(QUANTILE APPROACH TO ASSET PRICING MODELS

e Misspecification of asset pricing models typically confined
to mean-variance analysis.

e Example: Any proposed SDF (M) needs to overcome the
Hansen-Jagannathan (HJ) bound
E|R| — Ry
M) >
7= Ry-o(R)
e Consider the consumption based SDF M = Bg_. 7, where

g. and v denote consumption growth and risk-aversion
respectively.

e This model is misspecified since o(g,.) is low in the data.

Thus we need counterfactually high levels of v to over-
come the HJ bound.

e Question: Can we use other statistics than mean and
variance that gives more insight into determinants of mis-
specification?
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o Let F(x) =P(R < x) denote the CDF of the return DGP.
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e Similarly, F'(z) = P(R < x), is the CDF of the risk-neutral

~

distribution. Define @) as the risk-neutral quantile function
F(Q,) =71, VT €(0,1).

e Consider the ordinal dominance curve ¢(7) = F(Q,).

e We then obtain a new bound on the SDF' volatility for all
T € (0,1):

Theorem 0.1 (Quantile bound).
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Conditional quantil

e We also consider the conditional difference Q¢ — Q/m .
N~

observed

¢ Von-Mises approximation yields Q¢ » ~ @tﬁ W 21C R

E(Qtﬂ')
e Building on Chabi-Yo and Loudis (2020), we bound 7 —

Fi(Q:) > LRBy(1), where LRB,(7) is inferred at time ¢
from option data.

o [n spirit of Martin (2017), we test tightness of the
bound, using quantile regression Q;, = Bo(7) + Bi(7) -

( @’t ] LRBt(T))
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e Shape of quantile bound roughly similar to disaster risk
model.

e More formal testing shows that quantile bound is signifi-
cantly stronger than HJ bound.

e The LRR model can only reconcile this for very high levels
of risk-aversion (v > 90).

e Intuition: disaster risk induces a peak in quantile bound
for small 7. For conditional lognormal models, the quan-
tile bound is essentially symmetric.

ﬁ(@/tﬂ')

Maturity: 30 days
3{}(?) 31(7') Wald test R (7)[%] R} .(7)[%]

T = 0.01 0.06 0.97 0.97 21.08 17.26
(0.3132)  (0.3506)

T =0.05 0.20 0.80 0.41 9.27 9.21
(0.2944)  (0.3130)

T=0.1 0.17 0.83 0.46 5.67 6.14
(0.2661)  (0.2766)

T=0.2 0.21 0.79 0.54 1.7 3.78
(0.3808) (0.3881)

e Conclusion: @, = @m | Lf}?gm)) 1S a good approximation
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Disaster and long

e The quantile bound (1) is quite different depending
on the asset pricing model. We consider two models:

(i) Disaster risk model (Backus et al., 2011);
M = Bg. "', where logg. =¢+n
and € ~ N(u,0%),n[(J = j) ~ N(j0,jv"),J ~
Poisson(k).
(ii) Long-run risk (LRR) model (Bansal et al., 2012):

0
log M1 = Constant—@ log get+1+(0—1)log R 411

Here, R.+41 18 the return on the consumption asset.
Both gct4+1, Re+41 are conditionally lognormal.

e \We compare the quantile bound and HJ bound using
the model calibration from Backus et al. (2011) and
Bansal et al. (2012).

e The ficure shows that the quantile bound can be

stronger than the HJ bound in disaster risk model,
but not in LRR model.

e Left panels show @\m over time. Evidence for time
varying disaster risk.

e Right panels show Q\m — ém. Spikes occur amidst
height of financial crisis.

e Since @tﬁ goes down during crisis (left panels), but

Qi — Q.+ goes up (right panels), we conclude that
Q:.r changes more than Q) ..

o ();  captures insurance effect, whereas Q)¢ ; captures
forward looking loss of a crash.

e Data show that insurance effect 1s more dominant.

e As byproduct, we have shown how to recover part ot
the left tail distribution. Using quantile regression,
we also verify that we can recover the right tail of the
distribution.

e Using quantile regression, we estimate the equation
Qi = Bo(T) + Pi(T) - @m, for 7 > 0.5 and find
Bo(T) = 0, B1(7T) =~ 1.

e This means that almost all risk-adjustment comes

from the left tail. This complements the theoretical
recovery theorem from Ross (2015).

Qt,T n 60(7_) T 61(

Horizon 30 days
ED(T) B1(T) Wald test

7=0.05 0.31 0.69 0.06
(0.2510)  (0.2680)

T =0.1 0.32 0.67 0.02
(0.2273)  (0.2372)

T =0.2 0.38 0.62 0.07
(0.3211)  (0.3278)

7 =0.5 0.06 0.94 0.88
(0.2273)  (0.2258)

7 =0.8 —0.04 1.04 0.92
(0.1842)  (0.1788)

7=20.9 0.04 0.96 0.88
(0.1547)  (0.1486)

7=20.95 0.00 1.00 1
(0.1518)  (0.1445)




