Distribution-Free Assessment of Population Overlap in Observational Studies

Lihua Lei

ASSA 2022 Virtual Annual Meeting

Collaborators

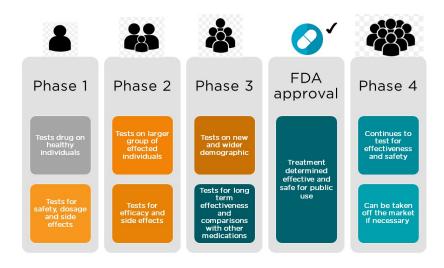
Alexander D'Amour (Google Brain)

Peng Ding
(UC Berkeley)

Avi Feller
(UC Berkeley)

Jasjeet Sekhon (Yale)

Randomized experiments



Everyone has a chance to be exposed to treatment(s)

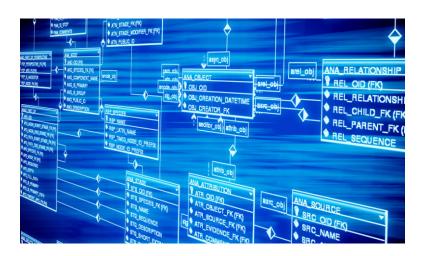
Randomized experiments



Everyone has a chance to be exposed to treatment(s)

Reliable inference of causal effect w/o modeling outcomes

Observational studies



Everyone has a chance to be exposed conditional on covariates

Randomized experiments

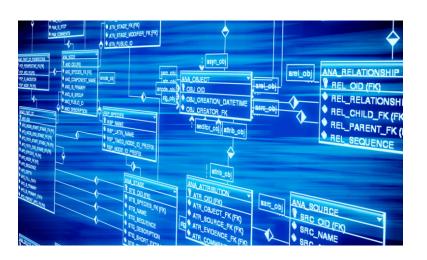


Everyone has a chance to be exposed to treatment(s)

Reliable inference of causal effect w/o modeling outcomes

Need sufficiently many treated/control subjects

Observational studies



Everyone has a chance to be exposed conditional on covariates

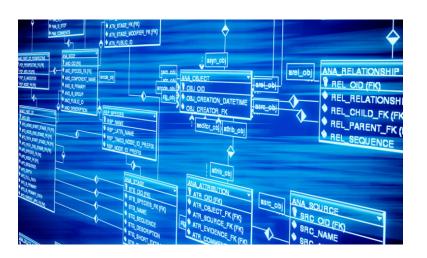
Randomized experiments

Everyone has a chance to be exposed to treatment(s)

Reliable inference of causal effect w/o modeling outcomes

Need sufficiently many treated/control subjects

Observational studies



Everyone has a chance to be exposed conditional on covariates



Strict overlap condition and population overlap slack

Setting

- Binary treatment $T \in \{0,1\}$
- Covariates *X*: no constraint
- $(T_i, X_i)_{i=1}^n \stackrel{i.i.d.}{\sim} (T, X)$ (the only assumption!)
- Propensity score: $e(x) \triangleq P(T = 1 \mid X = x)$

Strict overlap condition and population overlap slack

Setting

- Binary treatment $T \in \{0,1\}$
- Covariates *X*: no constraint
- $(T_i, X_i)_{i=1}^n \stackrel{i.i.d.}{\sim} (T, X)$ (the only assumption!)
- Propensity score: $e(x) \triangleq P(T = 1 \mid X = x)$

Strict overlap condition (example):

$$0.1 \le e(X) \le 0.9$$
, a.s.

One of the most fundamental condition!

Strict overlap condition and population overlap slack

Setting

- Binary treatment $T \in \{0,1\}$
- Covariates X: no constraint
- $(T_i, X_i)_{i=1}^n \stackrel{i.i.d.}{\sim} (T, X)$ (the only assumption!)
- Propensity score: $e(x) \triangleq P(T = 1 \mid X = x)$

Strict overlap condition (example):

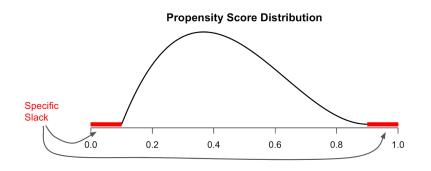
$$0.1 \le e(X) \le 0.9$$
, a.s.

One of the most fundamental condition!

Definition (population overlap slack)

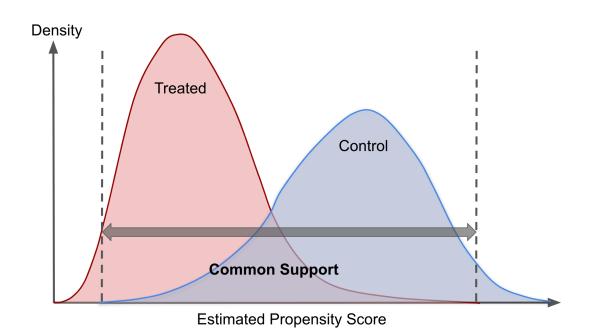
$$\mathcal{O}^* \triangleq \min_{x} \min\{e(x), 1 - e(x)\}$$

Strict overlap condition $\iff \mathcal{O}^* \ge 0.1$



 $n\mathcal{O}^*$ is the **effective samples size** without outcome restrictions (Hong et al. '20)

Current assessment of overlap



Current assessment of overlap



Misspecification error:

- wrong model for e(x)
- bad hyper-parameter tuning
- optimization issues
- •

Finite-sample error:

- \mathcal{O}^* is an irregular parameter
- uncertainty quantification for function estimation is hard (Barber '20)

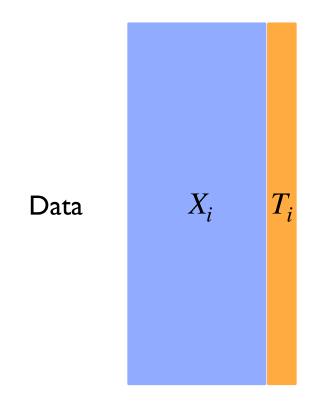
O-value: distribution-free assessment of population overlap

We propose O-values as upper confidence bounds of \mathcal{O}^* , denoted by $\hat{\mathcal{O}}$, that

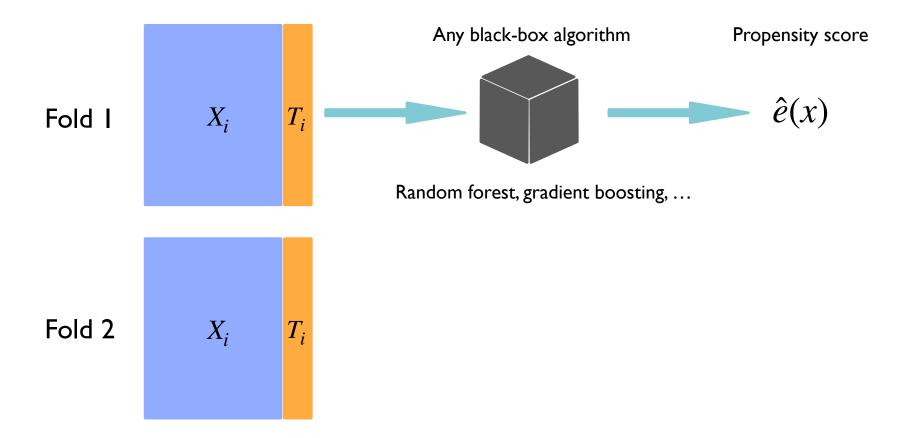
- lacktriangle guarantees coverage, i.e., $\mathbb{P}(\mathcal{O}^* \leq \hat{\mathcal{O}}) \geq 1 \alpha$
- + in finite samples (no asymptotics!)
- + without any assumption on e(x) or X
- lacktriangle is able to wrap around any black-box algorithm to estimate e(X)

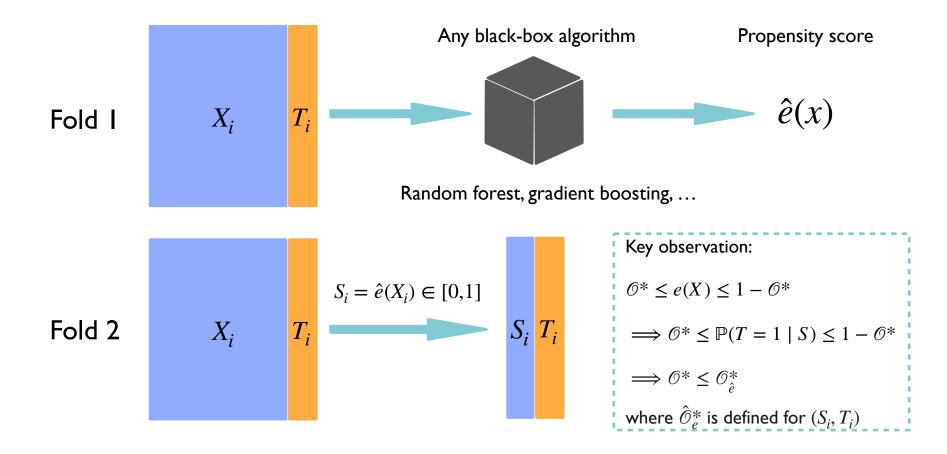
Analogous to p-value:

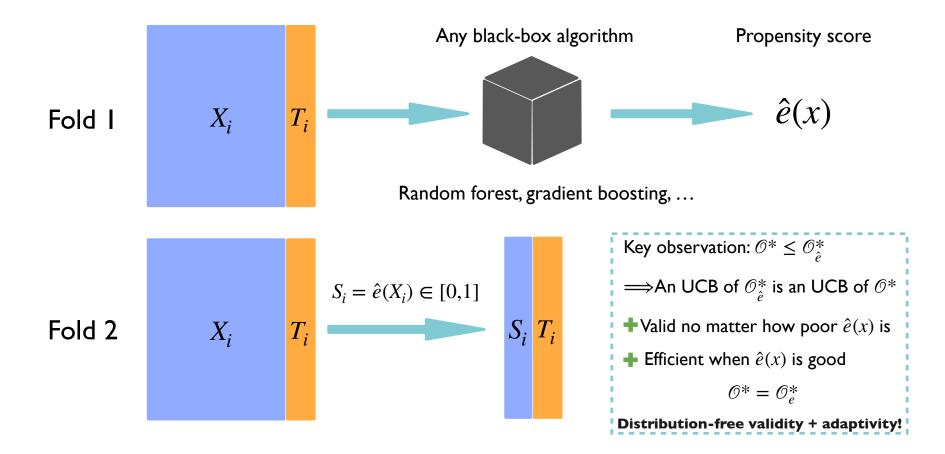
- small $\hat{\mathcal{O}} \Rightarrow$ strong evidence against overlap
- large $\hat{O} \Rightarrow$ sufficient overlap



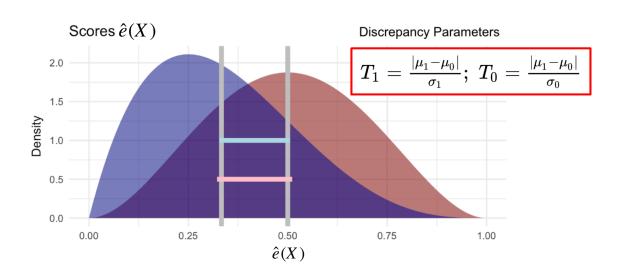
First challenge: X may be mixed-typed, high-dimensional, non-numeric, ...







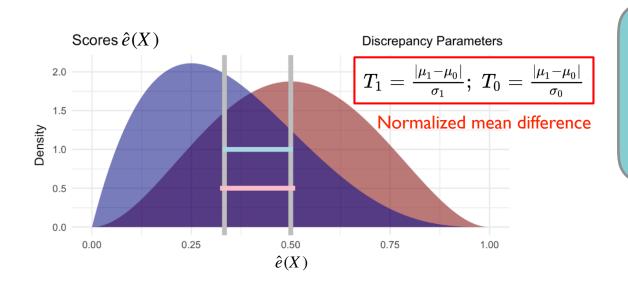
Step 2: careful balance check (difference-in-means O-value)



Intuition:

large $\mathcal{O}^* \Longrightarrow$ smaller discrepancy between $S \mid T = 1$ and $S \mid T = 0$

Step 2: careful balance check (difference-in-means O-value)



Theorem (using information theory)

$$\mu_1, \sigma_1 \leftarrow \text{mean, sd of } S \mid T = 1$$

$$\mu_0, \sigma_0 \leftarrow \text{mean, sd of } S \mid T = 0$$

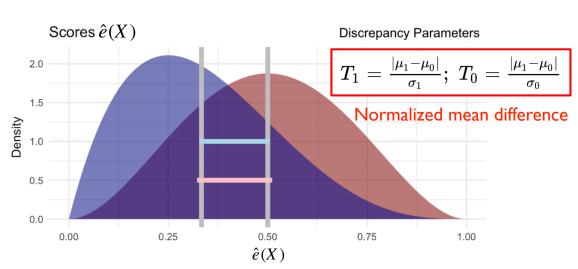
$$T_1 = \frac{|\mu_1 - \mu_0|}{\sigma_1}, \ T_0 = \frac{|\mu_1 - \mu_0|}{\sigma_0}$$

Then $\mathcal{O}^* \leq f(T_1, T_0)$ for a decreasing f

Intuition:

large $\mathcal{O}^* \Longrightarrow$ smaller discrepancy between $S \mid T = 1$ and $S \mid T = 0$

Step 2: careful balance check (difference-in-means O-value)



Intuition:

large $\mathcal{O}^* \Longrightarrow$ smaller discrepancy between $S \mid T = 1$ and $S \mid T = 0$

Theorem (using information theory)

$$\mu_1, \sigma_1 \leftarrow \text{mean, sd of } S \mid T = 1$$

$$\mu_0, \sigma_0 \leftarrow \text{mean, sd of } S \mid T = 0$$

$$T_1 = \frac{|\mu_1 - \mu_0|}{\sigma_1}, \ T_0 = \frac{|\mu_1 - \mu_0|}{\sigma_0}$$

Then $\mathcal{O}^* \leq f(T_1, T_0)$ for a decreasing f

Empirical Bernstein's inequality

 \Longrightarrow Joint confidence region of $(\mu_1,\sigma_1,\mu_0,\sigma_0)$

 \Longrightarrow Upper confidence bound on $f(T_1, T_0)$

 \Longrightarrow DiM O-value

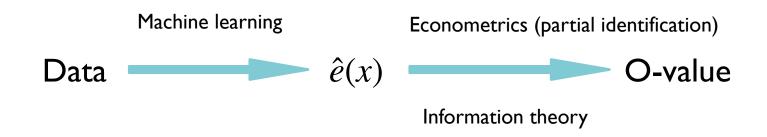
EBI is loose; we use other tools instead

Application: O-values for Lalonde data

- National Supported Work Demonstration program (Lalonde '86)
- Treatment group has 185 units
- 7 control groups: 6 observational and 1 experimental

		CPS			PSID			RCT	
	$oxed{n_0}$	$\hat{\mathcal{O}}$	\hat{L}	$oxed{n_0}$	$\hat{\mathcal{O}}$	\hat{L}	n_0	$\hat{\mathcal{O}}$	\hat{L}
	15992						260	0.483	0%
	2369								
V3	429	0.143	53%	128	0.313	23%			

Summary



Thank you!

I am on the 2021-22 job market. Check out my CV and other works at

