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Motivation Which Firm Characteristics Ma Machine Learni

1) Rise in zombie firms, alive due to bank support |1}
2) Regulatory concern, first order issue since GFC
3) Machine learning to classify, predict zombies
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Many explanatory variables can be used to predict
zombie status (accounting, market data)
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Standard approach = Humans perform selection
= Undisciplined with many vars
= Implies a priori assumptions
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ML approach = Automated selection
= Recursive splitting algorithm
that generates trees
= RF to find informative features

(RF hyperparameters: 3-fold CV)
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Firm characteristics that matter to predict zombie firms (higher coefficients . . . .
_ _ _ Classification Tree Example (Kim-Khandani-Lo 2010)
1) Random Forests (RF') to classify/predict zombies _ . o _ o o
2) Examine differences /similarities between zombies = Pretax income, pi (Europe, US, crisis/non), Operating activities, oancf (Europe, US, crisis/non)
. . . . . . . . . Europe USA
and non-zombies, Europe and US, crisis/non-crisis = Long-term debt, dd! (Europe, non-crisis), Short-term debt, dlc (US, crisis/non) Years | Ace (%) = e Ace (%) e
= Total assets, at (US, crisis/non). Income-related features are the most informative (Europe, US 2007 | 90.89 o | B 00.50 ote | <
’ ’ ’ 49 3.0 34 60
To do so = Large datasets of European, US firms o 1
= Machine learning methods 2219 | kel 45 | 50 Lol 21 | 47
(Tree-based models) Decision Tree
—ye Prediction Results Zombie Firms (Authors’ estimations)
Objective = Tool that can serve central banks de- (sari’,‘ifﬂda'f’o%}
. . « 1> . . value = [0.5, 0.5]
ploy credit more efficiently avoiding misallocation class = no Zombie
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\Y ethodology Sgﬁ;ﬂgﬁ[gﬂ?;:gﬁf] E‘;‘;‘_‘iﬁ’:ﬁ 1) European and US public firms (Compustat
| | e ) i T Global /North America, Datastream)
CART algorithm [2] to find best input, split point s =00 R oo <00 ezoi 2) 15000 obs. per year Europe, 6000 obs. per year
. . ntr /=08 samples = 2.9% entro /=09 ntr /= 0. .
at each iteration e <1030 [;;;E;nggag-;lj Caio= (0 04 talto= 0,011 US sample. 70 variables per company-year
class = Zombie class = no Zombie class = no Zombie . .. i
e l 3) Two cross-sections: 2007 (crisis), 2016 (healthy)
Pmk = Z I(y cslk <0.0 oanci <0.0 pe——— bo< 0. i <00 oanci <02 4) Zombie firms identification follows [3| and [4
R,, sa?tﬁ{éﬁy:? ;'g% saﬁ'-.‘;ﬁﬂﬁ":zg'g% samples = 4.2% s gtﬁgg - 31 "?% sa?\?;ﬁﬂﬁ":zg'i% sa?;rlggy:z?'} % _
i€ valug=[0.4, b.s] value =[0.2, {-).B] \Iralue_= [D:;_?” 0.2] value:[ﬁ.s,-o.zl] value =[0.9, f].1] value =[1.0, i).ﬂ]
class = Zombie class = Zombie class =no Zombie class = no Zombie class = no Zombie class = no Zombie
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Cross-entropy as standard loss function:

value = [0.9, 0.1] value =[0.4, 0.6] value = [0.2, 0.8] value = [0.3, 0.7] value = [0.6, 0.4] value = [0.3, 0.7] value = [0.8, 0.2] value = [0.9, 0.1] value = [1.0, 0.0] value =[0.9, 0.1]
class = no Zombie class = Zombie class = Zombie class = Zombie class = no Zombie class = Zombie class = no Zombie class = no Zombie class = no Zombie class = no Zombie
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