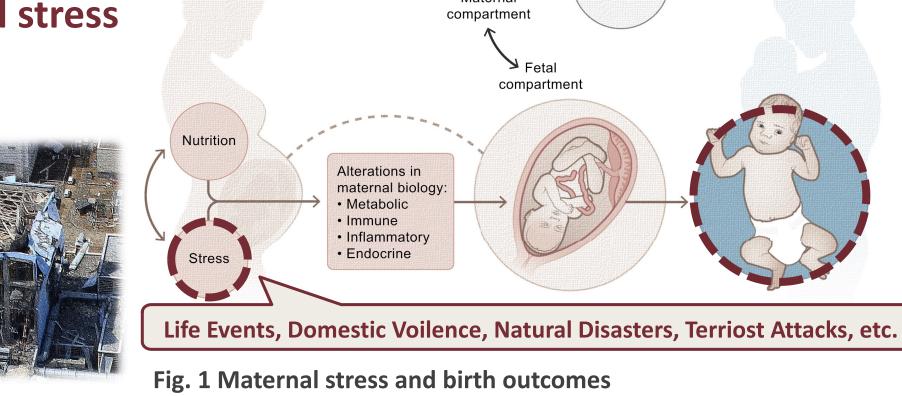

In Utero Exposure to Radiation Fear and Birth Outcomes: Evidence from Fukushima Nuclear Power Plant Accident

Rong Fu, PhD^{1,3}; Yichen Shen, PhD^{2,3}; Haruko Noguchi, PhD^{1,3}

¹Waseda University, ²Kanagawa University of Human Services, ³Waseda Institute of Social & Human Capital Studies (WISH)

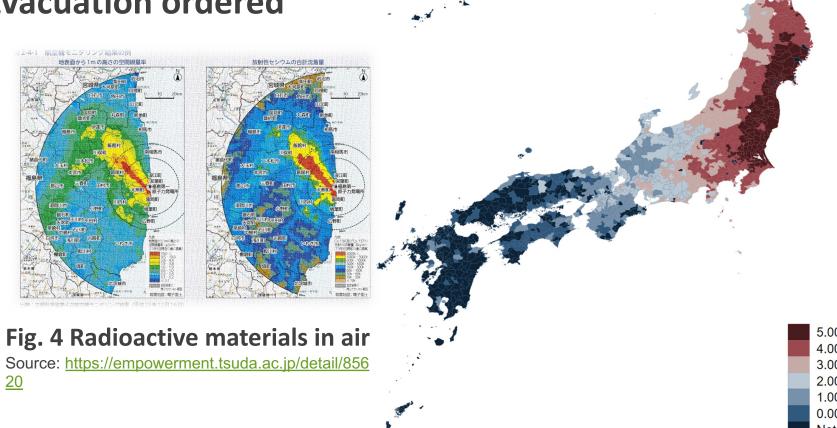
Introduction

Health at birth—a key determinant of human capital development


- ◆ Maternal stress has a negative impact on birth outcomes (Fig 1.)
- We focus on an understudied maternal stress—fear of radiation exposure
 - ◆ Radiation fear of Japan's Fukushima Nuclear Power Plant (NPP) Accident in 2011

Why radiation fear?

- 1. Better identification of maternal stress
- 2. An increasingly relevant risk


Source: DeCapo et al. (2019) Biological psychiatry

The Fukushima Accident

- The most catastrophic consequence of the Great East Japan Earthquake (Fig. 2) ◆ The earthquake triggered a **devastating tsunami** (Fig. 3)
 - ◆ The Fukushima NPP lost its entire cooling capacity due
 - to the tsunami, leading to three hydrogen explosions (Fig.4) Radioactive materials released; Evacuation ordered

Radioactivity and the health consequences

Fig. 2 Seismic Intensity of the earthquake Limited in Fukushima prefecture; diminishing within a year following the accident

Radiation fear

◆ Nationwide-spread; a more pressing issue of the accident (Hasegawa et al., 2015)

Data and Measurement

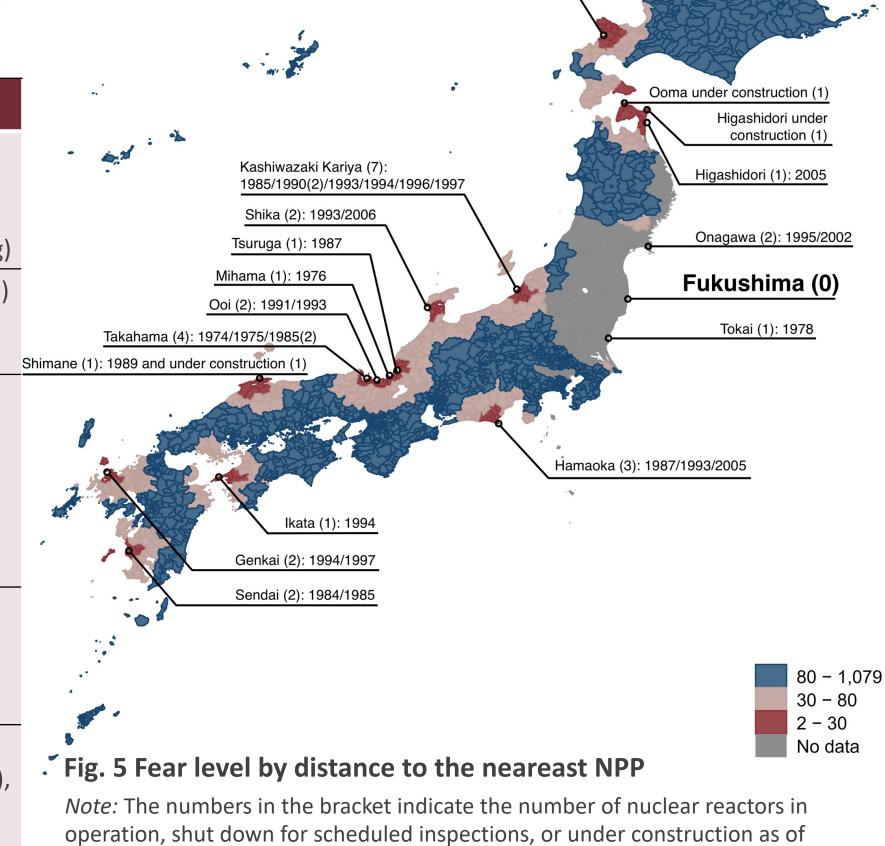
Population data linkage

Health information

- ◆ At birth—universal birth records (Jun 2010 Dec 2011)
- ◆ At age two and five—comprehensive survey of living conditions (CSLC, 2013 and 16)

Background characteristics

◆ Parental and residential information—2010 and 2015 censuses


Data Exclusion (gray areas in Fig. 5)

◆ Regions damaged by tsunami

◆ Regions contaminated by radioactivity (annual dose >1 mSy)

Measurements

	Variables					
Health at Birth	(1) Birth weight (gram),(2) Low birth weight (LBW, <2500g),(3) Very low birth weight (VLBW, <1500g),(4) Extremely low birth weight (ELBW, <1000g)					
Health at Age 2 and 5	(1) Any physical symptoms, (2) Respiratory, (3) Digestive, and (4) Skin symptoms; Seeking medical treatment or not for each symptom					
Prenatal vs. Postnatal	Prenatal group $1[c \leq \operatorname{Accident} < e_b]_i = 1$ Postnatal group $1[e_b \leq \operatorname{Accident} \leq e_b + 280]_i = 1$ c — conception date e_b — the expected birthdate					
Fear Level (Fig. 5)	High-fear (red areas , living < 30 km from an NPP), Moderate-fear (pink areas , 30—80 km from an NPP), Low-fear (blue areas , > 80 km from an NPP)					
Covariates	Parental characteristics (parents' ages at conception, educations, fathers' occupations), Earthquake impacts (seismic intensity × [dwelling type, the floor of dwelling, and length of residence]), Neonatal characteristics (gender and order of birth)					

August 2022. The years indicate the ones of commencement of operation of

Methods

Prenatal vs. Postnatal Model

$$S = \{i: \mathbf{1}[c \le Accident < e_b]_i = 1 \mid \mathbf{1}[e_b \le Accident \le e_b + 280]_i = 1\},$$

Estimate
$$y_{imc} = \beta_0 + \beta_1 \mathbf{1}[c \le Accident < e_b]_{imc} + \lambda_m + \lambda_c + x_i'\tau + \epsilon_{imc}$$
,

for each newborn i who was born in municipality m and conceived in month c.

• β_1 - impact of in-utero radiation fear; λ_m and λ_c - municipality and conception-month fixed effects; x_i – covariates; ϵ_{imc} – the error term.

Validity Tests

- ◆ Systematical differences in background characteristics—No
- ◆ Changes in risks of abortion and stillbirth—No impact
- ◆ Confounding energy saving request—No discernible magnitude gap
- ◆ Placebo test of "accident" on Oct 12, 2020—No impact

A diff-in-diff Model

$$y_{imc} = \delta_0 + \delta_1 \mathbf{1}[c \le \text{Accident} < e_b]_{imc} + \delta_{j2} \sum_{j=1}^2 \mathbf{1}[c \le \text{Accident} < e_b]_{imc} \times \text{Fear}_j$$

 $+\lambda_m + \lambda_c + x_i'\tau + \epsilon_{imc}$

Validity Tests

- ◆ Systematical differences in background characteristics—No
- ◆ Inter- or intra-prefecture migration—No

Results and Conclusions

The adverse impact on birth outcomes

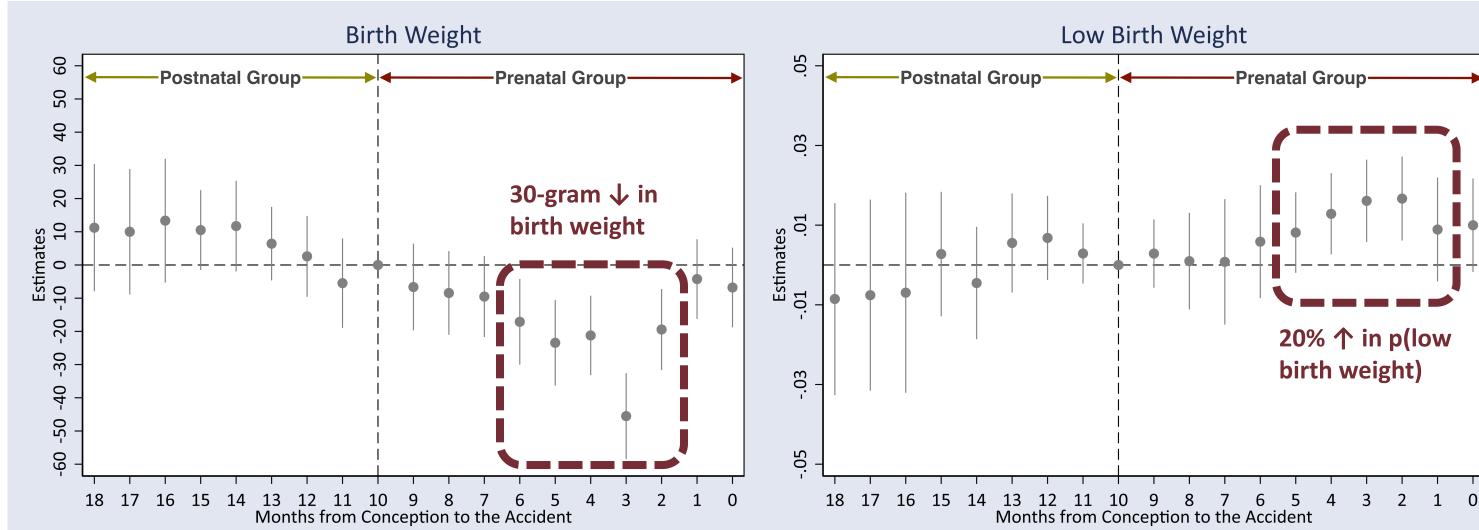


Fig. 6 The impact of of in-utero radiation fear on birth weight and the likelihood of low birth weight

Some adverse impact at age two; little impact at age five

		Age	Age Five					
	Any	Respiratory	y Digestive	Skin	Any	Respiratory	Digestive	Skin
Panel A: Sym	nptoms							
In-utero	0.0622 *	0.0726 *	* 0.0282 *	0.0291 *	0.0327	0.0297	0.0131 *	0.0031
	(0.0352)	(0.0322)	(0.0165)	(0.0159)	(0.0227)	(0.0202)	(0.0078)	(0.0180)
Mean	0.2456	0.1740	0.0362	0.0574	0.1879	0.1250	0.0184	0.0507
Panel B: Med	dical Treatment	S						
In-utero	0.0264	0.0056	0.0106	0.0219	0.0075	0.0109	0.0009	0.0092
	(0.0313)	(0.0234)	(0.0081)	(0.0199)	(0.0227)	(0.0141)	(0.0025)	(0.0175)
Mean	0.1829	0.0848	0.0035	0.0636	0.1700	0.0774	0.0022	0.0494
N	1,116	1,116	1,116	1,116	2,237	2,237	2,237	2,237

on physical health

Temporary impact

- ◆ 25% ↑ physical symptoms at age
- ◆ Little impact at age five ◆ Little impact on seeking medical

treatment

Table 1 The impact of of in-utero radiation fear at age two and five

Exposing to radiation fear in the first trimester has the greatest impact

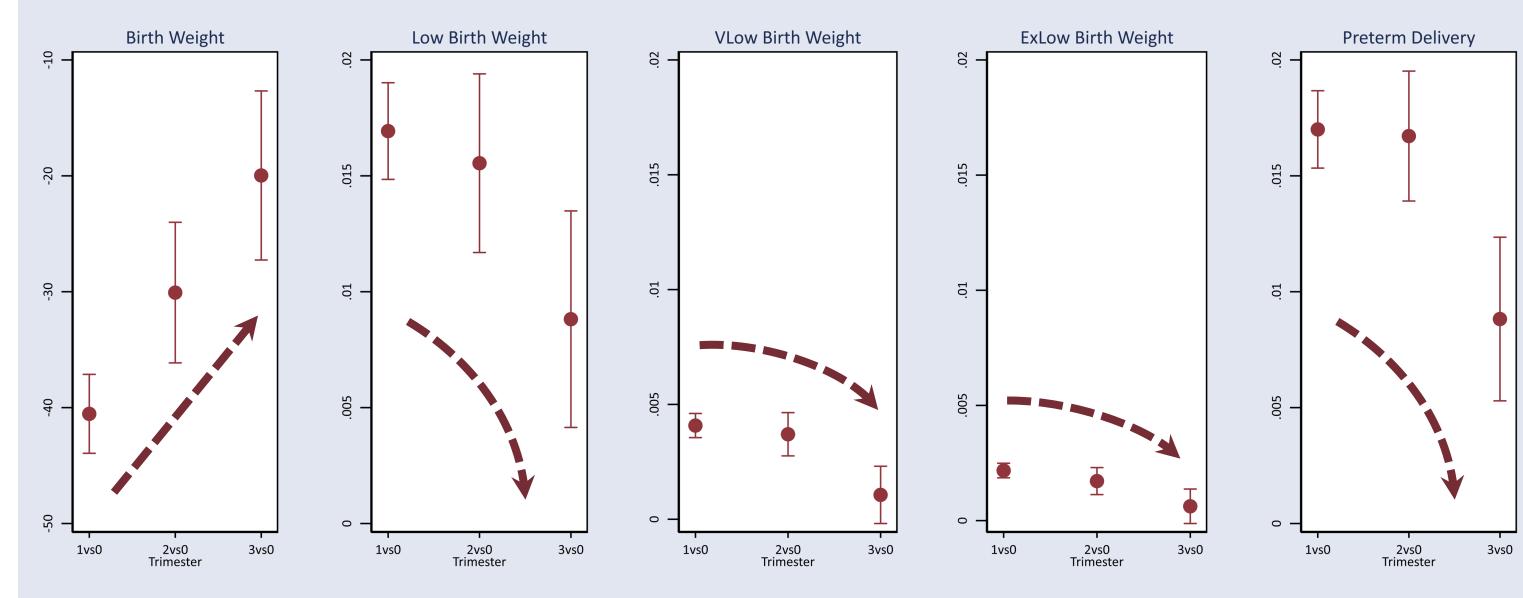


Fig. 7 The trimester-specific impact on birth outcomes

Underestimate the costs of intangible risks

- ◆ Not only the actual damage of the risks
- ◆ But also the fear of them can be harmful

Hidden costs of initial outbreaks of COVID-19

◆ The impact of maternal stress from infections

"Fear wisely!"

- ◆ Timely information sharing
- ◆ Efficient risk communication
- ◆ Education about radiation risks

Contact

Rong Fu, Waseda University, Japan Email: nataliefu@waseda.jp

each nuclear reactor in the municipalities.

Website: https://sites.google.com/view/nataliefu-homepage

Full Paper