This Is What's in Your Wallet... and Here's How You Use It

Tamás Briglevics¹

Scott Schuh²

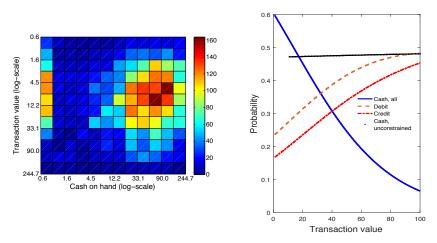
¹Magyar Nemzeti Bank

²West Virginia University

January 7-9, 2022 ASSA 2022 Virtual Annual Meeting (POSTER SESSION)

The views expressed are those of the authors and do not necessarily represent those of the Magyar Nemzeti Bank.

https://researchrepository.wvu.edu/econ_working-papers/45/


Overview

- Motivation: consumers have thicker wallets and more varieties of liquidity with which to pay
- Literature: theory and data have not kept pace with innovations in payments systems and liquidity
- Theory: we propose and estimate a dynamic optimizing model that blends monetary and payment approaches
- Estimation: with U.S. payment diary data (DCPC); daily balanced longitudinal panel
- Key results: cash still matters a lot!
 - Cash-in-wallet, cash payment share are endogoenous
 - Shadow value of cash turns negative above \$50
 - Welfare costs of inflation larger, more nuanced
 - Cash management costs are non-trivial, affect withdrawals
 - Eliminating cash or cards lowers consumer welfare <u>a lot</u>
- **Broader implications:** for consumption, HH finance

Payment choices and cash holdings

LEFT: Most transactions are low \$ value; CIA constraint non-binding

RIGHT: Cash-in-wallet strongly influences payment choices

Model – optimization problem

STEP 1 (monetary): Withdraw cash?

$$W(m,p) = \max_{m^*} \{-b \cdot \mathcal{I}(m^* \neq m) - R \cdot m^* + E[V(m^*,p)]\},\$$

STEP 2 (payments/IO): Cash/credit/debit at point-of-sale?

$$V(m,p) = \max_{i \in \{h,c,d\}} u^{i}(p) + \epsilon(i) + \beta E \left[W(m',p') \right]$$
$$u^{i}(p) = \gamma_{0}^{i} + \gamma_{p\leq 10}^{i} \cdot \mathcal{I}(p\leq 10) + \gamma_{p}^{i} \cdot p \qquad i \in \{h,d,c\}$$

• $\epsilon(i)$ i.i.d Type I Extreme value shocks

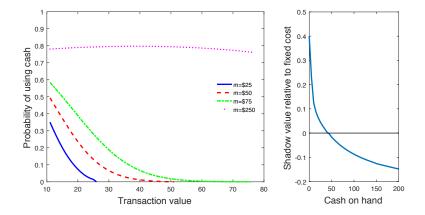
Cost of holding cash interpreted broadly (e.g. inconvenience)

•
$$b \sim \mathcal{U}(-b_U, -b_L)$$
 random withdrawal cost

Sometimes it is particularly inconvenient to make a withdrawal

- Consumer knows this better than the econometrician
- ► Continuation values same after debit and credit ⇒ No dynamic considerations without deposits or revolving debt

Estimation – cash management costs


Estimates using Bajari, Benkard and Levine (2007, ECTA)

bL	b _U	R	γ^h_0	$\gamma_{p\leq 10}^{h}$	γ_p^h	γ_0^d	$\gamma_{p\leq 10}^d$	γ_p^d
.0003	7.99	.0049	2.20	.79	12	.57	.51	0037
(.08)	(1.57)	(.001)	(.43)	(.37)	(.03)	(.13)	(.22)	(.0016)

- Avg. withdrawal cost \approx holding cost of \$153 ($\sim \frac{b}{R}$).
- $\blacktriangleright\,$ Avg. withdrawal cost $\approx\,1.8$ x utility of med. cash payment
- ▶ Holding-cost (*R*) elasticity of demand for cash is -.85
 - More negative than basic Baumol-Tobin model (-.50)
 - Cash share of payments also varies (.30-.35)
- Withdrawal costs ($b^L \in [.0003, 4]$) effects are:
 - Large for avg. value (\$32-61) and prob. (2.3-5.6%)
 - Modest for cash share (.28-.32) and payment utility (1.3%)

Cash holdings and simulated cash payments

Probabilities of choosing cash are quite sensitive to cash holdings; with \$250, cash choice is uncorrelated with transaction values

Counterfactual simulations of instrument availability

Eliminating any payment instrument reduces consumer welfare considerably, especially cash; eliminating both cards is worst

	Cash holdi	ings before	Withdrawal		Cash use	Cash	Payment
Model	transaction	withdrawal	amount	prob.	share	costs	utility
Full	25.49	10.68	31.9	.056	.32	16.6	459.0
No cash	0	0	0	0	0	0	336.1
No debit	36.52	15.42	45.3	.072	.47	52.0	357.8
No credit	29.60	12.66	36.8	.063	.37	40.8	401.3
No cards	123.95	55.42	162.1	.177	1.00	219.4	-76.7

Summary

Conclusions:

- Cash management and payment choices are jointly determined
- Cash holdings have first-order effect on payment choice
- Cash preferred for low value transactions, even after accounting for CIA constraint
- Cash use is moderately influenced by cash management costs

Future research directions:

- Allow for different withdrawal methods
 - Parameterize b_k and R
- Add stocks, flows for demand deposits, revolving credit/debt
- Build better model of consumer transaction choices
- Include bill payments
- Model merchant acceptance of cards

https://researchrepository.wvu.edu/econ_working-papers/45/