
The Macroeconomics of TechFin

Dan Su

Minnesota Finance

November 18, 2021



Rise of New Financial Intermediaries
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• FinTech: digital lending facilitated by online platforms (e.g., P2P, ...)
• TechFin/BigTech: large tech companies lend in the credit markets (e.g., Ant Group, WeBank, ...)

• a growing empirical literature, but theoretical implications?
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Research Question: role of TechFin in macroeconomy

• Existing literature: banks

• key characteristic: collateral-based borrowing constraint (“financial frictions”)

• macro implications: aggregate productivity losses; financial accelerator mechanism

• This paper

1. what is the key difference between banks and BigTech in lending behaviors?

2. how different are these macro implications with TechFin?

• why TechFin instead of FinTech: TechFin is more bank-like (Stulz, 2019; King, 2019)
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Bank v.s. TechFin: macro perspective

• Banking sector: collateral-based borrowing constraint

• TechFin sector: earnings-based borrowing constraint

• microfoundation:

tech advantages ⇒ reduced cost of state verification
⇒ incomplete-collateralization contract

empirical evidence: Gambacorta et al. (2020)

micro perspective: Thakor (2020); Stulz (2019)
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Preview of Model and Results

• Key elements

1. Heterogeneous agent model with incomplete markets

2. Two types of borrowing constraints

3. Two types of (temporary) economic fundamental shocks

• Main conclusions on the rise of TechFin

1. smaller aggregate productivity losses in steady-state

2. amplification and propagation of first-moment shocks are smaller

3. amplification and propagation of second-moment shocks are larger
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Economic Environment

Entrepreneurs Entrepreneurs

Labor 
market

Risk-free 
bondBank TechFin

• Three types of agents

i a continuum of entrepreneurs
borrowing from the banking sector B

ii a continuum of entrepreneurs
borrowing from the TechFin sector F

iii 𝐿 hand-to-mouth workers

• State of the economy

{𝜔𝐹 (𝑡, 𝑎, 𝑧) , 𝜔𝐵 (𝑡, 𝑎, 𝑧)}

• Caveats
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Model Setup

• Preference
𝔼0 ∫

∞

0
𝑒−𝜌𝑡 log 𝑐 (𝑡) 𝑑𝑡

• Exogenous death shock

• each period an individual entrepreneur might exit from the market with probability 𝜒

• his role is replaced by a new-born with the same 𝑧 but the average wealth level of 𝑧
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Technology

• Production function
𝑦 = (𝑧𝑘)𝛼 𝑙1−𝛼

• Modified Ornstein – Uhlenbeck productivity process

𝑑𝑙𝑜𝑔𝑧𝑖,𝑗,𝑡 = 𝜃 (𝜇 − 𝑙𝑜𝑔𝑧𝑖,𝑗,𝑡) + 𝜎√𝜃𝑑𝑊𝑖,𝑗,𝑡

• Two types of (temporary) fundamental shocks

• shocks to common productivity component 𝜇

• shocks to micro-level uncertainty 𝜎
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Timeline

budget constraint

wealth changes

𝑐𝑡−𝑑𝑡

−(1 + 𝑟𝑡−𝑑𝑡)𝑏𝑡−𝑑𝑡

𝑧𝑡 𝑏𝑡 𝑘𝑡

𝑡

𝑦𝑡

−𝑤𝑡𝑙𝑡 & −𝛿𝑡𝑘𝑡

𝑐𝑡

−(1 + 𝑟𝑡)𝑏𝑡

𝑧𝑡+𝑑𝑡 𝑏𝑡+𝑑𝑡 𝑘𝑡+𝑑𝑡

𝑡 + 𝑑𝑡

• budget constraint from 𝑡 to 𝑡 + 𝑑𝑡:

𝑐𝑡 + 𝑘𝑡+𝑑𝑡 − (1 − 𝛿) 𝑘𝑡 + (1 + 𝑟𝑡) 𝑏𝑡 + 𝑤𝑡𝑙𝑡 = 𝑦𝑡 + 𝑏𝑡+𝑑𝑡

• wealth definition: 𝑎 ≡ 𝑘 − 𝑏

• wealth changes from 𝑡 to 𝑡 + 𝑑𝑡:

𝑑𝑎𝑡 = (𝑦𝑡 − 𝑤𝑡𝑙𝑡 − 𝛿𝑘𝑡 − 𝑟𝑡𝑏𝑡 − 𝑐𝑡) 𝑑𝑡
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Two Types of Borrowing Constraints

• Banking sector: collateral-based borrowing constraint

(1 + 𝑟) 𝑏 ≤ 𝜆𝐵𝑘

• TechFin sector: earnings-based borrowing constraint

(1 + 𝑟) 𝑏 ≤ 𝜆𝐹𝜋 = 𝜆𝐹 (𝑦 − 𝑤𝑙)

micro-foundation empirical evidence

9 / 19 .



Similarity and Difference

• Banking sector

𝑏 ≤
𝜆𝐵

1 + 𝑟 − 𝜆𝐵
𝑎

• TechFin sector
𝑏 ≤

𝜆𝐹𝜉𝑧
1 + 𝑟 − 𝜆𝐹𝜉𝑧

𝑎

where 𝜉 = 𝛼 ( 1−𝛼𝑤 )
1−𝛼
𝛼

debt capacity = 𝜙 × verifiable net worth

? “With cash flow-based lending and EBCs, we find that asset price feedback through firms’ balance
sheets could diminish significantly.”(Lian and Ma, 2021)

? “This evidence implies that a greater use of big tech credit could reduce the importance of collateral in
credit markets and potentially weaken the financial accelerator mechanism.” (Gambacorta et al., 2020)
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Equilibrium Definition

1. Optimization: given market prices {𝑟 (𝑡) , 𝑤 (𝑡)}∞𝑡=0, resource allocations
{(𝑙𝑖,𝑗 (𝑡) , 𝑘𝑖,𝑗 (𝑡) , 𝑏𝑖,𝑗 (𝑡) , 𝑐𝑖,𝑗 (𝑡))𝑖∈[0,1],𝑗∈{𝐵,𝐹 }}

∞

𝑡=0
solves each entrepreneur’s optimization problem given his

constraints.

2. Market clearance:

∬𝑙𝐵 (𝑡, 𝑎, 𝑧) 𝜔𝐵 (𝑡, 𝑎, 𝑧)𝑑𝑎𝑑𝑧 +∬ 𝑙𝐹 (𝑡, 𝑎, 𝑧) 𝜔𝐹 (𝑡, 𝑎, 𝑧)𝑑𝑎𝑑𝑧 = ̄𝐿

∬𝑏𝐵 (𝑡, 𝑎, 𝑧) 𝜔𝐵 (𝑡, 𝑎, 𝑧)𝑑𝑎𝑑𝑧 +∬𝑏𝐹 (𝑡, 𝑎, 𝑧) 𝜔𝐹 (𝑡, 𝑎, 𝑧)𝑑𝑎𝑑𝑧 = 0

ℂ𝐹 (𝑡) + ℂ𝐵 (𝑡) + ℂ𝐿 (𝑡) + 𝕏𝐹 (𝑡) + 𝕏𝐵 (𝑡) = 𝕐𝐹 (𝑡) + 𝕐𝐵 (𝑡)

3. Stationary distribution:

𝜕𝜔𝐵 (𝑡, 𝑎, 𝑧)
𝜕𝑡

=
𝜕𝜔𝐹 (𝑡, 𝑎, 𝑧)

𝜕𝑡
= 0, ∀𝑎, 𝑧
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Optimal Policy Functions

• Banking sector

𝑏𝐵 (𝑎, 𝑧) = {
𝜆𝐵𝑎

1+𝑟−𝜆𝐵
𝑧 ≥ 𝑧

−𝑎 𝑧 < 𝑧

𝑘𝐵 (𝑎, 𝑧) = {
(1+𝑟)𝑎
1+𝑟−𝜆𝐵

𝑧 ≥ 𝑧
0 𝑧 < 𝑧

• TechFin sector

𝑏𝐹 (𝑎, 𝑧) = {
𝜆𝐹𝜉𝑧𝑎

1+𝑟−𝜆𝐹𝜉𝑧
𝑧 ≥ 𝑧

−𝑎 𝑧 < 𝑧

𝑘𝐹 (𝑎, 𝑧) = {
(1+𝑟)𝑎

1+𝑟−𝜆𝐹𝜉𝑧
𝑧 ≥ 𝑧

0 𝑧 < 𝑧

where 𝑧 = 𝑟+𝛿
𝜉
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Wealth Dynamics
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𝑑𝑎𝐵 = {1𝑧≥𝑧 × [
(1 + 𝑟) (𝜉 𝑧 − 𝑟 − 𝛿)

1 + 𝑟 − 𝜆𝐵
+ 𝑟 − 𝜌] + 1𝑧<𝑧 × (𝑟 − 𝜌)} 𝑎𝐵𝑑𝑡 ≡ Γ𝐵 (𝑧) 𝑎𝐵𝑑𝑡

𝑑𝑎𝐹 = {1𝑧≥𝑧 × [
(1 + 𝑟) (𝜉 𝑧 − 𝑟 − 𝛿)

1 + 𝑟 − 𝜆𝐹𝜉 𝑧
+ 𝑟 − 𝜌] + 1𝑧<𝑧 × (𝑟 − 𝜌)} 𝑎𝐹𝑑𝑡 ≡ Γ𝐹 (𝑧) 𝑎𝐹𝑑𝑡
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Distribution Dynamics

𝜕𝜔𝑗 (𝑡, 𝑎, 𝑧)
𝜕𝑡

= −
𝜕 [Γ𝑗 (𝑧) 𝑎𝜔𝑗 (𝑡, 𝑎, 𝑧)]

𝜕𝑎
−

𝜕 [𝜃 (𝜇 − 𝑙𝑜𝑔𝑧) 𝑧𝜔𝑗 (𝑡, 𝑎, 𝑧)]
𝜕𝑧

+ 1
2
𝜕2 [𝜃𝜎 2𝑧2𝜔𝑗 (𝑡, 𝑎, 𝑧)]

𝜕𝑧2
where 𝑗 ∈ {𝐵, 𝐹}

7 wealth share approach: Caselli and Gennaioli (2013); Moll (2014); ...

7 (adaptive) sparse grid approach: Brumm and Scheidegger (2017); ...

3 deep learning approach: Han and E (2016); Raissi, Perdikaris and Karniadakis (2019);
Fernandez-Villaverde et al. (2020); Chen, Didisheim and Scheidegger (2021); ...
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Parametrization

Parameter Description Value Source/Reference
𝜌 rate of time preference 0.05
𝛼 capital share 0.33
𝐿 labor market size 1.0

Moll (2014)

𝛿 capital depreciation rate 0.06 BEA-FAT
𝜒 death rate 0.05 Moll (2012)
𝜇 log idiosyncratic productivity mean 0.0
𝜃 autocorrelation 𝑒−𝜃 0.16 (corr = 0.85)
𝜎 log idiosyncratic productivity s.d. 0.56

Asker, Collard-Wexler and Loecker (2014)

̄𝜙 upper boundary for corporate leverage 10.0

Experimentation Question
𝜆𝐵 tightness of constraint in banking 0 ∼ 0.8
𝜆𝐹 tightness of constraint in TechFin 0 ∼ 0.8 1. steady-state TFP
Δ𝜇 fundamental shocks to productivity ±0.1 ∼ ±0.5 2. business cycles
Δ𝜎 fundamental shocks to micro uncertainty ±0.1𝜎 ∼ ±0.5𝜎
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Productivity Losses in Steady-State
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Business Cycles
first-moment shocks: amplification and propagation

• Δ𝑢 = ±0.1; Δ𝜎 = 0
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Business Cycles
second-moment shocks: amplification and propagation

• Δ𝑢 = 0; Δ𝜎 = ±0.2𝜎

good firms principle
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Conclusion

• Goal: introduce BigTech into the existing
macro-finance literature

• This paper:

• lending side only
• a different type of borrowing constraint

• Key take-away:

two different credit systems
⇒ two types of borrowing constraints
⇒ two types of financial accelerator mechanism
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Appendix



Micro-foundation I Back

assumption

• Key assumption: technology, data, and platform advantages allow BigTech to
reduce the cost of state verification

• example: 码商 (QR code merchants)
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Micro-foundation II Back

model setup

• entrepreneurs with capital 𝑘 want to borrow 𝑏
• exogenous interest rate 𝑟 and liquidation value 𝑙

• two possible outcomes: entrepreneurs announce; lenders verify with cost 𝑓

• good: 𝜋𝐺 = 𝑧𝐺𝑘 with probability 𝑝
• bad: 𝜋𝐵 = 𝑧𝐵𝑘 with probability 1 − 𝑝
• 𝑧𝐺 > 𝑧𝐵 > 𝑙 > 0

• optimal contracts ⇒ maximize utility and truth-telling

max
{𝑐𝐺,𝑐𝑛𝑣𝐵 ,𝑐𝑣𝐵,𝑞}

𝜋𝑐𝐺 + (1 − 𝜋) [𝑝𝑐𝑣𝐵 + (1 − 𝑝) 𝑐𝑛𝑣𝐵 ]

1. full-collateralization contract
2. incomplete-collateralization contract with stochastic verification
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Micro-foundation III Back

collateral v.s. earnings

1. full-collateralization contract: collateral-based borrowing constraint

(1 + 𝑟) 𝑏 ≤ 𝑙𝑘⏟
collateral value

2. incomplete-collateralization contract: earnings-based borrowing constraint

(1 + 𝑟) 𝑏 ≤ 𝑝𝜋𝐺 + (1 − 𝑝) 𝜋𝐵⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
expected earnings

− (1 − 𝑝) 𝑞𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
expected verification costs

−𝑝𝑐𝐻 − (1 − 𝑝) [𝑞𝑐𝑣𝐿 + (1 − 𝑞) 𝑐𝑛𝑣𝐿 ]

𝑞 =
(1 + 𝑟) 𝑏 − 𝑧𝐵𝑘

𝑝 (𝑧𝐺 − 𝑧𝐵) 𝑘 − (1 − 𝑝) 𝑓
∈ [0, 1]

• cost of verification 𝑓 ⇒ whether cash flow-based lending is more attractive

• either covenants or technology
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Gambacorta et al. (2020) Back
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Figure 5. Elasticity of credit with respect to house prices 

 
Note: Based on a 100,000 random sample of firms served by both MYbank and traditional banking. The dots in the 
figures indicate the average logarithm credit use (y-axis) and the average logarithm of housing price (x-axis) at the city-
year level. Growth rates are approximated using first differences of log values. The left-hand panel plots big tech credit, 
the middle panel plots bank secured credit and the right hand panel plots bank unsecured credit. Linear trend lines are 
reported in each graph, together with 95% degree confidence bands. Standard errors in brackets. 

 

Figure 6. Elasticity of credit with respect to house prices and GDP  

 
Note: The figure reports the coefficient of three different regressions (one for each credit types) in which the 
log of credit is regressed with respect to the log of house prices at the city level, the log of GDP at the city 
level and a complete set of time dummies. Significance level: ** p<0.05; *** p<0.01.  
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Idiosyncratic Productivity
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• Positive impacts of uncertainty Back

• “Good Firms Principle”: only good firms matter; best firms matter the most
• “Good news principle”(Bernanke, 1983): only good news matters in growth options because

bad news is capped by closing down the project
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Countercyclical Micro-Uncertainty Back
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• Data source: Bloom et al. (2018)
• Correlation: -0.45
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Related Literature

• Empirical FinTech/TechFin: Gambacorta et al. (2020); Tang (2019); Hau et al.
(2018); Cornelli et al. (2020); ...

• Financial frictions and macroeconomy: Kiyotaki and Moore (1997); Bernanke
and Gertler (1989); Brunnermeier and Sannikov (2014); Di-Tella (2017); He and
Krishnamurthy (2013); Fernandez-Villaverde, Hurtado and Nuno (2019); ...

• Distributional macro: Moll (2014); Fernandez-Villaverde, Hurtado and Nuno
(2019); Achdou et al. (Forthcoming); ...

• Earnings-based borrowing constraint: Lian and Ma (2021); Greenwald (2019);
Drechsel (2019); ...
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