

Non-linear Dependence and Portfolio Decisions over the life cycle

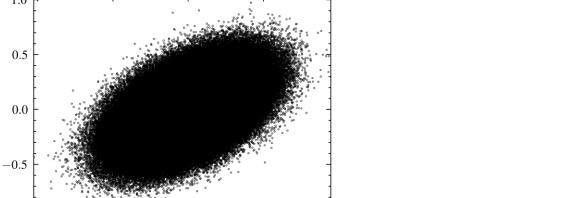
Wei Jiang¹; Shize Li¹; Jialu Shen² ¹Hong Kong University of Science and Technology ²Trulaske College of Business, University of Missouri

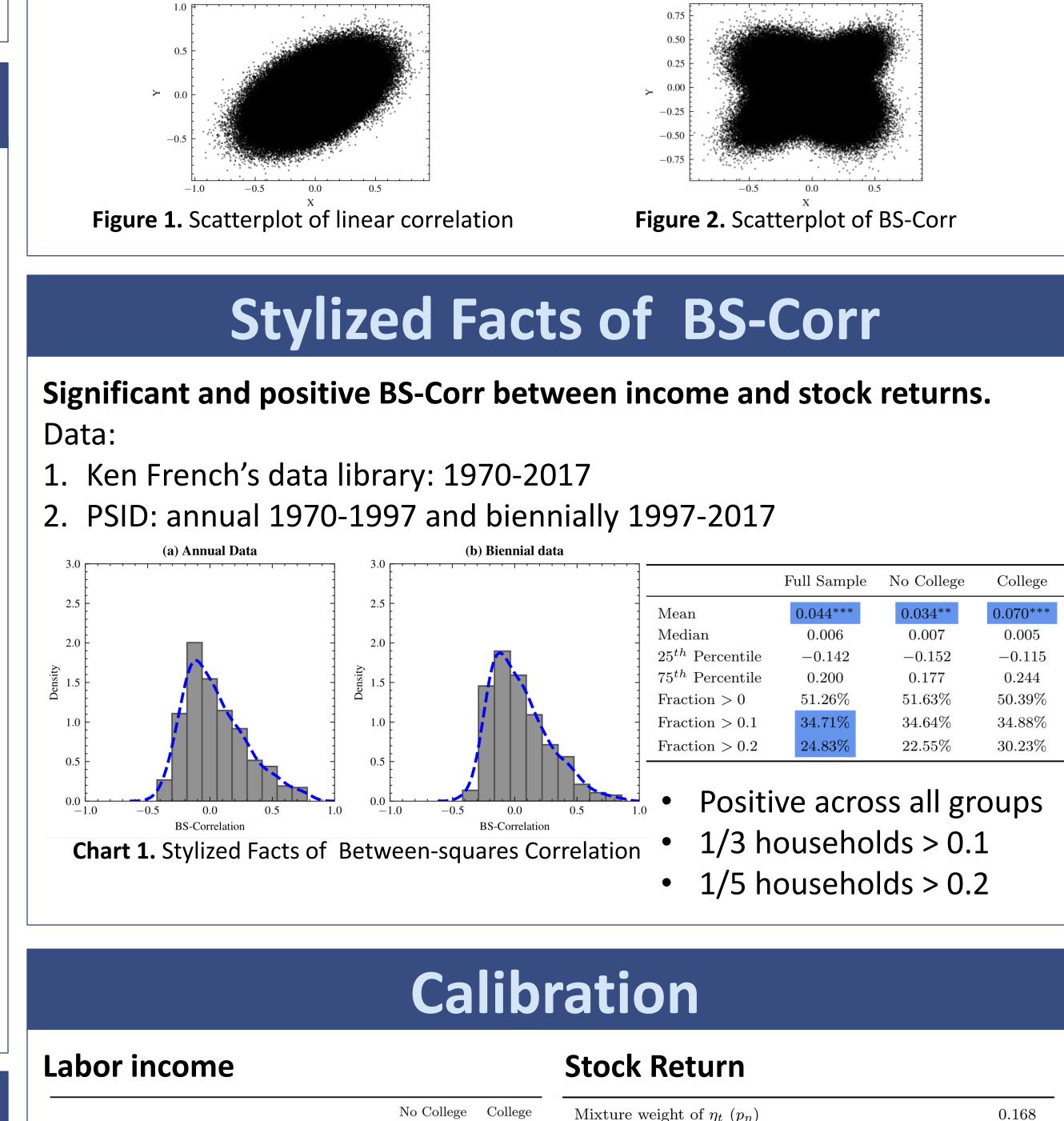
Two Puzzles in Household Finance

Compared to model predictions, data indicates households are not so interested in stock investment.

- 1. Stock participation rate: < 50%
- 2. Risky share (conditional on participation): $\approx 55\%$

Why? A crucial element: labor income and its risk:


- Labor income process \bullet
- Interplay between labor and financial markets \rightarrow main consideration in this paper


Model

Between-squares Correlation (BS-Corr)

Definition: $Corr^{BS}(X,Y) \triangleq Corr((X - E[X])^2, (Y - E[Y])^2)$ **Advantages:**

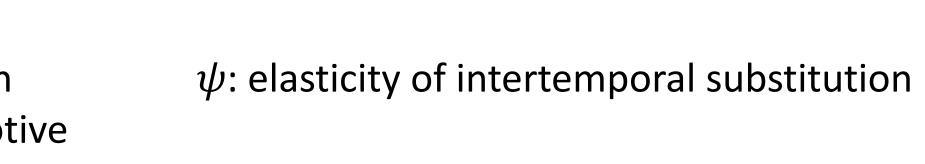
- Nonlinear feature -> A better measure of extreme co-movement
- It is normalized co-kurtosis -> dependence through higher-order risks 2.
- 3. More possible dependence patterns. Under mixture normal:

1. Households' optimization problem with Epstein-Zin preferences:

$$V_{i,t} = \max_{\substack{\alpha_{i,t} \\ C_{i}}} \left\{ (1-\beta)C_{i,t}^{1-1/\psi} + \beta \left(E_t \left[p_{t+1}V_{i,t+1}^{1-\gamma} + b(1-p_{t+1})X_{i,t+1}^{1-\gamma} \right] \right)^{\frac{1-1/\psi}{1-\gamma}} \right\}^{\frac{1}{1-1/\psi}}$$

Controls:

- $\alpha_{i,t}$: risky share -> controls the portfolio return $R_{i,t+1}^p = \alpha_{i,t}R_{i,t+1}^p + (1 \alpha_{i,t})R_{i,t+1}^p$.
- $C_{i,t}$: consumption -> controls investment principal. States:
- $X_{i.t}$: wealth


 $V_{i,t} = V_{i,t-1}$

Parameters:

 $Y_{i,t}$: labor income

 R_t^S : stock return

• β : discount factor γ : risk aversion • *p*: survival probabilities b: bequest motive Wealth Accumulation: Investment

participation cost income

$$X_{i,t+1} = (X_{i,t} - C_{i,t})R_{i,t+1}^{p} - FI_{p}P_{i,t} + Y$$

3. Stock Returns Process (R_t^S) **2.** Labor Income Process $(Y_{i,t})$

 $\log Y_{i,t} = f(t, Z_{it}) + v_{it} + \varepsilon_{it} \text{ for } t \le K$

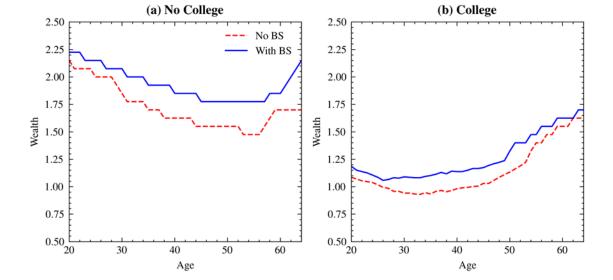
$$v_{i,t} = v_{i,t-1} + u_{i,t}$$

$$R_t^3 = R_f + \mu + \eta_t$$

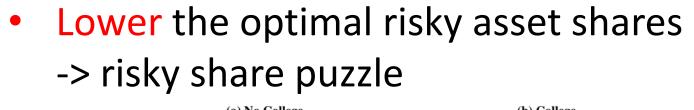
$$u_{i,t} = \begin{cases} u_{i,t}^{(1)} \sim N(\mu_{u,1}, \sigma_{u,1}^2) \text{ with prob.} p_u \\ u_{i,t}^{(2)} \sim N(\mu_{u,2}, \sigma_{u,2}^2) \text{ with prob.} 1 - p_u \end{cases}$$

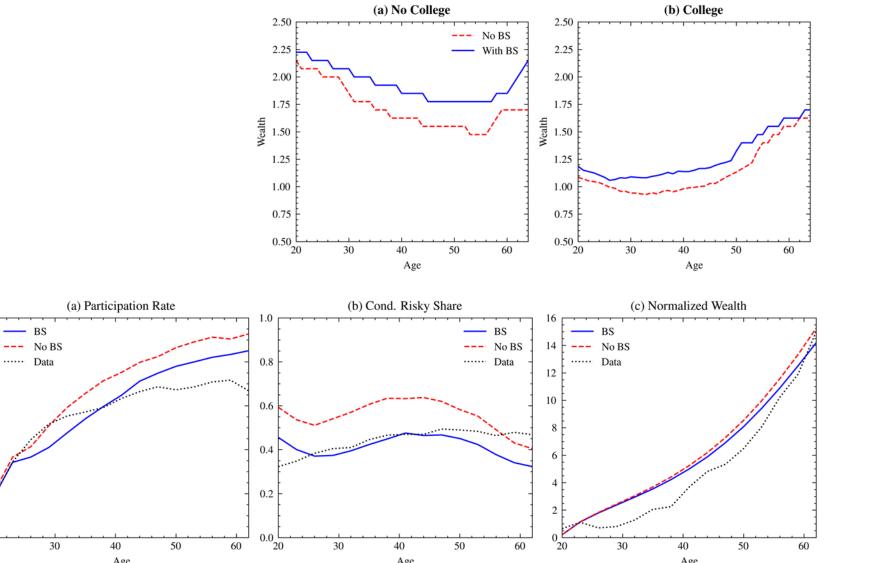
$$\eta_{i,t} = \begin{cases} \eta_{i,t}^{(1)} \sim N(\mu_{\eta,1}, \sigma_{u,1}^2) \text{ with prob.} p_\eta \\ \eta_{i,t}^{(2)} \sim N(\mu_{\eta,2}, \sigma_{u,2}^2) \text{ with prob.} 1 - p_\eta \end{cases}$$

$$\rho_{a,b} = corr(u_{i,t}^{(a)}, \eta_{i,t}^{(a)}), a = 1, 2, b = 1, 2.$$


$$control the correlation and BS-Corr.$$

Effect of BS-Corr on investment decisions


Including between-squares correlation **significantly**:


Raise participation wealth threshold

-> participation puzzle

And thus, the model including BS-corr matches SCF data well.

Mixture weight of u_{it} (p_u)	0.271	0.278	Normal distribution 1 mean $(\mu_{\eta,1})$	-0.187
Normal distribution 1 mean $(\mu_{u,1})$	-0.124	-0.156	Normal distribution 2 mean $(\mu_{\eta,2})$	0.038
Normal distribution 2 mean $(\mu_{u,2})$	0.046	0.060	Normal distribution 1 standard deviation $(\sigma_{n,1})$	0.395
Normal distribution 1 standard deviation $(\sigma_{u,1})$	0.172	0.231	Normal distribution 2 standard deviation $(\sigma_{n,2})$	0.127
Normal distribution 2 standard deviation $(\sigma_{u,2})$	0.010	0.012	Participation cost (F)	0.008
Standard deviation of transitory shock (σ_{ϵ})	0.204	0.139	Tarticipation cost (1)	0.008
Dependence parameter 1 (ρ_1)	0.836	0.778		
Dependence parameter $2(\rho_2)$	-0.164	-0.214		

Dependence Structure:

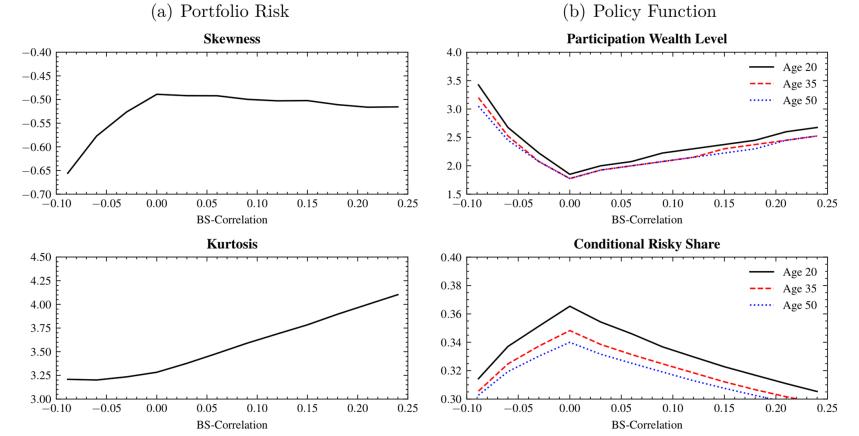
	No Co	No College		College	
	Model	data	Model	data	
Corr BS-Corr	$0.038 \\ 0.046$	$0.038 \\ 0.046$	$0.033 \\ 0.069$	$0.034 \\ 0.070$	

Corr \approx 0 (consistent with literatures).

Small BS-Corr but significant effect.

Precise calibration.

Preference:


	No College	College
Risk aversion (γ)	4.3	4.3
EIS (ψ)	0.9	0.3
Discount factor (β)	0.90	0.98
Bequest motive (b)	2.5	2.5

- Moderate risk aversion level.
- College group is more patient.
- Low fixed cost rate = 0.008.

Please refer to our working paper for more calibration details.

Portfolio perspective of BS-Corr effect

Assume a **portfolio** including α share of stock and one unit of labor income flow.

Given other moments fixed (including correlation), between-squares correlation has nonlinear effect. *From panel (a)* portfolio risk with changing BS-Corr

Empirical Evidence of BS-Corr

Data: PSID & CRSP (1997-2017) **Models:**

BS-Corr has

- Significant effect
- **Nonlinear effect**
- Probit regression for participation rate
- Tobit for conditional risky share

Probit participation model

Tobit investment model

(-)	$\left \right\rangle$	0: S	kewness	个,	kurtosis	\rightarrow	
-----	------------------------	------	---------	----	----------	---------------	--

- $0 \nearrow (+)$: Kurtosis \uparrow , skewness \rightarrow
- |Between-squares correlation| $\uparrow \Rightarrow$ More risk
- *From panel (b)* corresponding policy functions
- BS-Corr \approx 0: more likely to enter the market
- BS-Corr deviates from 0: households reduce their risky asset holdings.

Full sample -0.2506*** -0.0160	No College -0.2457***	College	Full sample	No College	College
	-0.2457^{***}	0.0100***			
0.0160	0.2101	-0.2469^{***}	-0.1097^{***}	-0.1309^{**}	-0.0938^{**}
-0.0100	-0.0434	-0.0273	-0.0078	-0.0320	-0.0052
0.6596^{***}	0.5427^{***}	0.5222^{***}	0.4562^{***}	0.3251^{***}	0.2820^{**}
-0.2821^{**}	-0.0621	-0.3507	-0.5140	0.4663	0.3135
0.0265	0.0061	0.0388	1.3090^{*}	-0.2331	0.3324
-0.3363^{***}	-0.1542^{**}	-0.3243^{***}	-0.1855^{***}	-0.0893^{*}	-0.1405^{**}
0.2438^{***}	0.2529^{***}	0.1672^{***}	0.0077^{***}	0.0758^{***}	0.0041^{**}
-0.0151	-0.0370	0.04220	0.06335	-0.0198	0.1143^{*}
-0.0221	-0.0163	-0.0246	-0.0119	-0.0180	-0.0035
0 0954*	-0.0296	-0.0352^{*}	-0.003655	0.0007	-0.0127^{*}
	0.0265 - 0.3363^{***} 0.2438^{***} - 0.0151	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Contact

Shize Li Email: slidg@connect.ust.hk Wei Jiang Email: weijiang@ust.hk Jialu Shen Email: jshen@missouri.edu

Conclusion

- 1. We document the existence of between-squares correlation in the data.
- 2. Introducing between-squares correlation lowers participation rates and risky asset shares, conditional on participation.
- The perspective from portfolio helps understand between-squares correlation better and shows a nonlinear pattern.
- 4. Empirical evidence supports the model's prediction, and the nonlinear pattern of between-squares correlation's effect.

Reference

- Cocco, J. F., Gomes, F. J., and Maenhout, P. J. (2005). Consumption and portfolio choice over the life cycle. The Review of Financial Studies, 18(2):491–533.
- Gomes, F., & Michaelides, A. (2005). Optimal life-cycle asset allocation: Understanding the empirical evidence. The Journal of Finance, 60(2), 869-904.
- Nakajima, M., & Smirnyagin, V. (2019). Cyclical labor income risk. Available at SSRN 3432213.
- Catherine, S. (2022). Countercyclical labor income risk and portfolio choices over the life cycle. The Review of Financial Studies, 35(9), 4016-4054.

5.