Introduction	Model	Experiment	Conclusion
00000	000000	0000000000	0

The dangers of policy experiments

Initial beliefs under adaptive learning

Patrick A. Pintus¹ Jacek Suda² Burak Turgut³

1 CNRS-InSHS and Aix-Marseille University

²SGH and FAMElGRAPE

³University of Warsaw and CASE - Center for Social and Economic Research

AEA 2022

Virtual, January 7-9, 2022

Introduction	Model	Experiment	Conclusion
● 0 000	000000	000000000	0
Motivation			

- Last 12 years
 - Global Financial Crisis
 - Recessions
 - Sovereign Debt crisis
 - COVID-19
 - decline in the natural real interest rates,
 - periods of nominal interest rate at ZLB/ELB,
 - lower inflation: $\sim 2\%$ (1999-2009) vs 1.2% (2010-2021) in Euroarea
- Challenges for conventional policy
- New policy instruments (temporary/permanent (?))
 - Monetary policy: credit easing, asset purchases, forward guidance,...

- Macroprudential policy: LtV, debt-service ratio (DSR),...
- Fiscal policy
- Discussion on policy frameworks
 - MP: π^* , IT, PLT, NGDPT, AIT,...
 - Macro-Pru: systemic risk, FSB, Basel III, IV,...

Introduction	Model	Experiment	Conclusion
0000	0000000	0000000000	0
Choosing policy			

- Model-based approach to choosing policies
 - build a model
 - analyze the effect of policy
 - choose the best one (criterion)
- Lucas critique
 - the outcome of policy depends on expectations
- The success of new tools/policies depends on
 - expectations
 - communication
- Expectations
 - rational expectations
 - bounded rationality
 - learning

Introduction	Model	Experiment	Conclusion
00000	0000000	0000000000	0
Rational Exped	ctations in Reality?		

- Can agents have rational expectations ?
- Rational expectations
 - require detailed knowledge concerning nature of equilibrium in the economy or economic situation,

- · assume agents know
 - as much as the modeler,
 - more than the econometrician.
- · agents understand and internalize new policy
 - new instrument
 - new policy
 - new strategy

Introduction	Model	Experiment	Conclusion
00000	0000000	0000000000	0
What we do			

- Show the effect of expectations about policy and learning
- Model with collateral constraint
 - use a variant of Kiyotaki and Moore (1997) based on Pintus and Suda (2019).
- Replace rational expectations (RE) with *adaptive learning*.
- Calibrate/estimate the model using US data from 1975Q1-2008/10Q4 period.
- Focus on initial beliefs regarding the policy
 - effects of deviations of agents beliefs from RE
 - · effects of deviations of agents beliefs from actual policy
- Compare the responses under both RE and learning for different priors.

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Introduction	Model	Experiment	Conclusion
0000●	000000	0000000000	0
What we find			

- Initial beliefs matter a lot!
 - priors affect the evolution of beliefs,
 - ... and dynamics of endogenous variables.
- Change / introduction of new policy that reduces volatility and exposure to shocks under learning may not work if the change unannounced or unexpected

- Agents gradually learn the structure of the economy (and the policy)
- The transition associated with high volatility
- Learning behaviour generates time-varying dynamics in beliefs
 - it can result in deviations from RE for the system under AL

Introduction	Model	Experiment	Conclusion
00000	●000000	0000000000	0
Representative agent			

• A representative agent solves:

$$\max E_0^* \sum_{t=0}^{\infty} \beta^t \frac{\left[C_t - \psi \frac{N_t^{1+\chi}}{1+\chi}\right]^{1-\sigma} - 1}{1-\sigma},$$

subject to:

• budget constraint

 $C_t + K_{t+1} - (1 - \delta)K_t + T_tQ_t(L_{t+1} - L_t) + (1 + R)B_t = B_{t+1} + AK_t^{\alpha}L_t^{\gamma}N_t^{1 - \alpha - \gamma}$

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

- exogenous interest rate (SOE)
- E_t^* denotes expectations at time t.
- T_t is a shortcut for land demand shock.

Introduction	Model	Experiment	Conclusion
00000	000000	0000000000	0
Borrowing constraint			

• Agents face borrowing constraint

$$\tilde{\Theta}_t E_t^*[Q_{t+1}]L_{t+1} \ge (1+R)B_{t+1},$$

where

$$\tilde{\Theta}_t \equiv \Theta_t \left\{ \frac{E_t^*[Q_{t+1}]}{Q} \right\}^{\varepsilon}$$

- We allow leverage to respond to changes in the land price:
 - microfounded in simple moral hazard setting,
 - $\varepsilon > 0$ agrees with evidence in Mian and Sufi (2011) on US micro data for the 2000s.

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Introduction	Model	Experiment	Conclusion
00000	000000	0000000000	0
Leverage process			

• Θ_t is exogenous and subject to random shocks

$$\Theta_t = \overline{\Theta}^{1-\rho_\theta} \Theta_{t-1}^{\rho_\theta} \Xi_t.$$

- Ξ_t : leverage shocks,
- $\overline{\Theta}$: mean (steady-state) leverage level,
- ρ_{θ} : persistence of impact of leverage shocks,
- agents learn ρ_{θ} (and possibly $\overline{\Theta}$).
- Similarly T_t is subject to random shocks

$$T_t = T_{t-1}^{\rho_T} \Psi_t$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction	Model	Experiment	Conclusion
00000	0000000	0000000000	0
FOCs			

• Borrowers ' first-order conditions are

$$C_{t}: \qquad \Lambda_{t} = \begin{bmatrix} C_{t} - \psi \frac{N_{t}^{1+\chi}}{1+\chi} \end{bmatrix}^{-\sigma}$$

$$N_{t}: \qquad \psi N_{t}^{\chi+\alpha+\gamma} = (1-\alpha-\gamma)AK_{t}^{\alpha}L_{t}^{\gamma}$$

$$L_{t+1}: \qquad T_{t}Q_{t}\Lambda_{t} = \qquad \beta E_{t}^{*}[T_{t+1}Q_{t+1}\Lambda_{t+1}] + \beta\gamma E_{t}^{*}[\Lambda_{t+1}Y_{t+1}/L_{t+1}]$$

$$+\Phi_{t}\tilde{\Theta}_{t}E_{t}^{*}[Q_{t+1}],$$

$$K_{t+1}: \qquad \Lambda_{t} = \qquad \beta E_{t}^{*}[\Lambda_{t+1}(\alpha Y_{t+1}/K_{t+1}+1-\delta)]$$

$$B_{t+1}: \qquad \Lambda_{t} = \qquad \beta(1+R)E_{t}^{*}[\Lambda_{t+1}] + (1+R)\Phi_{t}$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Introduction	Model	Experiment	Conclusion
00000	0000000	0000000000	0
REE			

• Linearized expectational system (in log levels):

$$X_t = \mathbf{A}X_{t-1} + \mathbf{B}E_{t-1}^*[X_t] + \mathbf{C}E_t^*[X_{t+1}] + \mathbf{N} + \mathbf{D}\xi_t + \mathbf{F}\psi_t,$$

 $X'_t \equiv (c_t, q_t, \lambda_t, \phi_t, b_t, k_t, \theta_t, \tau_t), \xi_t \text{ and } \psi_t \text{ are innovations.}$

• Under REE, $E_t^* = E_t$ and there exists a unique stationary equilibrium

$$X_t = \mathbf{M}^{\mathbf{re}} X_{t-1} + \mathbf{H}^{\mathbf{re}} + \mathbf{G}^{\mathbf{re}} \xi_t + \mathbf{J}^{\mathbf{re}} \psi_t,$$

where \mathbf{M}^{re} and \mathbf{H}^{re} solve

$$\begin{split} \mathbf{M} &= & [\mathbf{I}_8 - \mathbf{C}\mathbf{M}]^{-1}[\mathbf{A} + \mathbf{B}\mathbf{M}], \\ \mathbf{H} &= & [\mathbf{I}_8 - \mathbf{C}\mathbf{M}^{\text{re}}]^{-1}[\mathbf{B}\mathbf{H} + \mathbf{C}\mathbf{H} + \mathbf{N}] \end{split}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ - □ = - のへで

Introduction	Model	Experiment	Conclusion
00000	0000000	0000000000	0
Learning			

- Relax RE assumption: $E_t^* \neq E_t$.
- Agents as econometricians:
 - Endow agents with a perception of the equilibrium law of motion (PLM)

$$X_t = \mathbf{M} X_{t-1} + \mathbf{H} + \mathbf{G} \xi_t + \mathbf{J} \psi_t,$$

- has the same VAR(1) structure as RE equilibrium, but admits $M \neq M^{re}, H \neq H^{re}, G \neq G^{re}, J \neq J^{re}$.
- Agents update their "beliefs" by estimating a VAR(1).
- · Agents use PLM to form expectations

$$E_{\tau}X_{\tau+1} = \mathbf{M}_{\tau-1}X_{\tau} + \mathbf{H}_{\tau-1}$$

Introduction	Model	Experiment	Conclusion
00000	000000	0000000000	0
Learning			

- Agents as econometricians:
 - Actual low of motion becomes

$$[\mathbf{I}_8 - \mathbf{C}\mathbf{M}_{t-1}]X_t = [\mathbf{A} + \mathbf{B}\mathbf{M}_{t-2}]X_{t-1} + [\mathbf{B}\mathbf{H}_{t-2} + \mathbf{C}\mathbf{H}_{t-1} + \mathbf{N}] + \mathbf{D}\xi_t + \mathbf{F}\psi_t$$

· Assume recursive updating of the perceived law of motion

$$\Omega_{t} = \Omega_{t-1} + \nu (X_{t} - \Omega_{t-1} Z_{t-1}) Z_{t-1}^{\prime} \mathbf{R}_{t}^{-1}$$

$$\mathbf{R}_{t} = \mathbf{R}_{t-1} + \nu (Z_{t-1} Z_{t-1}^{\prime} - \mathbf{R}_{t-1}),$$

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

where $Z'_t = \begin{bmatrix} 1, X'_t \end{bmatrix}$ and $\Omega = \begin{bmatrix} \mathbf{H} & \mathbf{M} \end{bmatrix}$

- OLS/RLS if $\nu_t = 1/t$,
- constant gain if $\nu_t = \nu$.
- REE: perceived and actual laws of motions coincide.

Introduction	Model	Experiment	Conclusion
00000	000000	● ○ ○○○○○○○○	0
Experiment			

- Agents learn and at the onset of the recession
 - the associated matrix in PLM is M_{2008Q4}.
 - if agents have learned/estimated ρ_{θ} , matrix \mathbf{M}_{2008Q4} reflects that.
- Shocks and beliefs (under learning) affects financial constraint.
- Given the stochastic process, in 2008Q4 agents' perception does not match the *true* process $\mathbf{M}_{2008Q4} \neq \mathbf{M}^{RE}$.

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

• The actual law of motion will reflect that.

Introduction	Model	Experiment	Conclusion
00000	000000	000000000	0
Set-up: calibration			

- Calibration:
 - Model delivers average values for debt-to-GDP and land value-to-GDP ratios for the period 1996Q1- 2008Q4: $B/Y \approx 0.52$ and $QL/Y \approx 0.59$

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

μ	β	δ	α	γ	ε	ν
0.99	0.96μ	0.025	0.33	0.0093	0.5	0.004

• Gain parameter:

- Constant gain learning parameter: $v_t = 0.004$ (regression with forgetting half-length of 40 years).
- Start with procyclical leverage:
 - We set $\varepsilon = 0.5$

(calibrated from Mian and Sufi, 2011).

Introduction	Model	Experiment	Conclusion
00000	0000000	000000000	0
Impulse responses			

- Negative leverage shock is significantly amplified under learning
 - impact on output and capital is $2.5 \times$ larger,
 - impact on consumption is more than $3 \times$ larger.
- Deleveraging is more severe under learning
 - fall in land price is $3 \times$ larger,
 - debt decrease is multiplied by about 2.5 compared to RE.
- Both capital and output overshoot markedly their long-run levels.
- Magnitudes of output's and consumption's responses roughly match data, investment is too volatile.

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Introduction	Model	Experiment	Conclusion
00000	000000	000000000	0
Impulse responses			

Introduction	Model	Experiment	Conclusion
00000	0000000	000000000	0
Impulse responses			

Introduction	Model	Experiment	Conclusion
00000	000000	000000000	0
Countercyclical levera	ge		

What would be the effect of (macro-prudential) regulation that makes leverage mildly countercyclical ?

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへぐ

• Set $\varepsilon = -0.5$ (leverage goes down when land price goes up).

- Assume that agents "know" (or has learnt) it:
 - DGP (\mathbf{M}^{RE}) and beliefs (\mathbf{M}_{2008Q4}) use $\varepsilon = -0.5$

Introduction	Model	Experiment	Conclusion
00000	0000000	000000000	0
Countercyclical levera	ge		

- Countercyclical leverage dampens responses to financial shocks.
- Much smaller recession follows a negative leverage shock item Countercyclical leverage brings learning dynamics closer to its rational expectations counterpart.

Introduction	Model	Experiment	Conclusion
00000	0000000	0000000000	0
Countercyclical levera	ge		

• Countercyclical leverage dampens responses to financial shocks.

Figure: Responses to a negative leverage shocks for a pro-cyclical ($\varepsilon = 0.5$) leverage under learning (solid red) and RE (dotted blue) and for a counter-cyclical ($\varepsilon = -0.5$) leverage under learning (dashed purple) and RE (dashed-dotted black)

nac

Introduction	Model	Experiment	Conclusion
00000	0000000	0000000000	0
Countercyclic	al leverage and the Great	Recession	

- Countercyclical leverage could avoid Great Recession
- Much smaller recession follows a negative leverage shock

Introduction	Model	Experiment	Conclusion
00000	000000	0000000000	0

Perception/expectations about policy

- But what if the change of policy is unannounced / not understood?
- Misperception of macroprudential policy:
 - \mathbf{M}^{RE} for $\epsilon < 0$ but \mathbf{M}_{2008Q4} reflects $\epsilon > 0$

Figure: Responses to a negative leverage shocks for mildly counter-cyclical ($\varepsilon = -0.5\%$) leverage under learning (solid red) and RE (dotted blue) and strongly counter-cyclical $\varepsilon = -1.5\%$) leverage under learning (dashed purple) and RE (dashed-dotted black) given the incorrect beliefs regarding the macro-prudential policy.

Introduction	Model	Experiment	Conclusion
00000	0000000	0000000000	0
Wrong beliefs			

• Dynamics driven by the behavior of capital and not land price

(a) Capital following 5% leverage shock.

(b) Land price following 5% leverage shock.

Responses to a negative leverage shocks for mildly counter-cyclical ($\varepsilon = -0.5\%$) leverage under learning (solid red) and RE (dotted blue) and strongly counter-cyclical $\varepsilon = -1.5\%$) leverage under learning (dashed purple) and RE (dashed-dotted black) given the incorrect beliefs regarding the macro-prudential policy.

Introduction	Model	Experiment	Conclusion
00000	000000	000000000	0
Confidence			

• Reduction of confidence in the policy makes reaction under learning even larger

(a) Output following 5% leverage shock with low initial confidence.

(b) Consumption following 5% leverage shock with low initial confidence.

Responses to a negative leverage shocks for mildly counter-cyclical ($\varepsilon = -0.5\%$) leverage under learning (solid red) and RE (dotted blue) and strongly counter-cyclical $\varepsilon = -1.5\%$) leverage under learning (dashed purple) and RE (dashed-dotted black) given the incorrect beliefs regarding the macro-prudential policy but with less confidence.

Introduction	Model	Experiment	Conclusion
00000	000000	0000000000	•
Conclusion			

- Simple model with adaptive learning
- Learning (for the leverage shocks) can act as amplification mechanism under pro-cyclical leverage
- Counter-cyclical leverage can reduce this amplification significantly...
- ...but only if it is expected.
- Eventual policy change designed to reduce volatility can lead to opposite results

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

- here it is showed for macro-prudential policy...
- but it is more general
- Important message for the design and implementation of policy changes