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Definition (population overlap slack)
          
              𝒪* ≜ min

x
min{e(x),1 − e(x)}

Strict overlap condition    ⟺ 𝒪* ≥ 0.1

  is the effective samples size without 
outcome restrictions (Hong et al. ‘20)

n𝒪*
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Current assessment of overlap

Misspecification error:

• wrong model for  

• bad hyper-parameter tuning

• optimization issues

• …

e(x)

Finite-sample error:

•   is an irregular parameter

• uncertainty quantification for function 

estimation is hard (Barber ’20)

𝒪*



O-value: distribution-free assessment of population overlap

We propose O-values as upper confidence bounds of  , denoted by  , that

  guarantees coverage, i.e.,  

  in finite samples (no asymptotics!)

  without any assumption on   or  

  is able to wrap around any black-box algorithm to estimate  

Analogous to p-value:

• small     strong evidence against overlap

• large     sufficient overlap

𝒪* 𝒪̂

ℙ(𝒪* ≤ 𝒪̂) ≥ 1 − α

e(x) X

e(X )

𝒪̂ ⇒

𝒪̂ ⇏



Step I: covariate standardization

 Xi  Ti

First challenge:   may be mixed-typed, high-dimensional, non-numeric, …X

Data
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Any black-box algorithm
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  Key observation:  

   An UCB of   is an UCB of  

    Valid no matter how poor   is

      Efficient when   is good

                       

Distribution-free validity + adaptivity!
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Normalized mean difference

Empirical Bernstein’s inequality

  Joint confidence region of  

  Upper confidence bound on  

  DiM O-value

EBI is loose; we use other tools instead

⟹ (μ1, σ1, μ0, σ0)

⟹ f (T1, T0)

⟹



Application: O-values for Lalonde data

• National Supported Work Demonstration program (Lalonde ’86)

• Treatment group has 185 units

• 7 control groups: 6 observational and 1 experimental

Efficiency loss due to imbalance :  L̂ = 1 − n𝒪̂⏟
effective sample size 

/ min{n1, n0}

effective sample size in an RCT



Data                                                   O-valuêe(x)
Machine learning

Information theory 

Econometrics (partial identification)

Thank you!

I am on the 2021-22 job market. Check out my CV and other works at

https://lihualei71.github.io/
lihua_lei_stat
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