Household Savings and Monetary Policy under Individual and Aggregate Stochastic Volatility

Yuriy Gorodnichenko, ¹ Lilia Maliar, ² Serguei Maliar, ³ & Christopher Naubert ⁴

¹University of California at Berkeley and NBER; ²CUNY Graduate Center and CEPR; ³Santa Clara University;

⁴CUNY Graduate Center

December 31, 2021

Motivation

- Modern macroeconomics:
 - Questions:
 - heterogeneity in income or productivity
 - assets with differing liquidity (machines, liquid bonds)
 - aggregate (and idiosyncratic) risk and uncertainty
 - redistribution
 - Tools:
 - global solutions
- These are usually done in isolation.
- This paper: We do all in one framework.

HANK Model

- Households
 - Two assets: bonds (liquid) and machines (illiquid)
 - Two (occasionally binding) borrowing constraints
 - Idiosyncratic shocks to productivity level (risk)
 - Aggregate shock to productivity variance (uncertainty)
 - Sticky wages
 - Households

Firms

- CRS with machines and labor
- Aggregate shocks to TFP level (risk)
- Aggregate shocks to TFP variance (uncertainty)
- ▶ Firms

Government

- Fiscal policy (progressive income taxation as in Heathcote, Storesletten, and Violante 2017)
- Monetary policy (Taylor rule with ZLB)
- Government

Risk and Uncertainty

• Household productivity: $e^{\left(\eta_{\ell,t}(j) - \frac{\overline{\sigma}_{\ell}^2}{1 - (\rho^{\ell})^2}\right)}$

Individual risk:
$$\eta_{\ell,t}\left(j\right) = \rho^{\ell}\eta_{\ell,t-1}\left(j\right) + \exp\left(\sigma_{\ell,t-1} - \frac{1}{2}\frac{\sigma_{\sigma_{\ell}}^{2}}{1-(\rho^{\sigma_{\ell}})^{2}}\right)\bar{\sigma}_{\ell}\varepsilon_{\ell,t}\left(j\right)$$

Individual uncertainty: $\sigma_{\ell,t} = \rho^{\sigma_{\ell}} \sigma_{\ell,t-1} + \sigma_{\sigma_{\ell}} \varepsilon_{\sigma_{\ell},t}$

• Aggregate TFP: $e^{\left(\eta_{\theta,t}-\frac{\overline{\sigma}_{\theta}^2}{1-\left(
ho^{\theta}\right)^2}\right)}$

$$\begin{array}{ll} \text{TFP risk: } \eta_{\theta,t} = & \rho^{\theta} \eta_{\theta,t-1} + \\ & \exp \left(\frac{\sigma_{\theta,t-1}}{\sigma_{\theta,t-1}} - \frac{1}{2} \frac{\sigma_{\sigma_{\theta}}^2}{1 - (\rho^{\sigma_{\theta}})^2} \right) \bar{\sigma_{\theta}} \varepsilon_{\theta,t} \end{array}$$

TFP uncertainty: $\sigma_{\theta,t} = \rho^{\sigma_{\theta}} \sigma_{\theta,t-1} + \sigma_{\sigma_{\theta}} \varepsilon_{\sigma_{\theta},t}$

where
$$\varepsilon_{\ell,t}$$
, $\varepsilon_{\sigma_{\ell},t}$, $\varepsilon_{\theta,t}$, $\varepsilon_{\sigma_{\theta},t} \sim \mathcal{N}\left(0,1\right)$

Related Literature

- Uncertainty shocks → Uncertainty
- HANK HANK
- Numerical solutions to heterogeneous agent models Numerics

Model Generated Statistics

 Global solutions following L. Maliar, S. Maliar, and Winant 2021

	Wealth Gini	Consumption Gini	Net Income Gini
Data	0.78	0.36	0.43
Model	0.66	0.276	0.360
95% CI	(0.655,0.684)	(0.274,0.277)	(0.359,0.361)

Table: Data from Krueger, Mitman, and Perri 2016

Generalized Impulse Response

- Koop, Pesaran, and Potter 1996
- TFP uncertainty

$$\sigma_{\theta,t} = \rho^{\sigma_{\theta}} \sigma_{\theta,t-1} + \sigma_{\sigma_{\theta}} \left(\varepsilon_{\sigma_{\theta},t} + 1 \right)$$

Individual uncertainty

$$\sigma_{\ell,t} = \rho^{\sigma_{\ell}} \sigma_{\ell,t-1} + \sigma_{\sigma_{\ell}} \left(\varepsilon_{\sigma_{\ell},t} + 1 \right)$$

- 1 standard deviation innovation
- 100 initial conditions
- 100 draws of innovations for each initial condition
- Time period: 1 quarter
- 200 agents

Wealth

Wealth Gini

Average Labor Earnings

Average Labor Earnings
$$= w_t H_t \int e^{\left(\eta_{\ell,t}(j) - \frac{\overline{\sigma}_\ell^2}{1 - \left(\rho^\ell\right)^2}\right)} dj$$

Net Income Gini

$$\text{Net Income} = \left(\frac{R_{t-1}}{\pi_t} - 1\right)b_{t-1}(j) + \left[r_t^k - d\right]k_{t-1}(j) + \tau_t\left(j\right) + \tau_1\left[w_tH_t\exp\left(\eta_{\ell,t}\left(j\right) - \frac{1}{2}\frac{\overline{\sigma_\ell^2}}{1 - \left(\rho^\ell\right)^2}\right)\right]^{1 - \tau_2}$$

Conclusion

- Response to individual uncertainty shocks is much larger than the response to TFP uncertainty shocks
- Individual uncertainty shocks lead to a persistent increase in wealth following an initial reduction.
- Individual uncertainty shocks increase income inequality.
- Future versions: Correlation between individual and aggregate uncertainty.

Thank you!

Model and Calibration

•00000000

Model and Calibration

$$\max_{c_t, i_t, b_t, k_t} E_0 \sum_{t=0}^{\infty} \beta^t \frac{c_t (j)^{1-\gamma} - 1}{1 - \gamma}$$

s.t.
$$c_{t}(j) + i_{t}(j) + b_{t}(j) + \Psi(i_{t}(j), k_{t-1}(j)) =$$

$$\frac{R_{t-1}}{\pi_{t}} b_{t-1}(j) + \tau_{1} \left[w_{t} H_{t} \exp\left(\eta_{\ell, t}(j) - \frac{1}{2} \frac{\overline{\sigma}_{\ell}^{2}}{1 - (\rho^{\ell})^{2}} \right) \right]^{1 - \tau_{2}} + \tau_{t}(j)$$

$$k_{t}(j) = \left[1 - d + r_{t}^{k}\right] k_{t-1}(j) + i_{t}(j)$$

$$k_t(j) \ge 0$$
 $b_t(j) \ge \overline{b}$

- $\Psi(\cdot,\cdot)$: adjustment cost on machines and shares
- $\tau_t(i)$: transfers

Labor Union

00000000

$$\max_{W_{t}(m)} E_{0} \sum_{t=0}^{\infty} \beta^{t} \left[\int \left(\frac{c_{t}(j)^{1-\gamma} - 1}{1-\gamma} - \psi \frac{h_{t}(j)^{1+\vartheta}}{1+\vartheta} \right) dj - \frac{\mu_{w}}{1-\mu_{w}} \frac{1}{2\kappa_{w}} \left[\log \left(\frac{W_{t}(m)}{W_{t-1}(m)} \frac{1}{\pi^{*}} \right) \right]^{2} \right]$$

s.t.
$$H_t(m) = \left(\frac{W_t(m)}{W_t}\right)^{\mu_w - 1} H_t$$

$$h_t(j) = \int \left(\frac{W_t(m)}{W_t}\right)^{\mu_w - 1} H_t dm$$

Labor Union (Continued)

$$\begin{split} \log\left(\frac{\pi_t}{\pi^*}\right) &= \kappa_w \left(\psi H_t^{1+\vartheta} - \mu_w \left(1 - \tau_2\right) Z_t \widetilde{\Lambda}_t\right) + \beta E_t \log\left(\frac{\pi_{t+1}}{\pi^*}\right) \\ Z_t &\equiv \tau_0 \left(w_t L_t\right)^{(1-\tau_2)} \int_0^1 \left(\exp\left(\eta_{\ell,t} \left(j\right) - \frac{1}{2} \frac{\overline{\sigma}_\ell^2}{1 - \left(\rho^\ell\right)^2}\right)\right)^{(1-\tau_2)} dj \\ \widetilde{\Lambda}_t &\equiv \int_0^1 \frac{\left(\exp\left(\eta_{\ell,t} \left(j\right) - \frac{1}{2} \frac{\overline{\sigma}_\ell^2}{1 - \left(\rho^\ell\right)^2}\right)\right)^{(1-\tau_2)} c_t \left(j\right)^{-\gamma}}{\int_0^1 \left(\exp\left(\eta_{\ell,t} \left(j\right) - \frac{1}{2} \frac{\overline{\sigma}_\ell^2}{1 - \left(\rho^\ell\right)^2}\right)\right)^{(1-\tau_2)} dj} dj. \end{split}$$

Model and Calibration

Production function

$$Y_t = \overline{A} \exp \left(\eta_{ heta,t} - rac{\overline{\sigma}_{ heta}^2}{1 - \left(
ho^{ heta}
ight)^2}
ight) K_{t-1}^{lpha} H_t^{1-lpha}$$

▶ Model

Central Bank

Taylor rule subject to ZLB

$$R_t \equiv \max\{1.0,$$

$$R_* \left(\frac{R_{t-1}}{R_*}\right)^{\mu} \left[\left(\frac{\pi_t}{\pi_*}\right)^{\phi_{\pi}} \left(\frac{Y_t}{Y_*}\right)^{\phi_y} \right]^{1-\mu} \exp\left(\eta_{R,t} - \frac{1}{2} \frac{\sigma_R^2}{1 - (\rho^R)^2}\right) \right\}$$

Monetary policy shock

$$\eta_{R,t} = \rho^R \eta_{R,t-1} + \sigma_R \varepsilon_{R,t}, \qquad \varepsilon_{R,t} \sim \mathcal{N}(0,1)$$

Market Clearing

Market clearing

$$\int_0^1 b_t(j)\,dj=0$$

$$C_t + K_t - (1 - d) K_{t-1} + \int_0^1 AC(i) di = Y_t$$

- $\int_0^1 AC(i) di = \int_0^1 \Psi(i_t(j), k_{t-1}(j)) dj$: aggregate cost of adjustment
- $C_t = \int_0^1 c_t(j) \, dj$
- $K_{t-1} = \int_0^1 k_{t-1}(j) dj$

Calibration

Parameter	Description	Target/Source		
Household				
$\gamma = 2.0$	Risk aversion	standard		
$\beta = .975$	Discount factor	standard		
d = 0.0135	Depreciation rate	standard		
$\Gamma_2 = 1.1686$	Illiquid asset adjustment cost			
$\Gamma_3 = 2.0$	Illiquid asset adjustment cost			
$\xi = 0.0$	Illiquid asset adjustment cost			
$\varepsilon = 0.25$	Illiquid asset adjustment cost			
$\overline{b} = -0.1$	Liquid asset borrowing constraint	75% of people have liquid assets		
		Kaplan, Violante, and Weidner 2014		
$\tau_1 = 0.8$	Tax function parameter	Heathcote, Storesletten, and Violante 2017		
$\tau_2 = 0.181$	Tax function parameter	Heathcote, Storesletten, and Violante 2017		
Labor Union				
$\vartheta = 1.0$	Labor supply elasticity	standard		
$\psi = 0.8796$	Disutility of labor shift	H=1 in model without agg risk		
$\mu_{w} = 1.1$	Elasticity of substitution among goods	profits share of 10%		
$\kappa_w = 0.15$	Slope of wage Phillips curve	Auclert et al. 2021		
Firm				
$\alpha = 0.325$	Capital share	standard		
$\overline{A} = 0.4735$	Constant in production function	Y=1 in model without agg risk		

Calibration (cont.)

Parameter	Description	Target/Source		
Monetary Policy				
$\mu = 0.0$	Nominal rate persistence			
$R_* = 1.0175$	Long run nominal rate			
$Y_* = 1$	Long run output			
$\pi_* = 1.005$	Inflation target			
$\phi_{\pi} = 1.5$	MP response to inflation			
$\phi_y = \frac{.25}{4}$	MP response to output			
Exogenous Variables				
$ ho^{\ell} = 0.966$	Persistence of idiosyncratic shocks	Auclert et al. 2021		
$\overline{\sigma}_\ell = 0.2379$	Standard deviation of idioslevel shocks	Auclert et al. 2021		
	(in the absence of uncertainty shocks)			
$ ho^{\sigma_\ell}=0.84$	Persistence of idiosvolatility shocks	Based on Bayer et al. (2019)		
$\sigma_{\sigma_{\ell}} = 0.02$	Standard deviation of idiosvolatility shocks	Based on Bayer et al. (2019)		
$ ho^{ heta}=0.9$	Persistence of TFP-level shocks	standard		
$\overline{\sigma}_{ heta} = 0.016$	Standard deviation of TFP-level shocks	standard		
	(in the absence of uncertainty shocks)	Standard		
$ ho^{\sigma_{ heta}}=0.73$	Persistence of TFP-volatility shocks	Based on Fernandez-Villaverde et al. (2015)		
$\sigma_{\sigma_{\theta}} = 0.04$	Standard deviation of TFP-volatility shocks	Based on Fernandez-Villaverde et al. (2015)		
$\rho^R = 0.5$	Persistence of monetary-policy shocks	standard		
$\sigma_R = 0.01$	Standard deviation of monetary-policy shocks	standard		

Solution Algorithm

Deep Learning Analysis of Maliar, Maliar, Winant (2019)

- 1. HANK model: $\begin{cases} E_{\epsilon}\left[f_{1}\left(X\left(s\right),\epsilon\right)\right]=0\\ ...\\ E_{\epsilon}\left[f_{n}\left(X\left(s\right),\epsilon\right)\right]=0\\ s=\text{ state, }X\left(s\right)=\text{ decision function, }\epsilon=\text{ innovations.} \end{cases}$
- 2. Parameterize $X(s) \simeq \varphi(s; \theta)$ with a **deep neural network**.
- 3. Construct objective function for DL training

$$\min_{\theta} \left(E_{\epsilon} \left[f_{1} \left(\varphi \left(s; \theta \right), \epsilon \right) \right] \right)^{2} + ... + \left(E_{\epsilon} \left[f_{n} \left(\varphi \left(s; \theta \right), \epsilon \right) \right] \right)^{2} \to 0$$

4. All-in-one expectation operator is a critical novelty:

$$(E_{\epsilon}[f_{j}(\varphi(s;\theta),\epsilon)])^{2} = E_{(\epsilon_{1},\epsilon_{2})}[f_{j}(\varphi(s;\theta),\epsilon_{1}) \cdot f_{j}(\varphi(s;\theta),\epsilon_{2})]$$

with ϵ_1, ϵ_2 = two independent draws.

- 4. Stochastic gradient descent for training (random grids)
- 5. Google **TensorFlow** platform

Solution Algorithm

- Use algorithm of Maliar, Maliar and Winant (2021)
- 13 agg. variables $\left\{ \begin{array}{l} C_t, H_t, K_t, I_t, Y_t, \pi_t, w_t, r_t^k, \\ R_{t-1}, \eta_{R,t}, \eta_{\theta,t}, \sigma_{\theta,t}, \sigma_{\ell,t} \end{array} \right\}$
- 8 individual variables $\left\{ \begin{array}{c} c_t\left(j\right), k_t\left(j\right), i_t\left(j\right), b_t\left(j\right), \\ q_t\left(j\right), \eta_{\ell,t}\left(j\right), v_t\left(j\right), \varphi_t\left(j\right) \end{array} \right\},$

 $v_t(j), \varphi_t(j) = \text{Lagrange multipliers}; q_t(j) = \text{value of an additional unit of illiquid assets}$

5 aggregate state variables:

$$\underbrace{\{R_{t-1}\}}_{\text{endogenous}} \underbrace{\{\eta_{R,t}, \eta_{\theta,t}, \sigma_{\theta,t}, \sigma_{\ell,t}\}}_{\text{exogenous}} \tag{1}$$

• 3 individual state variables:

$$\underbrace{\left\{k_{t-1}\left(j\right),b_{t-1}\left(j\right)\right\}}_{\text{endogenous}} \underbrace{\left\{\eta_{\ell,t}\left(j\right)\right\}}_{\text{exogenous}} \tag{2}$$

• 3J + 5 dimensional state space, where J = number of agents

Neural Networks

- 2 neural networks (NN) with 4 hidden layers each and 128 neurons in each layer.
- Leaky relu as activation function. ADAM optimization algorithm. Batch size of 10.
- Outputs of NNs:
 - 1st NN (\mathcal{N}^{agg}): aggregate variables { H_t, π_t }
 - 2d NN (\mathcal{N}^{indiv}) : individual variables $\{\xi_t^k(j), \xi_t^c(j), v_t(j), \varphi_t(j)\}$
 - ξ^a_t(j)=share of illiquid assets out of income net of consumption and the borrowing limit
 - $\xi_t^k(j)$ =share of capital in illiquid assets
 - $v_t(j)$, $\varphi_t(j) = \text{multipliers}$
- Need to approximate just six 3J + 5-dimensional decision function to characterize the labor choices of all J agents.

Recovering Aggregate Variables

• Use weights of NNs to compute aggregate variables

$$\mathcal{N}^{\mathsf{agg}}\left(\Sigma
ight)
ightarrow \left(H_{t}, \pi_{t}
ight) \ k\left(j
ight)
ightarrow \mathcal{K}_{t} \ \left(H_{t}, \mathcal{K}_{t}, \eta_{ heta, t}
ight)
ightarrow \left(w_{t}, r_{t}^{k}, Y_{t}
ight) \ \left(\pi_{t}, Y_{t}, R_{t-1}, \eta_{R, t}
ight)
ightarrow \mathcal{R}_{t}$$

Recovering Individual Variables

NN for individuals

$$\mathcal{N}^{indiv}\left(\Sigma\right) \to \left(\xi_{t}^{k}\left(j\right), \xi_{t}^{c}\left(j\right), \upsilon_{t}\left(j\right), \varphi_{t}\left(j\right)\right)$$
 (3)

resources

$$M_{t}(j) \equiv \frac{R_{t-1}}{\pi_{t}} b_{t-1}(j) + \left[1 - d + r_{t}^{k}\right] k_{t-1}(j) + \tau_{t}(j) + \tau_{t}(j) + \tau_{t}\left[w_{t}H_{t}\exp\left(\eta_{\ell,t}(j) - \frac{1}{2}\frac{\overline{\sigma}_{\ell}^{2}}{1 - (\rho^{\ell})^{2}}\right)\right]^{1 - \tau_{2}}$$

$$(4)$$

consumption

$$c_{t}\left(j\right) = \xi_{t}^{c}\left(M_{t}\left(j\right) - \overline{b}\right) \tag{5}$$

Recovering Individual Variables (Continued)

machines

$$k_{t}(j) = \max \left(\xi_{t}^{k}(j) \cdot \left[M_{t}(j) - \overline{b} - c_{t}(j) \right], 0.0 \right)$$
 (6)

adjustment cost

$$(k_t(j), k_{t-1}(j)) \rightarrow i_t(j) \rightarrow (\Psi_t(j), q_t(j))$$
 (7)

bonds

$$b(j) = \max(\left\lceil M_t(j) - \overline{b} - c_t(j) - k_t(j) - \Psi_t(j) \right\rceil, \overline{b}) \quad (8)$$

Related Literature

Relation to Literature about Uncertainty

- 1. Aggregate uncertainty in RA models.
 - TFP: Basu and Bundick (2017), Born and Pfeifer (2014), Fernandez-Villaverde et al. (2015).
 - Other sources of uncertainty: Born and Pfeifer (2014) (monetary and fiscal policy), Kelly, Pastor and Veronesi (2016) and Pastor and Veronesi (2012, 2013) (political factors), Basu and Bundick (2017) (preference shocks), Fernandez-Villaverde et al. (2015) (fiscal instruments), Nodari (2014) (financial regulation policy), Stokey (2015) (future tax rates).
- 2. Idiosyncratic uncertainty on the production side.
 - Arellano, Bai and Kehoe (2019), Bloom, Floetotto, Jaimovich, Saporta-Ekstein and Terry (2018), Gilchrist, Sim and Zakrajšek (2014), Bahmann and Bayer (2013, 2014).
 - Assume representative household –uncertainty does not affect households of different income and wealth levels.
- 3. Stochastic volatility in HA models.
 - Bayer et al. (2019) and Schabb (2020).

Relation to HANK Literature

- Aggregate MIT risk shocks + No uncertainty shocks
 - Kaplan, Moll and Violante (2018), Alves, Kaplan, Moll and Violante (2020)
- Aggregate MIT uncertainty shocks
 - Bayer, Luetticke, Pham-Dao and Tjaden (2019) and Schabb (2020)

This paper: the first HANK model with both

- aggregate uncertainty shocks
- aggregate risk shocks

Relation to HA Computational Lliterature

Novel numerical methods for solving HANK models with distribution

- Based on Reiter (2009):
 - Idea: local (perturbation) solutions at the aggregate level + Global solutions at the individual level
 - Papers: Ahn et al. (2018), Boppart et al. (2018), Bayer and Luetticke (2019), and Auclert et al. (2020). ⇒ No TFP dynamics over time.
- Based on Fernandez-Villaverde, Hurtado and Nuno (2020):
 - Idea: use neural networks to approximate aggregate law of motion (ALM)
 - Paper: Fernandez-Villaverde, Marbet, Nuno and Rachedi (2021)
 - ALM is approximated with a general function of distributional moments ⇒ Krusell and Smith (1998) type of algorithm

Solving models with uncertainty shocks

- Fernandez-Villaverde:
 - Perturbation solutions must be at least of order three
 - ⇒ Volatility of shocks nontrivially enters decision rules
- Groot (2020):
 - Even third-order perturbation methods may not be sufficient

Need global solutions to capture effects of volatility on decision rules

00000000

Approaches to Uncertainty Shocks in the Literature

- MIT aggregate shocks
- Low-order perturbation
- Reduced state space approximations

We address these problems with AI and deep learning (DL)

- Aggregate shocks in the solution procedure
- Global nonlinear solutions
- True state space