New evidence on monetary transmission: interest rate vs inflation target shocks

Elizaveta Lukmanova, Katrin Rabitsch KU Leuven, WU Vienna ASSA annual meeting 2022

January 3, 2022

Motivation

- What are the co-movement properties of inflation and interest rates in response to monetary policy shocks?
- Study monetary transmission with two shocks: temporary nom. interest rate shock $i \uparrow => \pi \downarrow$ and persistent inflation target shock $i \uparrow => \pi \uparrow$, ?
- This paper:
 empirical evidence on the effects of persistent MP shocks
 in a setting where agents, as in reality, might not understand the nature
 of the shock
- Result: in response to persistent shock: $i \uparrow => \pi \uparrow Yes$, with a lag

Full vs imperfect information in a DSGE model

How the shock is perceived depends on how agents form their expectations.

$$i_t = \rho_i i_{t-1} + (1 - \rho_R) \left[\rho_{\pi} (\bar{\pi}_{4,t} - \pi_t^*) + \rho_y (y_t - y_t^*) \right] + \mathbf{u_t} = 0$$

$$= \rho_i i_{t-1} + (1 - \rho_R) \left[\rho_{\pi}(\bar{\pi}_{4,t}) + \rho_y(y_t - y_t^*) \right] + \varepsilon_t \tag{1}$$

$$\boldsymbol{\varepsilon}_t \equiv (1 - \rho_R) \left(-\rho_\pi \right) \boldsymbol{\pi}_t^* + \boldsymbol{u}_t. \tag{2}$$

$$\pi_t^* = \rho_{\pi^*} \pi_{t-1}^* + \varepsilon_{\pi^*,t}, \quad \varepsilon_{\pi^*,t} \sim N(0, \sigma_{\pi^*}^2)$$
 (3)

Full information:

Agents observe π_t^* and u_t separately. Inflation expectations adjust immediately: $\pi_t^* \uparrow \to \mathbb{E}_t \pi_t^* \uparrow$

Imperfect information:

Agents observe ϵ_t , they need time to learn the nature of the shock:

$$\pi_t^* \uparrow \not \to \mathbb{E}_t \pi_t^* \uparrow$$

Impulse responses to a persistent inflation target shock

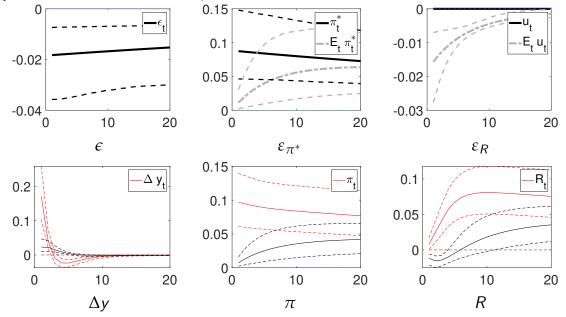


Figure: Red line - full information, black line - imperfect information, gray line - expectations under imperfect information.

VAR with uncertainty in identification

• **Problem**: full and imperfect information DSGE model give different predictions, which is true?

Solution: address this through uncertainty in identifying assumptions

Structural VAR model:

$$Ay_t = Bx_{t-1} + u_t,$$
 $y_t = [\pi_t^*, \Delta y_t, \pi_t, R_t]$

Reduced form:

$$y_t = \Psi x_t + \epsilon_t,$$

where
$$\Psi = extstyle{A}^{-1} extstyle{B}$$
 , $\epsilon_{ extstyle{t}} = extstyle{A}^{-1} extstyle{u}_{ extstyle{t}}$

 f. Baumeister & Hamilton (JME 2018, AER 2019) use A to introduce uncertainty about contemporaneous effects and impacts of shocks

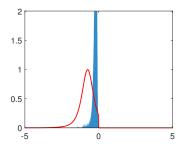


Figure: Prior (red line) and posterior (blue histogram) distributions for contemporaneous coefficient the a_{43} element of the A-matrix. Baseline model with perceived inflation target rate (PTR) measure from the FRB/US model (Brayton, Laubach, Reifschneider, 2014). Sample: 1962Q1 to 2019Q1. Horizontal axis: periods after the shock. Vertical axis: percentage change.

[Identification]

Data evidence is consistent with **IMPERFECT** information

• 1-2 quarters delay, then $i\uparrow \pi\uparrow$ Impulse responses to a persistent inflation target shock

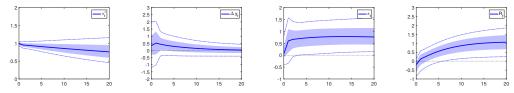
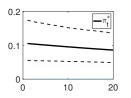
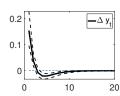
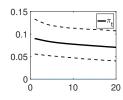


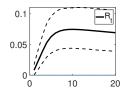
Figure: Shaded area - 68% confidence interval and blue dotted line 90% confidence interval to a persistent inflation target shock. Inflation target measure - SPF 10-year inflation expectations. Horizontal axis: periods after the shock. Vertical axis: percentage change. Sample: 1962Q1 to 2019Q1.

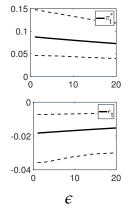

- Exclude ZLB, shadow rates: consistent with full information, i.e. $i \uparrow \pi \uparrow$ on impact
- Thus, evidence for Neo-Fisherian comovement in response to persistent monetary policy shock; an increase in nominal interest rate does not necessarily lead to fall in inflation or contraction

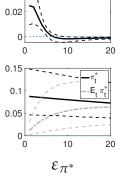

Thank you!

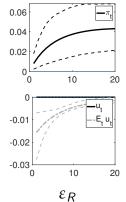
Appendix

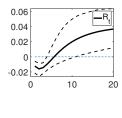

Impulse responses to a persistent inflation target shock


DSGE estimated under FULL information

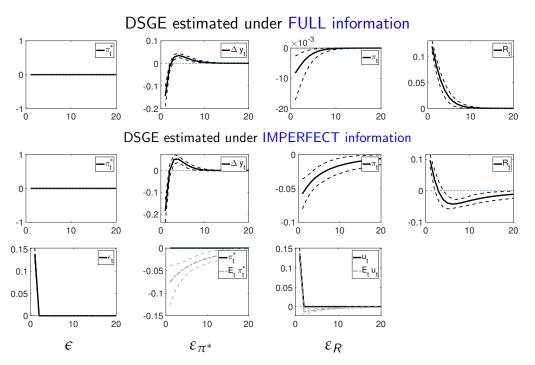


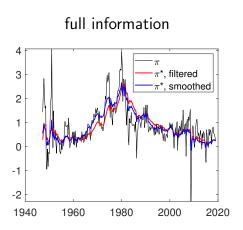

0.04





DSGE estimated under IMPERFECT information





Impulse responses to a temporary monetary policy shock

DSGE-implied inflation targets

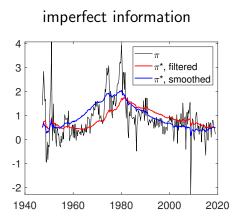
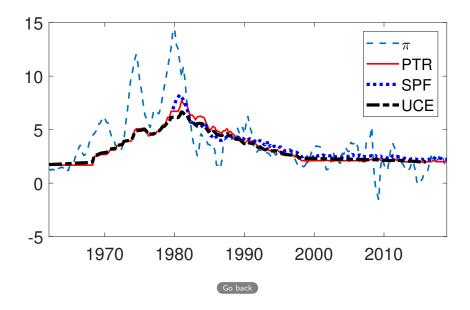


Figure: Dynamics of the inflation target series from the estimated New Keynesian DSGE model and actual inflation. Left panel: case of full information. Right panel: case of imperfect information. Black line: actual inflation. Blue line: smoothed inflation target estimate. Red line: filtered inflation target estimate.


Data

We estimate the DSGE model with Bayesian methods using the following data:

- Quarterly US data from 1947Q2 to 2019Q1
- Time series (from FRED II):
 - real output growth
 - CPI-based inflation
 - 3-month Treasury Bill rate
- Robustness:
 - add inflation expectations
- Inflation target process is (strictly speaking not permanent), but highly persistent: $\rho_{\pi^*}=0.9889, \, \sigma_{\pi^*}=0.1095$

Data for long-run inflation expectations

Empirical evidence from VAR model

$$y_t = \Psi x_t + \epsilon_t, \tag{4}$$

where $x_t = [\pi^*, \Delta y, \pi, i]$ and intercept

- Independent Normal-Wishart prior, 2 lags
- Robustness checks: exclude ZLB, include shadow rates, 4 lags, alternative prior

How to introduce inflation target shock?

- long-run inflation expectations
 - FRB/US model (baseline), PTR
 - SPF long-run inflation expectations
- trend inflation:
 - Chan, Clark, Koop (JMCB, 2017) trend inflation of Stock, Watson (JMCB, 2007) augmented with inflation expectations
- DSGE-implied inflation target measure: full and imperfect information

Prior

all elements of $A \sim t - dist(\mu_h, \sigma_h, \nu_h, \lambda_h)$

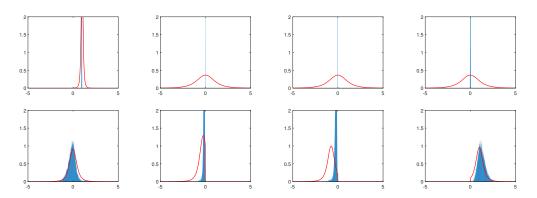


Figure: Prior (red line) and posterior (blue histogram) distributions for contemporaneous coefficients the elements of the *A*-matrix. Baseline model with perceived inflation target rate (*PTR*) measure from the FRB/US model (Brayton, Laubach, Reifschneider, 2014). Sample: 1962Q1 to 2019Q1. Horizontal axis: periods after the shock. Vertical axis: percentage change.

VAR-based results: 1962Q1 to 2008Q3

Impulse responses to a persistent inflation target shock

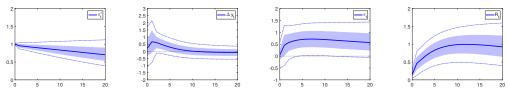


Figure: Baseline model with perceived inflation target rate (*PTR*) measure from the FRB/US model (Brayton, Laubach, Reifschneider, 2014). Shaded area - 68% confidence interval and blue dotted line 90% confidence interval to a persistent inflation target shock. Sample: 1962Q1 to 2008Q3. Horizontal axis: periods after the shock. Vertical axis: percentage change.

VAR-based results: 1962Q1 to 2019Q1 with shadow rates

Impulse responses to a persistent inflation target shock

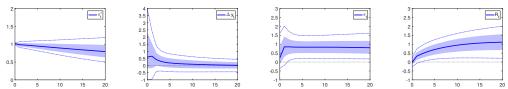


Figure: Model with shadow rates and perceived inflation target rate (PTR) measure from the FRB/US model (Brayton, Laubach, Reifschneider, 2014). Shaded area - 68% confidence interval and blue dotted line 90% confidence interval to a persistent inflation target shock. Sample: 1962Q1 to 2019Q1. Horizontal axis: periods after the shock. Vertical axis: percentage change.

