi). Given that the Shapley

distribution scheme, Sh(f, .), is increasing in marginal contributions, agent i’s choice xi is

a weakly dominant strategy of agent i in the game GE . Therefore, x is a Nash equilibrium.

The profile x is also Pareto-efficient as it maximizes f . If f is strictly monotonic, then

each xi is strictly dominant and x is the unique Nash equilibrium of the game GE .

Theorem 2 ensures the uniqueness and Pareto-efficiency of the equilibrium in a strictly

monotonic free and fair economy. The strategic form game described in Table 4 admits

the profile x∗ = (a2, b3) as the only pure strategy Nash equilibrium. However, x∗ is

Pareto-dominated by the profile x = (a3, b2), which is not an equilibrium. Such a result

can not arise in a strictly monotonic free and fair economy. In addition to providing a

condition that guarantees the existence of a Pareto-efficient equilibrium, Theorem 2 also

provides a condition that rules out multiplicity of equilibria in the domain of free and fair

economies.

In Theorem 2, we show that each weakly monotonic free and fair economy admits an

equilibrium that is Pareto-efficient. Consider the strategic form game described in Table

5 below. The latter is derived from a free and fair economy with the profile o = (c, a)

as the reference point. The economy admits two equilibria, namely, outcomes (c, a) and

(d, b). The profile (d, b) is Pareto-efficient and it dominates the outcome (c, a).

Agent 1

Agent 2

a b

c (0, 0) (0, 0)

d (0, 0) (1, 1)

Table 5: A 2-agent free and fair economy with a Pareto-dominated equilibrium

We relate the existence of an equilibrium that is Pareto-dominated in the free and

fair economy described in Table 5 to the fact that the production function is weakly
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Agent 1

Agent 2

b1 b2

a1 (0, 0) (2,−1)

a2 (2, 0) (1, 2)

Table 6: A 2-agent strictly monotonic free and unfair economy

monotonic. However, it is essential to emphasize that the existence of an equilibrium

is due to the fact that the economy is fair and not to the monotonicity property of

the technology. For instance, consider a free economy Ef , where agents 1 and 2 have

strategies, X1 = {a1, a2}, and X2 = {b1, b2}, and the production function f is given

by: f(a1, b1) = 0, f(a1, b2) = 1, f(a2, b1) = 2, and f(a2, b2) = 3. Agents’ payoffs are

described in Table 6. The environment Ef describes a strictly monotonic economy, but it

is unfair. Similarly, by replacing the production function f by another function g defined

by: g(a1, b1) = 0, g(a1, b2) = g(a2, b1) = 1, and g(a2, b2) = 3, we obtain a weakly free

monotonic and unfair economy Eg with agents’ payoffs described in Table 7.

Agent 1

Agent 2

b1 b2

a1 (0, 0) (2,−1)

a2 (2,−1) (1, 2)

Table 7: A 2-agent weakly monotonic free and unfair economy

Agent 1

Agent 2

Cooperate Defect

Cooperate (0, 0) (−2, 1)

Defect (1,−2) (−1,−1)

Table 8: A prisoner’s dilemma game

Note also that neither strategic form game GE
f

described in Table 6, nor GE
g

described

in Table 7 admit a pure strategy Nash equilibrium. This shows that the monotonicity

conditions do not guarantee the existence of a pure strategy Nash in a free economy that
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is unfair; and even when an equilibrium exists in such an economy, it may be Pareto-

inefficient. This latter situation occurs, for example, in the prisoner’s dilemma game. An

economy that is represented by a prisoner’s dilemma game is monotonic, but its unique

equilibrium is Pareto-inefficient (see, for instance, the game described in Table 8; the

unique pure strategy Nash equilibrium (Defect, Defect) is Pareto-inefficient).

5 A free economy with social justice and inclusion

Our conception of a free economy with social justice embodies both the ideals of

market justice and social inclusion. Members of a society do not generally have the same

abilities. Consequently, distribution schemes that are based on market justice alone will

penalize individuals with less opportunities or those who are unable to develop a positive

productivity to the economy.

One of the goals of social justice is to remedy this social disadvantage that results

mainly from arbitrary factors in the sense of moral thought. Social justice requires caring

for the least well-off and those who have natural limitations not allowing them to achieve

as much as they would like to. This requirement goes beyond the considerations of a free

and fair economy in which agents have equal access to civic rights, wealth, opportunities,

and privileges. The ideal of social justice could be implemented in a fair society through

specific redistribution rules, and that is the main message that we intend to provide in

this section.

Market justice as defined in the previous sections requires that the collective outcome

must be distributed based on individual marginal contributions. Thus, a citizen who is

not able to contribute a positive value to the economy shouldn’t receive a positive payoff.

Social justice differs to market justice in the sense that everyone should receive a basic

worth for living. This principle is consistent with the results found by De Clippel and Rozen

[2013] in a recent experimental study in which neutral agents (called “Decision Makers”)

are called upon to distribute collective rewards among other agents (called “Recipients”).

They show that even if collective rewards depend on complementarity and substitutability

between recipients, some decision markers still allocate positive rewards to those who

bring nothing to the economy. Moreover, a linear convex combination of the Shapley value

[Shapley, 1953] and the equal split scheme arises as a one-parameter allocation estimate of
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data. This convex allocation is also known as an egalitarian Shapley value [Joosten, 1996].

Intuitively, this pay scheme can be viewed as implementing a progressive redistribution

policy where a positive amount of the total surplus in an economy is taxed and redistributed

equally among all the agents. We use this distribution scheme to showcase our purpose.

We will see that some properties of an economy that embeds the idea of social justice

depends on the tax rate. Below, we define the equal-split and an egalitarian Shapley value

schemes.

Definition 11. Let E = (N,X, o, f, φ, u) be a free economy.

1. φ is the equal split distribution scheme, if

φi(f, x) =
f(x)

n
, for all f ∈ P (X), x ∈ X, and i ∈ N.

2. φ is an egalitarian Shapley value if there exists α ∈ [0, 1] such that for all f ∈ P (X),

and i ∈ N ,

φi(f, x) = α · Shi(f, x) + (1− α) · f(x)

n
, for all x ∈ X.

We denote by ESα the egalitarian Shapley value associated to a given α ∈ [0, 1].

Consider a simple case in which N = {1, 2}, X1 = X2 = {0, 1}, and two production

functions f and g defined as follows: f(0, 0) = g(0, 0) = 0, f(1, 0) = g(1, 0), f(0, 1) 6=
g(0, 1), f(1, 1) 6= g(1, 1), and f(1, 1) − f(0, 1) = g(1, 1) − g(0, 1). We can show that

mc1(f, x′, x) = mc1(g, x′, x) for any x′ ∈ ∆i
o(x). However, for any α ∈ [0, 1), it holds

that ESα
1 (f, (0, 1)) 6= ESα

1 (g, (0, 1)) and ESα
1 (f, (1, 1)) 6= ESα

1 (g, (1, 1)). The latter

shows that in addition of violating unproductivity, the mixing equal split and Shapley value

also violates marginality. It is direct that ESα satisfies the principles of anonymity and

local efficiency.10 The allocation scheme ESα has a very natural interpretation. The

parameter α makes the reconciliation between marginalism and egalitarianism. Given

an outcome x, the technology f produces the output f(x). A share (α) of the latter

is shared among agents according to their marginal contributions, while the remaining

(1 − α) is shared equally among the entire population; the fraction 1 − α is the tax

10Several axiomatizations of the Shapley value, the equal division scheme, and the α-egalitarian Shapley

value appear in the literature. For a brief survey on these studies, we refer to the recent work of Choudhury

et al. [2021] and the references therein.
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rate. Immediately, those who are more talented will still receive more under a given

egalitarian Shapley value scheme. Indeed, consider a production function f ∈ P (X), and

two agents i and j such that Shi(f, x) ≥ Shj(f, x) for x ∈ X. It is direct that for any

α ∈ [0, 1], ESα
i (f, x) ≥ ESα

j (f, x), since α ≥ 0. Additionally, those who do not have

the opportunity to contribute to their optimum scale will still be rewarded. We have the

following definition.

Definition 12. E = (N,X, o, f, φ, u) is a free economy with social justice if there exists

α ∈ [0, 1[ such that φ = ESα. We call Eα = (N,X, o, f,ESα, u) an α-free economy

with social justice.

In Section 5.1, we analyze equilibrium existence and Pareto-efficiency in free economies

with social justice. Our methodology is similar to the one followed in Sections 3 and 4.

In Section 5.2, we prove that an economy can always choose its reference point to induce

equilibrium efficiency, even when the economy is not monotonic.

5.1 Equilibrium existence and efficiency in a free economy with

social justice

In what follows, we study the existence of equilibrium in an α-free economy with social

justice. As defined in Section 3.1, a free economy with social justice admits an equilibrium

if the strategic form game derived from that economy possesses a pure strategy Nash

equilibrium. A meritocratic planner will choose a higher α when allocating resources since

talents and merits have more value in such a society. An egalitarian planner will put

a higher weight on equal distribution. It follows that a choice of α reveals a trade-off

between market justice (or marginalism) and egalitarianism. The good news is that there

exists a self-enforcing social contract irrespective of the size of α. We have the result

hereunder.

Theorem 3. Any α-free economy with social justice Eα = (N,X, o, f,ESα, u) admits

an equilibrium.

Proof of Theorem 3. Consider α ∈ [0, 1] such that φ = ESα. In the proof of Theorem 1,

we show that the sum of excess payoffs in any cycle of deviations from any strategic form

game derived from a fair economy equals 0. The same result holds for any strategic form
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game derived from an α-free economy with social justice, since an egalitarian Shapley

value is a linear combination of the Shapley value and equal division. Thus, we conclude

the proof.11

We also provide a condition under which a free economy with social justice has an

equilibrium which is Pareto-efficient. The following result is deduced from Theorem 2.

Corollary 1. A weakly monotonic α-free economy with social justice Eα admits an equi-

librium that is Pareto-efficient. If f is strictly monotonic, then, the equilibrium is unique

and Pareto-efficient.

The proof of Corollary 1 is similar to that of Theorem 2. Next, we provide an additional

result about Pareto-efficiency of equilibria in a free economy with social justice. Before

stating Theorem 4, we introduce the following definition.

Definition 13. Let Eα = (N,X, o, f,ESα, u) be an α-free economy with social justice.

An optimal outcome is any outcome x ∈ arg max
y∈X

f(y) at which f is maximized.

Theorem 4. There exists α0 ∈ (0, 1) such that for all α ∈ [0, α0], the α-free economy

with social justice Eα = (N,X, o, f,ESα, u) admits an equilibrium that is Pareto-efficient.

Proof of Theorem 4. Assume that α is sufficiently small. If f admits a unique optimal

outcome x, then x is a pure strategy Nash equilibrium of the game generated by any α-free

economy with social justice Eα. In the case f admits two or more optimal outcomes, then,

for strictly positive but sufficiently small α, no agent has any incentive to deviate from

an optimal outcome to a non-optimal outcome. As games generated by α-free economies

with social justice do not admit cycles of deviations, it is not possible to construct any

cycle of deviations within the set of optimal outcomes. It follows that at least one optimal

outcome is a pure strategy Nash equilibrium. The latter profile is also Pareto-efficient as

it maximizes the sum of agents’ payoffs.

Example 3 (Taxation and Social Justice). Consider a small economy involving three

agents, N = {1, 2, 3}, who live in three different states or regions in a given country.

One can assume that each agent is the“typical”representative of each state. Agents face

11Alternatively, one can think of the strategic form game generated by an α−free economy as a convex

sum of two potential games: the game GE , and the game generated by the equal division.
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different occupational choices. Agent 1 can decide to stay unemployed (strategy “a”),

work in a middle class job (strategy “b”) that provides an annual salary of $188,000, or

accumulate experience to land a higher skilled job (strategy“c”) that pays an annual salary

of $200,000. Agent 2 can only choose between strategies “a” and “b”. For many reasons

including health concerns, natural disasters such as hurricane, pandemics or wildfire, or

civil war violence, agent 3 does not have the opportunities available to other agents; he

or she can not work, and is therefore considered as unemployed. The government uses

marginal tax rates to determine the amount of income tax that each agent must pay

to the tax collector. The aggregate annual fiscal revenue function f for the economy

depends on agents’ strategies and it is described as follows: f(a, a, a) = 0, f(a, b, a) =

$41, 175.5, f(b, a, a) = $41, 175.5, f(b, b, a) = $82, 351, f(c, a, a) = $45, 015.5, and

f(c, b, a) = $86, 191. Numerous countries over the world use marginal tax brackets to

collect income taxes (see, for example, a report by Bunn et al. [2019] for the Organisation

for Economic Co-operation and the Development (OECD) and European Union (EU)

countries). The function f is a simplified version of such fiscal revenue rules. With the

tax revenue collected, the government provides public goods. However, the type of public

investment received by an agent’s state depends on the agent’s marginal contribution to

the aggregate annual fiscal revenue. Using the Shapley scheme φ = Sh in the distribution

of public investments yields the outcome x∗ = (c, b, a) as the unique pure strategy Nash

equilibrium in this free and fair economy. At this equilibrium, the state of agent 1 receives

a public good that is worth $45,015.5, agent 2’s state receives a public investment of

$41.175.5, and agent 3’s state receives nothing. However, if the egalitarian Shapley

scheme φ = ES4/5 is used instead to redistribute the fiscal revenue, then x∗ = (c, b, a) is

still the unique pure strategy Nash equilibrium in the free economy with social justice. In

that case, the outcome x∗ is still Pareto-efficient and the ranking of the size of investment

across states does not change. Agent 3’s state receives a public investment of $5,746,

agent 2’s state receives $38,686.5, and agent 1’s state receives $41,758.5. Although

the allocation ES4/5(f, x∗) = ($41, 758.5, $38, 686.5, $5, 746) might not be the “best”

decision for some people living in that society, it is a significant improvement (at least for

agent 3’s state) from the market allocation Sh(f, x∗) = ($45, 015.5, $41, 175.5, 0).

Using Theorem 4, we deduce the following corollary.

Corollary 2. Let Eα = (N,X, o, f,ESα, u) be an α-free economy with social justice.
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Assume that f only takes non-negative values. Then, each agent receives a non-negative

payoff at any equilibrium.

The intuition behind Corollary 2 is straightforward. Assuming that at a given outcome

x ∈ X, f(x) is non-negative, then for all i ∈ N , agent i’s payoff is non-negative if instead

of choosing xi, the agent chooses the reference point oi.

5.2 Choosing a reference point to achieve equilibrium efficiency

So far, we have assumed that the reference point o is exogenously determined and that in

a free economy, the surplus function f is such that f(o1, o2, ..., on) = 0. As noted earlier,

this latter point is just a simplifying normalization. We have also shown that in a free

and fair economy, all the equilibria may be Pareto-inefficient, especially in the absence of

monotonicity. Similarly, in a free economy with social justice, if the tax rate (1 − α) is

too small, a Pareto-efficient equilibrium may not exist either. This section shows that we

can achieve equilibrium efficiency simply by changing the reference point of any free and

fair economy or any free economy with social justice.

Without loss of generality, we assume that f(o) is strictly positive and modify the

Shapley distribution scheme such that for i ∈ N , and x ∈ X, agent i’s payoff at (f, x),

denoted Sh(f, x), is given by Sh(f, x) = Shi(f−f(o), x)+ f(o)
n

. Let us denote P (X) =

{g : X → R, with g(o) > 0}. Our next result says that any optimal outcome can be

achieved via an equilibrium profile in any α-free economy with social justice endowed with

the distribution scheme ES
α

, where ES
α
(f, x) = α·Shi(f, x)+(1−α)· f(x)

n
, for all x ∈

X and f ∈ P (X).

Theorem 5. For all free economy Eα(o) = (N,X, o, f,ES
α
, u), there exists another

reference outcome o′ such that the α-free economy Eα(o′) = (N,X, o′, f,ES
α
, u) admits

an optimal equilibrium x∗.

Proof of Theorem 5. Assume α = 1. Let o′ be a profile of inputs such that f(o′) =

max
x∈X

f(x). No agent has any strict incentive to deviate from o′. Indeed if agent i deviates

and chooses xi, then agent i is the only active agent at the new outcome (o′−i, xi). As each

inactive agent receives f(o′)
n

at (o′−i, xi), and f(o′) maximizes the production, it follows

from the local efficiency axiom of the Shapley distribution scheme that the deviation xi is

not strictly profitable. A similar argument holds for any other α ∈ [0, 1). Indeed, at the
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profile (o′−i, xi), agent i receives α
(
f(o′−i, xi)− f(o′) + f(o′)

n

)
+ (1 − α)

f(o′−i,xi)

n
, which

is less than f(o′)
n

.

Remark that this result holds for any value of α, including for α = 1, which corresponds

to a situation where the tax rate is zero. In that case, the entire surplus of the economy

is distributed following the Shapley pay scheme. The analysis implies that if an economy

can choose its reference point, it can always do so to lead to equilibrium efficiency.

6 Some applications

There a wide variety of applications of our theory. In this section, we provide applications

to the distribution of surplus in a firm, exchange economies, and self-enforcing lockdown

in a networked economy facing a pandemic.

6.1 Teamwork: surplus distribution in a firm

In this first application, we use our theory to show how bonuses can be distributed

among workers in a way that incentivizes them to work efficiently.

Consider a firm which consists of a finite set of workers N = {1, 2, ..., n}. Each worker

i ∈ N privately and freely chooses an effort level xji ∈ Xi, and bears a corresponding

non-negative cost cji = c(xji ), where c(.) denotes the cost function. The cost of labor

supply includes any private resources or extra working time that worker i puts into the

project (for example, transportation costs, time, etcetera). Workers’ labor supply choices

are made simultaneously and independently. The owner of the firm (or the team leader)

knows the cost associated to each effort level. At each effort profile x = (x1, · · · , xn),

a corresponding monetary output F (x) is produced. A fraction of the monetary output,

f = γ · F , with γ ∈ (0, 1), is redistributed to workers in terms of bonuses.

The existence of a pure strategy Nash equilibrium in this teamwork game follows from

Lemma 1. To see this, observe that the payoff function of a worker can be decomposed

in two parts: the bonus that is determined by the Shapley payoff and the cost function.

Lemma 1 shows that the sum of excess payoffs in any cycle of deviations equals 0 in

any free and fair economy (or any strategic game with Shapley payoffs). The reader can

check that the sum of excess costs in any cycle of strategy profiles in the game is zero.
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The latter implies that the sum of excess payoffs in any cycle of strategy profiles of the

teamwork game is zero. Therefore, the teamwork game admits no cycle of deviations.

As the game is finite, we conclude that it admits at least a Nash equilibrium profile in

pure strategies. (Recall that the total output of the firm, F , and the total bonus, f , are

perfectly correlated.) We should point out that a pure strategy Nash equilibrium always

exists in the teamwork game, even if costs are high. In the latter case, some workers, if

not all, might find it optimal to remain inactive at the equilibrium. In such a situation,

the owner might want to raise the total bonus to be redistributed to workers.

Illustration. We now provide a numerical example with two workers called Bettina

and Diana. Bettina has four possible effort levels: b1, b2, b3 and b4; and Diana has four

possible effort levels as well: d1, d2, d3 and d4. The cost functions of the two workers

are given by: c(b1) = c(d1) = 0, c(b2) = c(b3) = c(d2) = c(d3) = 4, c(b4) = 3, and

c(d4) = 5. The fraction f of the output to be redistributed as bonus is described in Table

9. The number f(b, d) is the bonus to be distributed at the profile of efforts (b, d); for

instance, f(b1, d1) = 0.

Bettina

Diana

d1 d2 d3 d4

b1 0 5 1 13

b2 2 8 10 2

b3 5 13 1 13

b4 3 9 13 2

Table 9: Total bonus function in a teamwork game

Bettina

Diana

d1 d2 d3 d4

b1 (0, 0) (0, 5) (0, 1) (0, 13)

b2 (2, 0) (5
2
, 11

2
) (11

2
, 9

2
) (−9

2
, 13

2
)

b3 (5, 0) (13
2
, 13

2
) (5

2
,−3

2
) (5

2
, 21

2
)

b4 (3, 0) (7
2
, 11

2
) (15

2
, 11

2
) (−4, 6)

Table 10: Shapley payoffs: redistribution of total bonus in a teamwork game
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Bettina

Diana

d1 d2 d3 d4

b1 (0, 0) (0, 1) (0,−3) (0, 8)

b2 (−2, 0) (−3
2
, 3

2
) (3

2
, 1

2
) (−17

2
, 3

2
)

b3 (1, 0) (5
2
, 5

2
) (−3

2
,−11

2
) (−3

2
, 11

2
)

b4 (0, 0) (1
2
, 3

2
) (9

2
, 3

2
) (−7, 1)

Table 11: Bettina and Diana’s net payoffs in a teamwork game

The corresponding Shapley payoffs are described in Table 10 and the net payoffs of

Bettina and Diana in the teamwork game are described in Table 11. The profile (b4, d3)

is a pure strategy Nash equilibrium. Therefore, the owner of the firm can implement

the profile (b4, d3) without any need of monitoring the actions of Bettina and Diana, as

(b4, d3) is self-enforcing. The owner can also implement the profile (b1, d4). Note that the

set of equilibrium effort profiles depend on the cost functions, and that no worker receives

a non positive bonus at the equilibrium. The reason is that each worker i always has the

option to remain inactive, which is equivalent to Bettina choosing b1 or Diana choosing

d1 in this illustration. The two equilibria in this teamwork game are Pareto-efficient.

6.2 Contagion and self-enforcing lockdown in a networked econ-

omy

In this section, we provide an application of a free and fair economy to contagion and

self-enforcing lockdown in a networked economy. We show how the costs of a pandemic

from a virus outbreak can affect agents’ decisions to form and sever bilateral relationships

in the economy. Specifically, we illustrate this application by using the contagion potential

of a network [Pongou, 2010, Pongou and Serrano, 2013, 2016, Pongou and Tondji, 2018].

Consider an economy M involving agents who freely form and sever bilateral links

according to their preferences. Agents’ choices lead to a network, defined as a set of

bilateral links. Assume that rational behavior is captured by a certain equilibrium notion

(for example, Nash equilibrium, pairwise-Nash equilibrium, etcetera). Such an economy

may have multiple equilibria. Denote by E(M) the set of its equilibria. Our main goal is

to assess agent’s decisions in response to the spread of a random infection (for example,
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COVID-19) that might hit the economy. As the pandemic evolves in the economy, would

some agents decide to sever existing links and self-isolate themselves? How does network

structure depend on the infection cost?

To illustrate these concepts and answer the above questions, we consider an economy

involving a finite set of agents N = {1, ..., n}. All agents simultaneously announce the

direct links they wish to form. For every agent i, the set of strategies is an n-tuple of 0

and 1, Xi = {0, 1}n. Let xi = (xi1, ..., xii−1, 1, xii+1, ..., xin) be an element in Xi. Let

xij denote the jth coordinate of xi. Then, xij = 1 if and only if i chooses a direct link

with j (j 6= i), or j = i (and thus xij = 0, otherwise). We assume that the formation

of a link requires mutual consent, that is, a link ij is formed in a network if and only if

xijxji = 1. We denote X = ×j∈NXj. An outcome x ∈ X yields a unique network g(x).

However, a network can be formed from multiple outcomes. We denote o = (0, .., 0) the

reference outcome, and g(o) the empty network. It follows that the networked economy

M can be represented by a free economy (N,X, o, f, φ, u), where f is the production

function and u = φ the payoff function (see below).

Assume that rationality is captured by the notion of pairwise-Nash equilibrium as

defined by, among others, Calvó-Armengol [2004], Goyal and Joshi [2006], and Bloch

and Jackson [2007]. The concept of pairwise-Nash equilibrium refines Nash equilibrium

building upon the pairwise stability concept in Jackson and Wolinsky [1996]. Pairwise-

equilibrium networks are such that no agent gains by reshaping the current configuration

of links, neither by adding a new link nor by severing any subset of the existing links. Let g

be a network and ij ∈ g a link. We let g+ ij denote the network found by adding the link

ij to g, and g − ij denote the network obtained by deleting the link ij from g. Formally,

g is a pairwise-Nash equilibrium network if and only if there exists a Nash equilibrium

outcome x∗ that supports g, that is g = g(x∗), and for all ij /∈ g, φi(f, g+ ij) > φi(f, g)

implies φj(f, g + ij) < φj(f, g).

The contagion function is the contagion potential of a network [Pongou, 2010, Pongou

and Serrano, 2013, 2016, Pongou and Tondji, 2018]. To define this function, we consider

a network g that has k components, where a component is a maximal set of agents who

are directly or indirectly connected in g; and nj the number of individuals in the jth

component (1 ≤ j ≤ k). Pongou [2010] shows that if a random agent is infected with a

virus, and if that agent infects his or her partners who also infect their other partners and
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so on, the fraction of infected agents is given by the contagion potential of g, which is:

P(g) =
1

n2

k∑
j=1

n2
j .

However, in a network g, each agent is exogenously infected with probability 1
n

, and given

that agents are not responsible for exogenous infections, the part of contagion for which

agents are collectively responsible in g is:

c̃(g) = P(g)− 1

n
.

We assume that the infection by a communicable virus leads to a disease outbreak in the

economy. Measures that are implemented to fight the pandemic bring economic costs

to society. To assess those costs, we assume that the collective contagion function c̃

generates a pandemic cost function C so that, for each network g:

C(g) = F (c̃(g)), F being a well-defined function.

The pandemic and network formation affect economic activities. The formation of a

network g brings an economic value v(g) ∈ R to the economy. Given the cost function

C, the economic surplus of a network g is:

f(g) = v(g)− C(g).

Our main goal is to examine each agent’s behavior in forming or severing bilateral links as

the pandemic spreads in the economy. Let g be a network and S be a set of agents. We

denote by gS the restriction of the network g to S. This restriction is obtained by severing

all the links involving agents in N\S. Also, let i be an agent. We denote by gS + i

the network gS∪{i} obtained from gS by connecting i to all the agents in S to whom i is

connected in the network g. The structure of the networked economy provides a natural

setting for the use of the Shapley distribution scheme. In a competitive environment where

marginal contributions are the only inputs that matter in the economy, we can expect that

an agent who adds no value to any network configuration receives no payoff, and a more

productive agent in a network structure receives a payoff that is greater relative to that

of less productive agents. Assuming that the output from individual contributions are

entirely shared among agents, it becomes natural to consider that agent i’s payoff in a
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network g is given by the Shapley distribution scheme (1):

φi(f, g) ≡ Shi(f, g) =
∑

S⊆N, i6=S

s!(n− s− 1)!

n!

{
f(gS + i)− f(gS)

}
, s = |S|.

The networked economy M = (N,X, o, f,Sh, u) describes a free and fair economy.

We have the following result.

Proposition 2. Pairwise-Nash equilibrium networks always exist: E(M) 6= ∅.

Proposition 2 partly follows from Theorem 1, but is stronger because the notion of

pairwise-Nash equilibrium refines the Nash equilibrium. The proof is left to the reader.

We illustrate it below.

Illustration. Let N = {1, 2, 3}. Assume the set of an agent i’s direct links in a

network g is Li(g) = {jk ∈ g : j = i or k = i, and j 6= k}, of size li(g). The size of g

is l(g) =
∑
i∈N

li(g)/2. Note that l(g) = 0 if and only if g is the empty network. For

illustration, we assume that for each network g:

v(g) = [l(g)]1/2

C(g) = λc̃(g) = λ[P(g)− 1

n
], λ > 0

f(g) = [l(g)]1/2 − λ[P(g)− 1

n
], λ > 0.

We can rewrite f as follows (note that P(∅) = 1
n
):

f(g) =



0 if l(g) = 0

1− 2λ
9

if l(g) = 1
√

2− 2λ
3

if l(g) = 2
√

3− 2λ
3

if l(g) = 3

Given that there is only three agents, we can fully represent the set of networks in

M. The agents are labeled as described in Figure 1. In Figure 2, we display the different

network configurations in M. In each network, the payoff of each agent is given next to

the corresponding node. The pairwise stability concept facilitates the search of equilibrium

networks.
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Agent 2 Agent 3

Agent 1

Figure 1: Disposition of agents in a network
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Figure 2: Possible network formation in M

We have the following result. We denote by gN the complete network.

Proposition 3. Let g be a network. If:

1. λ < 1.8
√

2− 0.9, then E(M) = {gN}.

2. 1.8
√

2− 0.9 < λ < 3
√

3
2

, then g ∈ E(M) if and only if l(g) ∈ {1, 3}.

3. 3
√

3
2
< λ < 4.5, then g ∈ E(M) if and only if l(g) = 1.

4. λ > 4.5, then E(M) = {g(o)}.
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The proof of Proposition 3 is straightforward and left to the reader. Clearly, Proposition

3 shows that pandemic costs affect agents’ decisions in the networked economy. The

parameter λ summarizes the negative effects of the contagion in the economy. When

there is no disease outbreak, or the pandemic costs are very low (lower values of λ), each

agent gains by keeping bilateral relationships with others. In that situation, the complete

network is likely to sustain as the equilibrium social structure in the economy. No agent

has an incentive to self-isolate. However, as the pandemic costs rise, agents respond by

severing some bilateral connections. For intermediate values of λ (3
√

3
2
< λ < 4.5), only

networks with one link will be sustained in the equilibrium. This means that some agents

find it rational to partially or fully self-isolate in order to reduce the spread of the virus. In

the extreme case where the contagion costs are very high (λ > 4.5), a complete lockdown

arises, and the empty network is the only equilibrium.

Interestingly, the value of λ depends on the nature of the virus. Viruses induce different

severity levels. For example, COVID-19 and the flu virus have different values, inducing

different network configurations in equilibrium. The different network configurations in

Figure 2 can therefore be interpreted as the networks that will arise in different scenarios

regarding the nature of the virus.

6.3 Exchange economies

In this section, we apply our theory to pure exchange economies (Section 6.3.1) and

markets with transferable payoff (Section 6.3.2).

6.3.1 Pure exchange economies

There are no production opportunities in a pure exchange economy (or, simply, an ex-

change economy), and agents trade initial stocks, or endowments, of goods (or commodi-

ties) that they possess according to a specific rule and attempt to maximize their prefer-

ences or utilities. Generally, an exchange economy consists of a list Ω = (N, l, (wi), (ui)),

where:

(a) N is a finite set of agents (|N | = n <∞);

(b) l is a positive integer (the number of goods or commodities);
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(c) the vector wi is agent i’s endowment vector (wi ∈ Xi ⊆ Rl
+), with R+ being the set

of non-negative real numbers, and Xi the agent i’s consumption set; and

(d) ui : Xi −→ R is agent i’s utility function.

The amount of good k that agent i demands in the market is denoted xik, so that agent i’s

consumption bundle is denoted xi = (x11, x12, ..., x1l) ∈ Xi. An allocation is a distribution

of the total endowment among agents: that is, an outcome x = (xj)j∈N , with xj ∈ Xj

for all j ∈ N and
∑
j∈N

xj ≤
∑
j∈N

wj. A competitive equilibrium of an exchange economy

is a pair (p∗, z∗) consisting of a vector p∗ ∈ Rl
+, with p∗ 6= 0 (the price vector), and an

allocation x∗ = (x∗j)j∈N such that, for each agent i, we have:

p∗x∗i ≤ p∗wi, and ui(x
∗
i ) ≥ ui(xi) for which p∗xi ≤ p∗wi, xi ∈ Xi.

We say that x∗ = (x∗j)j∈N is a competitive allocation.

In an exchange economy, we can assimilate an agent’s consumption bundle to that

agent’s action in the market. In that respect, we can formulate an exchange economy

under mild assumptions as a free and fair economy. Consider an exchange economy

Ω = (N, l, (wi), (ui)) in which the number of goods is finite (l <∞), and each agent i’s

consumption set Xi is finite (|Xi| < ∞). For instance, one can assume that agents can

only purchase or sell indivisible units of goods in the market. We can model Ω as a free

and fair economy EΩ = (N,X = ×j∈NXj, o, F,Sh, u) where:

(i) each agent i’s action xi ∈ Xi;

(ii) the reference outcome o is the vector of endowments w;

(iii) F : X −→ R is the net aggregate utility function, i.e., for x = (xj)j∈N ∈ X,

F (x) =
∑
j∈N

[uj(xj)− uj(wj)], with F (w) = 0; and

(iv) the Shapley allocation scheme Sh = u distributes the net aggregate utility F (x)

between agents at each profile x ∈ X: ui(x) = Shi(F, x) for each i ∈ N .

Only allocations in the free and fair economy can be selected in the equilibrium. This

means that an outcome x = (xj)j∈N ∈ X is an equilibrium in the free and fair economy

if
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(1)
∑
j∈N

xj ≤
∑
j∈N

wj, and

(2) x is a pure strategy Nash equilibrium of the strategic game (N,X,Sh).

Our model differs from the exchange economy in at least two important respects. First, the

incentive mechanism is different. Second, the equilibrium prediction from free exchanges

between agents in both economies is different in general. A competitive equilibrium exists

in an exchange economy when some assumptions exist on agents’ utilities and endowments.

For instance, when utilities are continuous, strictly increasing, and quasi-concave and

each agent initially owns a positive amount of each good in the market, a competitive

equilibrium exists, and many equilibria might arise. However, under such assumptions on

agents’ utilities, the net aggregate utility function F is strictly increasing, and thanks to

Theorem 2, the free and fair economy admits a unique equilibrium. Additionally, it is

not necessary to impose any assumptions on utilities and endowments to guarantee the

existence of an equilibrium in a free and fair economy. We illustrate these points in the

following examples.

Example 4. Consider an exchange economy with two goods (1 and 2) and two agents (A

and B) in which agent A initially owns a positive amount of good 1, wA = (1, 0), while

agent B owns a positive amount of both goods, wB = (2, 1). We assume that agent

A’s consumption set is XA = {(1, 0), (0, 0)} and utility is uA(xA) = uA(xA1, xA2) =

xA1 + xA2. Agent B’s consumption set is XB = {(2, 1), (1, 1), (0, 1), (2, 0), (1, 0), (0, 0)}
and utility is uB(xB) = uB(xB1, xB2) = min{xB1, xB2}. An allocation x = (xA, xB) ∈
XA × XB is such that xA1 + xB1 ≤ 3 and xA2 + xB2 ≤ 1. We can show that there is

no competitive equilibrium in this exchange economy (one reason is the fact that agent A

owns zero units of good 2), while the free and fair economy admits two equilibria xSh
1 =

(wA, wB) and xSh
2 = (wA, (1, 1)). Each equilibrium maximizes the net aggregate utility,

F (xSh
1 ) = F (xSh

2 ) = 0, with ShA(F, xSh
1 ) = ShB(F, xSh

1 ) = 0, and ShA(F, xSh
2 ) =

ShB(F, xSh
2 ) = 0. This example shows that a free and fair exchange economy has an

equilibrium while a competitive equilibrium does not exist. The next example will show

that the equilibrium of a free and fair exchange economy can coincide with the competitive

equilibrium.

Example 5. Consider a Shapley-Shubik economy [Shapley and Shubik, 1977] in which

there are two agents and two goods. Agent A is endowed with 2 units of good 1, wA =
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(2, 0), and agent B is endowed with 2 units of good 2, wB = (0, 2). We assume that

agent A’s consumption set is

XA = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)},

and his or her utility function is uA(xA1, xA2) = xA1 + 3xA2 − 1
2
(xA2)2; agent B’s con-

sumption set is

XB = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)},

and his or her utility function is uB(zB1, xB2) = xB2 +3xB1− 1
2
(xB1)2. Assume that good

1 is the numeraire (p1 = 1), and let p = p2 and X = XA × XB. It is straightforward

to note that not all pairs of actions in X are feasible in the economy. We can show that

the pair E∗ = (p∗, x∗), where p∗ = 1, and x∗ = (x∗A = (0, 2), x∗B = (2, 0)), is the unique

competitive equilibrium of the market. At the equilibrium allocation (p∗, x∗), agents

exchange endowments, and that transaction results in utilities: uA(x∗1) = uB(x∗2) = 4.

Similarly, strategic interactions among agents in the free and fair market yield the same

outcome x∗. To show that result, we use an approach that allows us to simplify calculations

in the free and fair economy.

Let us denote by X the subset of allocations (X ⊂ X), and consider the following de-

cisions: a“keep the full endowment”, b“sell 1 unit of good”, and c“sell the full endowment.”

Consider XA = XB = {a, b, c} as each agent’s set of decisions. Each vector of decisions

in XA×XB yields a unique outcome (xA, xB) ∈ X. Precisely, the vector (a, a) entails the

unique profile x = (wA, wB) = ((2, 0), (0, 2)); (a, b) corresponds to x = ((2, 1), (0, 1));

(a, c) corresponds to x = ((2, 2), (0, 0)); (b, a) corresponds to x = ((1, 0), (1, 2)); (b, b)

corresponds to x = ((1, 1), (1, 1)); (b, c) corresponds to x = ((1, 2), (1, 0)); (c, a) cor-

responds to x = ((0, 0), (2, 2)); (c, b) corresponds to x = ((0, 1), (2, 1)); and (c, c)

corresponds to x = ((0, 2), (2, 0)). The net aggregate utility function F is defined as:

F (x) = F (xA, xB) = uA(xA) + uB(xB) − 4. Using the strategy profile (a, a) as the

reference point, Table 12 describes agents’ utilities in the free and fair economy. For each

agent, decision c strictly dominates decisions a and b. It follows that the vector (c, c)

which corresponds to the outcome xSh = ((0, 2), (2, 0)) = x∗ is the unique equilibrium

in the free and fair economy. In this case, the equilibrium coincides with the competitive

allocation.
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Agent A

Agent B

a b c

a (0, 0) (0, 1.5) (0, 2)

b (1.5, 0) (1.5, 1.5) (1.5, 2)

c (2, 0) (2, 1.5) (2, 2)

Table 12: Utilities in the free and fair economy

6.3.2 Markets with transferable payoff

A market with transferable payoff is a variant of a pure exchange economy in which

each agent in the economy is endowed with a bundle of goods that can be used as

inputs in a production system that the agent operates. All production systems transform

inputs into the same kind of output (i.e., money), and this output can be transferred

between the agents. In a market, the payoff can be directly transferred between agents,

while in a pure exchange economy only goods can be directly transferred. Following

Osborne and Rubinstein [1994], a market with transferable payoff consists of a list Π =

(N, l, (wi), (fi), (ui)), where:

(a) N is a finite set of agents (|N | = n <∞);

(b) l is a positive integer (the number of input goods);

(c) the vector wi is agent i’s endowment vector (wi ∈ Xi ⊆ Rl
+), with Xi being the

agent i’s input set;

(d) fi : Xi −→ R is agent i’s continuous, non-decreasing, and concave production

function; and

(e) ui is agent i’s utility function: ui(fi, p, xi) = fi(xi)− p(xi − wi), with p ∈ Rl
+ (the

vector of positive input prices), and xi ∈ Xi.

In the market, an input vector is a member of Xi, and a profile (xj)j∈N of input vectors for

which
∑
j∈N

xj ≤
∑
j∈N

wj is an allocation. We denote w = (wj)j∈N . Agents can exchange

inputs at fixed prices p ∈ Rl
+, which are expressed in terms of units of output. At the

end of the trade, if agent i holds the bundle xi, then his or her net expenditure, in units
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of output, is p(xi − wi). Agent i can produce fi(xi) units of output, so that his or her

net utility is ui(fi, p, xi). A price vector p∗ ∈ Rl
+ generates a competitive equilibrium if,

when agent i chooses his or her trade to maximize his or her utility, the resulting profile

(x∗i )i∈N of input vectors is an allocation. Formally, a competitive equilibrium of a market

is a pair (p∗, (x∗i )i∈N) consisting of a vector p∗ ∈ Rl
+ and an allocation (x∗i )i∈N such that,

for each agent i, the vector x∗i maximizes his or her utility ui(fi, p
∗, xi), for each xi ∈ Xi.

The list (N, l, w, (fi), (ui)) defines a competitive market with transferable payoff.

In a market with transferable payoff, we can view an agent’s input vector as an agent’s

action in the market. Therefore, as in section 6.3.1, we can write a market with transfer-

able payoff under mild assumptions as a free and fair economy. Consider a market with

transferable payoff Π = (N, l, w, (fi), (ui)) in which the number of input goods is finite

(l < ∞), and each agent i’s input set Xi is finite (|Xi| < ∞). As in Section 6.3.1, we

can model Π as a free and fair market EΠ = (N,X = ×j∈NXj, o, F,Sh, u), with the

difference that for x = (xj)j∈N ∈ X,

F (x) =
∑
j∈N

[fj(xj)− fj(wj)].

As in the analysis in section 6.3.1 below, we provide examples that show similarities

(Example 6) and differences (Example 7) between the predictions of free and fair markets

and markets with transferable payoff.

Example 6. We consider a single-input market with transferable payoff in which there are

two homogeneous agents who have the same production, w1 = w2 = 1, fi(xi) =
√
xi,

i ∈ {1, 2}, and X1 = X2 = {0, 1, 2}. The pair E∗ = (p∗ = 1
2
, x∗ = (w1, w2)) is the

unique competitive equilibrium of the market, and u1(p∗, x∗1) = u2(p∗, x∗2) = 1. Similarly,

strategic interactions among agents in the free and fair market yield the same outcome

x∗.

Example 7. As mentioned in Section 6.3.1, generally, the equilibrium predictions of a

free and fair economy and a market with transferable payoff do not coincide. To showcase

this point, we consider a market in which agents’ production functions are not concave.

Consider a single-input market with transferable payoff in which there are two heteroge-

neous agents in production: w1 = 1, X1 = {0, 1, 2, 3}, and f1(x1) = 1
2
x2

1; and w2 = 2,

X2 = {0, 1, 2, 3}, and f2(x2) = x2
2. In the competitive market, the utility functions are
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convex and given by: u1(p, x1) = 1
2
x2

1− p(x1− 1) and u2(p, x2) = z2
2 − p(x2− 2). There

is no exchange in this market, while strategic interactions among agents in the free and

fair market yield a different outcome: xSh = (0, 3).

In Section 6.3, we write an exchange economy as a free and fair economy under mild

conditions. The axioms that characterize the Shapley allocation scheme reflect some

ethical and fair considerations. Consider a domain D of economies in which the set of

competitive allocations is non-empty. Given the examples that we provide in Sections

6.3.1 and 6.3.2, one might be interested in formally examining the relationship between

competitive allocations and equilibria as defined in a free and fair economy in the domain

D. Such a study contributes to the literature characterizing Walrasian allocations in

terms of social choice axioms. Pioneer works in this literature include, Dubey et al.

[1980], Gevers [1986], Thomson [1988], and Nagahisa [1994], among others. Though this

exercise is beyond the scope of our study, it is a possible avenue for future research.

7 Conclusion

In this study, we examine how elementary principles of justice and ethics, of long

tradition in economic theory, affect individual incentives in a competitive environment and

determine the existence and efficiency of self-enforcing social contracts. To formalize this

problem, we introduce a model of a free and fair economy, in which each agent freely

and non-cooperatively chooses their input from a finite set, and the surplus generated by

these choices is distributed following four ideals of market justice, which are anonymity,

local efficiency, unproductivity, and marginality. We show that these ideals guarantee

the existence of a pure strategy Nash equilibrium. However, an equilibrium need not

be unique or Pareto-efficient. We uncover an intuitive condition—strict technological

monotonicity—, which guarantees equilibrium uniqueness and efficiency. Interestingly,

this condition does not guarantee equilibrium efficiency (or even existence) when ideals

of market justice are violated in an economy. These ideals therefore lead to positive

incentives, given their desirable equilibrium and efficiency properties.

We extend our analysis to incorporate social justice and inclusion, implemented in the

form of progressive taxation and redistribution and guaranteeing a basic income to unpro-

ductive agents. In this more general setting, we generalize all of our findings. Additionally,
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we examine how the tax policy affects efficiency, showing that there is a tax rate threshold

above which a pure strategy Nash equilibrium that is Pareto-efficient always exists in the

economy, even in the absence of technological monotonicity. Moreover, we show that if

a free economy is able to choose its reference point, it can always do so to induce an

efficient outcome that is self-enforcing, even if this economy is not monotonic.

By incorporating normative principles into non-cooperative game theory, we define a

new class of finite strategic form games that always admit a pure strategy Nash equilibrium.

We develop applications to some classical and recent economic problems, including the

allocation of goods in an exchange economy, surplus distribution in a firm, and self-

enforcing lockdown in a networked economy facing contagion. This variety of applications

is possible because we impose no particular assumptions on the structure of agents’ action

sets, and our setting is fully non-parametric.

For Online Publication

Appendix

Proof of Proposition 1.

Sufficiency. We show that the allocation scheme Sh satisfies ALUM.

Anonymity. Let f ∈ P (X), x ∈ X, πx ∈ Sxn , and i be an agent. We show that

Shi(π
xfx, x) = Shπx(i)(f

x, x).

1. If i /∈ Nx, then xi = oi, and πx(i) = i.

Shi(f
x, x) =

∑
a∈∆i

0(x)

ϕ(a, x) {fx(a+ xiei)− fx(a)}

=
∑

a∈∆i
0(x)

ϕ(a, x) {fx(a)− fx(a)}

= 0.

Similarly,

Shi(π
xfx, x) =

∑
a∈∆i

0(x)

ϕ(a, x) {πxfx(a+ xiei)− πxfx(a)}

=
∑

a∈∆i
0(x)

ϕ(a, x) {fx(πx(a+ xiei))− fx(πx(a))} .
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For a ∈ ∆i
0(x) and xi = oi, we have πx(a+ xiei) = πx(a), and Shi(π

xfx, x) = 0.

Therefore, for each i /∈ Nx, we can conclude that Shi(π
xfx, x) = Shπx(i)(f

x, x).

2. If i ∈ Nx, then xi 6= oi. Assume that πx(i) = j. Then, j ∈ Nx and xj 6= oj.

Shj(f
x, x) =

∑
a∈∆j

0(x)

ϕ(a, x) {fx(a+ xjej)− fx(a)}

=
∑

a∈∆j
0(x)

ϕ(a, x) {f(a+ xjej)− f(a)}).

Similarly,

Shi(π
xfx, x) =

∑
a∈∆i

0(x)

ϕ(a, x) {πxfx(a+ xiei)− πxfx(a)}

=
∑

a∈∆i
0(x)

ϕ(a, x) {fx(πx(a+ xiei))− fx(πx(a))}

=
∑

a∈∆i
0(x)

ϕ(a, x) {f(πx(a+ xiei))− f(πx(a))}

a ∈ ∆i
0(x) implies a = (a1, ..., oi︸︷︷︸

ith component

, ..., an). The vector πx(a) = (πx1 (a), ..., πxj (a)︸ ︷︷ ︸
jth component

, ..., πxn(a)).

Given that j = πx(i) and ai = oi, it follows that πxj (a) = oj and πx(a) ∈ ∆j
0(x).

We also have a + xiei = (a1, ..., xi︸︷︷︸
ith component

, ..., an). Given that j = πx(i) and

(a + xiei)i = xi 6= oi, it follows that πxj (a + xiei) = xj. Note that we can write

πx(a+ xiei) = πx(a) + xjej. Therefore,

Shi(π
xfx, x) =

∑
a∈∆i

0(x)

ϕ(a, x) {f(πx(a) + xjej)− f(πx(a))}

=
∑

b∈∆j
0(x)

ϕ(b, x) {f(b+ xjej)− f(b)} , where b = πx(a)

= Shj(f
x, x).

It follows that the allocation Sh satisfies x-Anonymity for each x ∈ X. Hence, Sh

satisfies Anonymity.

Local Efficiency. For any f ∈ P (X) and x ∈ X, it is immediate that
∑
i∈N

Shi(f, x) =

f(x).
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Unproductivity. If agent i is unproductive, then for any f ∈ P (X) and x ∈ X, it is

immediate that Shi(f, x) = 0, since mc(i, f, a, x) = 0 for each a ∈ ∆i
0(x).

Marginality. Let f, g ∈ P (X) such that mc(i, f, x′, x) ≥ mc(i, g, x′, x) for all

i ∈ N , x ∈ X and x′ ∈ ∆i
o(x). By the definition of the value Sh, it is immediate that

Shi(f, x) ≥ Shi(g, x).

Necessity. In this part of the proof, we prove the uniqueness of the Shapley value.

Consider another allocation procedure φ which satisfies ALUM.

Define the following production function fx ∈ P (X) for each x ∈ X by:

fx(y) =

{
1 if x ∈ ∆(y)

0 if x /∈ ∆(y)

where x ∈ ∆(y) if and only if [xi 6= yi ⇒ xi = oi].

Lemma 2 (Pongou and Tondji [2018]). Any production function is a linear combination

of the production functions fx:

f =
∑
x∈X

cx(f)fx, where cx(f) =
∑

x′∈∆(x)

(−1)|x|−|x
′|f(x′).

Let f ∈ P (X). Define the index I of the production function f to be the number of

non-zero terms in some expression for f in (2). The theorem is proved by induction on I.

a) If I = 0, then f ≡ 0. Let x ∈ X and i ∈ N . Then, mc(i, f, a, x) = 0 for all a ∈ X
such that a ∈ ∆i

o(x). Therefore, by Unproductivity, Shi(f, x) = φi(f, x) = 0.

b) If I = 1, then f = cx(f)fx for some x ∈ X. Consider Nx = {l ∈ N : xl 6= ol}.

Step 1. Let i /∈ Nx, i.e., xi = oi.

For any a ∈ X such that a ∈ ∆i
0(x), we have f(a + xiei) − f(a) = 0, i.e.,

mc(i, f, a, x) = 0. It follows that Shi(f, x) = 0. Let y ∈ X with y 6= x. Then,

x ∈ ∆(y) or x /∈ ∆(y).

• If x ∈ ∆(y), then xl = yl for each l ∈ Nx. If yi = oi, then φi(f, y) = 0 =

Shi(f, y). Assume yi 6= oi. Then, for any a ∈ ∆i
0(y), we have mc(i, f, a, y) =

f(a+yiei)−f(a). If x ∈ ∆(a), we also have x ∈ ∆(a+yiei) because xi = oi

and yi 6= oi. Similarly if x /∈ ∆(a), then x /∈ ∆(a + yiei). Therefore,

mc(i, f, a, y) = 0 for each a ∈ ∆i
0(y), and Shi(f, y) = 0.
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• x /∈ ∆(y), then f(y) = 0. If yi = oi, then Shi(f, y) = 0. Assume yi 6= oi.

Then, for any a ∈ ∆i
0(y), we have mc(i, f, a, y) = f(a + yiei) − f(a). If

x ∈ ∆(a), then for each l ∈ Nx, xl = al 6= ol. Or a ∈ ∆(y) implies that

for each l ∈ Nx, we will have al = yl, because al 6= ol. Therefore, for each

l ∈ Nx, al = yl = xl, and given that yi 6= oi and xi = oi, we have x ∈ ∆(y),

a contradiction. In fact x ∈ ∆(a) if and only if x ∈ ∆(a + yiei). Thus,

mc(i, f, a, y) = 0 for each a ∈ ∆i
0(y), and Shi(f, y) = 0.

Given that agent i is unproductive, it follows that φi(f, y) = Shi(f, y) = 0 for

each y ∈ X.

Step 2. Let i, j ∈ N such that i, j ∈ Nx and y ∈ X. Let πy = (ij) a permu-

tation. Given that φ satisfies Anonymity, it follows that φ satisfies y-Anonymity,

and φi(π
xf y, y) = φj(f

y, y). For each z ∈ ∆(y), we have πyf y(z) = f y(z).

Thus, πyf y = f y, and φi(f
y, y) = φj(f

y, y). By Local efficiency,
∑
k∈Nx

φk(f
y, y) =

f y(y) = f(y). Therefore,
∑
k∈Nx

φk(f
y, y) = |Nx|φk(f y, y), and for each k ∈ Nx,

φk(f
y, y) = fy(y)

|Nx| = f(y)
|Nx| . If x ∈ ∆(y), then f(y) = cx(f). Otherwise, f(y) = 0,

and for each k ∈ Nx, φk(f, y) = φk(f
y, y) = Shk(f, y).

c) Assume now that φ is the value Sh whenever the index of f is at most I and let f

have index I + 1, with:

f =
I+1∑
k=1

cxk(f)fxk , all cxk 6= 0, and xk ∈ X.

For k ∈ {1, 2, ..., I + 1}, consider:

Nxk =
{
l ∈ N : xkl 6= ok

}
, N =

I+1⋂
k=1

Nxk , and assume i /∈ N.

Define the following production function:

g =
∑

k:i∈Nxk

cxk(f)fxk .

The index of g is at most I. Let x, a ∈ X such that a ∈ ∆i
0(x). Then f(a+xiei)−

f(a) = g(a + xiei) − g(a). Consequently, using Marginality, φi(f, x) = φi(g, x).
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By induction, we have:

φi(f, x) =
∑

k:i∈Nxk

cxk(f)fxk(x)

|xk|
= Shi(f, x), for x ∈ X.

It remains to show that for each x ∈ X, φi(f, x) = Shi(f, x) when i ∈ N . Let

x ∈ X. By Anonymity, φi(f, x) is a constant ϕ for all members of N ; likewise the

value Shi(f, x) is some constant ϕ′ for all members of N (with N > 0). By Local

efficiency,

|N |φi(f, x) = |N |ϕ = f(x),

so that,

ϕ =
f(x)

|N |
.

Similarly,

|N |Shi(f, x) = |N |ϕ′ = f(x),

so that,

ϕ′ =
f(x)

|N |
.

It follows that ϕ = ϕ′, and concludes the proof.

References

Arun Advani, Elliott Ash, David Cai, and Imran Rasul. On the study of race and ethnicity

in economics: production, incentives and selection. Mimeo, University College London,

2021.

Arun Advani, Elliott Ash, David Cai, and Imran Rasul. Race-related research in eco-

nomics and other social sciences. Econometric Society World Congress Monograph,

Forthcoming.

Victor Aguiar, Roland Pongou, and Jean-Baptiste Tondji. A non-parametric approach

to testing the axioms of the shapley value with limited data. Games and Economic

Behavior, 111:41–63, 2018.

Victor H Aguiar, Roland Pongou, Roberto Serrano, and Jean-Baptiste Tondji. An index of

unfairness. In Handbook of the Shapley Value (Algaba et al., Eds.). CRC Press, 2020.

44



George A. Akerlof. Sins of omission and the practice of economics. Journal of Economic

Literature, 58(2):405–18, 2020.

Siwan Anderson and Debraj Ray. Missing women: age and disease. The Review of

Economic Studies, 77(4):1262–1300, 2010.

Aristotle. The Politics, Book III. edited and translated by Ernest Baker(New York: Oxford

University Press, 1946.

Kenneth J. Arrow and Gerard Debreu. Existence of an equilibrium for a competitive

economy. Econometrica, pages 265–290, 1954.

Susan Athey. Single crossing properties and the existence of pure strategy equilibria in

games of incomplete information. Econometrica, 69(4):861–889, 2001.

Ana I. Balsa and Thomas G. McGuire. Statistical discrimination in health care. Journal

of Health Economics, 20(6):881–907, 2001.

Hari Bapuji, Gokhan Ertug, and Jason D. Shaw. Organizations and societal economic

inequality: a review and way forward. Academy of Management Annals, 14(1):60–91,

2020.

Marianne Bertrand and Sendhil Mullainathan. Are Emily and Greg more employable than

Lakisha and Jamal? A field experiment on labor market discrimination. American

Economic Review, 94(4):991–1013, 2004.

Francis Bloch and Matthew O. Jackson. The formation of networks with transfers among

players. Journal of Economic Theory, 133(1):83–110, 2007.

Daniel Bunn, Gustav Fritzon, and Jacob Lundberg. Taxing High Incomes: A Compar-

ison of 41 Countries. Technical report, 2019. URL https://taxfoundation.org/

taxing-high-income-2019/. Accessed: 2021-07-23.
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