The Impact of Adverse Selection on Misallocation of Capital and Finance

ASSA 2022

Ikuo Takei
Asia School of Business in collaboration of MIT Sloan

January 2022

Motivation

- Anecdotally, asym info is important financial friction which leads to misallocation but hard to quantify
- This paper focuses on asym info about firm's persistent productivity between informed borrower (firm) and uninformed creditors (bondholders)
- How large welfare loss created by asym info in corporate bond markets?

Two Ways to Alleviate Asym Info:

Debt Structure: International comparison

Motivation

- Anecdotally, asym info is important financial friction which leads to misallocation but hard to quantify
- This paper focuses on asym info about firm's persistent productivity between informed borrower (firm) and uninformed creditors (bondholders)
- How large welfare loss created by asym info in corporate bond markets?

Two Ways to Alleviate Asym Info:

1. Reputation building in corporate bond markets
2. Debt substitution of costly monitored lending (e.g., bank loan)

Debt Structure: International Comparison

Motivation

- Anecdotally, asym info is important financial friction which leads to misallocation but hard to quantify
- This paper focuses on asym info about firm's persistent productivity between informed borrower (firm) and uninformed creditors (bondholders)
- How large welfare loss created by asym info in corporate bond markets?

Two Ways to Alleviate Asym Info:

1. Reputation building in corporate bond markets
2. Debt substitution of costly monitored lending (e.g., bank loan)

Debt Structure:

- Corporate bonds (~70\%)
- reputation building (Diamond 91)
\checkmark dynamic learning (Bayesian updating of assessment) about firm's productivity from public info (e.g., financial disclosure)
- Bank loans ($\sim 30 \%$)
- costly monitored lending (Diamond 84)
\checkmark cost-advantage in collecting private info

Research Question

How much asym info about firm's productivity affects financing, investment, aggregate productivity, and consumer welfare?

Empirical Challenge:

Approach:

Research Question

How much asym info about firm's productivity affects financing, investment, aggregate productivity, and consumer welfare?

Empirical Challenge:

1. Full info set and investor's assessment about firm's productivity are unobservable for researcher
2. Assessment and financing are endogenous

Approach:

Research Question

How much asym info about firm's productivity affects financing, investment, aggregate productivity, and consumer welfare?

Empirical Challenge:

1. Full info set and investor's assessment about firm's productivity are unobservable for researcher
2. Assessment and financing are endogenous

Approach:

- Estimates corporate financing model under dynamic adverse selection (screening + signaling problems) consistent with data facts Data Facts
- defaultable debts with heterogeneous firms (Hennessy and Whited 07)
- integrates screening + signaling problems about firm's productivity (Chatterjee, Corbae, Dempsey, and Rios-Rull 20 for unsecured consumer credit market)

Summary

- Estimation: back out size of transitory "noise" to firm's choice from variance of leverage and probability of default
- Mechanism:
- Counterfactual:
- Future Application: debt maturity; stock issue and buyback; and relationship banking

Summary

- Estimation: back out size of transitory "noise" to firm's choice from variance of leverage and probability of default
- Mechanism:

1. Cross-subsidization low (high) productivity firm overissues (underissues) corporate bonds and overinvests (underinvests) in capital compared to full info \rightarrow capital misallocation (\downarrow aggregate productivity)
2. Signaling leverage and equity send positive signal to uninformed lenders \rightarrow good reputation lowers interest rates of corporate bonds

- Counterfactual:
- Future Application: debt maturity; stock issue and buyback; and relationship banking

Summary

- Estimation: back out size of transitory "noise" to firm's choice from variance of leverage and probability of default
- Mechanism:

1. Cross-subsidization low (high) productivity firm overissues (underissues) corporate bonds and overinvests (underinvests) in capital compared to full info \rightarrow capital misallocation (\downarrow aggregate productivity)
2. Signaling leverage and equity send positive signal to uninformed lenders \rightarrow good reputation lowers interest rates of corporate bonds

- Counterfactual:

1. symmetric info about firm's productivity
\checkmark info improves aggregate productivity (TFP) $\uparrow 29 \mathrm{bps}$ and increases consumption $\uparrow 1.4 \%$
\checkmark bank debt / total debt $21 \% \xrightarrow{\downarrow .6 \% \text { points }} 15 \%$
2. taxation of debt forgiveness restores efficient allocation without changing info structure.

- Future Application: debt maturity; stock issue and buyback; and relationship banking

Thank You

ikuo.takei@gmail.com

https://www.ikuotakei.com/

Selected Literature Review

1. Dynamic Adverse Selection in Unsecured Consumer Credit Markets

Chatterjee, Corbae, Dempsey, and Rios-Rull 20 (hereafter CCDR).
2. Defaultable Bank Loan Markets

Heterogeneous Firm: Cooley and Quadrini 01; Hennessy and Whited 07; Corbae and D'Erasmo 20.
3. Defaultable Corporate Bond and Bank Loan Markets

Theory: Diamond 91; Rajan 92. Macromodel: De Fiore and Uhlig 15. Heterogeneous Firm: Crouzet 17; Xiao 19. Borrowing Constraint: Lian and Ma 20.
4. Dynamic Corporate Financing Model Under Asym Info Discrete Time: Hennessy, Livdan, and Miranda 10. Continuous Time: Morellec and Schurhoff 11.
5. Capital Misallocation and Financial Friction

Gilchrist, Sim, and Zakrajšek 13; Whited and Zhao 20.

Contribution to Literature: this paper introduces dynamic learning in unmonitored corporate bonds and substitution for monitored bank loans in unified quantitative model

Roadmap

Introduction

Model

Equilibrium

Estimation/Validation

Counterfactual

Conclusion

Roadmap

Introduction

Model

Equilibrium

Estimation/Validation

Counterfactual

Conclusion

Environment

Basics:

- Time is discrete, infinite horizon, annual frequency
- Agents: (i) firm managers; (ii) financial intermediaries; and (iii) representative household
- Discrete choice model: amounts of debt and equity on discrete grids of points

Technology in Production:

- Production: $\exp (z) k^{\alpha_{k}}, \alpha_{k} \in(0,1)$ with fixed costs f, measured in units of output
- where firm specific productivity $z \in\left\{z_{L}, z_{H}\right\}$ follows symmetric 2-state Markov process
- and capital k
- Price of capital is 1
- Capital depreciates by rate δ

Environment (Cont'd)

Preference:

- Manager and financial intermediaries are risk-neutral
- No aggregate shocks \rightarrow households risk aversion does not affect pricing
- Manager effectively receives per-period utility from

```
\underbracec
    shareholdings
```

- Preference shocks are unobservable
- Two types of preference shocks $\left(\varepsilon, \varepsilon_{\Delta}\right)$ Timing: 2 Sub-periods Timing: Diagram

1. ε adds noise to balance sheet choice (debt outstanding b, debt type ϕ, next period equity e^{\prime}) where $\phi= \begin{cases}M & \text { for corporate bonds (Market debt) } \\ B & \text { for bank loans (Bank debt) }\end{cases}$
2. ε_{Δ} adds noise to bankruptcy choice

Preference Shocks

capture unobserved factors affecting firm's choice

- Discrete choice + preference shocks drawn from GEV dist \rightarrow closed form solution (McFadden 73; Rust 87) Recursive Problem Conditional Value Function Simple Model
- Preference shocks help

1. computation by smoothing value function
2. to eliminate off-the-equilibrium beliefs (=assessment of firm's productivity)
3. to slow down dynamic learning about firm's productivity z

- Transitory preference shocks $\left(\varepsilon, \varepsilon_{\Delta}\right)$ hinder inference of persistent productivity z
- Micro-foundation to shocks: rational inattention (Matejka and Mckay 15)
- info-processing to investigate payouts is costly (e.g., communication costs in board meeting)

Agents, Firm's Choice, and Flow of Funds

State Variable
(productivity, equity, assessment of firm's productivity)

Firm Manager

Bondholders

Bank Lenders

Households (Shareholders)

Agents, Firm's Choice, and Flow of Funds

Bondholders

Bank Lenders

Households (Shareholders)

Agents, Firm's Choice, and Flow of Funds

Equity Market Role of Bank Loan

Agents, Firm's Choice, and Flow of Funds

Equity Market Role of Bank Loan

Agents, Firm's Choice, and Flow of Funds

Equity Market
Role of Bank Loan

Technologies in Bank Loans and Corporate Bonds

Creditors (i.e., banks and bondholders) offer debt contract contingent on publicly observable characteristics (e.g., size of debt, leverage, assessment about firm's productivity)

1. Asym info about persistent productivity z
2. Financial intermediation costs
3. Recovery at default (Ch. 11 reorganization)

Corporate bond recovery at default depends on privately informed productivity z

Technologies in Bank Loans and Corporate Bonds

Creditors (i.e., banks and bondholders) offer debt contract contingent on publicly observable characteristics (e.g., size of debt, leverage, assessment about firm's productivity)

1. Asym info about persistent productivity z

- monitoring is only available for banks
- banks can charge different interest rates among firm's productivity z

2. Financial intermediation costs
3. Recovery at default (Ch. 11 reorganization)

Corporate bond recovery at default depends on privately informed productivity z

Technologies in Bank Loans and Corporate Bonds

Creditors (i.e., banks and bondholders) offer debt contract contingent on publicly observable characteristics (e.g., size of debt, leverage, assessment about firm's productivity)

1. Asym info about persistent productivity z

- monitoring is only available for banks
- banks can charge different interest rates among firm's productivity z

2. Financial intermediation costs

- costs of banks $\mu_{B}>$ costs of bondholders μ_{M}
\checkmark e.g., monitoring costs, compliance costs, regulatory burdens

3. Recovery at default (Ch. 11 reorganization)

Corporate bond recovery at default depends on privately informed productivity z

Technologies in Bank Loans and Corporate Bonds

Creditors (i.e., banks and bondholders) offer debt contract contingent on publicly observable characteristics (e.g., size of debt, leverage, assessment about firm's productivity)

1. Asym info about persistent productivity z

- monitoring is only available for banks
- banks can charge different interest rates among firm's productivity z

2. Financial intermediation costs

- costs of banks $\mu_{B}>$ costs of bondholders μ_{M}
\checkmark e.g., monitoring costs, compliance costs, regulatory burdens

3. Recovery at default (Ch. 11 reorganization)

- dispersed bondholders fail to coordinate Bankruptcy
- cash-flow based debt in corporate bonds
- asset based debt in bank loans
- Lian and Ma 20 and EBITDA-multiple approach in practice

Corporate bond recovery at default depends on privately informed productivity z

Roadmap

Introduction

Model

Equilibrium

Estimation/Validation

Counterfactual

Conclusion

Evolution of Assessment of Firm's Productivity

follows Bayesian updating

1. Bondholders observe firm's state (equity (e), and assessment of firm's productivity (s)) and choice (size of borrowing (b), equity (e^{\prime}), debt type (ϕ), and bankruptcy (Δ))
2. Bondholders Bayesian updates assessment of firm's productivity in next period (s^{\prime}) given (i) public info $\left\{e, s, b, \phi, e^{\prime}, \Delta\right\}$ and (ii) equilibrium policy functions How Firm Uses Reputation?

Corporate bond credit spreads depend on expectation of probability of default and recovery using probability weights (\sim assessment of firm's productivity) Corporate Eond Pricing

Roadmap

Introduction

Model

Equilibrium

Estimation/Validation

Counterfactual

Data and Parameters

- Data for estimation: Compustat
- 12 parameters are selected outside model More
- intermediation costs $\mu_{B}-\mu_{M}=170$ bps (Schwert 20)
- Estimated 5 parameters $\left\{\alpha, \alpha_{\Delta}, f, f_{c 11}, \lambda_{1}\right\}$ to U.S. data via Simulated Method of Moments

More

- $\operatorname{var}($ debt to assets) and overall bankruptcy rates are informative to estimate variance of preference shocks $\left\{\alpha, \alpha_{\Delta}\right\}$
- $f_{c 11}$ targets fraction of Ch. 11
- Linear external financing costs $\lambda_{1}=0.09$ is close to estimate in Hennessy and Whited 07
- Model is consistent with bank debt ratio, debt-to-EBITDA, spreads, PD, recovery rates, credit ratings in data Targeted and Untargeted (Credit Losses) Other Validations

Roadmap

Introduction

Model

Equilibrium

Estimation/Validation

Counterfactual

Conclusion

Info about Productivity Improves Efficiency

- Productivity z: private info (benchmark) \rightarrow public info (counterfactual) - i.e., $q_{M}\left(\omega_{M}\right) \rightarrow q_{M}\left(\omega_{M}, z\right)$ where ω_{M} is observable firm characteristics - preference, technology, and parameters are unchanged

	Consumption	TFP	Aggregate bank debt ratio
Change (\%)	1.35	0.29	-26.52

- Measured TFP and consumption increase, and less demand for bank loans in counterfactual Olley and Pakes Decomposition and $\operatorname{Var}(\mathrm{mpk})$
- Private info induces low (high) type to overinvest (underinvest) \rightarrow misallocation of capital

- Simpler model delivers different quantitative results Atterative Model

Info about Productivity Improves Efficiency

- Productivity z: private info (benchmark) \rightarrow public info (counterfactual) - i.e., $q_{M}\left(\omega_{M}\right) \rightarrow q_{M}\left(\omega_{M}, z\right)$ where ω_{M} is observable firm characteristics - preference, technology, and parameters are unchanged

	Consumption	TFP	Aggregate bank debt ratio
Change (\%)	1.35	0.29	-26.52

- Measured TFP and consumption increase, and less demand for bank loans in counterfactual Olley and Pakes Decomposition and $\operatorname{Var}(\mathrm{mpk})$
- Private info induces low (high) type to overinvest (underinvest) \rightarrow misallocation of capital

- Simpler model delivers different quantitative results Attemative Model

Info about Productivity Improves Efficiency

- Productivity z: private info (benchmark) \rightarrow public info (counterfactual) - i.e., $q_{M}\left(\omega_{M}\right) \rightarrow q_{M}\left(\omega_{M}, z\right)$ where ω_{M} is observable firm characteristics - preference, technology, and parameters are unchanged

	Consumption	TFP	Aggregate bank debt ratio
Change (\%)	1.35	0.29	-26.52

- Measured TFP and consumption increase, and less demand for bank loans in counterfactual Olley and Pakes Decomposition and $\operatorname{Var}(\mathrm{mpk})$
- Private info induces low (high) type to overinvest (underinvest) \rightarrow misallocation of capital

- Simpler model delivers different quantitative results Attemative Model

Info about Productivity Improves Efficiency

- Productivity z: private info (benchmark) \rightarrow public info (counterfactual) - i.e., $q_{M}\left(\omega_{M}\right) \rightarrow q_{M}\left(\omega_{M}, z\right)$ where ω_{M} is observable firm characteristics - preference, technology, and parameters are unchanged

	Consumption	TFP	Aggregate bank debt ratio
Change (\%)	1.35	0.29	-26.52

- Measured TFP and consumption increase, and less demand for bank loans in counterfactual Olley and Pakes Decomposition and $\operatorname{Var}(\mathrm{mpk})$
- Private info induces low (high) type to overinvest (underinvest) \rightarrow misallocation of capital

- Simpler model delivers different quantitative results Atterative Model

Info about Productivity Improves Efficiency

- Productivity z: private info (benchmark) \rightarrow public info (counterfactual) - i.e., $q_{M}\left(\omega_{M}\right) \rightarrow q_{M}\left(\omega_{M}, z\right)$ where ω_{M} is observable firm characteristics - preference, technology, and parameters are unchanged

	Consumption	TFP	Aggregate bank debt ratio
Change (\%)	1.35	0.29	-26.52

- Measured TFP and consumption increase, and less demand for bank loans in counterfactual Olley and Pakes Decomposition and $\operatorname{Var}(\mathrm{mpk})$
- Private info induces low (high) type to overinvest (underinvest) \rightarrow misallocation of capital

- Simpler model delivers different quantitative results Attemative Model

Taxation of Cancellation of Debt (COD) Income

Policy Recommendation:

- Taxation of debt forgiveness improves welfare without changing info structure
- Current US law exempts tax of COD in bankruptcy
- COD=debt outstanding (b) - reduced debt repayment at default ≥ 0
- other things being equal, $\operatorname{COD}\left(z_{L}\right)>\operatorname{COD}\left(z_{H}\right)$ since $z_{L}<z_{H}$

Taxation of Cancellation of Debt (COD) Income

Policy Recommendation:

- Taxation of debt forgiveness improves welfare without changing info structure
- Current US law exempts tax of COD in bankruptcy
- COD=debt outstanding (b) - reduced debt repayment at default ≥ 0
- other things being equal, $\operatorname{COD}\left(z_{L}\right)>\operatorname{COD}\left(z_{H}\right)$ since $z_{L}<z_{H}$

Takeaways

What I Do:

- I develop quantitative model of reputation building

Main Mechanism:

Policy Recommendation:
Taxation of Debt Forgiveness

Debt Structure: International Comparison

Reference: Becker and Josephson (2016). Debt outstanding of publicly traded debt in 37 countries (including US, UK, and Japan) by region in 2010.

Data Facts

1. Corporate bonds consist for 70% of non-financial corporate debt in US
2. Average firm issues corporate bonds is highly levered
3. Annual bankruptcy rates is 0.9%

- Ch. 11 reorganization is 0.7% and Ch .7 liquidation is 0.1%

4. Corporate bond recovery rates at default are highly dispersed
5. CFOs think credit ratings - expected Probability of Default (PD) - is one of most important determinant of debt financing

Source: Compustat, Graham and Harvey 10, Moody's, Flow of Funds.

Preference Shocks Affect Learning

No Shock $\alpha \rightarrow \infty$

- Simple static model in Modigliani-Miller: firm solves optimal borrowing b given internal finance e
- Optimal capital: $k\left(z_{L}\right)<k\left(z_{H}\right) \rightarrow b(e, z)=k(z)-e$ if $k(z)<e$

Preference Shocks Affect Learning

Small Shocks

$$
\alpha=4
$$

- Plotting pdf
- 5-95 percentile, 10-90 percentile, and 25-75 percentile
- modal choice (black solid lines)

Preference Shocks Affect Learning

Small Shocks

$$
\alpha=4
$$

- Suppose I do not know firm's type and observe firm's choice (blue dots)
- Try to guess firm's type

Preference Shocks Affect Learning

Small Shocks

$$
\alpha=4
$$

- Most likely to be z_{H} (\sim Bayesian inference) $\uparrow \operatorname{Pr}\left(z_{H}\right)$
- Small preference shocks create small noise \rightarrow inference is easier

Preference Shocks Affect Learning

Large Shocks

$$
\alpha=1
$$

- Large preference shocks create large noise
- Inference is harder and depends on prior \uparrow or $\downarrow \operatorname{Pr}\left(z_{H}\right)$
- bondholders cannot distinguish whether action comes from z or preference shocks

Chapter 11 Reorganization

- Efficiency of liquidation of assets $s_{c 11}$
- Debt repayment reflects coordination:

1. (weak) bondholders receive cash flow $\max \left\{\exp (z) k^{\alpha_{k}}-f+s_{c 11}(1-\delta) k-f_{c 11}, 0\right\}$
2. (strong) bank lenders receive liquidation value from take-it-or-leave-it offer (Crouzet 17; Xiao 19)

Chapter 7 Liquidation

- Efficiency of liquidation of assets $s_{c 7}$
- Debt repayment:
- all type of debtors receive liquidation value $s_{C 7} k$

Bankruptcy by Size

Small Firm Files Ch. 7

Size Percentile	Probability of Bankruptcy				Fraction of Ch. 7 (\%)	
	Ch. 11 (\%)		Ch. 7 (\%)			
	z_{L}	z_{H}	z_{L}	z_{H}	z_{L}	z_{H}
Panel A: Internal Finance						
<25\%	1.11	2.20	0.57	0.00	33.83	0.00
25\%-50\%	0.89	0.72	0.12	0.00	12.31	0.00
50-75\%	0.68	0.26	0.01	0.00	1.12	0.00
$>75 \%$	0.45	0.15	0.00	0.00	1.00	0.00
Panel B: Total Assets						
<25\%	0.65	0.51	0.56	0.00	46.61	0.00
25\%-50\%	1.21	0.83	0.01	0.00	0.73	0.00
50-75\%	0.93	0.65	0.00	0.00	0.49	0.00
>75\%	2.25	0.41	0.00	0.00	0.00	0.00

Birth and Death

Exiting

- Exogenous exiting at rate η with depreciation rate of value $1-\chi$

Entry

- Entrants start from smallest internal finance
- Productivity is randomly drew from stationary distribution
- No track record (Diamond 89)

Timing: 2 Sub-periods

1. Balance sheet choice stage:

- preference shocks $\varepsilon_{b, \phi, e^{\prime}}$ of scale parameter α
- debt outstanding b; debt type $\phi \in\{\mathrm{M}($ artketdebt $), \mathrm{B}($ ankdebt $)\}$; next period internal finance e^{\prime}

2. Bankruptcy choice stage:

- preference shocks ε_{Δ} of scale parameter α_{Δ}
- bankruptcy $\Delta \in\{0$ (no bankruptcy), 1 (bankruptcy) $\}$
- choose bankruptcy chapters
- debt settlement, exit, and entry
- Bayesian learning of s^{\prime} from public info $\left(b, \phi, e^{\prime} \Delta\right)$

Timing: Diagram

Timing: Diagram

Timing: Diagram

Timing: Diagram

Recursive Problem Ream

Dynamic Discrete Choice Model

- Manager maximizes lifetime utility:

$$
\begin{aligned}
W(e, z, s) & =\mathbb{E}_{\varepsilon_{b, \phi, e^{\prime}}}\left[\max _{b, \phi \in\{M, B\}, e^{\prime}} V+\varepsilon_{b, \phi, e^{\prime}}\right] \\
V & =\mathbb{E}_{\varepsilon_{\Delta}}\left[\max _{\hat{\Delta} \in\{0,1\}} v_{\hat{\Delta}}+\varepsilon_{\hat{\Delta}}\right]
\end{aligned}
$$

where $v_{\Delta=1}=\max \left\{v_{c 11}, v_{c 7}\right\}$

- v_{Δ} is value function at bankruptcy choice stage conditional on $\left\{e, z, s, b, \phi, e^{\prime}\right\}$
- Internal finance e and debt outstanding b lie on discrete grids
- Action specific preference shocks $\left\{\varepsilon_{b, \phi, e^{\prime}}, \varepsilon_{\Delta}\right\}$ are drawn from GEV distribution with scale parameters $\left\{\alpha, \alpha_{\Delta}\right\}$

Recursive Problem Ream

Dynamic Discrete Choice Model

- Manager maximizes lifetime utility:

$$
\begin{aligned}
W(e, z, s) & =\frac{1}{\alpha} \ln \left(\sum_{b, \phi \in\{M, B\}, e^{\prime}} \exp (\alpha V)\right) \\
V & =\frac{1}{\alpha_{\Delta}} \ln \left(\sum_{\hat{\Delta} \in\{0,1\}} \exp \left(\alpha_{\Delta} v_{\hat{\Delta}}\right)\right)
\end{aligned}
$$

where $v_{\Delta=1}=\max \left\{v_{c 11}, v_{c 7}\right\}$

- v_{Δ} is value function at bankruptcy choice stage conditional on $\left\{e, z, s, b, \phi, e^{\prime}\right\}$
- Internal finance e and debt outstanding b lie on discrete grids
- Action specific preference shocks $\left\{\varepsilon_{b, \phi, e^{\prime}}, \varepsilon_{\Delta}\right\}$ are drawn from GEV distribution with scale parameters $\left\{\alpha, \alpha_{\Delta}\right\}$
- Closed form solution (McFadden 73; Rust 87)

Value Function at Bankruptcy Choice Stage

Nonbankruptcy

$$
v_{\Delta=0}=\text { equity payout }- \text { external costs }+ \text { continuation value }
$$

Ch. 11

$$
v_{c 11}=\text { equity payout }- \text { external costs }+ \text { continuation value }
$$

Ch. 7

$$
v_{C 7}=\text { equity payout }- \text { external costs }
$$

Value Function at Bankruptcy Choice Stage

Nonbankruptcy

$$
\begin{align*}
v_{\Delta=0} & =\text { equity payout }- \text { external costs }+ \text { continuation value } \\
\text { equity payout } & =\exp (z) k^{\alpha_{k}}-f+(1-\delta) k-\operatorname{debt} \text { repayment }-e^{\prime} \tag{1}
\end{align*}
$$

Ch. 11

$$
\begin{align*}
v_{c 11} & =\text { equity payout }- \text { external costs }+ \text { continuation value } \\
\text { equity payout } & =\exp (z) k^{\alpha_{k}}-f+s_{c 11}(1-\delta) k-f_{c 11}-\text { debt repayment }-e^{\prime} \tag{2}
\end{align*}
$$

Ch. 7

$$
\begin{aligned}
v_{c 7} & =\text { equity payout }- \text { external costs } \\
\text { equity payout } & =s_{c 7} k-\text { debt repayment }
\end{aligned}
$$

Value Function at Bankruptcy Choice Stage

Nonbankruptcy

$$
\begin{align*}
v_{\Delta=0} & =\text { equity payout }- \text { external costs }+ \text { continuation value } \\
\text { equity payout } & =\exp (z) k^{\alpha_{k}}-f+(1-\delta) k-\text { debt repayment }-e^{\prime} \tag{1}
\end{align*}
$$

Ch. 11

$$
\begin{align*}
v_{c 11} & =\text { equity payout }- \text { external costs }+ \text { continuation value } \\
\text { equity payout } & =\exp (z) k^{\alpha_{k}}-f+s_{c 11}(1-\delta) k-f_{c 11}-\text { debt repayment }-e^{\prime} \tag{2}
\end{align*}
$$

Ch. 7

$$
\begin{align*}
v_{c 7} & =\text { equity payout }- \text { external costs } \\
\text { equity payout } & =s_{c 7} k-\text { debt repayment } \tag{3}
\end{align*}
$$

- Continuation value consists expectation of future $W\left(e^{\prime}, z^{\prime}, s^{\prime}\right)$ over z^{\prime} and s^{\prime}

Manager's Problem in Recursive Formula Ream

Simple Model - Only Corporate Bonds, No Ch. 7, Zero Equity Issuance Costs

- Type score $s=\operatorname{Pr}\left(z=z_{H}\right)$

$$
\begin{aligned}
W(e, z, s) & =\mathbb{E}_{\varepsilon_{b, \phi, e^{\prime}}}[\max _{b, e^{\prime}} \mathbb{E}_{\varepsilon_{\Delta}}[\max _{\Delta} v_{\hat{\Delta}}+\underbrace{\varepsilon_{\hat{\Delta}}}_{\text {pereference shocks }}]+\underbrace{\varepsilon_{b, \phi, e^{\prime}}}_{\text {preference shocks }}] \\
\Pi_{\Delta=0} & =e^{z}(b+e)^{\alpha_{k}}+(1-\delta)(b+e) \\
\Pi_{\Delta=1} & =e^{z}(b+e)^{\alpha_{k}}+s_{c 11}(1-\delta)(b+e)-f_{c 11} \\
v_{\Delta=0} & =\Pi_{\Delta=0}-q_{M}^{-1} b-e^{\prime}+q \sum_{z^{\prime}, s^{\prime}} g_{z} g_{s} W\left(e^{\prime}, z^{\prime}, s^{\prime}\right) \\
v_{\Delta=1} & =\Pi_{\Delta=1}-\underbrace{\min \left\{q_{M}^{-1} b, \max \left\{\Pi_{\Delta=1}, 0\right\}\right\}}_{\text {debt repayment under Ch. } 11}-e^{\prime}+q \sum_{z^{\prime}, s^{\prime}} g_{z} g_{s} W\left(e^{\prime}, z^{\prime}, s^{\prime}\right)
\end{aligned}
$$

$s_{c 11}$: liquidation efficiency (Ch. 11), $f_{c 11}$: fixed costs for Ch. $11, q_{M}$: market debt price, q : discount factor, g_{z} : transition prob of z, g_{s} : transition prob of type score

- g_{s} follows Bayes' rule given (i) public info and (ii) equilibrium policy functions

Bankruptcy

Chapter 7 Liquidation (Endogenous Exiting)

- Business terminates
- Liquidation value of assets $s_{c 7} k$

Chapter 11 Reorganization

- Business continues (value depreciates by π)
- Reduce debt burden
- borrower uses liquidation threat under Ch. 7 (take-it-or-leave-it offer) to bank lender
- corporate bond recovery at default depends on cash flow
- Liquidation value of assets $s_{c 11} k$
- Fixed costs $f_{c 11} \rightarrow$ small firm files Ch. 7

Financial Frictions in Equity Markets

- Equity issuance is very costly in data
- Linear costs of equity financing λ_{1} (Gomes 01)
- financial frictions in reduced form

(Quantitative) Role of Bank Loan Markets

- Debt substitution mitigates reputation building
- Allows model estimation and validation (not every firms in Compustat universe issue corporate bonds in data)

Theory

Existence

Theorem:

- There exists a stationary recursive competitive equilibrium

Sketch of proof: preference shocks eliminate off-the-equilibrium beliefs (CCDR 20)

Consistency of Firm Distribution and Assessment of Firm's Productivity

Proposition:

- Stationary cross-sectional firm distribution satisfies:

fraction of high producitvity firm from stationary dist.

Sketch of proof: mathematical induction + rational agents such that (i) entrant's belief is consistent with ergodic distribution; (ii) belief updating is Bayesian where Γ : firm distribution

Return

Parameters

Description	Notation	Value	S.E.	Target/Reference
Panel A: Parameters Calibrated	Outside the Model			
Capital elasticity of profits	α_{k}	0.650		Standard setting
Depreciation rate	δ	0.150		Standard setting
Persistency of productivity	ρ	0.700		İmrohoroglu and Tïzel (2014)
Std. dev. of productivity shock	σ	0.270		İmrohoroglu and Tüzel (2014)
Risk-free rate	r_{f}	0.040		T-Bill rate
Exogenous exiting rate	η	0.008		Exiting rate
Market intermediation costs	μ_{M}	0.006		AAA Corporate bond spread
Bank intermediation costs	$\mu_{B}-\mu_{M}$	0.017		Schwert (2020)
Liquidation efficiency (exiting)	χ	0.500		Crouzet (2017)
Liquidation efficiency (Ch. 7)	$s_{c 7}$	0.380		Bris et al. (2006)
Reorganization efficiency	$s_{c 11}$	0.869		Bris et al. (2006)
Loss of continuation value	π	0.300		Lang and Stulz (1992)
Panel B: Parameters Estimated Inside the Model				
Extreme value scale parameter	α	2.251	(0.300)	Variance of debt to assets
Extreme value scale parameter	α_{Δ}	0.102	(0.015)	Bankruptcy rate (Ch. 11+Ch. 7)
Fixed costs for production	f	4.099	(0.298)	Equity issuance/assets
Fixed costs for Ch. 11	$f_{c 11}$	28.698	(4.468)	Bankruptcy rate (Ch. 11)
Linear external financing costs	λ_{1}	0.092	(0.021)	Variance of dividends to assets

Model Matches (Targeted and Untargeted) Moments

Description	Model	Data	Source
Panel A: Target Moments			
\quad Bankruptcy prob. (Ch. 11) (\%)	0.72	0.72	Compustat
Bankruptcy prob. (Ch. 7) (\%)	0.14	0.14	Compustat
Variance of debt-to-assets	0.06	0.07	Compustat
Variance of dividends/total assets	0.01	0.02	Compustat
\quad Equity issuance /total assets	0.15	0.16	Compustat
Panel B: Untarget Moments (Financial Ratios)			

- Model does a good job matching targeted moments

Model Matches (Targeted and Untargeted) Moments

Description	Model	Data	Source
Panel A: Target Moments			
Bankruptcy prob. (Ch. 11) (\%)	0.72	0.72	Compustat
Bankruptcy prob. (Ch. 7) (\%)	0.14	0.14	Compustat
Variance of debt-to-assets	0.06	0.07	Compustat
Variance of dividends/total assets	0.01	0.02	Compustat
Equity issuance /total assets	0.15	0.16	Compustat
Panel B: Untarget Moments (Financial Ratios)			
Debt-to-assets	0.39	0.24	Compustat
Bank debt ratio	0.33	$[0.28,0.43]$	CM (2018)
Aggregate bank debt ratio	0.21	0.31	Flow of Funds
Debt-to-EBITDA	2.45	1.77	Compustat
Dividends/total assets	0.09	0.03	Compustat
Spreads (Non-bankrupt) (bps)	174	n.a.	n.a.
Spreads (Ch. 11) (bps)	378	n.a.	n.a.
Spreads (Ch. 7) (bps)	227	n.a.	n.a.
Spreads of bank debt (bps)	269	$[251,301]$	Strahan (1999)

- Model does a good job matching targeted moments
- Model does a good job matching untargeted moments:
- bank debt ratio (intermediation costs $\left.\mu_{B}-\mu_{M}\right)$
- debt-to-EBITDA (fixed costs f)
- spreads of bank debt (intermediation costs μ_{M})

Note: CM (2018) refers to Crouzet and Mehrotra (2018).
Return

Model Captures (Untargeted) Credit Losses

	Market Dobt	Bank Debl		Split sample into bond and loan dependent firms
Descripion	Model Data	Model Din	Source	
Panel A: Leverage	$0.42 \quad 0.39$	0.32	Compusat	ond issuers are highly leveraged - intermediation costs

Panel C: Recovery Rates

Panel D: Expected Recovery Rates

Model Captures (Untargeted) Credit Losses

Description	Market Debt		Bank Debt		Source	Split sample into bond and loan dependent firms
	Model	Data	Model	Data		
Panel A: Leverage						- Bond issuers are highly leveraged
Debt-to-assets	0.42	0.39	0.32	0.21	Compustat	- intermediation costs
Panel B: Bankrupty Probabilities						
Chapter 11 Reorganization (\%)	0.76	${ }^{0.61}$	0.64	${ }_{0}^{0.74}$	Compustat	- Bank dependent firm files more Ch. 7
Chapter 7 Liquidation (\%) Fraction of Chapter 11	${ }_{0} 0.08$	0.08	0.25 0.72	${ }_{0}^{0.15}$	${ }_{\text {Compustat }}^{\text {Compustat }}$	bankruptcy
Fraction of Chapter 11 Panel C: Recovery Rates	0.90	0.88	0.72	0.83	Compustat	bankruptcy

[^0]Note: AK (2014) compute summary statistics from Moody's Ultimate Recovery Database. AK(2014) refers to Altman and Kalotay (2014)

Model Captures (Untargeted) Credit Losses

Description	Market Debt		Bank Debt		Source
	Model	Data	Model	Data	
Panel A: Leverage					
Debt-to-assets	0.42	0.39	0.32	0.21	Compustat
Panel B: Bankruptcy Probabilities					
Chapter 11 Reorganization (\%)	0.76	0.61	0.64	0.74	Compustat
Chapter 7 Liquidation (\%)	0.08	0.08	0.25	0.15	Compustat
Fraction of Chapter 11	0.90	0.88	0.72	0.83	Compustat
Panel C: Recovery Rates					
Mean	0.32	0.45	0.64	0.75	AK (2014)
Standard deviation	0.37	0.38	0.24	0.33	AK (2014)
Interquartile range	0.69	0.73	0.43	0.51	AK (2014)
10th percentile	0.00	0.00	0.38	0.20	AK (2014)
90th percentile	0.88	1.00	1.00	1.00	AK (2014)
Panel D: Expected Recovery Rates					

- Split sample into bond and loan dependent firms
- Bond issuers are highly leveraged
- intermediation costs
- Bank dependent firm files more Ch. 7 bankruptcy
- Realized recovery rates
- lower recovery on average in market debt
- cash flow based debt is essential to match large heterogeneity in recovery rates Asset Based Debt

Note: AK (2014) compute summary statistics from Moody's Ultimate Recovery Database AK(2014) refers to Altman and Kalotay (2014)

Model Captures (Untargeted) Credit Losses

Description	Market Debt		Bank Debt		Source
	Model	Data	Model	Data	
Panel A: Leverage					
Debt-to-assets	0.42	0.39	0.32	0.21	Compustat
Panel B: Bankruptcy Probabilities					
Chapter 11 Reorganization (\%)	0.76	0.61	0.64	0.74	Compustat
Chapter 7 Liquidation (\%)	0.08	0.08	0.25	0.15	Compustat
Fraction of Chapter 11	0.90	0.88	0.72	0.83	Compustat
Panel C: Recovery Rates					
Mean	0.32	0.45	0.64	0.75	AK (2014)
Standard deviation	0.37	0.38	0.24	0.33	AK (2014)
Interquartile range	0.69	0.73	0.43	0.51	AK (2014)
10th percentile	0.00	0.00	0.38	0.20	AK (2014)
90th percentile	0.88	1.00	1.00	1.00	AK (2014)
Panel D: Expected Recovery Rates					
Mean (lowest type score)	0.12	n.a.	n.a.	n.a.	
Mean (highest type score)	0.86	n.a.	n.a.	n.a.	

- Split sample into bond and loan dependent firms
- Bond issuers are highly leveraged
- intermediation costs
- Bank dependent firm files more Ch. 7 bankruptcy
- Realized recovery rates
- lower recovery on average in market debt
- cash flow based debt is essential to match large heterogeneity in recovery rates Asset Based Debt

Type difference of corporate bond expected recovery rates is large (highest to lowest is 74% pts)

Other Validations

- Leverage and credit rating (=expected PD) dynamics before and after bankruptcy Ch. 7 Dynamics
- Expected PD and recovery rates at default by credit ratings E[PD] and E[RR]

How Firm Uses Assessment of Firm's Productivity as Signal?

Leverage \uparrow and equity \uparrow

 \Downarrow- Other signal? Bankruptcy and debt structure are less informative Hypothese of signaling
- Signaling is not free: costs of bankruptcy; decreasing returns to scale; and costs of external equity issuance

How Firm Uses Assessment of Firm's Productivity as Signal?

- Other signal? Bankruptcy and debt structure are less informative Hypotheses of signaling
- Signaling is not free: costs of bankruptcy; decreasing returns to scale; and costs of external equity issuance

How Firm Uses Assessment of Firm's Productivity as Signal?

- Other signal? Bankruptcy and debt structure are less informative Hypotheses of signaling
- Signaling is not free: costs of bankruptcy; decreasing returns to scale; and costs of external equity issuance

How Firm Uses Assessment of Firm's Productivity as Signal?

- Other signal? Bankruptcy and debt structure are less informative Hypotheses of signaling
- Signaling is not free: costs of bankruptcy; decreasing returns to scale; and costs of external equity issuance

Debt Pricing

Corporate bond markets: cross-subsidization Bank Loan Pricing

- Competitive pricing from free entering in both debt markets \rightarrow zero profit
- One-period corporate bond price menu $q_{M}\left(e, s, b, e^{\prime}\right)$ is contingent on size of borrowing (b), equity (e, e^{\prime}), and assessment of firm's productivity $\left(s \equiv \operatorname{Pr}\left(z=z_{H}\right)\right.$)
- where q_{M}^{-1} : gross interest rate, μ_{M} : intermediation costs, q : price of risk-free debt, PD: Probability of Default, RR: Recovery Rate at default, and Recovery: RR×Exposure At Default

$$
\underbrace{(1-E[\mathrm{PD}]) q_{M}^{-1} b}_{\text {debt repayment (no default) }}+\underbrace{E[\text { Recovery }]}_{\text {debt repayment (default) }}-\underbrace{\left(1+\mu_{M}\right) q^{-1} b}_{\text {funding costs }}=\underbrace{0}_{\text {profit }}
$$

Debt Pricing

Corporate bond markets: cross-subsidization Bank Loan Pricing

- Competitive pricing from free entering in both debt markets \rightarrow zero profit
- One-period corporate bond price menu $q_{M}\left(e, s, b, e^{\prime}\right)$ is contingent on size of borrowing (b), equity (e, e^{\prime}), and assessment of firm's productivity $\left(s \equiv \operatorname{Pr}\left(z=z_{H}\right)\right.$)
- where q_{M}^{-1} : gross interest rate, μ_{M} : intermediation costs, q : price of risk-free debt, PD: Probability of Default, RR: Recovery Rate at default, and Recovery: RR×Exposure At Default

$$
\begin{align*}
q_{M} & =\frac{(1-E[\mathrm{PD}]) b}{\left(1+\mu_{M}\right) q^{-1} b-E[\text { Recovery }]} \tag{4}\\
E[\text { Recovery }] & \simeq E[\mathrm{PD}] \times E[\mathrm{RR}] \times \underbrace{q_{M}^{-1} b}_{\text {Exposure At Default }} \tag{5}
\end{align*}
$$

Debt Pricing

Corporate bond markets: cross-subsidization Bank Loan Pricing

- Competitive pricing from free entering in both debt markets \rightarrow zero profit
- One-period corporate bond price menu $q_{M}\left(e, s, b, e^{\prime}\right)$ is contingent on size of borrowing (b), equity (e, e^{\prime}), and assessment of firm's productivity $\left(s \equiv \operatorname{Pr}\left(z=z_{H}\right)\right.$)
- where q_{M}^{-1} : gross interest rate, μ_{M} : intermediation costs, q : price of risk-free debt, PD: Probability of Default, RR: Recovery Rate at default, and Recovery: RR×Exposure At Default

$$
\begin{align*}
q_{M} & =\frac{(1-E[\mathrm{PD}]) b}{\left(1+\mu_{M}\right) q^{-1} b-E[\text { Recovery }]} \tag{4}\\
E[\text { Recovery }] & \simeq E[\mathrm{PD}] \times E[\mathrm{RR}] \times \underbrace{q_{M}^{-1} b}_{\text {Exposure At Default }} \tag{5}\\
E[\mathrm{PD}] & =(1-s) \times \operatorname{PD}\left(z_{L}, \cdots\right)+s \times \operatorname{PD}\left(z_{H}, \cdots\right) \\
E[\mathrm{RR}] & =(1-s) \times \operatorname{RR}\left(z_{L}, \cdots\right)+s \times \operatorname{RR}\left(z_{H}, \cdots\right)
\end{align*}
$$

Debt Pricing

Corporate bond markets: cross-subsidization Bank Loan Pricing

- Competitive pricing from free entering in both debt markets \rightarrow zero profit
- One-period corporate bond price menu $q_{M}\left(e, s, b, e^{\prime}\right)$ is contingent on size of borrowing (b), equity (e, e^{\prime}), and assessment of firm's productivity $\left(s \equiv \operatorname{Pr}\left(z=z_{H}\right)\right.$)
- where q_{M}^{-1} : gross interest rate, μ_{M} : intermediation costs, q : price of risk-free debt, PD: Probability of Default, RR: Recovery Rate at default, and Recovery: RR×Exposure At Default

$$
\begin{aligned}
E[\mathrm{PD}] & \neq \mathrm{PD}(z) \\
E[\mathrm{RR}] & \neq \operatorname{RR}(z)
\end{aligned}
$$

where $z \in\left\{z_{L}, z_{H}\right\}$ if $0<s<1, \operatorname{PD}\left(z_{H}\right) \neq \operatorname{PD}\left(z_{L}\right)$, and $\operatorname{RR}\left(z_{H}\right) \neq \operatorname{RR}\left(z_{L}\right)$

Debt Pricing (Cont'd)

Bank loan markets: benefits of monitoring and costs of intermediation μ_{B}

- One-period bank loan price menu $q_{B}\left(e, z, s, b, \phi, e^{\prime}\right)$ is contingent on productivity (z)

$$
\begin{align*}
q_{B}(z, \cdots) & =\frac{(1-\operatorname{PD}(z, \cdots)) b}{\left(1+\mu_{B}\right) q^{-1} b-\operatorname{Recovery}(z, \cdots)} \tag{4}\\
\text { Recovery }(z, \cdots) & \simeq \operatorname{PD}(z, \cdots) \times \underbrace{s_{c 7}(e+b)}_{\text {liquidation value }} \tag{5}
\end{align*}
$$

- Debt types trade-offs: (i) monitoring; (ii) intermediation costs; (iii) recovery at default
- Who borrows from bank lenders? High productivity firm with low assessment of firm's productivity

Debt Structure Choice

- Type score $=$ assessment of firm's productivity $\left(s \equiv \operatorname{Pr}\left(z=z_{H}\right)\right)$
- Corporate bonds are mostly cheaper for safer firms because intermediation costs are smaller
- When firm borrowers from banks?
- small-sized firm because corporate bond recovery at default is low (interest rates are high)
- low type score firm because it pays info rents
- preference shocks

Leverage and Equity Send Informative Signals s'

- Type score $\left(s=\operatorname{Pr}\left(z_{H}\right)\right)$ updating follows Bayes rule
- s^{\prime} is mapping from public info $\left\{e, s, b, \phi, e^{\prime}\right.$ and $\left.\Delta\right\}$
- Simulated panel regressions to study determinants of type score s^{\prime} :

$$
\begin{aligned}
s_{i, t} & =\alpha_{i}+\beta_{0}+\beta_{1} \text { Leverage }_{i, t-1}+\beta_{2} \ln \left(\text { Equity }_{i, t-1}\right)+\beta_{3} \text { Bankruptcy }_{i, t-1} \\
& +\beta_{4} \text { Market funding ratio }_{i, t-1}+\beta_{5} \ln \left(\text { Firm age }_{i, t-1}\right)+\beta_{6} s_{i, t-1}+\varepsilon_{i, t}
\end{aligned}
$$

- Type score updating is mostly explained by leverage and equity: Regresion
$-+1 \sigma$ leverage raises belief by 20% pts $(=\underbrace{0.81} \times 0.25)$
$-+1 \sigma$ equity raises belief by 11% pts $(=\underbrace{0.19} \times 0.60)$
- typical reputation proxies are not good (i.e., bankruptcy, market funding ratio, firm age)

Regressions

	Dependent variable: Type score s_{t}			
	(1)	(2)	(3)	(4)
Leverage $_{t-1}$	$\begin{aligned} & \hline 0.739 * * * \\ & (493.43) \end{aligned}$		$\begin{aligned} & \hline 0.943 * * * \\ & (881.76) \end{aligned}$	$\begin{aligned} & 0.806 * * * \\ & (789.83) \end{aligned}$
\ln (Internal finance ${ }_{t-l}$)		$\begin{aligned} & 0.212 * * * \\ & (325.37) \end{aligned}$	$\begin{aligned} & 0.306^{* *} * \\ & (716.11) \end{aligned}$	$\begin{aligned} & 0.191 * * * \\ & (386.23) \end{aligned}$
Chapter 11 bankruptcy $_{\text {t-1 }}$			$\begin{aligned} & 0.0283^{* * *} \\ & (13.07) \end{aligned}$	$\begin{aligned} & 0.0314^{* * *} \\ & (16.44) \end{aligned}$
Market funding ratio ${ }_{\text {t-1 }}$			$\begin{aligned} & 0.00853^{* * *} \\ & (15.95) \end{aligned}$	$\begin{aligned} & 0.0000488 \\ & (0.10) \end{aligned}$
$\ln \left(\right.$ Firm age ${ }_{t-1}$)			$\begin{aligned} & -0.00424^{* * *} \\ & (-15.38) \end{aligned}$	$\begin{aligned} & -0.0000297 \\ & (-0.12) \end{aligned}$
Type score s_{t-1}				$\begin{aligned} & 0.346 * * * \\ & (360.18) \end{aligned}$
Number of observations	475568	475568	475568	475568
R^{2}	0.339	0.182	0.696	0.762
Fixed effects	No	No	Yes	Yes

Good (Bad) Type Score Reduces (Increases) Interest Rate

Firms with High Type Issue More Corporate Bonds

Signaling Theory in Corporate Finance

Signaling Alleviates Asym Info

Possibility (This Paper):

- Leverage (Ross 77; Hennessy, Livdan and Miranda 10) \checkmark
- Internal finance (Leland and Pyle 76) \checkmark
- Bankruptcy filing (Diamond 89, 91) X
- Debt structure (Houston and James 96) X
- Firm age (Datta, Iskandar-Datta, and Patel 99) x

Asset Based Debt

Alternative Benchmark

- Corporate bond recovery: cash flow based \rightarrow asset based

	Data	Benchmark (i)	Counterfactual (ii)	Alternative benchmark (iii)	Counterfactual (iv)
Panel A: Techonology					
Monitoring by bondholders			\checkmark		\checkmark
Bond flexibility under Ch .11				\checkmark	\checkmark
Panel B: Capital Structure and Welfare					
Debt	n.a.	20.80	22.74	18.04	18.36
Debt (zL)	n.a.	3.22	3.22	3.66	3.66
Debt (zH)	n.a.	17.58	19.52	14.37	14.69
Equity	n.a.	24.24	21.86	24.36	24.01
Equity (zL)	n.a.	9.52	8.57	8.98	8.85
Equity (zH)	n.a.	14.72	13.28	15.38	15.16
Aggregate bank debt ratio	0.31	0.21	0.15	0.24	0.22
Consumption	n.a.	1.380	1.398	1.281	1.283
Change in \% compared to full info	n.a.	n.a.	1.35	n.a.	0.14
Output	n.a.	12.81	12.77	12.29	12.29
Capital	n.a.	45.03	44.60	42.40	42.37
Change in \% compared to full info	n.a.	n.a.	-0.97	n.a.	-0.08
Capital (zL)	n.a.	12.74	11.80	12.65	12.51
Capital (zH)	n.a.	32.30	32.80	29.75	29.86
TFP	n.a.	1.079	1.082	1.076	1.077
Change in \% compared to full info	n.a.	n.a.	0.29	n.a.	0.05
Panel C: Bankruptcy					
Bankruptcy prob. (Ch. 11) (\%)	0.72	0.72	0.85	0.72	0.76
Bankruptcy prob. (Ch. 7) (\%)	0.14	0.14	0.12	0.19	0.18
Panel D: Market Debt Recovery Rates					
Mean	0.45	0.32	0.36	0.62	0.61
Standard deviation	0.38	0.37	0.34	0.20	0.20
Interquartile range	0.73	0.69	0.66	0.27	0.24
10th percentile	0.00	0.00	0.00	0.41	0.41
90 th percentile	1.00	0.88	0.81	1.00	0.98

(Untarget) Model Dynamics Around Ch. 11 Are Close to Data

- Credit ratings is mapping of $E[P D]$ to 6 buckets (e.g., top 4\% of safest bonds are categorized as "AAA/AA")

- Mean reversions in leverage and credit rating
- which arise from productivity process and costly equity issuance

Dynamics

Model

Leverage

Data

- Model is also consistent with dynamics around Ch. 7

$E[P D]$ and $E[R R]$ Conditional on Credit Rating

In real-world data:

- $\mathrm{E}[\mathrm{PD}]=$ Historical Bankruptcy Rate
- E[Recovery Rate]=Recovery Rating
- recovery ratings are only available for speculative grades

	S\&P Credit Rating					
	Investment Grade		Speculative Grade			
	AAA/AA	A	BBB	BB	B	CCC/C
Panel A: Share (\%)						
Model	4.00	15.00	24.00	27.00	27.00	3.00
Data	3.97	14.32	23.75	27.26	27.27	3.43
Panel B: Bankruptcy and Default of Market Debt						
Expected bankruptcy rates (\%)						
Historical annual bankruptcy rates (\%)						
Data 1 year	0.00	0.00	0.07	0.12	0.57	14.13
3 years	0.05	0.03	0.13	0.53	1.32	7.35
Panel C: Expected Recovery Rates at Default of Market Debt						
Model Mean	1.00	0.98	0.85	0.39	0.25	0.26
Std. Dev.	0.01	0.03	0.19	0.36	0.29	0.23
Data Mean	n.a.	n.a.	n.a.	0.43	0.38	0.38
Std. Dev.	n.a.	n.a.	n.a.	0.26	0.30	0.32
Number of observations	n.a.	n.a.	n.a.	1150	728	248

- Distributions of PD and Recovery Rates in model are consistent with data

Asym Info (Benchmark) Model is Closer to Data

- Moody's LGD assessment is $E[1$ - Recovery Rates]

Note: Data sample is from 2008 to 2010

- Realized recovery rates \neq expected recovery rates

Misallocation

TFP $=$ Aggregate Capital $^{\alpha_{k}} /$ Aggregate Output

	Benchmark	Counterfactual		
	(i)	Perfect Monitoring	Partial Monitoring	
		(ii)	(iii)	(iv)
Panel A: Techonology				
Monitoring on PD		\checkmark	\checkmark	
Monitoring on recovery at default		\checkmark		\checkmark
Panel B: Capital Structure and Welfare				
Debt	20.80	22.74	22.38	21.13
Debt (zL)	3.22	3.22	3.22	3.19
Debt (zH)	17.58	19.52	19.16	17.95
Equity	24.24	21.86	22.36	23.66
Equity (zL)	9.52	8.57	8.78	9.32
Equity (2 H)	14.72	13.28	13.59	14.34
Aggregate bank debt ratio	0.21	0.15	0.16	0.19
Consumption	1.380	1.398	1.404	1.389
Change in \% compared to benchmark	n.a.	1.35	1.80	0.65
Output	12.81	12.77	12.79	12.78
Capital	45.03	44.60	44.74	44.79
Change in \% compared to benchmark	n.a.	-0.97	-0.64	-0.54
Capital (zL)	12.74	11.80	12.00	12.50
Capital (zH)	32.30	32.80	32.74	32.29
Panel C: Allocation Efficiency				
TFP	1.079	1.082	1.081	1.079
Change in \% compared to benchmark	n.a.	0.29	0.24	0.05
Avrg. output-weighted productivity	1.179	1.185	1.184	1.181
Avrg. productivity	1.037	1.037	1.037	1.037
Cov (productivity,output weights)	0.143	0.149	0.148	0.144
Variance of $\mathrm{mpk} \times 100$	2.87	2.52	2.58	2.79
Variance of productivity	7.28	7.28	7.28	7.28
Variance of log capital	4.76	5.37	5.23	4.83
Cov (z, capital)	-9.18	-10.13	-9.93	-9.32
Panel D: Bankruptcy				
Bankruptey prob. (Ch. 11) (\%)	0.72	0.85	0.82	0.73
Bankruptcy prob. (Ch. 7) (\%)	0.14	0.12	0.13	0.14

Interaction of Financial Markets

	No bank debt		Zero external equity financing costs	
	Alternative benchmark	Counterfactual	Alternative benchmark	Counterfactual
Panel A: Techonology				
Monitoring by bondholders		\checkmark		\checkmark
Panel B: Capital Structure and Welfare				
Debt	21.77	23.65	19.48	20.80
Equity	24.77	21.69	28.57	26.73
Consumption	1.476	1.482	1.857	1.843
Change in \% to full info	n.a.	0.42	n.a.	-0.72
Output	13.11	12.94	13.32	13.25
Capital	46.54	45.34	48.05	47.53
Change in \% to full info	n.a.	-2.58	n.a.	-1.09
TFP	1.080	1.084	1.075	1.077
Change in \% to full info	n.a.	0.36	n.a.	0.18

- Substitution between corporate bonds and bank loans amplifies the change in consumption
- improvement is less than $1 / 3$ in model w/o bank debt
- More info might be inefficient in misspecified model w/o costly equity issuance

Simpler Model Delivers Different Quantitative Results

No Bank Debt and Zero Equity Costs

Alternative models

- How much economy is willing to pay for intermediation costs (e.g., monitoring costs)?
- \uparrow intermediation costs $\rightarrow \downarrow$ consumption
- break even intermediation costs +7 bps

Simpler Model Delivers Different Quantitative Results

No Bank Debt and Zero Equity Costs

- How much economy is willing to pay for intermediation costs (e.g., monitoring costs)?
- \uparrow intermediation costs $\rightarrow \downarrow$ consumption
- break even intermediation costs +7 bps

Simpler Model Delivers Different Quantitative Results

No Bank Debt and Zero Equity Costs

- How much economy is willing to pay for intermediation costs (e.g., monitoring costs)?
$-\uparrow$ intermediation costs $\rightarrow \downarrow$ consumption
- break even intermediation costs +7 bps

[^0]: Panel D: Expected Recovery Rates

