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Motivation

• Misspecification of asset pricing models typically confined
to mean-variance analysis.

• Example: Any proposed SDF (M) needs to overcome the
Hansen-Jagannathan (HJ) bound

σ(M) ≥ E [R]−Rf

Rf · σ(R)

• Consider the consumption based SDF M = βg−γc , where
gc and γ denote consumption growth and risk-aversion
respectively.

• This model is misspecified since σ(gc) is low in the data.
Thus we need counterfactually high levels of γ to over-
come the HJ bound.

• Question: Can we use other statistics than mean and
variance that gives more insight into determinants of mis-
specification?

Bound comparison for different asset

pricing models

Bounds for S&P500 data

• Shape of quantile bound roughly similar to disaster risk
model.

• More formal testing shows that quantile bound is signifi-
cantly stronger than HJ bound.

• The LRR model can only reconcile this for very high levels
of risk-aversion (γ ≥ 90).

• Intuition: disaster risk induces a peak in quantile bound
for small τ . For conditional lognormal models, the quan-
tile bound is essentially symmetric.

A new bound

• Let F (x) = P(R ≤ x) denote the CDF of the return DGP.

• Similarly, F̃ (x) = P̃(R ≤ x), is the CDF of the risk-neutral
distribution. Define Q̃τ as the risk-neutral quantile function
F̃ (Q̃τ) = τ, ∀τ ∈ (0, 1).

• Consider the ordinal dominance curve φ(τ ) := F (Q̃τ).

• We then obtain a new bound on the SDF volatility for all
τ ∈ (0, 1):

Theorem 0.1 (Quantile bound).

σ(M) ≥ τ − φ(τ )

Rf

√
φ(τ ) · (1− φ(τ ))

. (1)

Conditional quantile premium

• We also consider the conditional difference Qt,τ − Q̃t,τ︸︷︷︸
observed

.

• Von-Mises approximation yields Qt,τ ≈ Q̃t,τ +
τ−Ft(Q̃t,τ)

f̃t(Q̃t,τ)

• Building on Chabi-Yo and Loudis (2020), we bound τ −
Ft(Q̃t,τ) ≥ LRBt(τ ), where LRBt(τ ) is inferred at time t
from option data.

• In spirit of Martin (2017), we test tightness of the
bound, using quantile regression Qt,τ = β0(τ ) + β1(τ ) ·(
Q̃t,τ + LRBt(τ )

f̃t(Q̃t,τ)

)

• Conclusion: Q̂t,τ := Q̃t,τ + LRBt(τ )

f̃t(Q̃t,τ)
is a good approximation

of latent Qt,τ .

Q̂t,τ and Q̂t,τ − Q̃t,τ for τ = 0.05
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Disaster and long-run risk model

• The quantile bound (1) is quite different depending
on the asset pricing model. We consider two models:

(i) Disaster risk model (Backus et al., 2011):

M = βg−γc , where log gc = ε + η

and ε ∼ N(µ, σ2), η|(J = j) ∼ N(jθ, jν2), J ∼
Poisson(κ).

(ii) Long-run risk (LRR) model (Bansal et al., 2012):

logMt+1 = Constant−θ
ψ

log gc,t+1+(θ−1) logRc,t+1

Here, Rc,t+1 is the return on the consumption asset.
Both gc,t+1, Rc,t+1 are conditionally lognormal.

• We compare the quantile bound and HJ bound using
the model calibration from Backus et al. (2011) and
Bansal et al. (2012).

• The figure shows that the quantile bound can be
stronger than the HJ bound in disaster risk model,
but not in LRR model.

Q̂t,τ and Q̂t,τ − Q̃t,τ

• Left panels show Q̂t,τ over time. Evidence for time
varying disaster risk.

• Right panels show Q̂t,τ − Q̃t,τ . Spikes occur amidst
height of financial crisis.

• Since Q̂t,τ goes down during crisis (left panels), but

Q̂t,τ − Q̃t,τ goes up (right panels), we conclude that

Q̃t,τ changes more than Q̂t,τ .

• Q̃t,τ captures insurance effect, whereas Q̂t,τ captures
forward looking loss of a crash.

• Data show that insurance effect is more dominant.

• As byproduct, we have shown how to recover part of
the left tail distribution. Using quantile regression,
we also verify that we can recover the right tail of the
distribution.

• Using quantile regression, we estimate the equation
Qt,τ = β0(τ ) + β1(τ ) · Q̃t,τ , for τ ≥ 0.5 and find
β0(τ ) ≈ 0, β1(τ ) ≈ 1.

• This means that almost all risk-adjustment comes
from the left tail. This complements the theoretical
recovery theorem from Ross (2015).

Qt,τ = β0(τ ) + β1(τ )Q̃t,τ


