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Abstract

I analyze time series momentum along the Treasury term structure.

Past bond returns predict future returns both due to autocorrelation in

bond risk premia and because unexpected bond return shocks increase

the premium. Yield curve momentum is primarily due to autocorrelation

in yield changes rather than autocorrelation in bond carry and can

largely be captured using a single bond return or yield change factor.

Because yield changes are partly induced by changes in the federal

funds rate, yield curve momentum is related to post-FOMC announcement

drift. The momentum factor is unspanned by the information in the

term structure today and is hence inconsistent with standard term

structure, macrofinance and behavioral models. I argue that the results

are consistent with a model with unpriced longer term dependencies.
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1 Introduction

Past returns can predict future returns (Fama, 1965). Moskowitz et al. (2012)

find evidence of medium horizon return autocorrelation among a large set

of asset classes. They dub this phenomenon ”time series momentum”.1

Possibly due to a focus on a large set of asset classes, the time series

momentum literature has evolved largely separately from the vast literature

on term-structure modelling and bond risk premia (see e.g. Ang and Piazzesi

(2003), Fama and Bliss (1987) and Cochrane and Piazzesi (2005)). Because of

this disconnect it is for example not clear whether time series momentum of

government bonds is consistent with standard term-structure models.2 This

paper is an attempt to study the finer dynamics of time series momentum of

government bonds, or yield curve momentum, and close the gap between

the two literatures.

I argue that the findings of Moskowitz et al. (2012) are not necessarily

inconsistent with standard models. However, I present new evidence related

to yield curve momentum, which clearly is incompatible with such models.

First, I find that the term structure of momentum coefficients is downward

sloping. Slope coefficients from regressing bond returns on the past return

of the same maturity bond decline in bond maturity.

Second, I argue that yield curve momentum occurs both because of

autocorrelation in bond yield changes and bond carry. However, because

bond carry has small variation, most of the covariance between current and

1This is a growing literature, see e.g. Pitkäjärvi et al. (2020), Huang et al. (2020) and

Goyal and Jegadeesh (2018).
2Durham (2013) analyzes the performance of a duration neutral cross-sectional

momentum strategy with government bonds. He argues that some its profitability can

be explained by a specific affine term structure model. However, he does not address

time series momentum. Asness et al. (2013) study a cross-country momentum strategy

with government bonds finding that such a strategy yields positive yet fairly small returns.

Brooks and Moskowitz (2017) explain bond returns using value, momentum and carry

factors. However, they do not study the sources of momentum or relate the findings to the

term structure modelling literature. Osterrieder and Schotman (2017) connect bond return

autocorrelations with model risk parameters but do not explicitly address momentum.
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past returns is due to autocorrelation in bond yield changes.

I also decompose yield curve momentum into autocovariance in bond

risk premia and covariance between bond risk premia and past unexpected

news to bond returns. On average the first channel explains roughly one

third of yield curve momentum while the second explains two thirds of it.

Third, I analyze the factor structure of yield curve momentum. I find

that yield curve momentum can be largely captured by the change in the

first principal component of yields or a single momentum factor defined as

the average past return of different maturity bonds.

Fourth, I assess the relationship between monetary policy and yield curve

momentum. Because changes in the Treasury yield curve are related to

changes in the federal funds target rate, yield curve momentum is partly

induced by monetary policy. That is yield curve momentum is in part

driven by a drift pattern following a recent, expected or unexpected, rate

change by the Fed. However, because especially long maturity yields display

movements unrelated to target rate changes, yield curve momentum is not

identical to post-FOMC announcement drift discussed in Brooks et al. (2019).

Fifth, I analyze whether yield curve momentum is consistent with standard

term-structure models. The standard models imply that yields are affine

in a set of factors. This form is also implied by standard macrofinance

models, at least up to first order. These models can in principle generate

covariance between current and past bond returns. However, this correlation

should vanish after controlling for information in the current yield curve.

The intuition is that, in this class models, the current factors determine

the expected bond returns and after controlling for these factors no other

variable should predict bond returns. On the other hand, these current

factors are priced in the yield curve today. But then controlling for sufficiently

many yields today is equivalent to controlling for the factors. I explain that

this intuition carries to more complicated models after controlling for the

generally non-linear relationship between bond returns and past yields.

I find that past bond returns predict future returns also conditional on

the information in the yield curve today. Hence the spanning condition
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implied by standard models is violated in the data.

This point is similar to that made by Joslin et al. (2014), who study

affine term structure models with macroeconomic factors. Emprically macro

variables predict returns even after controlling for current yields. They

therefore argue that the data can only be explained by a model with unspanned

macro factors. However, they do not address momentum or consider the

predictive power of past returns.

Can behavioral theories resolve my findings? Not necessarily. The reasons

is that the current behavioral models still imply the same affine form for

yields though the coefficients and factors might be different from rational

models. Therefore these models still cannot generate yield curve momentum

conditional on all the information in the yield curve today.

However, I propose a model that is consistent with the above empirical

findings. In this model, factors exhibit longer term dependencies. However,

these longer term relations are not priced in the term structure of interest

rates today. Because past returns include information about such unpriced

dependencies, they predict future returns also conditional on current yields.

I discuss two possible economic explanations for longer term dependencies

to be unpriced. The first is a simple behavioral narrative: agents do not

understand that factor dynamics have longer dependencies and bond prices

reflect this misunderstanding. Second, I sketch a model with rational

arbitraugeurs and simple rule-based traders. In this model, the demand

from rule-based traders affects the duration risk that must be absorved by

arbitraugers. This effect can offset some of the effects of expected short rates

on bond prices and imply a violation of the standard spanning condition.

2 Data and Definitions

I use the dataset on zero coupon US Treasury yields constructed by Liu and

Wu (2020). These yields are built using a novel non-parametric method,

which implies lower pricing errors compared to previous interpolation

procedures. I apply a sample of end of month data between August 1971 and
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December 2019 and focus on the yields and returns on 1 to 10 year bonds as

well 1 month bills. In the appendix I show that the key results are robust to

using the alternative dataset constructed by Gürkaynak et al. (2007), the data

concerning the German yield curve available on the Bundesbank webpage

and the Bloomberg US Treasury Index.

I obtain the federal funds target rate and the relevant target ranges from

FRED. For monetary policy shock identification I utilize a series of the front

month federal funds futures contract listed on the CME. Finally, I use the

information on the Federal Reserve web page to create a series of the meeting

dates of the Federal Open Market Committee.

I denote the monthly continuously compounded yield of maturity n by

ynt . The logarithmic excess monthly return of maturity n bond is then given

by

rxnt+1 = −(n− 1)yn−1
t+1 +nynt − y1

t (1)

and the return between periods t and any t + h, rxnh,t+h, is given by the

sum over the one period excess returns.

3 Regression Evidence

I start by considering a simple regression of the form

rxnt+1 = α + βrxnt−h,t + εt+1 (2)

that is I regress the excess monthly return of an n maturity bond on the

excess return of an n maturity bond between periods t − h and t. When

calculating excess returns I hold maturity constant that is roll over the bond

each month. I focus on lookback horizons (h) of 1,3,6 and 12 months. The

results are given in table 1 and demonstrated further in figure 1.

The results are statistically significant for the return over the past month.

However, the results for longer horizon past returns are not significant.

Therefore, for the rest of this paper, I focus on the one month horizon. This
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is in contrast to Moskowitz et al. (2012) who focus on 1 year past returns.3

I also ignore the volatility scaling applied by Moskowitz et al. (2012) as it

can induce return predictability unrelated to raw momentum in returns as

discussed in Kim et al. (2016) and Huang et al. (2020).

The regression betas decline in bond maturity. Hence the term structure

of momentum coefficients is downward sloping. In the theoretical section I

show that this is inconsistent with one factor interest rate models.

The results for the 1 month horizon have strong economic significance

illustrated in table 2 and figures 2 and 3. These show the mean excess returns

and annualized Sharpe ratios for different maturity bonds both for the full

sample and in two subsamples with positive and negative past month excess

returns for the same maturity bond. The mean returns and Sharpe ratios

are substantially higher following positive rather than negative past month

returns. The mean returns are increasing in bond maturity but Sharpe ratios

decreasing in maturity. The Sharpe ratios of short maturity bonds are over

0.8 for months following positive excess returns in the previous month.

Figure 4 provides an alternative way to look at the above momentum

patterns. It shows the share of total excess bond returns explained by excess

returns in months with positive past month excess returns. For all maturities

the bulk of returns comes from months with positive past month returns. For

many maturities this share is more than 100 per cent because average returns

in months with negative past month returns are negative. Because on average

only 56 % of months show positive excess returns, these relationships are

not mechanical. The appendix contains additional results concerning the

invesment performance of a simple momentum strategy.

Factor momentum Yields and bond returns are often found to exhibit

strong factor structures (see e.g. Cochrane and Piazzesi (2005)). Hence yield

curve momentum might also be captured well using a simple factors. I next

demonstrate that most of this momentum can indeed be catched using a

3Note that here the significance of 1 year past returns is somewhat better than for 3 and

6 month past returns.
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1 month lookback 3 month lookback

Mat. α t-value β t-value R2 α t-value β t-value R2

1 0.06 3.42 0.19 3.01 3.69 0.06 2.82 0.03 0.57 0.30

2 0.08 2.67 0.18 3.70 3.20 0.10 2.40 0.02 0.31 0.08

3 0.12 2.82 0.15 3.13 2.27 0.14 2.63 0.01 0.20 0.03

4 0.15 2.57 0.12 2.73 1.51 0.17 2.45 0.01 0.20 0.02

5 0.17 2.44 0.12 2.71 1.38 0.19 2.34 0.01 0.25 0.02

6 0.20 2.38 0.10 2.02 0.91 0.21 2.30 0.01 0.31 0.03

7 0.20 2.17 0.10 2.05 0.91 0.22 2.13 0.01 0.24 0.02

8 0.22 2.11 0.10 2.11 0.98 0.24 2.08 0.01 0.31 0.03

9 0.22 1.90 0.10 2.14 0.92 0.23 1.89 0.01 0.28 0.02

10 0.24 1.90 0.09 1.99 0.79 0.26 1.89 0.01 0.24 0.02

6 month lookback 12 month lookback

1 0.06 2.73 0.02 0.62 0.26 0.05 1.81 0.02 1.23 0.97

2 0.10 2.28 0.01 0.47 0.12 0.07 1.56 0.03 1.47 1.05

3 0.14 2.49 0.01 0.47 0.09 0.10 1.72 0.03 1.54 0.95

4 0.16 2.34 0.01 0.45 0.06 0.12 1.69 0.02 1.53 0.79

5 0.19 2.26 0.01 0.37 0.04 0.15 1.70 0.02 1.44 0.63

6 0.21 2.21 0.01 0.49 0.06 0.17 1.69 0.02 1.45 0.61

7 0.21 2.04 0.01 0.47 0.05 0.17 1.62 0.02 1.37 0.53

8 0.23 1.99 0.01 0.58 0.08 0.19 1.61 0.02 1.40 0.54

9 0.23 1.83 0.01 0.39 0.04 0.20 1.49 0.02 1.30 0.47

10 0.26 1.84 0.01 0.31 0.02 0.22 1.51 0.02 1.23 0.42

Table 1: shows the results from regressing the excess returns of different maturity

bonds (years) on the past return for the same maturity bond for lookback horizons

of 1,3,6 and 12 months. The t-values are based on Newey and West (1987) standard

errors and the lag selection procedure of Newey and West (1994)
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Figure 1: shows the slope coefficients and the relevant 95% confidence

bounds from regressing the returns of different maturity bonds (years) on

the past return for the same maturity bond for lookback horizons of 1,3,6

and 12 months.
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Average excess returns (%)
Maturity 1 2 3 4 5 6 7 8 9 10

All months 0.07 0.10 0.15 0.17 0.20 0.22 0.22 0.25 0.24 0.26

Positive past month ret. 0.09 0.17 0.26 0.30 0.37 0.40 0.38 0.41 0.49 0.57

Negative past month ret. 0.04 0.01 0.00 0.01 -0.02 -0.01 0.03 0.05 -0.05 -0.11

Sharpe ratios (annual)

All months 0.57 0.43 0.44 0.40 0.38 0.36 0.33 0.33 0.29 0.29

Positive past month ret. 0.83 0.82 0.78 0.71 0.72 0.66 0.56 0.53 0.59 0.64

Negative past month ret. 0.26 0.04 0.00 0.02 -0.04 -0.01 0.04 0.06 -0.07 -0.12

Table 2: shows the mean excess returns and annualized Sharpe ratios for different

maturity bonds in both the full sample and in two subsamples: following positive

and negative past month excess returns.
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Figure 2: shows the mean returns for different maturity bonds both for the

full sample and in subsamples following positive and negative past month

returns.
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Figure 3: shows the annualized Sharpe ratios for different maturity bonds

both for the full sample and in subsamples following positive and negative

past month returns.
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Figure 4: shows the share of total excess returns of different maturity bonds

earned in months with positive past month excess returns.11



Mat. α t-value β t-value R2

1 0.06 3.58 0.04 2.37 3.16

2 0.09 2.68 0.08 2.75 2.73

3 0.13 2.84 0.09 2.57 2.04

4 0.15 2.56 0.09 2.43 1.31

5 0.17 2.43 0.11 2.45 1.22

6 0.19 2.37 0.14 2.65 1.46

7 0.19 2.14 0.15 2.59 1.42

8 0.21 2.08 0.17 2.55 1.33

9 0.21 1.85 0.17 2.45 1.17

10 0.23 1.85 0.18 2.27 1.05

Table 3: shows the results from regressing the returns of different maturity bonds

on the previous month average return of different maturity bonds. The t-values are

based on Newey and West (1987) standard errors.

single factor.

Let us create a simple average of the different maturity bond returns as

r̄xt+1 =
1

10

∑
n∈N

rxnt+1, (3)

where N = {12,24,36,48,60,72,84,96,108,120}. I then run a regression

rxnt+1 = α + βr̄xt + εt+1 (4)

The results are given in table 3. Using the average of excess returns

across different maturity bonds leads to only a minor loss in predictive

power relative to using the past return of a bond with the corresponding

maturity. For longest maturity bonds the R2 actually increases but this

improvement is small. I confirm this overall result in the next section by

showing that the momentum is driven by a change in the first principal

component of yields. Note that the loadings for the momentum factor are

still different for returns based on different maturity bonds.
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4 Decompositions

What is driving the results obtained in the previous section? I next analyze

the sources of yield curve momentum using three decompositions. The

first is based on decomposing bond returns into a carry and yield change

component. The second decomposes returns into a risk premium and news

component. The third divides returns to a part that is spanned by yields and

to an unspanned residual component.

Carry-yield change decomposition To begin note that we can decompose

the excess return on a bond as

rxnt+1 = −(n− 1)yn−1
t+1 +nynt − y1

t = (5)

−(n− 1)yn−1
t +nynt − y1

t︸                       ︷︷                       ︸
excess carry

− (n− 1)(yn−1
t+1 − y

n−1
t )︸                  ︷︷                  ︸

yield change

≡ cnt − ycnt+1, (6)

where (excess) carry and yield change are given by

cnt = −(n− 1)yn−1
t +nynt − y1

t

and

ycnt+1 = (n− 1)(yn−1
t+1 − y

n−1
t )

Here carry describes the excess return on a bond assuming the yield

curve would remain unchanged. This part of the return between t and t + 1

is observable already at time t. On the other hand, yield change represents

the effect of a change in the yield curve on the bond excess return. Therefore

for the covariance between current returns and past returns we have

Cov(rxnt+1, rx
n
t ) = Cov(rxnt+1, c

n
t−1 − yc

n
t ) = (7)

Cov(cnt , c
n
t−1) +Cov(−ycnt+1, c

n
t−1) +Cov(cnt ,−ycnt ) +Cov(−ycnt+1,−yc

n
t ) (8)

13



Maturity Cov(cnt , c
n
t−1) Cov(cnt , yc

n
t ) Cov(ycnt+1, c

n
t−1) Cov(ycnt+1, yc

n
t )

1 5.3 -0.9 5.6 90.0

2 7.2 1.4 2.7 88.7

3 5.7 2.4 3.0 88.9

4 5.4 2.2 4.8 87.5

5 4.7 4.1 2.3 88.9

6 4.9 5.3 4.9 85.0

7 4.1 1.1 3.4 91.5

8 3.7 4.8 6.1 85.3

9 3.3 3.7 6.3 86.7

10 3.6 0.2 2.8 93.4

Table 4: shows the share of covariance between bond return and past month bond

return in per cent accounted by the four channels

This implies that past bond returns can predict future bond returns either

because (i) past carry predicts current carry, (ii) past carry predicts future

yield changes, (iii) past yield changes predict current carry or (iv) past yield

change predicts future yield change.

Because current carry is observable one might argue that (i) and (iii) do

not constitute an economically interesting form of predictability. Moreover,

it is not clear that such covariance should be called ”momentum”. However,

an investor would certainly benefit from being able to predict future yield

changes. Moreover, especially covariance between future yield changes and

past yield changes would aptly be called momentum. Such separations

are not clear from standard treatments of time series momentum such as

Moskowitz et al. (2012).

Table 4 gives the covariance decomposition above. One can see that

covariance between future and past bond returns is mainly due to covariance

between future and past yield changes. I also test these dependencies using

the following regressions:
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cnt = α + βcnt−1 + εt+1 (9)

cnt = α + βycn−1
t + εt+1 (10)

ycnt+1 = α + βcn−1
t + εt+1 (11)

ycnt+1 = α + βycn−1
t + εt+1 (12)

The results are given in table 5.The coefficient for the past carry in

the carry prediction regression and the coefficient for past yield change in

the yield change prediction regression are statistically significant. On the

other hand, I do not find evidence of significant cross carry-yield change

predictability. Note that even though there is a statistically robust relationship

between past carry and future carry, because carry does that vary much its

contribution to the covariance between future and past returns is small.

Autocorrelation between yields appears to be strongest for shorter maturity

bonds, which explains why the relationship between past and future returns

is also strongest for these maturities.

Given these findings I now revisit the question about whether yield curve

momentum can be captured using a single factor. In particular I explore this

further using principal component analysis. I extract the first three principal

components using all the 120 maturities between 1 month and 10 years. I

then consider the following regressions:

rxnt+1 = α + β(pc1
t − pc1

t−1) + εt+1 (13)

rxnt+1 = α + β(pc2
t − pc2

t−1) + εt+1 (14)

rxnt+1 = α + β(pc3
t − pc3

t−1) + εt+1 (15)
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cnt on cnt−1 cnt on ycnt
Mat. α t-value β t-value R2 α t-value β t-value R2

1 0.01 3.76 0.85 28.79 72.59 0.07 10.38 -0.00 -0.14 0.01

2 0.01 2.59 0.92 42.82 83.68 0.09 9.77 0.00 0.33 0.04

3 0.01 2.43 0.90 27.50 81.06 0.13 12.01 0.00 0.61 0.13

4 0.01 2.57 0.93 44.80 85.66 0.14 11.89 0.00 0.58 0.11

5 0.01 2.42 0.93 48.49 87.18 0.16 12.05 0.01 1.21 0.41

6 0.01 2.48 0.94 52.78 88.38 0.18 12.52 0.01 1.45 0.53

7 0.01 2.57 0.93 48.16 87.18 0.17 11.92 0.00 0.34 0.03

8 0.01 2.40 0.94 55.93 89.14 0.19 12.02 0.00 1.44 0.59

9 0.01 2.37 0.94 51.06 88.21 0.18 11.19 0.00 1.38 0.39

10 0.01 2.28 0.95 57.19 89.75 0.19 10.97 0.00 0.08 0.00

ycnt+1 on cnt−1 ycnt+1 on ycnt

1 0.01 0.23 -0.07 -0.03 0.00 0.00 0.23 0.16 2.38 2.72

2 -0.02 -0.25 0.55 0.32 0.15 0.01 0.30 0.16 3.13 2.64

3 -0.00 -0.04 0.23 0.20 0.04 0.02 0.35 0.14 2.70 1.84

4 -0.06 -0.45 0.80 0.59 0.25 0.02 0.40 0.11 2.28 1.19

5 -0.10 -0.69 1.15 0.82 0.40 0.03 0.44 0.11 2.38 1.12

6 -0.16 -0.97 1.49 1.13 0.64 0.04 0.47 0.08 1.71 0.68

7 -0.05 -0.30 0.74 0.59 0.15 0.04 0.47 0.09 1.84 0.78

8 -0.22 -1.15 1.73 1.44 0.82 0.05 0.48 0.09 1.82 0.74

9 -0.26 -1.32 2.00 1.78 1.09 0.05 0.49 0.08 1.85 0.72

10 -0.06 -0.25 0.74 0.66 0.15 0.06 0.48 0.08 1.82 0.70

Table 5: shows the results of regressing carry cnt and yield change ycnt+1 on their

past values. The t-values are based on Newey and West (1987) standard errors.
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rxnt+1 = α + β1(pc1
t − pc1

t−1) + β2(pc2
t − pc2

t−1) + β3(pc3
t − pc3

t−1) + εt+1 (16)

That is I explain returns using the change in the first three principal

components of yields, first individually and then including them all in one

regression. The principal components appear standard. The first principal

component explains roughly 98.5% of the variation in yields. While this

component is often called a level factor, the yield loadings decline slightly

in bond maturity. That is they drop from around 0.098 for 1 month yields to

0.082 for 10 year bonds.

This is important because a pure level shift in the yield curve does not

create variation in excess bond returns. The average contemporaneous

correlation between the change in this factor and excess bond returns is

-0.95. That is an increase in this factor is related to an upward shift in the

yield curve but also to negative excess returns on long-term bonds.

The second component has positive loadings on short term yields and

negative loadings on long term yields and could be called a slope factor. The

third component has positive loadings on short and long maturity yields

and negative loadings on mid-maturity yields. This component represents

curvature. The first three components together account for 99.97% of the

variation in yields.

The results for individual regressions are given in table 6. Here only

the change in the first principal component of yields is clearly significant,

though in some regressions changes in the curvature factor are significant

at a 10%-confidence level. The results for the regressions with all three

included at the same time are given in table 7. Again only the first principal

component is significant. This suggests that yield curve momentum is driven

by changes in a single factor.4

4These findings are related to those in Hoogteijling et al. (2021), who in contemporaneous

work find evidence that yield changes can predict bond returns. Using an annual rather

than monthly horizon, they also find evidence that changes in the slope and curvature

factors can forecast returns.
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pc1 pc2

Mat. α t-value β t-stat R2 α t-value β t-value R2

1 0.07 4.00 -0.02 -2.47 3.41 0.07 3.63 -0.02 -0.85 0.27

2 0.10 3.05 -0.03 -2.86 2.59 0.10 2.75 -0.01 -0.23 0.02

3 0.14 3.14 -0.04 -2.57 1.85 0.15 2.85 -0.01 -0.11 0.00

4 0.17 2.79 -0.04 -2.29 1.07 0.17 2.60 0.01 0.10 0.00

5 0.19 2.65 -0.05 -2.22 0.94 0.19 2.48 0.02 0.31 0.02

6 0.21 2.60 -0.06 -2.39 1.17 0.22 2.41 0.02 0.27 0.02

7 0.22 2.37 -0.07 -2.37 1.22 0.22 2.21 -0.01 -0.15 0.01

8 0.24 2.30 -0.07 -2.36 1.21 0.24 2.15 -0.04 -0.40 0.04

9 0.23 2.06 -0.07 -2.23 1.02 0.24 1.94 -0.02 -0.21 0.01

10 0.25 2.05 -0.08 -2.09 0.92 0.26 1.93 -0.03 -0.23 0.01

pc3

1 0.07 3.55 0.06 0.99 0.74

2 0.10 2.76 0.12 1.17 0.71

3 0.15 2.88 0.16 1.32 0.70

4 0.17 2.63 0.17 1.21 0.49

5 0.19 2.51 0.23 1.34 0.59

6 0.22 2.45 0.37 1.85 1.20

7 0.22 2.23 0.38 1.71 0.98

8 0.24 2.17 0.40 1.61 0.87

9 0.24 1.96 0.45 1.68 0.93

10 0.26 1.95 0.45 1.55 0.76

Table 6: shows the results of predicting returns of different maturity bonds on the

change in the first three principal components separately. The t-values are based on

Newey and West (1987) standard errors.
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Mat. α t-value β1 (pc1) t-value β2 (pc2) t-value β3 (pc3) t-value R2

1 0.07 3.99 -0.02 -2.25 -0.01 -0.60 0.03 0.53 3.65

2 0.10 3.02 -0.03 -2.39 0.00 0.02 0.06 0.59 2.76

3 0.14 3.10 -0.04 -2.04 0.00 0.06 0.10 0.73 2.08

4 0.17 2.77 -0.04 -1.70 0.01 0.20 0.10 0.62 1.27

5 0.19 2.62 -0.04 -1.61 0.03 0.35 0.15 0.75 1.25

6 0.21 2.58 -0.05 -1.60 0.02 0.21 0.28 1.22 1.87

7 0.22 2.35 -0.05 -1.63 -0.01 -0.15 0.29 1.15 1.73

8 0.24 2.28 -0.06 -1.58 -0.04 -0.39 0.31 1.08 1.68

9 0.23 2.04 -0.06 -1.46 -0.03 -0.24 0.36 1.16 1.54

10 0.26 2.02 -0.06 -1.38 -0.03 -0.25 0.35 1.06 1.33

Table 7: shows the results of predicting returns of different maturity bonds on the

change in the first three principal components together. The t-values are based on

Newey and West (1987) standard errors.

Risk premium-news decomposition I next study the anatomy of yield

curve momentum using a variant of a well-known decomposition of returns

into a risk premium and news component. In particular we have

rxnt+1 = Et[rx
n
t+1]︸    ︷︷    ︸

Expectation

+rxnt+1 −Et[rx
n
t+1]︸              ︷︷              ︸

News

(17)

Therefore also

Cov(rxnt+1, rx
n
t ) = Cov(Et[rx

n
t+1],Et−1[rxnt ]) +Cov(Et[rx

n
t+1], rxnt −Et−1[rxnt ])

(18)

Here I used the fact that the news component should be uncorrelated

with information known when forming the expectation. The decomposition

implies that bond returns are correlated with past bond returns either due

to autocorrelation in bond risk premia or because the bond risk premium is

correlated with past unexpected shocks to the premium.
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One benefit of the carry-yield change decomposition is that both components

can be easily measured in the data. However, risk premia are not directly

observable and must be approximated using a model. Here I consider a

simple linear predictive regression:

rxnt+1 = A′Xt + εt+1 (19)

Note that such a form is implied by standard term structure models,

though the exact number of principal components depends on the number

of factors. I focus on yield curve factors as predictors.5 In particular I include

the first five principal components as well as their lagged values. Now we

have

Cov(rxnt+1, rx
n
t ) = Cov(A′Xt,A

′Xt−1) +Cov(A′Xt,εt)+ (20)

Cov(εt+1,A
′Xt−1) +Cov(εt+1,εt) (21)

The last two terms can be seen as the effect of approximation error of

the model, which arises if the model is not exactly correct or if principal

components are measured with error.

The results are given in table 8. We can see that for short maturity

bonds, momentum is mainly because unexpected past bond returns increase

the next period bond risk premium. However, for longer maturity bonds,

the two channels are roughly equally important. The approximation error

components are fairly small, with perhaps the exception of 5 and 6 year

bonds. This suggests that the model provides a reasonable approximation to

bond risk premia.

Spanning decomposition Past bond returns can predict future bond returns

either because i) past bond returns contain information about current yield

5We could also include macroeconomic variables as predictors. However, yield factors

seem better at forecasting returns.
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Maturity Risk premia News Error

1 21.4 % 78.6 % 0.0 %

2 22.0 % 78.4 % -0.4 %

3 25.5 % 80.3 % -5.9 %

4 29.2 % 71.1 % -0.2 %

5 27.2 % 66.1 % 6.7 %

6 30.3 % 77.9 % -8.3 %

7 34.7 % 68.1 % -2.7 %

8 40.8 % 60.2 % -1.1 %

9 44.3 % 55.5 % 0.2 %

10 51.6 % 49.3 % -0.9 %

Table 8: shows the decomposition of covariance between the return of different

maturity bonds and their past value into the autocovariance of risk premia,

covariance between risk premia and past unexpected bond returns and covariance

between past returns and an approximation error component.

curve factors that predict future bond returns or ii) past returns contain

additional information relevant for future returns. Formally the first explanation

implies that past returns are spanned by current yields whereas the second

implies that they are not. As explained later standard term structure models

imply that the spanning condition holds so that yield curve momentum

should be explained by the first channel.

To test the relevant importance of the two channels consider a linear

projection of returns on the principal components of yields

rxnt+1 = A′P Ct + εt+1 (22)

The autocovariance in bond returns can then be decomposed to spanned

and unspanned parts.
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Maturity Spanned Unspanned

1 32.3 % 67.7 %

2 27.1 % 73.0 %

3 35.2 % 64.8 %

4 47.2 % 52.8 %

5 51.3 % 48.7 %

6 65.5 % 34.6 %

7 66.6 % 33.4 %

8 69.2 % 30.8 %

9 69.5 % 30.5 %

10 77.6 % 22.4 %

Table 9: shows the decomposition of covariance between the return of different

maturity bonds and their past value into a part spanned by yields and an unspanned

part.

Cov(rxnt+1, rx
n
t ) = Cov(rxnt+1,A

′P Ct)︸                ︷︷                ︸
Spanned

+Cov(rxnt+1, rx
n
t −A′P Ct)︸                        ︷︷                        ︸

Unspanned

(23)

I apply seven principal components of yields as including further components

has minor effects on the results. The results are given in table 9 and

suggest that both the spanned and unspanned components of returns are

important to explaining yield curve momentum. For short maturity bonds

the unspanned components account for most of momentum but for longer

maturities the spanned component appears more important.

Testing Spanning Results from the spanning decomposition above suggest

that unspanned variation in returns is important to explaining yield curve

momentum. This appears true especially for short maturity bonds. I now test

this result more formally by including the first three principal components

into the predictive regression shown in table 1. The results are given by in
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Mat. β1 (rxt−1) t-stat β2 (pc1) t-stat β3 (pc2) t-stat β4 (pc3) t-stat R2

1 0.19 2.61 0.0012 1.63 0.00 -0.39 -0.03 -1.28 5.12

2 0.18 3.27 0.0014 1.15 -0.01 -0.82 -0.08 -2.22 5.02

3 0.15 2.86 0.0017 1.05 -0.02 -1.29 -0.11 -2.46 4.43

4 0.13 2.50 0.0016 0.77 -0.03 -1.64 -0.15 -2.58 3.93

5 0.12 2.51 0.0016 0.65 -0.04 -1.81 -0.17 -2.32 3.70

6 0.09 1.81 0.0013 0.47 -0.06 -2.12 -0.15 -1.80 3.00

7 0.09 1.81 0.0010 0.32 -0.07 -2.44 -0.15 -1.52 3.06

8 0.09 1.87 0.0013 0.34 -0.08 -2.67 -0.15 -1.29 3.24

9 0.09 1.90 0.0004 0.09 -0.09 -2.64 -0.13 -1.01 2.92

10 0.08 1.77 0.00 0.00 -0.10 -2.71 -0.13 -0.87 2.74

Table 10: shows the results of predicting returns of different maturity bonds on

the past return of the bond and the first three principal components of yields. The

t-values are based on Newey and West (1987) standard errors.

10. The table suggests that the past return is still significant. However, for

higher maturity bonds this significance is obtained only at the 10% level.

Higher principal components of yields can contain information useful for

predicting bond returns. Therefore in the appendix I extend this regression

by controlling for more information in the yield curve as well as potential

non-linearities. Here the past return is significant for shorter but not for

longer maturities. These results further confirm that, at least for short

maturities, the unspanned components of returns are important for explaining

yield curve momentum.

5 Momentum and Post-FOMC Announcement Drift

How are these findings related to monetary policy? Because especially the

short end of the yield curve tends to be tightly controlled by the Fed, yield

curve momentum might be induced by policy rate changes. This is also due

to recent findings related to post-FOMC announcement drift. Brooks et al.
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Figure 5: shows the correlation between the change in the Federal funds

target rate (FFTR) and the change in the yield of different maturity (in

months) bonds in two subsamples: full and months with non-zero FFTR

changes.

(2019) find that longer term bond yields respond sluggishly to changes in

the federal funds target rate.6

I now study this relationship using data on the federal funds target rate.

I also utilize data on federal funds futures and the FOMC announcement

dates to construct a series of surprise changes in the federal funds rate as in

Kuttner (2001). The data period for the federal funds target rate begins in

October 1982 and the data for monetary policy surprises on October 1988.

Figure 5 shows the correlation between changes in yields and changes

in the federal funds target rate. It does so in two samples: the full sample

starting in 82 and a subsample of months with a non-zero change in this

policy rate. Excluding months with no rate changes this correlation is close

to 0.8 at the short end of the yield curve but only around 0.3 at the long

end. The decline in correlation for longer maturity bonds is natural since the

6There is a similar drift pattern in equity markets after rate changes, see Neuhierl and

Weber (2018).
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federal funds rate is an overnight rate. All of these correlations are somewhat

smaller in the full sample; overall roughly 30% of months included changes

in the policy rate.

I now consider the following regressions

rxnt+1 = α + β∆FFTRt + εt+1. (24)

rxnt+1 = α + β∆UEFFTRt + εt+1. (25)

That is I explain the returns of different maturity bonds on the raw

change of the past month federal funds target rate as well the unexpected

change in this rate. These regressions are related to those considered by

Cook and Hahn (1989) and Kuttner (2001) except that I consider the past

rather than the contemporaneous change in the policy rate.7

The results are given in table 11. Here I also show the results from

regressing bond returns on the change in the previous month change in the

corresponding yield for the same period when the target rate is available.

Results when using the federal funds target rate and bond yield are similar

for shorter maturities, which is perhaps not surprising since these yields are

highly correlated with the target rate. However, for longer maturities the

target rate change is not significant while the yield change is. Therefore it

seems that yield curve momentum is closely related but still separate from

post-FOMC announcement drift.

Table 11 also shows the results when the independent variable is the

past surprise change in the federal funds rate. Interestingly the results are

not significant for 1 and 2 year bonds but become significant for longer

maturities. Therefore long maturity bonds seem to have a stronger drift

pattern after surprise changes in the federal funds rate. The sample period

for these regressions is somewhat shorter though.

7Cook and Hahn (1989) and Kuttner (2001) also look at yield changes rather than excess

returns.
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FFTR change ycn

Mat. α t-value β t-value R2 α t-value β t-value R2

1 0.08 6.23 -0.21 -3.08 3.80 0.08 6.33 -0.17 -3.02 5.38

2 0.13 4.58 -0.33 -2.47 1.87 0.08 6.25 -0.16 -3.36 4.99

3 0.19 4.31 -0.39 -1.92 1.02 0.08 6.07 -0.14 -3.24 3.94

4 0.23 3.97 -0.42 -1.57 0.64 0.08 5.96 -0.12 -3.16 3.15

5 0.27 3.71 -0.43 -1.28 0.43 0.08 5.90 -0.11 -3.02 2.45

6 0.31 3.60 -0.32 -0.82 0.17 0.08 5.80 -0.10 -2.61 1.98

7 0.34 3.39 -0.12 -0.27 0.02 0.08 5.75 -0.09 -2.50 1.58

8 0.38 3.34 -0.15 -0.28 0.02 0.08 5.71 -0.09 -2.30 1.37

9 0.39 3.12 -0.11 -0.19 0.01 0.08 5.69 -0.09 -2.28 1.21

10 0.43 3.09 -0.11 -0.17 0.01 0.08 5.69 -0.09 -2.21 1.07

Unexpected FFTR change

1 0.09 4.27 -0.26 -1.32 2.04

2 0.14 2.49 -0.49 -1.54 1.08

3 0.19 2.23 -0.96 -1.87 1.73

4 0.22 1.99 -1.45 -2.08 2.20

5 0.25 1.86 -1.84 -2.11 2.41

6 0.28 1.83 -2.28 -2.16 2.76

7 0.31 1.81 -2.52 -2.02 2.60

8 0.34 1.78 -2.76 -1.95 2.54

9 0.35 1.72 -3.02 -1.95 2.55

10 0.39 1.78 -3.43 -2.05 2.85

Table 11: shows the results from regressing the returns of different maturity bonds

(years) on the previous change in federal funds target rate, change in the previous

yield for the same maturity bond and the previous month unexpected change in

the federal funds target rate (Kuttner, 2001). The t-values are based on Newey and

West (1987) standard errors.
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Monetary policy is related to the news part of the return decomposition

analyzed in the previous section. The average correlation between target rate

changes and the news component of returns is −0.3 with higher absolute

values for short maturity bonds. Bond return shocks are related but not fully

driven by changes in the policy rate.

We can also analyze the contribution of target rate changes to yield curve

momentum using a decomposition. I project bond returns on contemporaneous

changes in the federal funds rate as follows:

rxnt = α + β∆FFTRt + εt. (26)

Using this projection, I can then decompose bond return autocovariance

into an effect caused by changes in the federal funds target rate and a residual

component:

Cov(rxnt+1, rx
n
t ) = Cov(rxnt+1,β∆FFTRt)︸                      ︷︷                      ︸

FFR effect

+Cov(rxnt+1,εt)︸          ︷︷          ︸
Other

(27)

The results are given in table 12. This simple decomposition suggests that

target rate changes are an important contributor to momentum for shorter

maturities but less so for longer maturities.

Overall, yield curve momentum is therefore connected with but not

identical to post-FOMC announcement drift. Past month yield hikes predict

low returns in the following month. These yield changes can be partly but

not fully explained with same month movements in the policy rate. For

example the momentum coefficients are still significant in the subsample

of months with no policy rate changes. The appendix contains additional

discussion concerning the post-FOMC announcement drift.

Finally, note that the above discussion is unlikely to fully capture the

broad relationship between monetary policy and yield curve momentum.

Yields tend to fluctuate also in periods without any formal monetary policy

decisions. However, this does not imply that such changes are unrelated to
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Maturity FFTR effect Other

1 47.3 % 52.7 %

2 31.0 % 69.0 %

3 20.3 % 79.8 %

4 21.3 % 78.8 %

5 17.1 % 82.9 %

6 13.6 % 86.4 %

7 5.3 % 94.7 %

8 7.4 % 92.6 %

9 4.8 % 95.2 %

10 4.8 % 95.2 %

Table 12: shows the decomposition of covariance between the return of different

maturity bonds and their past value into a part explained by change in the federal

funds target rate and a residual component.

monetary policy. These fluctuations might for example still reflect changes

in the market participants’ views about future monetary policy actions.

6 Momentum and Affine Term Structure Models

How to account for the above empirical findings in a term structure model?

I start by introducing a baseline affine term structure model and 8 discussing

minimal requirements implied by the data. It is seen that especially the

violation of the spanning condition implies strong restrictions for such a

model.

Assume that bond prices are a function of an m×1 dimensional factor Xt.

This factor follows:

Xt = µ+φXt−1 + vt, (28)

8See e.g. Ang and Piazzesi (2003) and Cochrane and Piazzesi (2009)
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where vt is multivariate Gaussian vt ∼ N (0,V ). The log nominal discount

factor is a linear function of the factors

Mt+1 = exp
(
−δ0 − δ′1Xt −

1
2
λ′tVλt −λ′tvt+1

)
λt = λ0 +λ1Xt

We can then solve bond prices recursively using

p1
t = logEt(Mt+1) (29)

pnt = logEt(Mt+1 exp(pn−1
t+1 )) (30)

In this model prices and yields take an affine form.

pnt = An +B′nXt (31)

here

A0 = 0, B0 = 0

Bn+1 = −δ1 +B′nφ
∗

An+1 = −δ0 +An +B′nµ
∗ +

1
2
B′nVBn

Here the risk neutral parameters are given by

φ∗ = φ−Vλ1 (32)

µ∗ = µ−Vλ0 (33)

The model implies an analytical expression for the momentum slope coefficient

given in the following proposition:
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Proposition 1. The slope coefficient in the momentum regression is given by

βn,m =
Cov(rxnt+1, rx

n
t )

V ar(rxnt )

Here

Cov(rxnt+1, rx
n
t ) =

(n− 1)2B′n−1φVBn−1 − (n− 1)B′n−1φ
2Σ(nBn −B1)

−(n− 1)(nB′n −B′1)VBn−1 + (nB′n −B′1)φV (nBn −B1)

and

V ar(rxnt ) =

(n− 1)2B(n− 1)′VB(n− 1)− 2(n− 1)B(n− 1)′φV (nB(n)−B(1))+

(nB(n)′ −B(1)′)V (nB(n)−B(1))

Proof: see appendix.

What type of affine term structure model can generate momentum? I

first discuss the general restrictions imposed by the empirical findings. To

begin note that in order to generate yield curve momentum, one needs a

model with time-varying bond risk premium:

Remark 1. The momentum slope coefficient is zero in a model with a constant

(but possibly maturity specific) risk premium λ1 = 0.

The proof of the remark follows from the decomposition of bond returns

into a risk premium and news component. The news component cannot

be forecasted with past returns by definition. Now also the best forecast of

the risk premium is a constant so the slope coefficient in the momentum

regression would be zero.

Table 1 shows that the regression slope coefficient is decreasing in bond

maturity. This effectively rules out models in which the coefficient is constant

across maturities. In particular we have the following remark:
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Remark 2. The momentum slope coefficient is constant across maturities in a

one factor model.

Proof: see appendix.

This result is related to fact that in one factor interest rate models all

bond yields are perfectly correlated (see e.g. Vasicek (1977)).

In the empirical part I established that yield curve momentum is primarily

driven by the change in the first principal component of yields. But does this

imply that one could capture most of momentum using a single factor term

structure model? This reasoning is incorrect as this finding rather suggests

that the model should include information about both the first principal

component and its past value rather suggesting a minimum of two factors.

Our empirical results suggest that momentum should be explained by

a model in which past returns are not spanned by information in current

yields. As discussed in the next section this observation poses difficulties

for standard models. These models tend to imply that the same model

factors that forecast bond returns also drive variation in yields. Therefore

controlling for sufficiently many yields is equivalent to controlling for the

factors and no other variable should contain additional information for

forecasting bond returns. However, similarly to Joslin et al. (2014), we can

generate a violation of this spanning condition by parametrizing the model

to a knife-edge case for which an invertibility condition condition holds.

Remark 3. Past bond returns can predict future returns conditional on the

information in the term structure today only if the following condition holds:

[Bn(1),Bn(2), ...,Bn(m)] is not invertible for n(i) ∈Z++.

Proof: see appendix.

The intuition for this result is that if an invertibility condition fails,

controlling for the yields is not generally equivalent to controlling for the

factors. Now some factors can predict returns and yield changes but not be

priced in the current term structure of yields.
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To conclude remarks 1-3 put constraints on the model that can explain the

key empirical findings. In particular they imply that we need a multifactor,

unspanned term structure model with a time-varying risk premium.

6.1 Spanning Puzzle and Problem with Standard Models

The finding that past returns can predict future returns controlling for

information in the yield curve today poses difficulties for standard models.

These models imply that bond returns and yields are both described by the

same small set of factors. The models do not naturally generate a violation

of the invertibility condition described in remark 3. I next discuss some of

these models:

Macrofinance Models I first consider the three main macrofinance models

used to explain asset returns: the long run risk model, the habit model

and the disarters model. In the long-run risk model (see e.g. Bansal and

Shaliastovich (2012)) bond yields take an affine form in the economic state

variables. Therefore this model is of the form discussed in the previous

section and for standard parametrizations cannot generate momentum

conditional on information in the term structure today.

In the habit model, bond yields are a generally non-linear function of

habit (see e.g. Wachter (2006)). Therefore the argument of the previous

section is strictly valid only up to a first order approximation of the underlying

model. However, as discussed in the appendix one can generalize Remark

3 to any well-defined function yt = g(Xt) so that there is no conditional

momentum after controlling for the generally non-linear relationship between

past yields and returns. The results obtained in the appendix also suggest

that controlling for non-linearities also does not alter the key conclusions.

Also the disasters model of Gabaix (2012) implies that yields are of the

form yt = g(Xt) for state variables Xt. This is also true for any Markovian

model such as standard DSGE models. For example Rudebusch and Swanson

(2012) offer a macroeconomic interpretation of term premia using a DSGE
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model with Epstein-Zin preferences. Therefore the general results apply to

this model subject to excluding knife-edge cases in which an invertibility

condition fails.

Models with Financial Frictions Vayanos and Woolley (2013) posit that

momentum might be explained by frictions in delegated asset management.

Because the equilibrium is linear in state variables, the model can only

generate unconditional momentum. Similarly the preferred habitat term

structure model of Vayanos and Vila (2020) takes a standard affine form and

hence is unable to generate conditional momentum.

Behavioral Models I now turn to behavioral models and models with

heterogenous beliefs. Cieslak (2017) argues that short rate forecast errors can

explain bond return predictability. To explain the findings she estimates an

affine model using survey data under the assumption of zero subjective risk

premia . Because survey forecasts generally differ from rational predictions,

the coefficients of the model are generally different than under rational

beliefs. However, because the model is still of the standard affine form,

it cannot create momentum conditional on the information in the term

structure today.

Granziera and Sihvonen (2020) assume that agents have sticky rather than

perfectly rational expectations concerning short rates. This slow updating

creates a drift pattern in bond returns following short rates changes.9 Hence

the model naturally generates unconditional momentum. In this model

biased beliefs enter as new state variables but again the model takes a

standard affine form, which is inconsistent with conditional momentum.

In Xiong and Yan (2010) yields are a generally non-linear function of

the beliefs of different types of investors. Again this model cannot generate

conditional momentum controlling for non-linear dependencies between

returns and past yields.

9Brooks et al. (2019) also argue that a similar model can explain the post FOMC

announcement drift.
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The classic momentum model of Hong and Stein (1999) features only one

asset. The authors solve for an linear equilibrium. It is not obvious how to

extend the model to multiple assets but assuming such an extended model

were still linear the problems discussed above apply.

6.2 Accounting for Momentum in a Term Structure Model

I next discuss how to account for momentum in a term structure model. For

intuition I start with a simplified example and then move to a more realistic

estimated term structure model.

Simple Example

Consider a one factor model as in for example Vasicek (1977). However,

make the following twist. First, instead of the standard AR(1) dynamics

assume the factor follows an AR(2)-process. In such a model bond prices

generally depend on both the current value of the state variable xt and its

lag xt−1. However, assume the second lag is not priced that is under the risk

neutral pricing measure the factor follows an AR(1) process. This implies

that bond prices depend only on the current value of the factor xt.

I estimate the true factor dynamics from 1 month rates and find significant

persistence parameters of 1.077 for the first lag and −0.088 for the second.

For comparison fitting an AR(1) process would result in a persistence

parameter of 0.98. The predictability results hinge on a single parameter,

the risk neutral persistence of the factor. I calibrate this to match the relative

volatility between 10 year and 1 month rates. The corresponding market

price of risk parameters could be solved from equations 33 and 32 but are

not relevant for the exercise.

Now consider regressing the past excess return of a 5 year bond on the

previous month return of a 5 year bond. Using simulations I obtain a slope

coefficient of 0.08, that is the model is able to generate momentum, though

this coefficient is slightly smaller than in the data (0.12). Moreover, because

this is effectively a one factor model, this coefficient is actually constant
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across maturities, whereas in the data it is decreasing.

But then I repeat this exercise but now explain the return using the past

month return and the beginning of period yield of the bond. The coeffient

on the past return is still positive at roughly 0.07. That is the model is able

to generate momentum conditional on the information in the term structure

today.

Why is this model able to generate conditional momentum? In the data,

yields effectively follow an AR(2)-process. However, agents price bonds

as if the process is AR(1). The higher lag is not priced. Still this second

lag is useful for predicting future yields and returns. Because past returns

incorporate information about this second lag, including them into the

regression increases the model’s predictive power. Note that if the second

lag were priced, one could effectively back it out from the current yield curve

for example using principal component analysis.

Numerical Model

I next consider a more realistic estimated term structure model. I consider

a five factor model with the state variable [pc1
t ,pc

2
t ,pc

3
t ,pc

4
t ,pc

1
t−1]. That is

the state variables consists of the first four principal components of yields

and the lag of the first component of yields. The demeaned factor dynamics

are given by VAR(1) model in companion form with a coefficient matrix

φ =



φ11 φ12 φ13 φ14 φ15

φ21 φ22 φ23 φ24 0

φ31 φ32 φ33 φ34 0

φ41 φ42 φ43 φ44 0

1 0 0 0 0


(34)

These dynamics are otherwise standard but the first principal component

depends also on its second lag. I estimate the coefficient matrix directly

from the data using least squares. I estimate the risk neutral factor dynamics

and the short rate sensitivity paratemeters δ1 to minimize the following loss

criterion:
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Θ
1
N

1
T

N∑
n=1

T∑
t=1

(yn,mt − ynt )2 + (βm − β)′(βm − β) + (βm,c − βc)′(βm − βc)

The first term is essentially identical to the penalty function in Ang et al.

(2006) and Cochrane and Piazzesi (2009), the sum of squared deviations

between model implied and actually observed yields.10 The second term is

new: the sum of squared deviations between model implied and observed

momentum betas. The third term is also new: the squared deviations

between model implied and observed momentum betas conditional on

information in the yield curve. Finally Θ is a scaling parameter between the

first and the two other moment conditions. Overall, we can view this as a

GMM-type estimator with a weighting matrix
Θ
N 0 0

0 I 0

0 0 I

 (35)

To generate a violation of the spanning condition, I assume that the lag

of the first principal component is not priced that is under the risk neutral

measure the factor follows a standard VAR(1) model. Hence the yield factor

coefficients are of the form [B1(n),B2(n),B3(n),B4(n),0]. This implies that as

in Remark 3, this lag cannot be inferred from the current yield curve, which

results in non-zero values for the conditional momentum betas.

Figure 6 shows the resulting population momentum betas and conditional

momentum betas along with the values measured from the data. Overall one

can see that the model is able to replicate yield curve momentum in the data

quite accurately. The root mean squared error between model implied and

actual yields is 0.3%. Fit could be further improved by including additional

factors to the model.
10Here for the model implied yield we have yn,mt = −An+BnXt

n .
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Figure 6: shows the plain and conditional momentum coefficients observed

in the data and those implied by the estimated term structure model.
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6.3 Spanning Puzzle and Measurement Error

Duffee (2011) and Joslin et al. (2014) find evidence that some macroeconomic

variables can forecast bond returns conditional on the information in the

term structure today. They argue that the data should be explained by a term

structure model in which these macroeconomic variables are not spanned by

current yields. Similarly I argue that the empirical observations documented

in this paper must be explained by a model in which past bond returns are

not spanned by current yields.11

However, Bauer and Rudebusch (2017) argue that the empirical evidence

presented by Joslin et al. (2014) is rather due to measurement error in yields.

They estimate standard term structure models and show that introducing a

measurement error can explain why some macroeconomic variables appear

to forecast bond returns even after controlling for yields.

To study whether measurement error can account for my findings, I

estimate a spanned version of the 4 factor term structure model discussed

in the previous section to match average yield errors and momentum betas.

Here I impose a VAR(1) structure on the yields and assume all factors

are generally priced. I then simulated the regression slope coefficients

controlling for all yield curve information. Similarly to Bauer and Rudebusch

(2017), I introduce a normally distributed noise term to yields with the

standard deviation based on the yield measurement error found by Liu and

Wu (2020).

The simulated 5 per cent critical values for the momentum betas when

controlling for all yield curve information are between 0.07 - 0.1.12 Because

for short maturities the empirically observed values are above these thresholds,

measurement error does not appear to explain the violations of the spanning

hypothesis documented in this paper.

Of course I cannot fully rule that there exists some spanned term structure

model that is consistent with my empirical results after accounting for the

11See also Feunou and Fontaine (2014).
12The critical values in previous version of the paper were higher due to a typo in the

code.
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effects of measurement error. However, I have not found much support

for the measurement error explanation. Note that in addition to Joslin

et al. (2014), for example Moench and Siavash (2021) argue that unspanned

variables are important to explaining yield curve dynamics.

6.4 Economic Interpretations

I have argued that the empirical results of this paper are problematic for

standard theories that do not naturally generate a violation of the spanning

condition. But what is the economic reason that the spanning condition is

not satisfied? Why are past returns important for predicting future returns

but not be priced in the term structure of interest rates today?

Answering this question is challenging because unspanned models still

lack a full structural interpretation. Moreover, as in Duffee (2011) and

Joslin et al. (2014), these models require knife-edge restrictions on model

parameters. However, I now discuss two possible explanations.

A Simple Behavioral Explanation

The first possible explanation is behavioral. The unspanned model presented

above is consistent with a situation where the true expected value of the first

principal component of yields depends also on its second lag yet agents price

bonds as if it does not. That is agents ignore longer term dependencies in

the state variable process. Note that assuming AR(1) dynamics is also fairly

common in the term structure literature. The results of this paper show

that relaxing this assumption has important implications for bond return

dynamics.

Rational Arbitraugers and Rule-Based Traders

Another possible explanation is that demand from rule-based traders

offsets some of the effects of short rates on bond prices. I next sketch such a

model that is loosely motivated by the term structure model of Vayanos and

Vila (2020) and its modification in Hamilton and Wu (2012). This exercise
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also gives an economic interpretation to the simple unspanned one factor

model discussed before.

Assume there are two types of investors: rational arbitraugers and rule-

based traders. Arbitraugers maximize a mean variance objective over the

return of their portfolio rt,t+1:

Et[rt,t+1]− 1
2
γV art[rt,t+1]

Here the portfolio return is given by

rt+1 =
N∑
n=1

znrn,t,t+1

Here zn is the number of n maturity bonds held by the arbitrauger and

rn,t,t+1 is the return of the corresponding bond. Somewhat similarly to Hong

and Stein (1999), the model also features rule based traders. Assume their

demand for each bond (n ≥ 2) is given by χrt−1, where χ is a constant.13 By

market clearing

zn = −χrt−1

Finally assume, as in the simple one factor example, that short rate

dynamics are given by:

rt+1 = c+ ρ1rt + ρ2rt−1 + εt+1

We obtain the following result:

Proposition 2. There is a φ > 0 such that pnt = An +Bnrt. Here Bn = Bn−1ρ1 − 1.

Proof: see appendix.

The interest rate sensitivity parameters Bn are identical to our previous

one factor model that was able to generate both unconditional and conditional

13We could also add a maturity specific constant to this demand.
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momentum. However, here we do not have a free risk parameter to calibrate

the persistence separately from its objective counterpart. Using the already

estimated AR(2)-process for short rates, we can now simulate a plain momentum

slope coefficient of 0.26 and a conditional coefficient of 0.15. While this

model generates a sligthly stronger momentum pattern than in the data,

given its simplicity it does surprisingly well.

Given our estimated process, the model implies that high interest rates

are associated with high bond returns. An interpretation of the rule χrt−1 is

then that these traders demand more bonds during times of high interest

rates because they associate this with high returns. We could justify the use

of past month rather than current month interest rate, if they have some

sluggishness in executing trades and must decide their period t holdings

already at t−1. Interest rate levels could also be related to financial institutions

hedging demands.

Why do the arbitraugers price bonds as if the process is AR(1)? Conditional

on the current month rate rt, a high past month rate rt−1 predicts a lower

value for next month rate rt+1. This force pushes bond prices up already this

month. However, a high past month rate rt−1 implies high demand from rule

based traders. This implies that the arbitraugers must absorb more duration

risk. Because these two forces cancel out bond prices do not depend on rt−1.

7 Conclusion

I analyze time series momentum along the Treasury term structure. I find

that past returns predict future bond returns largely because of autocorrelation

in yield changes. This autocorrelation is further due to both autocorrelation

in bond risk premia and correlation between bond risk premia and past

unexpected bond returns. Because Treasury yields are correlated with the

federal funds rate, yield curve momentum is partly driven by post-FOMC

announcement drift. Finally, past returns are not spanned by information in

the current term structure of interest rates.

The last finding is particularly problematic for standard theory models,
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which predict that yield curve momentum should vanish after controlling

for sufficiently many yields. However, I show that the results are consistent

with a term structure model with unpriced longer term dependencies.

8 Appendix

8.1 Controlling for More Yield Curve Information

The main text shows the result from predicting bond returns using past bond

returns and the first three principal components of yields. I now extend

these results using the following regression:

rxnt+1 = α + β1rx
n
t +

∑
i∈S

βsy
i
t + εt+1, (36)

where the selected yields are the 1 month and 1 to 10 year rates. Note that

this is equivalent to controlling for the 1 month rate and the corresponding

10 forward rates and spans the tent-shaped factor discussed by Cochrane

and Piazzesi (2005). The results are shown in table 13. The coefficient on the

past return is statistically significant for shorter maturities though less so

for longer maturities. This suggests that at least for shorter maturities yield

curve momentum exists after controlling for the information in the yield

curve today.

In some models, for example in the habit model of Wachter (2006), yields

affect future returns non-linearly. We now test this possibility by considering

the more general partially linear regression

rxnt+1 = β1rx
n
t + f (yt) + εt+1. (37)

As explained later, assuming an invertibility condition, any Markovian

model of yields implies that

rxnt+1 = f (yt) + εt+1. (38)
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Mat. (y) 1 2 3 4 5 6 7 8 9 10

α -0.02 -0.01 -0.05 -0.10 -0.22 -0.27 -0.39 -0.59 -0.77 -0.99

t-value -0.42 -0.10 -0.32 -0.49 -0.86 -0.89 -1.15 -1.49 -1.70 -2.01

β1 (rx1
t ) 0.16 0.16 0.13 0.12 0.11 0.08 0.07 0.08 0.07 0.06

t-value 2.41 2.97 2.64 2.30 2.24 1.54 1.56 1.60 1.52 1.42

β2 (y1
t ) -0.23 -0.41 -0.63 -0.92 -1.11 -1.19 -1.38 -1.61 -1.72 -1.91

t-value -4.42 -3.94 -4.27 -4.52 -4.66 -4.51 -4.70 -4.70 -4.62 -4.70

β3 (y12
t ) 0.51 0.64 1.32 1.95 2.33 2.53 2.88 3.35 3.60 3.95

t-value 2.68 1.74 2.59 2.85 2.96 2.84 3.06 3.22 3.30 3.37

β4 (y24
t ) -0.44 -0.18 -1.40 -1.33 -1.25 -1.46 -1.76 -2.14 -2.56 -3.08

t-value -0.92 -0.22 -1.24 -0.94 -0.75 -0.77 -0.86 -0.99 -1.16 -1.33

β5 (y36
t ) 0.46 0.01 0.53 -1.74 -1.67 -0.95 -0.57 -0.50 0.38 1.15

t-value 0.51 0.01 0.28 -0.83 -0.69 -0.34 -0.19 -0.16 0.11 0.32

β6 (y48
t ) -0.22 0.49 1.51 3.90 1.56 1.10 1.30 1.79 0.31 -0.00

t-value -0.18 0.23 0.57 1.28 0.43 0.28 0.30 0.36 0.05 -0.00

β7 (y60
t ) -1.19 -2.39 -3.71 -4.14 -2.37 -5.23 -6.47 -7.15 -5.49 -5.67

t-value -1.64 -1.95 -2.17 -1.86 -0.89 -1.43 -1.45 -1.39 -0.94 -0.91

β8 (y72
t ) 1.39 2.84 4.04 4.59 5.71 9.15 9.01 9.79 9.93 11.31

t-value 1.83 2.00 2.05 1.80 1.88 2.31 1.93 1.89 1.78 1.94

β9 (y84
t ) -0.05 -0.83 -1.57 -2.23 -2.34 -2.88 -1.71 -3.35 -4.43 -6.18

t-value -0.11 -1.02 -1.29 -1.28 -1.06 -1.06 -0.46 -0.78 -0.95 -1.23

β10 (y96
t ) 0.01 0.22 0.41 0.33 -0.80 -0.04 0.02 0.89 -0.97 -1.36

t-value 0.03 0.26 0.32 0.18 -0.36 -0.01 0.00 0.20 -0.20 -0.26

β11 (y108
t ) -0.28 -0.81 -1.26 -1.32 -0.89 -2.21 -2.52 -2.56 -1.04 -1.80

t-value -0.52 -0.89 -0.96 -0.79 -0.43 -0.76 -0.66 -0.57 -0.21 -0.35

β12 (y120
t ) 0.02 0.41 0.76 0.87 0.81 1.15 1.17 1.47 1.97 3.60

t-value 0.08 0.83 1.11 1.02 0.77 0.86 0.65 0.69 0.85 1.44

R2 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Table 13: shows the results of predicting returns of different maturity bonds on the

past return of the bond and the yields of 1 month bill and 1 to 10 year bonds. The

t-values are based on Newey and West (1987) standard errors.
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Therefore these models imply that β1 = 0. However, the challenge is

that f is generally unknown. I tackle this using two approaches. The

first approach is to estimate the model using the semiparametric approach

described by Wood (2011). Here the standard errors are calculated using

quasi-maximum likelihood.14 The second approach is to simply add the

squared yields, on top of the yields, to the regression. The results are given in

table 14, which shows the results for the β1 parameter. For the first approach

β1 is always significant. However, the model produces a high in sample

fit and might achieve low standard errors by overfitting. For the second

approach, the slope coefficient is significant for shorter but not for longer

maturity bonds. These exercises suggest that accounting for non-linearities

does not strongly alter the main conclusions of this paper.

8.2 Predicting Bonds Returns with Carry and Yield Change

The results of the main section suggest that including information about

both past carry and yield change might be beneficial to predicting bond

returns. I now test this prediction by including both variables separately

into the predictability regression.

rxnt+1 = α + β1c
n
t + β2yc

n
t + εt+1 (39)

Note that because period t carry is observable we include this rather than

the previous period carry into the regression. The results are given in table

15. For most maturities both carry and past yield change are significant.

There is a small increase in R2 relative to a regression with past return.

8.3 Post Announcement Drift: Further Analysis

This section provides some further results related to the post-FOMC announcement

drift. Figure 7 shows the changes in different maturity yields per one basis

14To avoid problems with overfitting I only include yields of every second year.
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Semipar. Squares

Mat β1 t-value β1 t-value

1 0.22 4.51 0.20 2.23

2 0.25 5.09 0.22 2.62

3 0.23 4.63 0.18 2.40

4 0.20 4.12 0.16 2.02

5 0.19 3.98 0.14 1.90

6 0.16 3.27 0.10 1.42

7 0.14 2.87 0.09 1.42

8 0.12 2.65 0.08 1.25

9 0.11 2.42 0.06 1.02

10 0.11 2.40 0.06 0.93

Table 14: shows the slope coefficient on past return when explaining excess bond

returns on past excess bond returns on an arbitrary non-linear function of yields,

estimated using a semiparametric method, as well as a linear regression with yields

and squared yields. The t-values for the first regression are obtained using quasi-

maximum likelihood (Wood, 2011). The t-values for the second regression are based

on Newey and West (1987) standard errors.
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Maturity α t-value β1 (cnt ) t-value β2 (ycnt ) t-value R2

1 0.01 0.19 0.97 2.50 0.16 2.39 5.17

2 -0.02 -0.29 1.29 2.40 0.16 3.06 5.02

3 -0.00 -0.03 1.15 1.40 0.14 2.63 3.18

4 -0.06 -0.46 1.54 2.19 0.11 2.19 2.95

5 -0.09 -0.66 1.74 2.51 0.10 2.23 2.98

6 -0.15 -0.95 2.06 2.75 0.08 1.56 2.84

7 -0.06 -0.34 1.58 2.05 0.09 1.81 1.83

8 -0.21 -1.15 2.35 2.94 0.08 1.66 2.97

9 -0.25 -1.33 2.71 3.13 0.08 1.69 3.23

10 -0.07 -0.30 1.66 1.97 0.08 1.80 1.63

Table 15: shows the results of predicting returns of different maturity bonds on

carry and past yield change. The t-values are based on Newey and West (1987)

standard errors.

point change in the federal funds target rate. Shorter maturity yields show a

clear drift pattern after target rate changes.

In this particular sample long maturity yields do not exhibit similar drifts.

However, as explained by Brooks et al. (2019) results for long maturities are

stronger when considering unexpected target rate changes. This can explain

why are regression results are stronger for long maturity bonds when using

unexpected rather than plain changes in the target rate.

Figure 8 plots the historical development of different maturity yields

along with that for the target rate. One can see that all the yields share

the same broad developments. However, the contemporaneous correlation

between yield changes and changes in the federal funds target rate is far

from perfect. Post-FOMC announcement drift seems to contribute to this

correlation being fairly low. However, this is likely not the only reason.

For example theoretically longer maturity yields should reflect expectations

about the long run path of future short rates and also anticipate target rate
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Figure 7: shows the change in different maturity yields after a change in the

federal funds target rate (FFRT). Changes are measured per one basis point

change in the FFRT. Days after announcement are measured using trading

days.
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Figure 8: shows the historical development of 1,5 and 10 year yields along

with the federal funds target rate.

changes.15

8.4 Robustness with Respect to Gürkaynak et al. (2007) data

Liu and Wu (2020) construct the yield curve using a novel procedure that

results in lower pricing errors compared to standard procedures such as the

Svensson (1994) method applied by Gürkaynak et al. (2007). How does this

affect the key results of this paper?

Table 16 replicates the results in table 1 for the 1 month lookup using

the Gürkaynak et al. (2007) data updated on the Federal reserve webpage.

15Also yield levels reflect the cumulative effect of yield changes and hence tend to be

more correlated.
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Mat α t-value β t-value R2

1 0.06 3.31 0.19 3.12 3.77

2 0.09 2.86 0.17 3.39 2.83

3 0.12 2.70 0.14 3.12 2.02

4 0.15 2.59 0.12 2.78 1.46

5 0.18 2.49 0.10 2.47 1.08

6 0.20 2.38 0.09 2.19 0.83

7 0.22 2.28 0.08 1.94 0.65

8 0.23 2.17 0.07 1.69 0.51

9 0.25 2.08 0.06 1.46 0.39

10 0.26 1.99 0.05 1.23 0.29

Table 16: shows the results from regressing the excess returns of different maturity

bonds on their past returns using the atlernative data from Gürkaynak et al. (2007).

The t-values are based on Newey and West (1987) standard errors.

The sample period is as before. While this alternative data yields somewhat

smaller coefficients for long maturity bonds, overall the results are fairly

similar across the two datasets.

8.5 Robustness with Respect to German Data

Are the results robust to data from other developed countries? Next I study

this using data on the German government yield curve available on the

Bundesbank webpage. These curves are constructed using the interpolation

procedure of Svensson (1994). Because standard interpolation procedures

often have large pricing errors for short maturity yields (Liu and Wu, 2020),

I focus on actual rather than excess returns that do not require specifying a

1 month risk-free rate.

I replicate the exercise of explaining the return of different maturity

bonds on their return in the prior month. The results are given in table

17 and are fairly similar for both countries. The R2 is quite high for short

maturity bonds in both countries as their returns are strongly related to
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Germany USA

Mat. α t-value β t-value R2 α t-value β t-value R2

1 0.23 5.10 0.40 3.86 15.65 0.26 7.55 0.42 7.31 17.28

2 0.28 7.76 0.35 5.47 12.59 0.37 9.53 0.24 4.46 5.82

3 0.35 8.22 0.27 4.56 7.68 0.43 9.12 0.18 3.27 3.16

4 0.39 8.22 0.25 4.66 6.17 0.48 8.18 0.13 2.67 1.77

5 0.43 7.88 0.22 4.52 5.01 0.50 7.32 0.12 2.59 1.46

6 0.47 7.44 0.20 4.13 3.92 0.54 6.58 0.09 1.91 0.90

7 0.50 7.01 0.17 3.60 2.95 0.55 6.01 0.09 1.88 0.85

8 0.54 6.61 0.15 3.02 2.14 0.56 5.52 0.10 1.95 0.91

9 0.57 6.26 0.12 2.45 1.45 0.56 5.04 0.09 1.94 0.81

10 0.61 5.93 0.09 1.86 0.87 0.59 4.80 0.08 1.78 0.68

Table 17: shows the results from regressing returns of different maturity bonds on

their past returns in both Germany and US. The t-values are based on Newey and

West (1987) standard errors.

short-term yields that are highly autocorrelated. This suggests that the

results are robust to the German yield curve though this curve might be

measured with larger pricing errors.

8.6 Time Series vs Cross-Sectional Momentum

The literature on equity momentum (e.g. Chan et al. (1996)) has focused

on a cross sectional strategy that goes long stocks with relatively high past

returns and short stocks with relatively low past returns. Could a similar

strategy be applied with different maturity government bonds?

The finding that time series momentum is largely associated with a single

factor suggests that such a strategy is unlikely to provide high returns. I now

demostrate this further by considering a simple cross-sectional momentum

strategy. I consider the returns of bonds with maturities from 1 to 10 years.

As in Lewellen (2002) assume the weight of each bond is given by wi =

(ri,t − rp,t)/10, where ri,t is the return of the bond and rp,t is the return of

50



E[rs,t]
1

10
∑10
i=1ρi

1
10

∑10
i=1E[ri,t]2 −ρm −µ2

m

0.0003 0.0044 0.0033 -0.0041 -0.0032

Table 18: shows a decomposition of the mean return from a cross sectional

momentum strategy (%)

an equal weighted portfolio of all the ten bonds. The mean return of this

strategy can be decomposed as follows:

E[rs,t] =
1

10

10∑
i=1

(ρi +E[ri,t]
2)− (ρm +µ2

m).

Here ρi and ρp are the autovariances of the individual bonds and the

equally weighted portfolio of bonds respectively. Moreover, µi and µp are

the bonds’ unconditional mean returns.

The results from this decomposition are given in table 18. The strategy

yields a 0.0003 per cent monthly return with a modest annualized Sharpe

ratio of 0.087. This is largely because the mean autocovariance of the bonds

is close to the autocovariance of an equally weighted portfolio of the bonds.

This zero net investment strategy cannot benefit from time series momentum

related to shifts in a single factor that manifests itself somewhat similarly

for all the different maturity bonds.

8.7 Investment Performance

The results of this paper suggest that an investor could gain using momentum

strategies in Treasury bonds. But how big are these gains? Answering

this question is complicated because such momentum strategies can be

implemented in multiple ways. While more sophisticated strategies might

provide higher returns, for transparency I focus on a particularly simple

strategy. In particular assume an investor buys a bond assuming its past

month excess return was positive. On the other hand, if this past return

was negative, assume the investor instead chooses to hold short term bills

earning her zero excess returns. Note that this simple strategy naturally
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Figure 9: shows the annualized Sharpe ratios for different maturity bonds

for a simple momentum strategy and a buy and hold strategy.

also constitutes an ”out of sample” evaluation for the relavant trading

performance.

Figure 9 shows the Sharpe ratios from this simple momentum strategy

along with those for a buy and hold strategy that passively holds given

maturity bonds. One can see that the momentum strategy earns higher

Sharpe ratios for all maturities. The average Sharpe ratio of the momentum

strategy is 0.51 compared to 0.38 for the buy and hold strategy. This

momentum stategy also enjoys a positive average skewness of 1.27 compared

to 0.22 for the buy and hold strategy. The Sharpe ratios for an equally

weighted portfolio of simple momentum strategies would be 0.50 compared

to 0.36 for an equally weighted buy and hold strategy. Here the improvement

in Sharpe ratio is therefore 39%.
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Figure 3 conveys an interesting additional point. The mean excess

returns are fairly close to zero following months with negative past month

returns. Hence it is not clear that an investor could benefit from twisting

our momentum strategy by also going short bonds after such months. This

long short strategy would improve mean returns for some maturity bonds

but not all. Moreover, because this improvement in mean returns is fairly

small but such a strategy involves higher volatility, the Sharpe ratios for this

long-short strategy are lower for all maturities.16

Finally note that a more comprehensive analysis of the investment performance

of yield curve momentum strategies should take into account the broader

constitution of the investor’s portfolio and other signals used. For example

Hurst et al. (2017) notes that trend followers can clearly improve Sharpe

ratios by diversifying exposures to momentum strategies for different asset

classes. They also show that momentum returns tend to survive after

controlling for reasonable estimates of transaction costs.

8.8 Results for a Bond Index

The key results of this paper are based on a yield curve constructed using

a numerical approximation scheme. A possible concern is that these errors

contribute to the key findings regarding yield curve momentum. I next

demonstrate that these errors are unlikely to invalidate the main regression

results of this paper.

In particular, I use the excess returns on the Bloomberg Aggregate

Treasury bond index, available from 1973, that is a few years before the

start of our main data. This index is calculated directly using Treasury bonds

and hence represents tradable returns. It serves as perhaps the most widely

followed benchmark index for Treasuries. However, the results obtained

with this index are not fully comparable with our main results because of

16This point is somewhat nuanced though. If the unconditional bond risk premium

represents rational compensation for risk, going short following months with negative

returns might hedge macroeconomic risk and is not necessarily suboptimal.

53



two reasons. First, this index is based on coupon paying bonds, while our

main results are for zero coupon bonds. Second, this index represents a

broad portfolio of different maturity Treasury bonds.

I replicate the key regression of this paper by explaining one month

excess return on this index by its past value. The slope coefficient is 0.11,

which is close to the slope coefficients for longer maturity bonds in table

1. The corresponding t-value is 2.67 and hence the results are strongly

significant.

I also replicated the investment strategy that holds bonds only in months

following positive past month excess returns. The Sharpe ratio for this

strategy is 0.55 compared to 0.44 for a buy and hold strategy. Note that

because the strategy is effectively implemented for a portfolio of bonds, it

cannot benefit from any individual time series predictability for different

maturity bonds.

8.9 Stability Analysis

Is yield curve momentum stronger during some periods than others? I now

analyze potential structural breaks in the relationship between current and

past returns. I consider a simple 10 year rolling regression. Figure 10 plots

the results when one month return is explained with the one month return

in the past month. One can see that the slope coefficients are fairly stable

overall but clearly fall after the financial crisis.

Explaining this break is beyond the scope of the paper. However, the

period is characterized by extraordinarily low interest rates and unconventional

monetary policies. For example an effective lower bound on yields can

alter the relationship between current and past bond returns. The Fed

policies during the period pushed yields down and led to high bond returns.

However, if yields are close to an effective floor, these high bond returns do

not predict similar elevated returns going forward.

As discussed in the section on investment performance, bond excess

returns tend to be close to zero following months with negative returns.
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Figure 10: Momentum slope coefficient in a rolling 10 year sample for

different maturity bonds
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Effectively the negative momentum effect is offset by a substantial unconditional

bond risk premium. On the other hand, following positive months the

positive momentum effect increases expected bond returns on top of the

unconditional risk premium. Because high bond returns are associated

with increasing interest rates, momentum strategy returns tend to be higher

during subperiods with declining rather than increasing interest rates.

8.10 Predicting Yield Changes: the Longer Run

In this section I study the longer run effects of a shock to bond yields. I

consider a regression of the form

∆ynt+h = α + β∆ynt + εt+h (40)

for different horizons h. That is I predict yield changes between t + h and

t + h− 1 by the change in the same maturity bond yield between t and t − 1.

As in the local projection method of Jordà (2005), the slope coefficients can

be interpreted as a type of impulse response function.

The resulting slope coefficients along with the 95% confidence intervals

are shown in figure 11. The coefficients are high for the horizon of one month

and then again high for the 11 month horizon. Many of the coefficients in

between are negative though not statistically different from zero. These

results can explain why the 1 month horizon works best in the regressions

reported in table 1.

The slope coefficients for different horizons sum to numbers sligthly

smaller than the coefficient for the first year. Therefore the total effect to

yields after a year is positive but fairly small. Put alternatively, assume

there is an increase in bond yields at period t. Because of short horizon

autocorrelation in yields this predicts a further increase in yields in the next

month. The longer horizon autocorrelations large offset each other so that

on average yields after a year remain sligthly below but close to the level

after a month following the yield change (t + 1).
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Figure 11: shows the slope coefficients on a regression of bond yield change

on future bond yield changes
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8.11 Proof of Proposition 1

We have

rxnt+1 = −(n− 1)yn−1
t+1 +nynt − y1

t =

−(n− 1)(A(n− 1) +B(n− 1)′Xt+1) +n(A(n) +B(n)′Xt)− (A(1) +B(1)′Xt) =

−(n− 1)B(n− 1)′Xt+1 + (nB(n)′ −B(1)′)Xt − (n− 1)A(n− 1) +nA(n)−A(1)

Cov(rxnt+1, rx
n
t−1) =

Cov(−(n− 1)B′n−1Xt+1,−(n− 1)B′n−1Xt) +Cov(−(n− 1)B′n−1Xt+1, (nB
′
n −B′1)Xt−1)+

Cov((nB′n −B′1)Xt,−(n− 1)B′n−1Xt) +Cov(nB′n −B′1)Xt, (nB
′
n −B′1)Xt−1) =

(n− 1)2B′n−1φVBn−1 − (n− 1)B′n−1φ
2V (nBn−1 −B1)− (n− 1)(nB′n −B′1)VBn−1+

(nB′n −B′1)φV (nBn −B1)

V ar(rxnt ) =

(n− 1)2B′n−1VBn−1 − 2(n− 1)B′n−1φV (nBn −B1)+

(nB′n −B′1)V (nBn −B1)

The regression slope coefficient is given by the ratio of the covariance

and variance terms.

8.12 Proof of Remark 2

Due to normality, the standard pricing formula applies:

pnt = −y1
t +Et[p

n−1
t+1 ] +

1
2
V art(p

n−1
t+1 ) +Covt(mt+1,p

n−1
t+1 )

Hence

58



rxnt+1 = pn−1
t+1 − p

n
t − y1

t = pn−1
t+1 −Et[p

n−1
t+1 ]−Covt(mt+1,p

n−1
t+1 )− 1

2
V art(p

n−1
t+1 )

rxnt+1 = Bn−1vt+1 +Bn−1Vλt −
1
2
B′n−1VBn−1

Therefore

V ar(rxnt+1) = B2
n−1V ar(vt+1 +Vλt)

and

Cov(rxnt+1, rx
n
t ) = B2

n−1Cov(vt+1 +Vλt,vt +Vλt−1)

and the slope coefficient in the momentum regression (this is given n ≥ 2, if

n = 1, excess returns are always zero and the coefficient undefined) is

V ar(rxnt+1) = B2
n−1V ar(vt+1 +Vλt)

and

Cov(rxnt+1, rx
n
t )

V ar(rxnt+1)
=
Cov(vt+1 +Vλt,vt +Vλt−1)

V ar(vt+1 +Vλt)

which is independent of bond maturity.

8.13 Proof of Remark 3

Excess return of an n maturity bond is given by

rxnt,t+1 = −(n− 1)yn−1
t+1 +nynt − y1

t = (41)

−(n− 1)(An−1 +B′n−1Xt+1) +n(An +B′nXt)− (A1 +B′1Xt). (42)
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This implies the expected excess return is of the form

Et[rx
n
t,t+1] = Ãn + B̃nXt, (43)

where

Ãn = −(n− 1)An−1 +nAn −A1

and

B̃n = −(n− 1)Bn−1φ+nBn −B1.

Now consider an m dimensional collection of yields ŷt. Note that we have

ŷt = Â+ B̂Xt,

where Â are B̂ simply collect the relevant An and Bn for the corresponding

maturities. If B̂ is invertible:

Xt = B̂−1(ŷt − Â)ŷt.

Therefore we have

Et[rx
n
t,t+1] = Ãn + B̃nB̂

−1(ŷt − Â)ŷt, (44)

now we can write the conditional expectation for the excess return as a

linear (affine) function of the yields ŷt. Therefore we can write the excess

returns as

rxnt+1 = Ãn + B̃nB̂
−1(ŷt − Â)ŷt + εt+1, (45)

where εt+1 is independent white noise. Now conditional on the yields ŷt,

no other variable like past returns or previous period returns should forecast

excess returns.

60



However, the argument fails if B̂ is not invertible. Then controlling

for current yields is not generally equivalent to controlling for the factors.

Then past bond returns can also predict future returns conditional on the

information in the yield curve today.

Remark 3: The Effect of Nonlinearities Remark 3 assumes that yields

are an affine function of state variables. However, it can be generalized to

arbitrary functions. Now assume excess returns are of the form

ynt = gn(Xt).

and that

Xt+1 = ξ(Xt) + εt+1

for some gn and ξ. We can view this as a generalized Markovian model.

Now pick any m yields stacked into a vector ỹt. Moreover, define g̃ as

ỹ = g̃(Xt),

where this function simply collects the relevant elements using gn. Assuming

the inverse exists, we can solve

Xt = g̃−1(ỹ).

Now note that we have

rxnt,t+1 = −(n− 1)yn−1
t+1 +nynt − y1

t = (46)

−(n− 1)gn−1(f (Xt+1)) +ngn(Xt)− g1(Xt) (47)

Excess returns are of the form

rxnt,t+1 = fn(Xt) = fn(g̃−1(ỹ)).

Now no other variable should predict excess returns controlling for

fn(g̃−1(ỹ)).
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8.14 Proof of Proposition 2

Conjecture pnt = An + Bnrt. Similarly to Hamilton and Wu (2012) then

approximate:

Et[rt+1] ≈ −z1trt+ (48)
N∑
n=2

ztn

[
An−1 +Bn−1(c+ ρ1rt + ρ2rt−1)−An −Bnrt − rt +

1
2
B(n− 1)2σ2

ε

]
(49)

and

V art[rt+1] ≈

 N∑
n=2

ztnBn−1


2

σ2
ε

Maximizing the arbitrauger’s objective for maturity n bond gives:

An−1 −An + Bn−1[c + ρ1rt + ρ2rt−1] − Bnrt − rt = γBn−1σ
2
ε

 N∑
n=2

ztnBn−1

 (50)

Plugging in ztn = −χrt−1

An−1 −An +Bn−1[c+ρ1rt +ρ2rt−1]−Bnrt − rt = −γBn−1σ
2
ε

 N∑
n=2

(χrt−1)Bn−1


(51)

Set

χ = −
ρ2

γσ2
ε
∑N
n=2Bn−1

Then we obtain:

−An−1 +An +Bn−1[c+ ρ1rt]−Bnrt − rt = 0

We can solve:
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Bn = Bn−1ρ1 − 1

An = An−1 −Bn−1c

One can see that Bn < 0 and hence χ > 0 assuming ρ2 < 0 as in the data. The

time-varying part of expected bond returns is

Bn−1(ρ1rt + ρ2rt−1)−Bnrt = rt + ρ2Bn−1rt

This is increasing in rt assuming ρ2 < 0.
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