Explaining Greenium in a Macro-finance Integrated Assessment Model

Biao Yang, Bocconi University

1. Introduction

Research question

- How do climate disasters (e.g., hurricanes, floods, droughts, etc) affect equity returns and capital investments of green and brown firms?
- What are the asset pricing implications of a climate disaster shock?

What I do

- Provide novel empirical evidence that relates climate disaster shocks with equity returns and investments.
- Build a macrofinance model with a climate system to **quantitatively** explain my findings.

What I find

- Green stocks carry **lower** premium than brown stocks (a **Greenium**).
- A climate disaster shock depreciates stock market, but green stocks depreciate **less** than brown stocks.
- Green (Brown) firms increase (decrease) capital investment during a climate disaster.
- A simple analytical model qualitatively explain the empirical findings.
- A macrofinance integrated assessment model (IAM) quantitatively matches economic quantities & asset prices.

2. Data and Empirical Method

- Sort **global** firms using the E-score from Refinitiv Asset4.
- Aggregate economic losses (in U.S. dollars) due to climate disasters \Rightarrow a **disaster index**.
- Cross-sectional asset pricing tests on the greenium.
- Panel regressions & event studies to investigate how green and brown stock returns and investments respond to a disaster shock.

3. Empirical Results

• Green stocks have 3.8% lower return (annualized) than brown stock, i.e., a negative greenium.

Factors	Constant	CAPM	FF3	FF5	FF5&MOM
Green minus Brown α (%)	3.83	2.43	2.17	3.91	3.98
s.e. (%)	(1.39)	(1.18)	(0.98)	(1.22)	(1.25)

- A disaster shock depreciates green stocks **less** than brown stocks.
- Green (Brown) investment increases (decreases) during a climate disaster.

	Stock	returns	Investment		
	(1)	(2)	(3)	(4)	
disaster	-0.282*** (0.012)	-0.285*** (0.012)	-0.110*** (0.027)	-0.121*** (0.035)	
$Escore \times disaster$	0.0380^{***} (0.006)	(0.012)	0.289*** (0.062)	(0.000)	
$GreenDummy \times disaster$	/	0.0257^{***} (0.005)		0.231*** (0.048)	
Controls	Yes	Yes	Yes	Yes	
Firm FE & Time FE	Yes	Yes	Yes	Yes	
Obs.	384,224	381,554	105,265	104,563	
$Adj. R^2$	0.04	0.04	0.323	0.323	

4. A Simple Analytical Model

• Production function with climate damage

$$Y_2 = \left(1 - \underbrace{D(I_{B,1}, \epsilon)}_{\text{climate damage}}\right) \cdot \underbrace{f(I_{G,1}, I_{B,1})}_{\text{Pre-damage output}}$$

- **Key assumption:** $\frac{\partial^2 D}{\partial I_B \partial \epsilon} > 0$, a disaster shock increases belief about marginal cost of brown investment
- Implications:
- 1 a disaster shock decreases (increases) optimal brown (green) investment
- 2 green stocks appreciate relative to brown stocks under investment friction

5. The Macro-finance IAM

Key ingredients:

- Recursive preference: prices **news** about (i) productivity shock and (ii) climate damage (i.e., disasters).
- Climate feedback + investment friction: heterogeneous disaster exposures of green and brown stocks.

Key Success:

- Model quantitatively explains equity premium & greenium.
- Model matches IRFs of stock returns & investments to a disaster.

Model implication:

• The Social Cost of Carbon is \$40.4 per tonne of carbon.

6.Conclusion

Empirics:

- A negative greenium in the cross section of global stock market.
- A positive disaster shock (i) appreciates green stocks relative to brown stocks, (ii) increases capital investments of green firms.

Theory:

- A production model with climate feedback generates heterogeneous disaster exposures of green and brown firms.
- This model contributes by (i) explaining asset prices in IAM, and (ii) introducing climate risks in macrofinance.

Contact Information

- Email:biao.yang@unibocconi.it
- Website: https://app.scholarsite.io/biao-yang