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Abstract 

The ability of three- to six-factor models to explain the cross-section of stock returns varies substantially 

over time, providing scope for time-varying numbers of additional factors.  We show that additional factors 

are relevant and non-redundant, as out-of-sample Sharpe ratios formed from principal components of 

factors identified in-sample are economically substantive and continue to increase up to more than twenty 

factor principal components. The numbers of significant factors are strongly related to variation in 

economic conditions and measures of diversity in firm characteristics.  These results suggest that time 

variation in the number of significant factors reflects time-varying economic complexity.   
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In the beginning there was chaos. . . Then came the CAPM. . . Then anomalies erupted, and there was 

chaos again...Fama and French (1993, 1996) brought order once again...Alas, the world again is 

descending into chaos......I did not say it will be easy! But we must address the factor zoo.   

 

John Cochrane, AFA Presidential Address, 2011 

 

 

 

1. Introduction. 

 
The literature has identified hundreds of empirical variables, including firm characteristics and 

“factors” constructed as returns to long-short portfolios, that appear to have significant explanatory power 

for the cross-section of stock returns.1  However, as the preceding quotation from the former President of 

the American Finance Association illustrates, there is a widespread perception that finance researchers 

have collectively identified too many factors.  Indeed, foundational asset pricing models such as the 

CAPM or the consumption-based CAPM imply that a single factor should be sufficient to explain the 

cross-section of returns if it is measured correctly.    

While we do not resolve the question of whether researchers have collectively identified too 

many factors, we posit and provide empirical evidence that the number of economically relevant factors 

varies over time as a function of firm complexity and economic conditions.   We use rolling sixty-month 

specifications to allow for time variation, and show that the number of factors with significant 

explanatory power for the cross-section of returns varies substantially over time and is related to measures 

of firm diversity and economic complexity.  We examine out-of-sample Sharpe ratios for portfolios 

constructed from the principal components of the factors that are significant in-sample.  These Sharpe 

ratios are economically large, and on average continue to increase as the number of factor principal 

 
1 The literature has not always been consistent in usage of the terms “characteristic” and “factor.”  To be precise, we 

use the term “characteristic” to refer to a firm-level attribute, such as firm size or profitability, and we use the word 

“factor” to refer to returns on a long-short portfolio.  More specifically, each factor is the time series of returns on a 

portfolio that is long a set of stocks selected with either left or right tail outcomes on a given characteristic, e.g., 

firms of small size or high profitability, and short a set of stocks with outcomes in the opposite tail, e.g., stocks of 

large size or low profitability.  We do not herein use the term factor to refer to outcomes obtained by the statistical 

technique of factor analysis.    
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components increases to twenty or more, implying that the significant factors are not redundant of each 

other.    

Variation in the economic relevance of individual factors can arise because of changes in 

individual factors’ return premium per unit of factor risk or in the quantity of factor risk (i.e., factor 

betas).2  It is broadly recognized that the return premia associated with canonical factors such as firm size 

or value (market-to-book ratio) have varied substantively over time.3  Haddad, Kozak, and Santosh (2020) 

broaden this avenue of inquiry by showing that time variation in the top few principal components 

associated with a set of fifty “anomaly” portfolios can be identified based on the market-to-book ratios of 

the factors themselves.  Our results are consistent with Haddad, Kozak, Santosh (2020) in that both their 

study and ours document that conditional return premia can be substantially higher than unconditional 

premia.  However, we focus on time variation in the relevance of individual factors rather than a constant 

set of principal components formed from a fixed set of factors.  We document that time variation in the 

number of significant factor premia is more the rule than the exception across a large sample of over two 

hundred factors, demonstrate the economic relevance and non-redundancy of the significant factors both 

in- and out-of-sample, and assess the economic determinants of variation in the number of significant 

factors.       

Cochrane (2011) observes that essentially all variation in price-to-dividend ratios is attributable to 

changes in discount rates, i.e., expected returns.  If factor models determine expected returns it follows 

that variation in discount rates is attributable to time variation in interest rates and factor return premia.  

There are numerous reasons that factor premia can vary through time.   In contrast to the assumptions of 

representative agent models, investors are diverse in terms of both their sophistication and their 

investment objectives, which allows that the identity of the marginal investor can differ across stocks and, 

in a given stock, can change over time.  Some individual investors may seek to form mean-variance 

 
2 We do not take a stand as to whether the return premium associated with a given factor arises because of investor 

aversion to undesirable factor outcomes, mispricing in the face of barriers to arbitrage, or a combination thereof. 
3 See, for example, , e.g. Conrad and Kaul (1988), Ferson and Harvey (1991), Cochrane (1999), van Dijk (2011) and 

Ehsani and Linnainmaa (2021). 
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efficient portfolios, while others seek out positive skewness or “lottery” payoffs, and yet others trade in 

response to comments on discussion boards such as “WallStreetBets.”4  Some may hold positions for long 

periods, others periodically rebalance to target weights, and yet others trade episodically in response to 

wealth shocks, opportunities to provide liquidity or to correct perceived mispricings.  Betermier, Calvet, 

Knüpfer, and Kvaerner (2021) show that the cross-section of expected stock returns depends in part on 

the proportion of individual investors that are younger as well as the proportion that are wealthier.  Some 

investors trade directly, while others delegate portfolio decisions to professional managers, whose 

objectives can differ from those of their investors due to agency issues arising, for example, from specific 

compensation plans (e.g., Kashyap, Kovrijnykh, Li and Pavlova, 2021) or as a function of career 

horizons.  Further, the trades of professional investors can depend on considerations such as the funding 

liquidity of their employing firms, and return premia have been shown to also depend also on the leverage 

of financial sector firms.5   

Investor learning may also be relevant.  Brennan (1998) for example, explores how investors’ 

utility-maximizing portfolio decisions depend on their stock market experience, and Pastor and Veronesi 

(2009) explore how estimates of firm values evolve as investors learn about firms’ growth prospects.  

Martin and Nagel (2022) show how investors’ incorrect priors regarding parameters of the return 

distribution in combination with complexity in the form of a large number of relevant firm characteristics 

allows for out-of-sample return predictability as investors learn about the true distribution, even if the 

underlying economic structure is stable.   Chinco, Neuhierl, and Weber (2021), also assuming constant 

underlying parameters, assess how active traders’ optimally combine their prior assessments with the 

emergence of empirical evidence to determine which signals they will attempt to trade on.  We reason that 

a dynamic economic environment with time-varying parameters only heightens the importance of investor 

 
4 Recent studies documenting the diversity of individual trading approaches include Barber, Huang, Odean, and 

Schwarz (2021), Chen, Kumar, and Zhang (2021) and Bali, Brown, Murray Tang (2017).     
5 See, for example, Koijen, and Yogo, (2019), He, Kelly and Manela (2017), Tobias, Etula, and Muir (2014) and He 

and Krishnamurthy (2013). 
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learning as a barrier to arbitrage, thereby providing scope for factor premia to persist for a time even after 

they become economically relevant.     

In addition to the diversity of investors in terms of their experience, knowledge, strategies, and 

objectives, the economic characteristics of newly listed firms can differ from those of existing firms, as 

shown by Campbell (2001), Fama and French (2004), and Kahle and Stulz (2017).  We construct a 

measure of cross-sectional diversity in the observable characteristics that are collectively known to be 

related to expected returns, and show the number of factors that are significant in explaining stock returns 

increases with such diversity.   

At first glance, our findings may appear to contrast with conclusions reached by earlier authors.  

Kelly, Pruitt, and Su (2019) present evidence indicating that as few as five latent factors identified by the 

technique of Instrumented Principal Components Analysis can outperform existing factor models and lead 

to insignificant alpha estimates.  Kozak, Nagel, and Santosh (2020) report that a stochastic discount factor 

formed from a small number of factor principal components performs well in terms of the pricing model’s 

out-of-sample R-squared statistic, and Kozak, Nagel, and Santosh (2018) report that factor principal 

components beyond the first few do not contribute meaningful to out-of-sample Sharpe ratios.   However, 

our rolling estimation approach allows for flexible time variation in factor return premia in a manner that 

these studies do not.6  We apply our methods to the same data studied by Kozak, Nagel and Santosh 

(2018) and show that the divergence of our outcomes from theirs is attributable to our allowance for time 

variation in factor return premia.  Further, we use the data and programs posted by Kozak, Nagel and 

Santosh (2020) to show that, even though they do not allow for time variation in factor premia, out-of-

sample Sharpe ratios implied by their analysis continue to increase as more factor principal components 

are used to form portfolios, even while the R-squared statistic on which they focus rises only modestly.  

Our analysis is also related to that of Chinco, Neuhierl, and Weber (2021), who focus on an 

economic environment characterized by a constant set of predictive variables and associated parameters, 

 
6 Kelly, Pruitt, and Su (2019) do allow for factor return premia to vary over time, but in a less flexible manner, as 

factor alphas and betas are constrained to be time-invariant linear functions of observable characteristics.   
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e.g., factor premia, where the number of variables optimally included in a trading strategy varies over 

time as a function of agents’ priors from evolving sample evidence.  They further show that such time 

variation in priors is largely unrelated to changes in the macroeconomic environment.  In contrast, we 

focus on time variation in the premia associated with specific factors, and directly link such time variation 

to the dynamic complexity of the economic environment.   Our analysis of time varying relations between 

factor outcomes and the cross-section of stock returns also complements that of Farmer, Lawrence 

Schmidt, and Timmermann (2022), who show that the ability of macroeconomic variables such as the 

interest rate term structure to forecast aggregate market returns is not time-invariant, but rather is 

concentrated in adjacent “pockets” of time.   

Our contributions relative to the related literature include the following.  First, we focus attention 

on the substantial time variation in the number of significant factors, and document that this variation has 

significant out-of-sample predictive power for portfolio Sharpe ratios.  Second, we show that variation in 

the number of economically relevant factors is significantly related to a set of variables measuring the 

complexity of firms and economic conditions.  Third, we focus on the cross-sectional variation in mean 

returns to individual stocks rather than focusing only on characteristic-sorted portfolios.  We confirm that, 

when studying mean returns to size and book-to-market portfolios, the widely used three- to six-factor 

models outperform the CAPM, a finding which may contribute to a perception that a few factors are 

sufficient.  However, when considering individual stocks, the CAPM outperforms these models.  These 

results imply scope for additional relevant factors beyond those included in the widely used three- to six-

factor models.  We further show that out-of-sample Sharpe ratios for portfolios constructed from the 

principal components of factors that are significant in sample are economically large, and the number of 

principal components that yields the largest out-of-sample Sharpe ratios varies over time and often 

includes more than twenty principal components.  These results imply that factors beyond the first few are 

not simply redundant.   

To assess the scope for multiple factors to explain the cross-section of individual stock returns, 

we also estimate firm-specific alphas from rolling sixty-month market-model regressions.  We then study 
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the cross-sectional standard deviation of the resulting firm-level alpha estimates for each month.  Time 

periods with more dispersion in firm-level CAPM alphas indicate greater scope for factors beyond the 

market to have explanatory power for expected stock returns.  We document that the number of factors 

with significant alphas is indeed positively related to the standard deviation of firm-level CAPM alpha 

estimates, even while the number of significant factors is not related to the average standard error of alpha 

estimates or average idiosyncratic volatility.  These results support the reasoning that the number of 

significant factors is related to the extent to which expected stock returns are left unexplained by the 

CAPM.   

We also contribute to the literature that studies whether factors have significant explanatory 

power during time periods outside those studied by original authors.   This literature typically focuses on 

outcomes during authors’ original sample periods versus results obtained during subsequent periods, and 

as such do not allow for time variation within these periods.  In contrast, using rolling 60-month 

windows, we show that many factors are statistically significant in periods both before and after the range 

of data studied by the original authors.  We recognize that time variation in the estimated premia 

associated with specific factors can arise due to three alternative hypotheses.  First, this outcome could 

simply reflect random noise in a stable economic environment.  That is, a factor with a constant, but 

economically modest, true premium could be associated with significant estimates during some intervals 

and insignificant estimates during other intervals due to random variation (Jensen, Kelly and Pedersen, 

2021).  Second, it could arise due to collective data mining as others have argued.  Third, it could reflect 

time variation in the magnitude of actual factor premia.   

We differentiate between these possibilities with two novel empirical approaches.  First, we 

simulate the distribution of the number and average length of “spells” of factor significance under the null 

hypothesis that true factor premia are time-invariant, and show that the observed sample outcomes are 

exceptionally unlikely under the null hypothesis.  Second, we assess the extent to which variation in the 

number of significant factors is related to measures of changes in the economic environment.  We 

document that the number of significant factors is related to a recession indicator variable, interest rates, 
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the percentage of firms that pay dividends, mean institutional ownership rates, and an economic 

complexity index, and is particularly strongly related to the number of firms that are publicly listed.  The 

link to the number of publicly-listed firms is subsumed, in turn, by a measure of cross-sectional diversity 

in firm characteristics.  Periods with increased dispersion in characteristics across firms are those where 

the underlying firms themselves are more differentiated.  The positive and significant relation between the 

number of significant factors and such measures of economic complexity support the conclusion that 

factor premia themselves vary over time.  

On balance, our findings suggest that a time-varying number of non-redundant factors are 

required to price the cross-section of returns as the economy evolves dynamically and diverse firms are 

listed and delisted.  Further, in a dynamic economy a factor can be significant in explaining returns during 

some periods but not others.  This suggests a degree of caution in interpreting the results of existing out-

of-sample tests, as insignificant out-of-sample outcomes need not imply that the factor was unpriced in 

the original sample period, will remain unpriced, or that arbitrageurs permanently eliminated a mispricing 

after becoming aware of it.   

However, accommodating such time variation may also provide additional scope for specification 

searches or other sources of bias.  We have attempted avoid amplifying any such bias in this study by 

focusing only on previously-identified factors and the sixty-month estimation window that is used in 

many prior studies and that corresponds roughly to the horizon over which Keloharju, Linnainmaa, and 

Nyberg (2021) document persistence in cross-sectional variation in expected stock returns.  Further, a 

requirement to link variation in estimated factor premia to variation in observable economic variables 

(such as diversity in firm characteristics) that were not directly employed to identify the factors imposes a 

degree of discipline.  Finally, the results here call for the developing of econometric methods specifically 

tailored to accommodate such a dynamic environment.    
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2. Data and Key Variables  

a. Data Sources 

We rely on two main data sources: monthly returns to individual common stocks and monthly 

returns to 205 factors derived from cross-sectional characteristics previously documented in the literature.  

The individual stock returns are obtained from CRSP, and include all stocks listed on the NYSE, AMEX 

and NASDAQ markets with a share code of 10 or 11 during the period July 1926 to December 2020.  The 

factors are the 161 “clear predictors” and 44 “likely predictors” identified by Chen and Zimmerman 

(2021).7  We estimate factor exposures and alphas based on rolling sixty-month regressions.  As a 

consequence, to enter our sample a stock or factor must have 60 prior months of non-missing returns, and 

our assessment of alpha estimates for stocks and factors begins with estimates obtained for June 1931.  

We obtain industry, size and book-to-market sorted portfolios along with the market excess returns from 

Kenneth French’s website. 

b. Assessing the number of significant factors 

We first seek to assess the number of economically relevant factors at each point in time.   For 

each month t and for each factor f, we estimate 60-month rolling CAPM alphas for the factors themselves 

by means of the following regression over the period t-59 to t: 

𝑅𝑓𝑡 = 𝛼𝑓𝑡 + 𝛽𝑓𝑡𝑅𝑀𝐾𝑇𝑅𝐹,𝑡 + 𝜖𝑓𝑡 

where 𝑅𝑓𝑡 is the month t return on factor f and RMKTRF,t is the month t value-weighted market excess 

return, obtained from Kenneth French’s website.  A positive and significant alpha estimate indicates that 

the factor has explanatory power for the cross-section of stock returns beyond that which is explained by 

returns to the overall market.  We identify a factor as significant for a given time period if the t-statistic 

 
7 The authors graciously posted their data to https://www.openassetpricing.com/. We find qualitatively and 

quantitatively similar results using the factor data of Jensen, Kelly, and Pedersen (2021).  We mainly focus on Chen 

and Zimmerman factors for two reasons.  First, they more closely follow the factor construction methods employed 

by authors of the original papers, and second, they provide a larger set of factors to evaluate.   Bessembinder, Burt, 

and Hrdlicka (2022) provide additional analyses of the factors constructed by these authors.  

https://www.openassetpricing.com/
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for the alpha estimate exceeds positive 3.00, the level recommended by Harvey, Liu and Zhu (2016) to 

allow for potential effects of multiple hypotheses testing and specification searches in the prior literature.8  

Having done so, we display the number of factors with significant prior-sixty-month CAPM alphas as of 

each month. The orange solid line in Figure 1 panel A displays time series variation in the number of 

significant factors.  For comparison, we also display with the dotted blue and dashed grey lines the 

numbers of factors that are significant based on alternative t-statistics hurdles of 1.96 and 4.00, 

respectively.9  While we focus on outcomes based on a t-statistic of 3.00, all three measures are highly 

correlated and support similar conclusions regarding the importance of allowing for time variation in the 

number of factors.     

The literature has noted that anomalous returns to long-short portfolios are often attributable to 

the short leg, presumably due to higher costs of shorting shares.  We display on Figure A1 in the 

Appendix the number of factors for which the long and short legs are individually significant.  The grey 

dashed line indicates the number of factors that are significant based on the alpha of the factor’s long-only 

portfolio, and the blue dotted line the number of significant factors based on the short-only portfolio.   

The figure shows that long-only factor portfolios have significant alphas more often than short-only 

portfolios.   That is, the relevance of a substantial number of factors is not simply attributable to high 

costs of obtaining short positions.    

c. Measuring stocks’ unexplained mean return variation using CAPM alphas 

We assess the extent to which cross-sectional variation in mean stock returns allows scope for 

multiple factors to be relevant.   To do so, we estimate alphas from simple market-model regressions of 

excess firm returns on excess market returns, in each month using data drawn from the prior sixty 

 
8 The factors are typically constructed by the original authors to have a positive mean return (e.g., the size factor is 

defined as return the return on a small firm portfolio less the return on a large firm portfolio, not vice versa).  As a 

consequence, fewer than 4% of the alphas we estimate are negative.   
9 In their replication studies, Hou, Xue and Zhang (2020) and Chen and Zimmerman (2021) rely on a t-statistic of 

1.96.  As noted, Harvey, Liu and Zhu (2016) recommend reliance of t-statistics of 3.0 or greater, while Chordia, 

Goyal and Saretto (2020) argue for a threshold of 3.78.   
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calendar months.  In particular, letting 𝑅𝑖𝑡 denote the month t excess return for stock i, we estimate for 

rolling sixty-month intervals  

𝑅𝑖𝑡 = 𝛼𝑖𝑡 + 𝛽𝑖𝑡𝑅𝑀𝐾𝑇𝑅𝐹,𝑡 + 𝜖𝑖𝑡. 

Having done so, we compute the cross-sectional standard deviation of the 𝛼𝑖 estimates for each 

month t.10  The standard deviation or variance of alpha estimates can be thought of as a simpler, 

unweighted, analog to the Gibbons, Ross, and Shanken (1989) test statistic, except for the focus on 

deviations from the sample mean alpha estimate rather than deviations from zero.11  The key advantage to 

using the standard deviation measure is that the variance-covariance matrix need not be estimated and 

inverted, which would be impractical in light of the number of individual stocks.  The degree of variation 

across stocks in these alpha estimates provides a measure of the extent to which mean stock returns over 

the sixty months diverge across stocks in a manner not explained by stocks’ betas with respect to the 

overall market.  Time series variation in the degree of cross-sectional variation in alpha estimates, in turn, 

give indication of the scope for the number of significant factors to vary over time.   

While our main focus is on simple market-model alphas, we also consider cross-sectional and 

time series variation in firm-specific alphas that are estimated with respect to the well-known three- to 

six-factor models presented by Fama and French (1993), Fama and French (2015), Fama and French 

(2018), Carhart (1997), Pastor and Stambaugh (2003), Stambaugh and Yuan (2017), Barillas and Shanken 

(2018), and Hou, Xue, and Zhang (2015).     

 

 

 

 
10 For ease of interpretability, we standardize the cross-sectional standard deviation such that it has mean zero and 

standard deviation equal to one across months.   
11 In practice, the information contained in deviations of alpha from zero as opposed to the sample mean is 

essentially identical.  Figure IA-1 in the Internet Appendix displays uncentered and centered measures over time. 

The two measures are highly correlated; Pearson correlation coefficients are 0.93 and 0.95 for the equal- and value-

weighted measures.  We rely on the centered measure throughout the paper as it is less noisy than the uncentered 

measure. 



11 
 

3. The Evolution in the Number of Factors Over Time 

 

a. The number of Identified Factors and Unexplained Variation in Mean Stock 

Returns 

 
Figure 2 displays information regarding the scope for multiple factors to explain returns.  Panel A 

of Figure 2 displays the number of factors amongst the 205 studied by Chen and Zimmermann (2021) that 

were identified in the CRSP data for each of the indicated dates.  The dotted blue line displays the factor 

count starting from the earliest data used in the original studies, while the solid black line includes factors 

as of the (often earlier) date for which all data necessary to construct the factors is now available.12  All 

205 factors draw on data from 1995 or earlier, and approximately 200 of these factors draw on data from 

1991 or earlier.  In contrast, only about 10 factors employed data from years prior to 1961 in the studies 

that originally identified the factors.  At present, however, sufficient data is available to implement over 

fifty factors in data drawn from June 1931 or later, and to implement nearly 120 factors in data drawn 

from 1961 or later.  The key point conveyed by Panel A of Figure 2 is that the literature has identified a 

substantial number of factors that can be studied even in data from the earlier decades covered by the 

CRSP dataset. 

Panel B of Figure 2 displays information regarding CAPM alpha estimates for factors as well as 

individual stocks.  The dotted orange line displays the number of factors with statistically significant (t-

statistic greater than 3.00) alpha estimates based on return data for the prior sixty months.  The solid blue 

line displays the cross-sectional standard deviation of estimated individual stock CAPM alphas over the 

same periods.  As noted, we view the cross-sectional variation in CAPM alphas to comprise a useful 

measure of the amount of variation in mean stock returns that can potentially be explained by pricing 

factors other than the overall market, i.e., as a measure of the scope for additional factors to be relevant.    

 
12 The single most common reason that we can now construct factors for time periods that were not included in the 

original studies is that additional accounting data has become available in the intervening years.   The second most 

common reason is that daily data necessary to construct some measures of trading and liquidity for periods prior to 

1962 were added to the CRSP data in 2006.  Bryzgalova, Lerner, Lettau, and Pelger (2022) provide a comprehensive 

analysis of the nature and consequences of the fact that characteristic data is not available for all stock/months.      
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The two curves displayed on Panel B of Figure 2 diverge during the 1930s and 1940s, decades 

when returns were unusually volatile and for which there is even now insufficient data to implement 

many factor models.  However, since approximately 1950 the number of statistically significant factors 

and the cross-sectional variability of individual firm market-model alphas appear to move reasonably 

closely together.  We study this relation more rigorously in Section 4 below, focusing in particular on 

whether the comovement in the number of significant factors and cross-sectional variation in firm-level 

alphas represents variation in expected returns that require more factors versus the alternative that time 

variation in aggregate idiosyncratic volatility could explain the relation.       

Figure 3 displays data informative as to the extent to which the use of prominent multi-factor 

models improves on the CAPM in terms of reducing the cross-sectional standard deviation of individual 

firm alpha estimates.  Large reductions in the variability of firm alpha estimates, if observed, would be 

indicative that the factors employed in these workhorse models have substantive explanatory power for 

mean firm returns, implying limited scope for additional factors.  The alternative factor models we assess 

include the Fama and French (1993) 3-factor model (FF3F), the Fama and French (2015) 5-factor model 

(FF5F), the Fama and French (2018) 6-factor model (FF6F), the FF3F model augmented with the Carhart 

(1997) momentum factor (FF3F+UMD), this model augmented with the Pastor and Stambaugh (2003) 

liquidity factor (FF3F+UMD+PSLIQ), the Stambaugh and Yuan (2017) four-factor model (M4), the 

Barillas and Shanken (2018) 6-factor model (BS6F), and the Hou et al. (2015) q-factor model (Q4).   

The most noteworthy result that can be observed on Figure 3 is that the multifactor models do not 

outperform the CAPM in terms of reducing the cross-sectional variability of individual stock alpha 

estimates.  The variability of individual stock CAPM alphas, displayed as the solid black line, has been 

the lowest or among the lowest as compared to the multi-factor models, particularly since about 1961.  

More specifically, the variability of CAPM alphas is smaller than the variability of alphas from any of the 

six other factor models considered in 65% of the individual months from 1963 to 2020.    

That is, the prominent three- to six-factor models typically leave more, not less, unexplained 

variation in mean individual stock returns, as compared to the CAPM.  This reduction in explanatory 
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power is all the more notable because the market return is included as a factor in the three-to-six factor 

models.  The inclusion of factors in addition to the market must necessarily improve fit (as measured by 

R-squared) in the time series factor regression for each individual stock.  However, the inclusion of these 

additional factors results in stock-specific intercept estimates that are on average further from rather than 

nearer to the benchmark of zero that is implied by the factor models.  The implication is that the non-

market factors included in the three-to-six factor models degrade the ability to explain the cross-section of 

average individual stock returns.13   

The preceding result stands in contrast to numerous studies, such as Hodrick and Zhang (2001), 

Stambaugh and Yuan (2017), and Hou, Karolyi, and Kho (2011) that document the relative success of the 

three-to-six factor models.   However, the literature has mainly sought to explain returns to selected 

portfolios rather than individual stocks.  In Appendix Figure 4A we report results corresponding to those 

in Figure 3, except that the focus is on returns to the twenty-five size and book-to-market portfolios 

identified by Fama and French (1993).   Consistent with the prior literature, the multi-factor models 

virtually always outperform the CAPM when explaining returns to these portfolios, particularly in recent 

decades.  Specifically, the CAPM is outperformed in terms of cross-sectional standard deviation of alpha 

estimates by at least one of the factor models in 96.8% of all sample months and 99.6% of months since 

1963.14  The fact that these models outperform the CAPM when explaining mean returns to size and 

book-to-market portfolios may contribute to a perception that a few factors are sufficient to explain cross-

sectional variation in mean returns.  In contrast, the fact that these models perform more poorly than the 

CAPM when explaining individual stock returns implies scope for additional factors beyond those in the 

widely-used three- to six-factor models.  

 
13 The outcome that the inclusion of additional factors can result in alphas that deviate further from zero has 

appeared in the literature, but does not seem to have been emphasized.   For example, results in Table I of 

Linnainmaa (2013) show that adding Fama and French (1993) factors increases average mutual fund alpha estimates 

as compared to those obtained by use of the CAPM.   
14 We also assess outcomes for thirty industry portfolios identified on Kenneth French’s website.  The results, 

displayed in Appendix Figure 4A, are consistent with the results reported by Ahmed, Bu, and Tsvetanov (2019) in 

that the CAPM often performs better than the multi-factor models when explaining cross-sectional variation in mean 

industry portfolio returns as well.   
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b. Are some factors redundant?   

The data displayed on Panel B of Figure 2 shows that as many as 95 factors have statistically 

significant alpha estimates at certain times during the sample period.  Of course, some factors are similar 

to each other in their construction, and the economic information contained in outcomes on similarly 

constructed factors could overlap substantially.  To assess the extent to which the factors studied here 

contain overlapping information, we rely on principal component analysis, and assess Sharpe ratios for 

portfolios constructed from the principal components.15  This approach is similar to that employed by Gu, 

Kelly, and Xiu (2020) and Kozak, Nagel, and Santosh (2018), who also rely on principal component 

analysis; the former focuses on principal components of individual stock returns, the latter, like us, 

considers principal components of factor returns.  However, we emphasize time variation in factor 

premia, while these authors do not.   

We first consider in-sample results.  Figure 4 Panel A displays the number of principal 

components required to explain 95% of the variation across all 205 factors, as well as the number of 

principal components required to explain 95% of the variation in the statistically significant factors, when 

each is assessed on a rolling sixty-month basis.   Figure 4 Panel B displays more granular information, 

including the number of principal components required to explain 50%, 60%, 75%, 90%, and 95% of the 

variation in the set of all factors.     

 This data reveals that, consistent with the results reported by Hou, Xue, and Zhang (2020), 

approximately fifty to sixty percent of the variation in the factors can be explained by a small number of 

principal components, ranging at various times from three to eight.  However, explaining a larger portion 

of the variation in the factors requires many more principal components.  To explain 95% of the variation 

 
15  We impose in the estimation that the sum of the absolute values of the weights in each portfolio equals one. This 

constraint precludes large loadings on any individual principal component.   A simple alternative approach to the 

Sharpe ratio approach would involve cross-sectional Fama-MacBeth regressions of firm returns on returns to all 

factors.  However, since the number of factors studied here exceeds the number of observations in our rolling sixty-

month regressions, this approach is infeasible.   Lopez-Lira and Roussanov (2021) apply principal component 

analysis to individual stock returns and show that portfolios hedged against these components earn high returns 

relative to their risk.  In contrast, we focus on principal components of factor returns because we are interested in the 

extent to which various factors are redundant.   
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requires between 29 and 40 principal components for every rolling sixty-month window from the late 

1950s through the end of the sample period.16   

Further, while the incremental explanatory power of additional factor principal components 

decreases by construction, this does not necessarily imply that the incremental factors are of minor 

economic importance.  To directly assess the economic significance of allowing for an increasing and 

time-varying number of factors, we measure portfolio Sharpe ratios as the number of principal 

components is increased, first on an in-sample basis and subsequently on an out-of-sample basis.  More 

specifically, for each month t, we construct optimized portfolios based on the first, first two, first three, 

etc., up to the first fifty-nine principal components.  In each case, portfolio weights are chosen to optimize 

the portfolio Sharpe ratio.  On Figure 5 we display Sharpe ratios for portfolios formed from increasing 

numbers of principal components, in sample.  Marginal Sharpe ratios are reflected in the width of the 

bands displayed on the figure.   

 Figure 5 reveals that the Sharpe ratio continues to increase in an economically meaningful 

manner as the number of factor principal components increases.  Even the higher-order principal 

components provide a non-negligible marginal contribution to a portfolio’s Sharpe ratio.  In particular, the 

first twenty principal components rarely contribute more than half of the Sharpe ratio of the portfolio 

constructed from all available principal components.  In addition, the marginal Sharpe ratio contribution 

of additional principal components exhibit considerable time variation in their relative magnitudes. 

Overall, the evidence displayed on Figure 5 supports the reasoning that many factors contribute relevant 

economic information not captured by the other factors.  

Table 1 provides additional data that is useful in assessing the extent to which the large number of 

factors considered in this study contain distinct information.  Specifically, we report the results of 

regressions where the dependent variable during each month is the number of statistically significant 

 
16 The number of principal components estimated from monthly data is inherently limited by the fact that only sixty 

data points are employed for each estimate.  When we repeat this procedure using daily data, the total number of 

principal components is nearly equal to the number of statistically significant factors, suggesting that virtually all of 

the factors contain significant independent information for the cross-section of stock returns.    
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factors as measured over the prior sixty months, and the explanatory variables are the number of principal 

components required to explain 95% of the variation in all factors or 95% of the variation in the 

statistically significant factors.   Columns (1) and (2) pertain to factors measured at the monthly horizon 

while, to assess robustness, columns (3) and (4) report results for factors measured at the daily horizon.  

The central result observed in Table 1 is that there is a strong positive and statistically significant 

relation between the number of statistically significant factors and the number of principal components in 

the factors.  This result implies that, in those months where more factors have significant CAPM alphas 

there is also more independent variation in the factors.  This result would not be anticipated if researchers 

had systematically identified new factors that essentially duplicated the information contained in 

alternative factors.  The R-squared statistics for these regressions are quite high, ranging from 0.65 

(column 1) to 0.94 (column 2).  We conclude that time variation in the number of statistically significant 

factors is not primarily attributable to increases or decreases in the number of factors that essentially 

replicate or are replicated by the economic information contained in other factors.   

c. Out-of-sample evidence 

The results reported in the prior section support the conclusions that the number of factors with 

significant explanatory power for returns is relatively large and varies over time, and that the factors are 

both economically important and to a substantial extent not redundant of each other.  However, the results 

to this point are in-sample, as the significance of factors and the maximum implied Sharpe ratios are 

always assessed within the same sixty-month period.   We next assess the extent to which the factors are 

or are not redundant and improve Sharpe ratios on an out-of-sample basis.   

For each month, t, we consider all factors that have non-missing returns for the “in-sample” 

months t – 59 to t.   From these, we compute the in-sample eigenvalues and eigenvectors of the 

standardized factor covariance matrix, sorting the in-sample eigenvectors by decreasing order of their 

corresponding eigenvalues.  For the out-of-sample evaluation we focus on the 36 months from t+1 to 
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t+36, and multiply these out-of-sample factor returns by the in-sample eigenvectors to create out-of-

sample principal components.17  

We then construct portfolios comprised of increasing numbers of these out-of-sample principal 

components.  More specifically, for each month t, we construct portfolios based on the first, first two, first 

three, etc., up to the first 59 out-of-sample principal components.  Portfolio weights are chosen in each 

case to maximize the portfolio’s in-sample Sharpe ratio.  We then focus on the returns earned by these 

portfolios during the subsequent 36-month out-of-sample period.   

Panel A of Figure 6 displays for each month the number of principal components (from 1 to 59) 

that results in the highest out-of-sample Sharpe ratio.  While the optimal number of principal components 

used to form the out-of-sample portfolio can only be observed on an ex-post basis, it is informative as to 

the extent to which factors are redundant on an out-of-sample basis.  Table 2 reports provides regression-

based statistical evidence regarding the predictive ability of the number of factors that are statistically 

significant in-sample for both maximized out-of-sample Sharpe ratios and for the number of principal 

components included in the portfolios that maximize Sharpe ratios.  Each estimated slope coefficient is 

positive and statistically significant at the 0.01 level.   That is, a larger number of statistically significant 

factors during a given sixty-month interval reliably predicts both larger out-of-sample Sharpe ratios and 

that the portfolios delivering the higher out-of-sample Sharpe ratios will be formed from a larger number 

of principal components.      

Panel B of Figure 6 displays additional information regarding out-of-sample Sharpe ratios.  More 

specifically, Panel B displays the Sharpe ratios obtained if the portfolios are formed from the first five  

principal components (in line with the results of  Hou, Xue, and Zhang, 2020 and Kozak, Nagel and 

Santosh, 2018), the average Sharpe ratio obtained from all possible numbers of principal components 

(from one to fifty-nine), the Sharpe ratio obtained from the maximum number of principal components, 

 
17 While we report results for a 36-month out-of-sample window, outcomes are similar for both 12- and 60-month 

windows.  We focus on 36 months as a balance between greater noise at short horizons and a potential loss of 

economic relevance at long horizons attributable to time variation in the economic importance of individual factors.  
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and the maximum Sharpe ratio obtained for portfolios based on any of one to 59 principal components.  

(Note that only the last of these relies on out-of-sample information.)  Panels C and D of Figure 6 are 

analogous to Panels A and B, respectively, but display results that are obtained when principal 

components are formed from only those factors with significant in-sample (t – 59 to t) alphas.18  Panel A 

of Table 3 compiles some descriptive statistics, including means and standard deviations, of the Sharpe 

ratios displayed on Panels B and D of Figure 6.   

The data displayed on Figure 6 and the summary statistics in Table 3 indicate that the factors that 

are significant in-sample have substantial out-of-sample explanatory power for portfolio returns.  The 

Sharpe ratio for out-of-sample portfolios formed from the first five principal components are virtually 

always positive, average 0.38 for the full sample, and reached 1.0 during some portions of the 1980s and 

1990s.  The average (across various numbers of principal components) Sharpe ratios are, particularly 

since about 1950, larger than those based on five principal components, average 0.84 over time, and 

approached 1.5 during portions of the 1980s and 1990s.  The maximum (across any of the numbers of 

principal components, corresponding to the number of principal components identified on Panel A) 

Sharpe ratios are always positive, consistently exceeded one from about 1974 to 2005, average 1.12 over 

time, and reached 2.5 at times.  The maximum Sharpe ratio is always greater than the Sharpe ratio for the 

maximum number of principal components as (unlike a purely in-sample exercise) measured performance 

need not increase when the portfolio includes additional principal components.  More specifically, the 

time series average of the Sharpe ratios obtained from the greatest number of principal components is 

1.12, compared to the time series average of the maximum Sharpe ratios obtained across any number of 

principal components, which is 1.35.  The average number of principal components for the portfolio that 

gives the maximum out-of-sample Sharpe ratio is forty-seven.    

The data displayed on Panel C of Figure 6 shows that the number of principal components 

contained in the portfolios with the highest out-of-sample Sharpe ratios is most often as large or nearly as 

 
18 Some sections of the lines in Panel D are missing due to an insufficient number of significant factors (i.e., only 1 

or 0) during those time periods. 
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large as the number of factors that were statistically significant in-sample.  During approximately the 

1980 to 2002 period, the number of principal components (drawn from factors significant in sample) that 

maximized out-of-sample portfolio Sharpe ratios consistently exceeded twenty, and averaged twenty- 

three.   

The data displayed in Panel D in combination with the Table 2 results showing a strong 

correlation between out-of-sample Sharpe ratios and the number of factors that are significant in-sample 

support that the number of economically significant and non-redundant factors varies over time.   

However, since factors estimated within sample can be used to improve Sharpe ratios out-of-sample, the 

results also suggest that time variation in the economically relevant factors is not so rapid as to render the 

factors useless after the estimation period where their significance is initially assessed.      

The out-of-sample Sharpe ratios displayed on Figure 6, which are based on monthly data and 

have not been annualized, are economically large.  However, such large Sharpe ratios are not 

unprecedented in the literature.  For example, Kelly, Pruitt, and Su (2019) report an annualized out-of-

sample Sharpe ratio of 4.05 in their study of latent factors.  Further, it is not clear that these large Sharpe 

ratios necessarily imply unexploited arbitrage opportunities that are “too good to be true,” for two 

reasons.   

First, investors would need to be aware and respond to the time variation in the underling factor 

return premia in real time.  Duffie (2010) observes that arbitrage capital moves slowly due to institutional 

impediments that include search costs and the elapsed time to raise capital after opportunities are 

identified.  Martin and Nagel (2022) advance an investor learning argument that arises when investors’ 

priors do not correspond to underlying parameters, focusing specifically on the complexity associated 

with a large number of relevant characteristics.  We highlight not only that numerous factors may be 

relevant, but also the enhanced complexity of an economy where the magnitude of factor premia can vary 

through time.  That is, while competition among arbitragers should indeed reduce large Sharpe ratios, a 

dynamic economy requires not only continual investor learning, but in the presence of “moving targets.”   



20 
 

Second, any attempt to capture the large Sharpe ratios would involve implementation costs, 

which would be relatively high.   Bessembinder, Burt, and Hrdlicka (2022) show that the Chen and 

Zimmerman (2021) factors are mainly based on equal-weighted portfolio returns, where microstructure 

frictions for the smaller and less-liquid stocks will comprise a barrier.   Whether the results here imply 

profit opportunities to active traders is a question worth further assessment.  However, the importance of 

understanding the nature of cross-sectional variation in expected returns, and time series variation therein,  

remains in any case.  As one particular example, we are interested in knowing if illiquidity affects 

expected returns, even if that very illiquidity implies the absence of a profit opportunity to an active 

trader.   

To obtain insights as to the data structure that could allow for such large out-of-sample Sharpe 

ratios, we conduct a series of simulations with parameters calibrated to the properties of the return data, as 

described in detail in Section II of the Appendix. The central insight obtained based on these simulations 

is that two key features of the actual data–including (i) maximized out-of-sample Sharpe ratios most often 

exceed one and (ii) the correlation between the number of factors that are priced in-sample and the 

number of out-of-sample principal components contained in the largest Sharpe ratio portfolio is high–are 

only obtained when the correlation in returns across various priced factors is low, more specifically below 

approximately 0.10.  In contrast, high correlations in the returns to the priced factors do not allow for 

these out-of-sample outcomes to be observed.  That is, the simulations support the conclusion that the 

out-of-sample outcomes could not be observed if the factors were substantially redundant of each other.   

The results we report on Figure 6 can be contrasted to those reported by Kozak, Nagel, and 

Santosh (2018), who do not allow for time variation in factor premia.  They report that while factors 

beyond the first few principal components contribute substantially to in-sample Sharpe ratios, principal 

components beyond the first few do not substantially enhance the Sharpe ratio out of sample.  They argue 

that this result is to be expected since even a relatively small number of arbitragers should “be sufficient 

to ensure that near-arbitrage opportunities—that is, trading strategies that earn extremely high Sharpe 
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ratios do not exist.”   Yet, we document high out-of-sample Sharpe ratios, and that principal components 

beyond the first few contribute substantively.    

We assess whether time variation in factor premia can reconcile the differences in our findings as 

compared to those of Kozak, Nagel and Santosh (2018).  First, we replicate their results.  In particular, we 

compute in- and out-of-sample Sharpe ratios for portfolios formed from the principal components of the 

same thirty long and short factors that they consider, when the in- and out-of-sample periods are defined 

based on the first and second half (25 years each) of their sample period.19  We then assess the effect of 

instead focusing on shorter subsamples, ranging from 36 to 120 months, to define the in- and out-of-

sample periods.   

Figure 7 displays the findings.  Panel A shows the in-sample Sharpe ratios as a function of 

number of principal components in the portfolio, while Panel B shows the corresponding out-of-sample 

Sharpe ratios.  The bright red lines in both panels confirm the findings of Kozak, Nagel and Santosh 

(2018).  In particular, in-sample Sharpe ratios increase as more principal components are used to form 

portfolios, while out-of-sample Sharpe ratios increase modestly beyond the 5th principal component, when 

the in- and out-of-sample periods are each based on half of the full sample. 

The additional six lines on Figure 7 display average (across time) of portfolio Sharpe ratios for 

shorter estimation windows.  These indicate that average out-of-sample Sharpe ratios increase to a 

maximum of nearly 1.6 as the estimation windows are decreased from half the sample, as in Kozak, Nagel 

and Santosh (2018), to thirty-six months.  Further, out-of-sample Sharpe ratios continue to increase 

beyond the first five principal components until the portfolios are constructed from approximately twenty-

five principal components when shorter estimation windows are employed.   

The data reported in Panel B of Table 3 quantifies these differences more specifically.  In 

particular, we report there the difference in out-of-sample Sharpe ratios for portfolios constructed from 

 
19 We thank Kozak, Nagel and Santosh (2018) for kindly sharing their data. For robustness, we also replicated their 

findings using the factor data from Chen and Zimmerman (2021) for the same anomalies. Figure A2 in the Appendix 

shows similar results. 
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thirty principal components as compared to portfolios constructed from five principal components, when 

the underlying assets are either the long and short legs of fifteen anomaly portfolios or twenty-five book-

to-market portfolios.  The first row contains results that correspond to those reported by Kozak, Nagel, 

and Santosh (2018), who split their sample into equal halves that comprise in- and out-of-sample subsets.  

The other rows report corresponding results that we obtain by rolling estimation over shorter windows.   

Focusing on the anomaly portfolios, the use of thirty rather than five principal components with the equal 

split of the sample increases the Sharpe ratio by 0.06.  In contrast, our shorter-window estimation 

increases out-of-sample Sharpe ratios for thirty principal components as compared to five by between 

0.45 and 0.62, depending on the precise lengths of the estimation windows.   Outcomes for the size and 

book-to-market portfolios are broadly similar.   That is, additional principal components are relevant out-

of-sample, as Sharpe ratios for portfolios constructed from them increase more, as estimation windows 

become shorter to accommodate time variation in factor premia.  

d. The Number of Relevant Factors and the Unconditional SDF 

Kozak, Nagel and Santosh (“KNS”, 2020) report that, while a large number of factors are 

required to explain the cross section of returns to the fifty-anomaly based factors in their sample, a 

relatively sparse stochastic discount factor formed from only four principal components performs quite 

well, as judged by their model’s out-of-sample R2 statistic.  This finding appears to contrast with our own, 

though the difference is likely attributable, at least in part, to the fact that we study a larger set of factors 

and that we allow for time variation in factor risk premia.    

We investigate further.   The computer code employed by KNS computes not only the out-of-

sample R2 statistic, but also out-of-sample Sharpe ratios.20   Despite the facts that the estimation 

procedure they employ penalizes deviations of Sharpe ratio estimates from zero and that their method 

does not accommodate time variation in parameters, the out-of-sample Sharpe ratios that are estimated in 

 
20 More specifically, their program computes the square root of the expected squared Sharpe ratio. 
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their sample are 0.75 with 4 factor principal components, 0.90 with ten factor principal components, and 

1.11 with 48 factor principal components.    

However, these Sharpe ratio estimates may be biased due to the fact that the KNS program 

computes principal component eigenvectors over the full sample period.21  We therefore modify their 

program to construct factor principal components separately during the “training folds” (in-sample 

subperiods) and apply the resulting eigenvectors to returns in the “evaluation folds” (the out-of-sample 

subperiods).   Figure 8 displays the outcomes.   Panel A displays the out-of-sample R2 statistic, and 

corresponds to Figure 3A in KNS.  Panel B displays the corresponding out-of-sample Sharpe ratios.   The 

specific out-of-sample Sharpe ratios estimated in their sample are 0.80 with four factor principal 

components, 0.94 with ten factor principal components, and 1.09 with 48 factor principal components.  

We conclude that the data and programs employed by KNS also support that employing factor principal 

components beyond the first few leads to greater explanatory power for the cross-section of out-of-sample 

stock returns.   

Our results also help to understand why KNS report that many factors (as opposed to factor 

principal components), some with small SDF weightings, are necessary for good out-of-sample 

performance.  In particular, we posit that time variation in factor premia contribute indirectly to their 

findings.  Even if a particular factor is not significant during the in-sample period, keeping small non-zero 

weights on many factors implies that those that factors that become economically important out-of-

sample contribute to portfolio performance.   

We also obtain from Serhiy Kozak’s website the optimal SDF coefficients for individual factors 

as estimated by Kozak, Nagel and Santosh (2020).  Analogous to the research approach adopted here, we 

then assess, for each of the fifty anomaly portfolios they study, the percentage of sample months where 

the portfolio has a significant (t-statistic > 3.0) alpha in rolling sixty-month regressions of portfolio 

returns on market returns.   Finally, we study relations between the absolute value of the coefficients in 

 
21 We are grateful to Stefan Nagel for identifying this bias, and suggesting the solution to eliminate it.  
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the SDF as reported by Kozak, Nagel and Santosh (2020), and the percentage of months where the 

portfolio has a significant alpha.22    

The results, displayed on Figure 9, demonstrate a strong positive relation between SDF 

coefficients and the frequency of significance.  The figure also reports the outcome of an OLS regression 

of absolute SDF coefficients complied by Kozak, Nagel and Santosh (2020) on the percentage of months 

with significant alphas; the slope coefficient is 0.80 with a t-statistic equal to 9.85, and the regression R-

squared statistic is 0.67.   These results imply their shrinkage technique produces weights related to the 

fraction of time a factor is significant and also places small rather than zero weights on factors that have 

only intermittent significance.  

 

4. Time series variation and explanatory power outside original sample periods  

It has been suggested that most empirical findings related to factors are attributable to 

specification searches (also referred to as “data snooping” or “p-hacking”) and a failure to incorporate 

appropriate multiple testing procedures.   However, it has also been argued that the large majority of the 

factor-related findings can indeed be replicated, do not arise from specification searches, and survive 

adjustment for multiple testing.23   

While we do not resolve this debate, we contribute to it by providing the out-of-sample evidence 

described in the prior section, and in three additional ways.  First, we assess the extent to which factors 

have statistically significant explanatory power in subperiods before and after those examined in the 

studies that originally identified the factors.  In doing so, we extend the related results reported by 

McLean and Pontiff (2016), Linainmaa and Roberts (2018) and Ilmanen, Israel, Moskowitz, Thapar, and 

 
22 We rely on absolute t-statistics and coefficients since Kozak, Nagel and Santosh (2020), unlike some authors, do 

not normalize factor returns such that they have positive mean returns.    
23 Studies that conclude that factor-based evidence is largely unreliable include Harvey, Liu, and Zhu (2015), 

Linnainmaa and Roberts (2018), Chordia, Goyal, and Saretto (2020), and Hou, Xue, and Zhang (2020), while the 

studies arguing that identified factors do reliably explain returns include Chen (2021), Chen and Zimmerman (2021), 

and Jensen, Kelly, and Pedersen (2021). 
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Lee (2021) in that we study a substantially larger set of factors.24  Second, while the related studies have 

mainly assessed whether factors do or do not have explanatory power for the pre- and post-sample periods 

as a whole, we assess the extent to which factors’ explanatory power changes over time, both within and 

outside of the authors’ original samples.  Third, we go on to identify the economic determinants of such 

time series variation.   

Figure 10 displays information regarding the significance of each factor over time.  The figure 

includes one row for each factor, and a column for each sample month.25  A given row and column 

contains a dot (either blue or grey) if the t-statistic on the alpha estimated in a market-model regression of 

the factor return on the overall market return over the prior sixty months is greater than 3.00.   In addition, 

each row contains a green dot that denotes the earliest data used in the original study that identified the 

factor, a red dot that denotes the latest data used in the original study, and a magenta dot that indicates the 

earliest date for which we are able to estimate the factor’s alpha based on data now available.   It is, of 

course, not possible even now to ascertain if the factor had significant explanatory power for returns for 

those dates that are earlier than the magenta dots.           

Two points can be observed visually on Figure 10.  First, factors often display statistically 

significant explanatory power in data drawn from months both before and after the data used in the 

original study that identified the factor.   Panel A of Table 4 reports on the extent, indicating that over 

three quarters (77%) of the factors have significant explanatory power during at least one sixty-month 

 
24 However, replication rates are not directly comparable across our study and theirs, as we focus on a set of 205 

factors that were previously verified by Chen and Zimmerman to have significant explanatory power within the 

authors’ original sample periods.  In contrast, only 85 of the 97 factors studied by McLean and Pontiff (2016) have 

an in-sample t-statistic greater than 1.50, and only 32 of the 36 factors studied by Linnainmaa and Roberts (2018) 

have an in-sample t-statistic greater than 1.96.  Ilmanen, Israel, Moskowitz, Thapar, and Lee (2021) study just four 

factors, but over a 100-year sample period, and in several distinct asset classes.  They report little evidence that 

arbitrage reduces factor premia over time.    
25 For purposes of Figure 9, we follow Chen and Zimmerman (2021) in assigning factors to categories, including (1) 

“Price”, which includes factors mainly constructed from return data, (2) Accounting, which includes factors that rely 

on financial statement data, (3) Analyst, which rely on analyst estimates, (4) Trading, which use volume and 

transactional data, (5) 13F, which use institutional holdings data, (6) Options, which use options-related data, and (7) 

Other, which include hand-collected or other non-standard data.  Due to the small numbers of factors, we combine 

the last two categories as “Other”.  
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interval prior to the range of dates used in the original studies, and a remarkable 93% have significant 

explanatory power during at least one sixty-month interval after the range of dates used in the original 

studies, when significance is assessed by a t-statistic on the alpha estimate of 1.96 or greater.   If statistical 

significance is defined based on a larger t-statistic the proportion of factors that are significant outside of 

the original sample period declines, but remains large.  For example, applying the t-statistic of 3.00  (p-

value is .003 or less) used elsewhere in this paper, 54% of factors are significant during at least one earlier 

sixty-month interval and 69% are significant during at least one subsequent sixty-month interval (as 

compared to the original study sample period).  This out-of-sample evidence supports the reasoning that 

the factors’ success in the original studies cannot be fully attributed to data mining or specification 

searches.   

The second observation that can be gleaned from Figure 10 is that the statistical significance of 

individual factor alphas varies over time; in many cases a given factor is significant for periods spanning 

multiple years, loses significance for a time, and then regains significance.  Panel B of Table 4 reports on 

the distribution of the number of non-overlapping periods, or “spells” of significance, for various t-

statistic cutoffs.  For example, relying on a t-statistic cutoff of 3.00, the cross-factor median number of 

significance spells is 6.0 per factor, while the cross-factor mean is 7.7 spells per factor.  Panel C of Table 

4 reports on the distribution of the duration of such significance spells.  Once again based on a t-statistic 

cutoff of 3.00, the cross-factor median length of a significance spell is 13 months, while the cross-factor 

mean length is 22 months.   

Of course, a pattern whereby statistical significance for individual factors ebbs and flows over 

time could simply reflect random noise in a stable economic environment.  That is, a factor with a 

constant premium equal to zero or an economically modest level could be associated with significant 

estimates during some intervals and insignificant estimates during other intervals.  Alternatively, the 

pattern could reflect that the number of factors that earn a return premium, or the magnitude of such 

return premia, vary over time.  We distinguish between these explanations in two ways.  First, we use 

simulation methods to assess the distribution of the statistics reported on Panels B and C of Table 4 under 
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the null hypothesis that factor premia are constant over time.  Second, we present evidence in Section 6 

that assesses the extent to which variation in the number of significant factors is or is not related to 

measures of changes in the economic environment.    

To assess the distribution of the statistics reported on Table 4 under the null hypothesis that factor 

premia are constant over time, we proceed as follows.  First, we estimate each factor’s constant alpha, 

beta and residual volatility from a regression of its returns on the market excess returns.  We then create a 

simulated time series of market returns calibrated to the sample mean and standard deviation of the 

market over our sample period, and generate a simulated time series of returns for each of the 205 factors 

using a factor model that relies on the simulated market returns in combination with the estimated alpha, 

beta, and residual volatility for each factor.  The length of each factor’s simulated time series is matched 

to the number of sample observations for the factor return.  We then estimate rolling 60-month 

regressions of simulated factor returns on simulated market returns, and obtain both the count and average 

length of significance spells for each simulated factor, when significance is assessed based on t-statistics 

ranging from 1.96 to 4.00.  Having done so, we compute the cross-factor average of the spell counts and 

spell lengths, corresponding to the sample data reported in Table 4.  We repeat the simulation 2,000 times 

to obtain a distribution of the cross-factor average factor spell lengths and counts.   

Panel A of Figure 11 displays the simulated distributions for the cross-factor average of the 

average spell lengths, while Panel B corresponding cross-factor average spell counts.  The red dashed 

lines display corresponding sample outcomes.  The information displayed on Panel A of Figure 11 shows 

that the statistics reported on Table 4 based on the actual sample are unlikely to be observed under the 

null hypothesis of constant factor premia.  For each of the t-statistic cutoffs (used to define significance) 

considered, the actual average spell length lies far in the right tail of, or entirely outside, the simulated 

distribution of spell lengths.  That is, actual spell lengths are longer than would be observed under the null 

hypothesis, as would be anticipated if premia were economically large during some periods.   

The information displayed on Panel B of Figure 11 shows that the cross-factor average number 

significant spells also (with the exception of the results obtained based on a t-statistic cutoff of 2.5) 
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diverges from the distribution obtained under the null of constant premia.  The use of a higher t-statistic 

cutoff naturally leads to fewer periods of significance, both in the sample data and in the simulated 

distribution obtained under the null.   Note, though, that with high t-statistic cutoffs of 3.5 or 4.0 the 

actual average count of significance spells lies far in the right tail of the simulated distribution, while with 

low t-statistic cutoffs of 1.96 or 2.00 the actual average count of significance spells lies to the left of the 

simulated distribution.  That is, simulated outcomes under the null hypothesis are considerably more 

sensitive to the t-statistic cutoff employed as compared to sample outcomes.  This result reflects that time-

invariant premium estimates of modest economic magnitude are more likely to be recategorized as 

insignificant rather than significant as the t-statistic hurdle increases, while factor premia that are 

economically substantive at some times and close to zero at other times are less sensitive to the t-statistic 

employed.  On balance, the simulation outcomes displayed on Figure 11 imply that it is exceptionally 

unlikely that the sample data reported on Table 4 would be observed under the null hypothesis of constant 

factor premia.       

 

5. The role of Idiosyncratic Volatility 

The empirical results reported in the prior sections demonstrate that (i) a substantive but time-

varying number of factors have explanatory power that is both statistically and economically significant 

for the cross-section of stock returns during certain time periods, (ii) most of the factors are significant in 

periods before and after the time intervals studied by the authors who originally identified them and are 

useful in out-of-sample portfolio selection, (iii) the factors are generally not redundant of each other, in 

that the number of principal components required to explain their variation is substantial, both within and 

out-of-sample, (iv) the extent to which the simple CAPM explains the cross-section of mean returns to 

individual stocks varies substantially over time, and (v) popular three- to six-factor models most often 

underperform the CAPM in explaining the cross-section of mean returns to individual stocks, and, 

therefore, do not substantively diminish the potential role of additional factors in explaining returns.   
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As noted, we view cross-sectional variability in CAPM alpha estimates as being informative as to 

the scope for multiple factors to explain average returns.  However, it has been documented, e.g., by 

Goyal and Santa Clara (2003), that aggregate idiosyncratic volatility, i.e., the cross-sectional average 

standard deviation of residuals from market-model regressions, varies over time.  An alternative 

hypothesis is that the standard deviation of ex post alphas varies over time because of variation in 

aggregate idiosyncratic risk, not because of variation across stocks in ex ante expected returns.    

To guide our analysis, we provide in section I of the Appendix an assessment of the statistical 

determinants of such variation.  We show that idiosyncratic return volatility is relatively more important 

in explaining the average standard error of the alpha estimates, while return premia associated with non-

market factors are relatively more important in explaining cross-sectional variation in market-model alpha 

estimates.  Thus, when both the volatility and the average standard error of alpha estimates are included 

as explanatory variables in the same regression, the coefficient on the former primarily reflects the effect 

of non-market return factor premia, while the coefficient on the latter primarily reflects average 

idiosyncratic risk.    

Table 5 reports the results of time series regressions where the dependent variable in each month 

is the number of statistically significant factors, and the explanatory variables include the cross-sectional 

standard deviation of firm-specific CAPM alpha estimates.  If, as we hypothesize, greater cross-sectional 

variation in CAPM alphas indicates greater variation in expected returns across stocks, and that variation 

is attributable to return premiums associated with factors other than the market, then we should observe a 

positive coefficient on this variable, with or without inclusion of the residual volatility variables.  We 

include as control variables either the cross-sectional mean standard error of the alpha estimates, or to 

assess robustness, the cross-sectional average market-model idiosyncratic volatility, 𝜎𝜀
2, itself.   Columns 

(1) to (3) are based on estimation with equal weighting of each observation, while to assess robustness we 

report in Columns (4) to (6) corresponding results when each observation is weighted by the firm’s 

market capitalization at the beginning of the sixty-month estimation period.   
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The results reported in Table 5 indicate positive and significant coefficient estimates on the 

standard deviation of alpha estimates, with or without inclusion of the control variables, and by either 

weighting method.  While the coefficient estimates on the control variables are negative, suggesting that 

higher idiosyncratic volatility tends to reduce the number of statistically significant factors due to reduced 

statistical power, these estimates are not themselves significant.  The inclusion of the control variables 

substantially increases the magnitude of the coefficient estimates on the cross-sectional standard deviation 

of the alpha estimates.   That is, these results show that the number of significant factors is significantly 

explained by the cross-sectional standard deviation of firm-specific alphas, but not by aggregate 

idiosyncratic volatility.  These results support the reasoning that greater cross-sectional variation in firm-

specific alpha estimates results from greater dispersion in expected returns attributable to return premia 

associated with non-market factors which in turn allows for the empirical estimation of a larger number of 

such factors. 

 

6. Variation in Significant Factors and Economic Complexity 

The relevance of a given factor in terms of explaining the cross-section of stock returns can 

depend on the volatility of the factors, the variation across stocks in sensitivities of firm returns to factor 

outcomes, as well as the magnitude of the return premia per unit of risk associated with the factor.  We 

report in this section on relations between the number of factors that are statistically significant during 

rolling sixty-month periods, and a number of measures related to the state of the economy and the 

complexity of the economic environment.  We focus mainly on results for the 1968 to 2020 period, during 

which we can construct a larger set of such measures.  However, we report corresponding results for the 

full 1931 to 2020 sample in the Appendix.    

a. The role of the number of listed firms. 

We first focus on relations between the number of factors with statistically significant CAPM 

alphas and the number of firms traded in the U.S. markets.  We reason that large increases or decreases in 

the number of publicly traded firms are likely to be accompanied by shifts in the types of firms available 
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for public investment.  Indeed, Fama and French (2004) show that the characteristics of firms newly listed 

on major U.S. stock markets varies substantially over time.  Multiple and varied risk factors may be 

necessary to explain patterns in the returns of varying firm types.   

Column (1) of Table 6 reports outcomes obtained from a regression of the number of statistically 

significant factors during months t -59 to t on the number of firms listed in month t, and indicate a 

positive and statistically significant relation.26  This finding supports the reasoning that a larger number of 

factors are required to explain cross-sectional variation in mean returns when more firms are listed.  This 

result need not arise mechanically.  As a simple example, suppose the CAPM determined expected 

returns for all stocks.  The addition of new stocks with unique characteristics would only require 

estimation of their potentially distinct market betas.  The empirical fact that more factors have significant 

explanatory power at times when more firms are listed is consistent with the reasoning that the firms that 

enter and depart the CRSP database differ from other firms in that they are exposed to differing sources of 

priced risk, rather than simply having differential exposures to a fixed set of priced systematic risks.   

A simple alternative explanation for the observed positive relation between the number of 

statistically significant factors and the number of listed firms is that a larger cross-sectional sample size 

improves statistical power, such that estimated return premia of given economic magnitudes are more 

likely to become statistically significant.  We demonstrate in section I.C of the appendix that this 

possibility arises, in particular, when the non-market factors are not directly observable, and consistent 

with actual practice, the empirical analyses are implemented based on factors created from returns to 

portfolios sorted based on observable firm characteristics.   

To distinguish between these possibilities, we conduct cross-sectional regressions of the number 

of statistically significant factors on (i) the cross-factor average standard error of the alpha estimates, (ii) 

the cross-factor average absolute alpha estimate, and (iii) the number of firms.  We report outcomes in 

 
26  In Appendix Table A2 we report results obtained when the number of firms is assessed as of month t-60 and as 

the number firms continuously listed from time t-60 to t (so that alpha can be estimated).   Outcomes are similar for 

each measure.      
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Appendix Table A3.  As would be anticipated, the result reported in columns (1) and (5) of Table A3 

indicate that fewer factors are statistically significant in periods where alpha standard errors are larger.  

As we show in section I.C of the appendix, one determinant of these standard errors is the number of 

firms in the sample.  In columns (2) and (6) of Table A3 we report results that are obtained when the 

number of firms is included in the regression along with the average standard error.  We continue to 

estimate negative coefficients on the mean standard error, even while we estimate positive coefficients on 

the number of firms.   These results indicate that the positive relation between the number of statistically 

significant factors and the number of firms is not solely attributable to the effect of the number of firms 

on the standard errors.    

Of course, the number of significant factors depends on the magnitude of the factor alpha 

estimates as well.  In columns (3) and (7) of Table A3 we report results obtained when the explanatory 

variables include the mean absolute alpha as well as the mean standard error of the alpha estimates, while 

in columns (4) and (8) we report results when the number of sample firms is included as the third 

explanatory variable.   These results confirm that, while a larger mean alpha is, as expected, associated 

with more statistically significant factors, the number of firms continues to have a significantly positive 

effect as well.  We conclude that the number of listed firms has explanatory power for the number of 

significant factors that is distinct from the improvement in statistical power associated with a larger 

sample size, and that the number of firms contributes explanatory beyond any direct effect on the mean 

alpha estimate. 

b. The State of the Economy, Economic Complexity and Diversity in Firm Characteristics 

We next assess the extent to which the number of significant factors is related to aspects of 

economic complexity, and to the diversity of observable firm characteristics.  To facilitate interpretation, 

we standardize each of the following variables relative to its own time series. Thus, regression 

coefficients are interpreted as a response to a one-standard deviation change in that variable.   
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We conjecture that the business cycle will be relevant, both because of potential variation in the 

magnitude of return premia and due to changes in firm types, with economic expansions characterized by 

high rates of firm entry and recessions more likely to involve net exit by firms.  To capture these effects, 

we rely on an indicator variable equal to 1 for recession months, as defined by the National Bureau of 

Economic Research, and the unemployment rate reported by the US Bureau of Labor Statistics.  We also 

consider two interest rate series, the Fed Funds rate (which begins in 1954) and the 10-year treasury note 

yield (which begins in 1964).  Interest rates potentially capture the effects of monetary policy and funding 

conditions.  The unemployment rate, fed funds rate and treasury yields are all obtained from the Federal 

Reserve Economic Data (FRED) website.   

Fama and French (2001) suggest that the disappearance of dividend-paying firms reflects the 

changing characteristics of publicly traded firms.  Thus, to further measure variation in firm types, we 

compute the proportion of dividend-paying common stocks as the number of firms paying at least one 

cash dividend in the previous 12-months relative to the total number of common stocks.  Variation in firm 

characteristics such as the propensity to pay dividends could arise as firms respond to demand from 

different investor types.  Further, the preferences of the marginal investor who effectively sets prices for 

specific stocks can depend on whether the investor is an individual or an institution.27  To potentially 

capture the impact of changes in the composition of the investor base we measure the proportion of each 

firm’s shares outstanding held by 13-F institutions in the Thomson-Reuters database.   

We also consider the possibility that the number of significant factors may be related to market 

liquidity and to general economic complexity.   To the extent that factor premia arise because investors 

are unable to profitably trade to eliminate mispricing, we should observe that more factor premia are 

significant when markets are less liquid.  To assess this possibility, we compute on a monthly basis the 

average across stocks of the Amihud (2002) illiquidity measure.  As a proxy for general economic 

 
27 Lewis and Santosh (2021), for example, show that an asset pricing model where betas are defined relative to the 

portfolios held by active institutional investors performs better than the standard CAPM where betas are defined 

relative to aggregate market holdings.   
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complexity, we use the Economic Complexity Index constructed by Simoes and Hidalgo (2011), which is 

a measure of “the relative knowledge intensity of an economy.”   

To measure diversity in firm characteristics, we first compute the cross-sectional standard 

deviation for each of the 205 characteristics within each month.  We then rescale each of these measures 

such that the time series mean is zero and the time series standard deviation equals one.  Finally, we 

compute the sum of these standardized volatility measures across characteristics within each month.28  

The result can be interpreted as a measure of the cross-sectional dispersion in those characteristics 

observable for the available sample of firms in each month.  Note that no relation necessarily exists 

between the number of firms and cross-sectional dispersion in characteristics; if newly listed firms were 

predominantly similar to the typical existing firm in terms of observable characteristics the diversity 

measure would decline rather than increase as more firms listed.  An increase in the cumulative dispersion 

in characteristics across firms indicates, in contrast, that the underlying firms themselves are becoming 

increasingly differentiated.29   

Figure A5 displays the average number of characteristics that can be computed, delineated by the 

number of months since the firm initially appears in the database.  In the first few months, less than 

twenty characteristics can be computed, on average.   Thirty-six months after listing, approximately one 

hundred characteristics can be computed.  This rapid growth reflects that many characteristics require 

 
28 Note that since the measures are rescaled to a zero mean there is not a mechanical relation between the sum and 

the number of characteristics available in a month.  The correlation between the sum and the mean across 

characteristics is 0.96, and use of the latter for the results in Table 5 leads to results that are virtually identical, but 

with moderately higher standard errors on the coefficient estimates.      
29 In Appendix Figure A3 we present evidence regarding time series variation in the number of characteristics 

(among the 205 considered) for which characteristic data is available as a function of calendar time.  Panel A reveals 

that the numbers of firms for which large numbers of factors are available grew rapidly between the initial years of 

the sample until the late 1990s, attributable both to increases in the number of listed firms and in the number of 

characteristics for which requisite data is available.  To distinguish the separable effects of changes in the number of 

firms and changes in the set of characteristics for which data is available, Panel B of Figure A3 displays for each 

month the percentage of firms for which the indicated numbers of characteristics are available, and demonstrate that 

the percentage of firms with a large number of available characteristics has steadily increased over time.  It can also 

be observed that the percent of firms with large numbers of characteristics decreases during the final few years of 

the sample, which can be attributed to the recent growth in the number of IPOs in combination with the fact that 

prior accounting and return data is necessary to compute some characteristics.     
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prior accounting statement data (which is often sparsely collected at the beginning of a firm’s public life), 

as well as prior return history.   However, the fact that a given characteristic cannot yet be computed by 

an econometrician need not imply that market participants are unaware of the characteristic.  To 

accommodate the “burn in” period between the addition of a firm and the time when characteristics 

become observable, we focus on cross-sectional variation in characteristics in month t+36 to measure 

firm characteristic diversity as of month t.  

Table 6 reports the results of regressions of the number of statistically significant factors on these 

measures of economic complexity.  Columns (1) to (10) report results of univariate regressions for each 

variable in turn, while columns (11) and (12) report multivariate outcomes.  We omit mean institutional 

ownership the final multivariate specification, because data is available only from 1980 onward.   

The univariate results reported in Table 6 show that the number of statistically significant factors 

is related to macroeconomic conditions, decreasing during recessions and increasing during periods of 

higher interest rates, based both on the Federal Funds rate and the Treasury-bond rate (though the former 

is not statistically significant during the more recent subsample).  The unemployment rate, in contrast, 

does not have significant explanatory power.  It is, however, noteworthy that the macroeconomic 

variables have much less explanatory power for the number of significant factors as compared to the 

number of listed firms.  The R-squared statistics for the statistically significant macroeconomic variables 

vary from 0.03 for the recession indicator to 0.17 for the Treasury bond rate, as compared to 0.50 for the 

number of listed firms. 

The coefficient estimates reported in column (6) of Table 6 indicate that the number of 

statistically significant factors is negatively related to the percentage of firms that pay dividends, with a 

full-sample r-squared of 0.11.  This result is consistent with the reasoning that the listing of non-dividend 

paying firms, which tend also to be younger and less familiar to investors, is associated with an increase 

in the number of significant factors, and more broadly with the notion that more factors are required to 

explain returns when listed firms are more diverse.  The coefficient estimates reported in column (7) of 



36 
 

Table 6 indicate that the number of statistically significant factors is also strongly negatively related to 

mean institutional ownership, with an R-squared statistic equal to 0.46.  If institutions invest with a 

differing objective function as compared to individuals (due, for example, to agency issues or 

heterogeneity across individual investors) then changes in institutional ownership can effectively alter the 

identity and objective of the marginal stock market investor.  The negative coefficient estimates reported 

on Table 6 imply that increased institutional ownership reduces the number of significant factors, 

potentially because it effectively reduces variation in the identity of the marginal investor.   The 

coefficient estimate on the economic complexity index in column (8) is positive and is statistically 

significant.  The coefficient estimate for the average Amihud illiquidity measure (column 9) is not 

statistically significant. The coefficient estimate for the diversity of firm characteristics (column 10) is 

positive and statistically significant, with a relatively large r-squared statistic of 0.38.   This result implies 

that more factors are significant during those periods when there is greater cross-sectional variability in 

the firm characteristics that are observable to econometricians.   

Columns 11 and 12 present results for multivariate specifications. The unemployment rate 

remains significant in all specifications, but the recession indicator and the 10-year Treasury bond yield 

lose significance in the shorter sample employed for Column 12.  The coefficient on cross-sectional mean 

Amihud illiquidity measure is positive and significant in Columns 11; that is, the multivariate outcomes 

support that greater illiquidity is associated with more significant factors, potentially due to reduced 

arbitrage activity. The proportion of firms paying dividends, and the ECI become insignificant in the 

multivariate setting.   

Notably, the diversity of firm characteristics remains significant.   That is, even after allowing for 

the explanatory power of macroeconomic variables such as the unemployment rate and interest rates, 

changes in institutional ownership, cross-sectional variation in firm characteristics has explanatory power 

for the number of significant factors.  The number of publicly listed firms is no longer significant in the 

multivariate setting, which is consistent with the reasoning that the univariate significance of the number 

of firms is linked to the greater diversity of characteristics when the number of firms is large.  The R-
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squared statistics for each of the multivariate regressions exceed 0.70.  In combination, the results here 

provide strong support for the notion that time variation in the number of significant factors is not 

random, but rather is linked to variation in macroeconomic conditions and observable diversity in firms’ 

characteristics.  

    

7. Conclusions 

The reasoning that only a few factors should be necessary to explain the cross section of mean 

returns is attractive because parsimony is desirable.  So, should the fact that the literature shows that 

many empirically observable factors have explanatory power for the cross-section of stock returns be 

viewed as a collective failure?  We think not, if the reason is that financial markets and the broader 

economy are complex and dynamic.  The characteristics of the firms that are available for investment can 

change through time as existing firms evolve and new firms are listed or delisted.  Investors are diverse in 

terms of their investment horizon and objectives.  Some investors trade on their own account, while others 

rely on professional managers whose strategies can be affected by agency issues related to their 

compensation.  The identity of the marginal investor can differ across stocks, and in any given stock can 

vary through time.  Return premia have been shown to depend on intermediaries’ funding liquidity, 

leverage, and balance sheets, as well as on the state of the economy.  In short, it is unclear that return 

premiums in actual capital markets are necessarily governed by only a small and time-invariant set of 

factors.   

More broadly, Cochrane (2011) observes that most variation in price-to-dividend ratios is 

attributable to changes in discount rates, i.e., expected returns.  If factor models determine expected 

returns, it follows that variation in discount rates is attributable to time variation in interest rates and 

factor return premia.  Prices are, in turn, determined in the course of market trading, based on the 

interaction between buy and sell orders.  Cochrane (2022, page 31) observes that “the standard models do 

not produce a hundredth of the observed trading volume.”  It follows, in our view, that the determinants 

of expected returns are not necessarily confined to those predicted by these standard models, and can vary 
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as market conditions and the economic environment change.  The need to be mindful of the possibility of 

collective data mining and joint hypothesis testing notwithstanding, these considerations support allowing 

the data to speak on the issues.   

We present a number of empirical findings relevant to these issues, showing that a substantial 

number of factors have significant explanatory power, and that the number of significant factors varies 

substantially over time.  Further, the number of principal components required to explain variation in the 

significant factors is also large and is positively correlated with the number of significant factors, both in 

sample and out-of-sample, implying that the results do not simply arise because various researchers 

identify factors that are redundant of each other.  Out-of-sample Sharpe ratios for portfolios formed from 

the principal components of factors that are significant in-sample are economically large and comparable 

to those obtained from recent machine learning applications.  Further, the results of existing studies that 

assess whether factors identified in-sample are useful for portfolio construction out-of-sample are altered 

when the only substantive change in research design is to allow for time variation in factor premia.    

We assess the extent to which widely-used three- to six-factor models do a better job of 

explaining the cross-section of returns as compared to the CAPM.  While these models outperform the 

CAPM in terms of explaining returns to characteristic-sorted (size and market-to-book) portfolios, they do 

not reliably outperform for industry portfolios, and most often perform worse than the CAPM for the 

cross-section of stock returns.  The last result is noteworthy in part because the three- to six-factor models 

all include the market factor, implying that the non-market factors degrade the ability of the models to 

explain mean returns to individual stocks.   To the extent that the perception that only a few factors should 

matter for stocks in general is based on the performance of three- to six-factor models in explaining 

returns to characteristic-sorted portfolios, the perception is misplaced.  

We also provide evidence that the number of significant factors varies through time.  We use 

simulation methods to show that neither the average number of periods where a factor is significant or the 

average period of time with significance is consistent with the null hypothesis that factor premia are 

constant over time.   We further show that the number of significant factors varies with measures of 
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economic complexity and firm diversity.   In particular, the number of significant factors is related to a 

recession indicator variable, interest rates, the percentage of firms that pay dividends, mean institutional 

ownership rates, and an economic complexity index, and is particularly strongly related to the number of 

firms that are publicly listed, cross-sectional variation in observable firm characteristics.   The finding 

with respect to the number of firms supports the reasoning that newly listed firms systematically differ 

from existing firms in terms of systematic risks relevant to investors.  Finally, the finding with respect to 

diversity of firm characteristics suggests that more factors are relevant when firms themselves are more 

distinct.        

On balance, our findings suggest that multiple and time-varying factors may be required to price 

the cross-section of returns as the economy continues to evolve dynamically and new firms are 

listed.  Further, in a dynamic economy a factor can be significant in explaining returns during some 

periods but not others.  This suggests the desirability of a degree of caution in interpreting the results of 

existing out-of-sample tests, as insignificant out-of-sample outcomes need not imply that the factor was 

unpriced in the original sample period, and the need for the development of econometric methods for out-

of-sample tests suitable to the dynamic environment.    



40 
 

REFERENCES 

 

Adrian, Tobias, Erkko Etula, and Tyler Muir, 2014, Financial Intermediaries and the Cross-Section of 

Asset Returns, Journal of Finance, 69, 2557-2596.   

 

Ahmed, Shamim, Ziwen Bu, and Daniel Tsvetanov, 2019, Best of the best: a comparison of factor 

models, Journal of Financial and Quantitative Analysis 54, 1713-1758. 

 

Amihud, Yakov, 2002, Illiquidity and stock returns: cross-section and time-series effects, Journal of 

Financial Markets, 5, 31-56. 

 

Bali, Turan, Stephen Brown, Scott Murray, and Yi Tang, 2017, A Lottery-Demand-Based Explanation of 

the Beta Anomaly, Journal of Financial and Quantitative Analysis, 52, 2369-2397. 

 

Barber, Brad M. and Huang, Xing and Odean, Terrance and Schwarz, Christopher, 2021, Attention 

Induced Trading and Returns: Evidence from Robinhood Users, Journal of Finance, Forthcoming.   

 

Barillas, Francisco, and Jay Shanken, 2018, Comparing asset pricing models, Journal of Finance 73, 715-

754. 

 

Bessembinder, Hendrik, Aaron Burt and Christopher Hrdlicka, 2022, Factor Returns and Out-of-Sample 

Alphas: Factor Construction Matters, working paper, downloadable at ssrn.com/abstract=4281769. 

 

Betermier, Sebastien, Laurent Calvet, Samuli Knüpfer, and Jens Kvaerner, 2021, What do the portfolios 

of individual investors reveal about the cross-section of equity returns?, working paper, available at 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3795690. 

 

Bryzgalova, Svetlana, Sven Lerner, Martin Lettau, and Markus Pelger, 2022, Missing Financial Data 

(May 11, 2022). available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4106794 .  

 

Brennan, Michael, 1998. The role of learning in dynamic portfolio decisions, European Finance Review, 

1, 295–306. 

 

Bustamante, M Cecilia, and Andres Donangelo, 2017, Product market competition and industry returns, 

Review of Financial Studies 30, 4216-4266. 

 

Carhart, Mark M, 1997, On persistence in mutual fund performance, Journal of Finance 52, 57-82. 

 

Chen, Andrew Y, 2021, The limits of p-hacking: Some thought experiments, Journal of Finance 76, 

2447-2480. 

 

Chen, Andrew Y., and Tom Zimmermann, Open source cross sectional asset pricing, Critical Finance 

Review, Forthcoming. 

 

Chen, Yao, Alok Kumar, and Chendi Zhang, 2021, Searching for Gambles: Investor Attention, Gambling 

Sentiment, and Stock Market Outcomes, Journal of Financial and Quantitative Analysis, 56, 2010-

2038. 

Chinco, Alex, Andreas Neuhierl, and Michael Weber, 2021, Estimating the Anomaly Base Rate, Journal 

of Financial Economics, 140, 101-126. 

 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3795690
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4106794


41 
 

Chordia, Tarun, Amit Goyal, and Alessio Saretto, 2020, Anomalies and false rejections, Review of 

Financial Studies 33, 2134-2179. 

 

Cochrane, John H, 2011, Presidential address: Discount rates, Journal of Finance 66, 10471108. 

 

Duffie, Darrell, 2010, Presidential address: Asset price dynamics with slow-moving capital, Journal of 

Finance, 65, 1237-1267. 

 

Fama, Eugene F, 1998, Determining the number of priced state variables in the ICAPM, Journal of 

Financial and Quantitative Analysis 33, 217-231. 

 

Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on stocks and bonds, 

Journal of Financial Economics 33, 3-56. 

 

Fama, Eugene F., and Kenneth R. French, 1996, Multifactor explanations of asset pricing anomalies, 

Journal of Finance 51, 55-84. 

 

Fama, Eugene F, and Kenneth R French, 2004, New lists: Fundamentals and survival rates, Journal of 

Financial Economics 73, 229-269. 

 

Fama, Eugene F, and Kenneth R French, 2015, A five-factor asset pricing model, Journal of Financial 

Economics 116, 1-22. 

 

Fama, Eugene F, and Kenneth R French, 2018, Choosing factors, Journal of Financial Economics 128, 

234-252. 

 

Farmer, Leland, Lawrence Schmidt, and Alan Timmermann, 2022, Pockets of Predictability, Journal of 

Finance, Forthcoming.   

 

Gibbons, Michael, Stephen Ross, and Jay Shanken, 1989, A test of the efficiency of a given portfolio, 

Econometrica, 57, 1121-52. 

 

Goodwin, Thomas H, 1998, The information ratio, Financial Analysts Journal 54, 34-43.  

 

Goyal, Amit, and Pedro Santa-Clara, 2003, Idiosyncratic risk matters!, Journal of Finance 58, 975-1007.  

 

Grullon, Gustavo, Yelena Larkin, and Roni Michaely, 2019, Are US industries becoming more 

concentrated?, Review of Finance 23, 697-743.  

 

Harvey, Campbell R., Yan Liu, and Heqing Zhu, 2016, ... and the cross-section of expected returns, 

Review of Financial Studies 26, 5-68. 
 

He, Zhiguo, Bryan Kelly, and Asaf Manela, 2017, Intermediary asset pricing: New evidence from many 

asset classes. Journal of Financial Economics 126, 1-35. 

 

He, Zhiguo and Arvind Krishnamurthy, 2013, Intermediary Asset Pricing, American Economic Review, 

103, 732-770.   

 

Gu, Shihao, Bryan Kelly, and Dacheng Xiu, 2020, Empirical Asset Pricing via Machine Learning, Review 

of Financial Studies, 33, 2223-2273.  

 



42 
 

Haddad, Valentin, Serhiy Kozak, and Shrihari Santosh, 2020, Factor Timing, Review of Financial 

Studies, 33, 1980-2018. 

 

Hodrick, Robert J., and Xiaoyan Zhang. "Evaluating the specification errors of asset pricing 

models." Journal of Financial Economics 62, no. 2 (2001): 327-376. 

Hou, Kewei, G. Andrew Karolyi, and Bong-Chan Kho. "What factors drive global stock returns?." The 

Review of Financial Studies 24, no. 8 (2011): 2527-2574 

Hou, Kewei, and David T Robinson, 2006, Industry concentration and average stock returns, Journal of 

Finance 61, 1927-1956. 

 

Hou, Kewei, Chen Xue, and Lu Zhang, 2015, Digesting anomalies: An investment approach, Review of 

Financial Studies 28, 650-705. 

 

Hou, Kewei, Chen Xue, and Lu Zhang, 2020, Replicating anomalies, Review of Financial Studies 33, 

2019-2133. 

 

Ilmanen, Antti, Ronen Israel, Tobias J Moskowitz, Ashwin K Thapar, and Rachel Lee, 2021, How do 

factor premia vary over time? A century of evidence, Journal of Investment Management 19, 15–57. 

 

Jensen, Theis, Bryan T Kelly, and Lasse Heje Pedersen, 2021, Is there a replication crisis in finance?, 

NBER Working Paper . 

 

Kahle, Kathleen M, and Rene M Stulz, 2017, Is the US public corporation in trouble?, Journal of 

Economic Perspectives 31, 67-88. 

 

Kashyap, Anil, Natalia Kovrijnykh, Jian Li, and Anna Pavlova, 2021, The benchmark inclusion subsidy, 

Journal of Financial Economics, 142, 756-774. 

 

Kelly, Bryan, Seth. Pruitt, and Yinan Su, 2019,  Characteristics are covariances: A unified model of risk 

and return, Journal of Financial Economics, 134, 501-524. 

 

Keloharju, Matti, Juhani T. Linnainmaa, and Peter Nyberg. "Long-term discount rates do not vary across 

firms." Journal of Financial Economics 141, no. 3 (2021): 946-967. 

Koijen, Ralph SJ, and Motohiro Yogo, 2019, A demand system approach to asset pricing, Journal of 

Political Economy 127, 1475-1515. 

 

Kozak, Serhiy, Stefan Nagel, and Shrihari Santosh, 2018, Interpreting factor models, Journal of Finance, 

133, 1183-1223. 

 

Kozak, Serhiy, Stefan Nagel, and Shrihari Santosh, 2020, Shrinking the cross-section, Journal of 

Financial Economics, 135, 271-292. 

 

Lewis, Ryan, and Shrihari Santosh, 2012, Investor betas, working paper, 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3739424. 

 

Linnainmaa, Juhani T, and Michael R Roberts, 2018, The history of the cross-section of stock returns, 

Review of Financial Studies 31, 2606-2649. 

 

https://www.sciencedirect.com/journal/journal-of-financial-economics
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3739424


43 
 

Lopez-Lira, Alejandro, and Nikolai Roussanov, 2021, Do common factors really explain the cross-section 

of returns? Working paper, https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3628120. 

 

McLean, R David, and Jeffrey Pontiff, 2016, Does academic research destroy stock return predictability?, 

Journal of Finance 71, 5-32. 

 

Pastor, Lubos, and Robert F Stambaugh, 2003, Liquidity risk and expected stock returns, Journal of 

Political Economy 111, 642-685. 

 

Pastor, Lubos, and Pietro Veronesi, 2009, Learning in financial markets, Annual Review of Financial 

Economics, 1, 361-381.   

 

Pontiff, Jeffrey, 2006, “Costly Arbitrage and the Myth of Idiosyncratic Risk,”, Journal and Accounting 

and Economics, Vol. 42, 35-52. 

 

Sharpe, William F, 1994, The Sharpe Ratio, Journal of Portfolio Management 21, 49-58 

 

Simoes, Alexander James Gaspar, and Cesar A Hidalgo, 2011, The economic complexity observatory: An 

analytical tool for understanding the dynamics of economic development, in Workshops at the twenty-

fifth AAAI conference on artificial intelligence. 

 

Simpson, E., 1949, Measurement of Diversity, Nature, 163, 688-688.  

Stambaugh, Robert F, and Yu Yuan, 2017, Mispricing factors, Review of Financial Studies 30, 1270-

1315. 

 

Stulz, Rene M, 2018, The shrinking universe of public firms: Facts, causes, and consequences, NBER 

Reporter 12-15. 

 

Van Reenen, John, 2018, Increasing Difference Between Firms: Market Power and the Macro Economy, 

Changing Market Structures and Implications for Monetary Policy, Kansas City Federal Reserve: 

Jackson Hole Symposium, 19-65.  
 

  



44 
 

Figure 1. Time series variation in the number of significant factors. This figure shows the time series variation 

in the number of significant factors based on the alphas obtained from the sample of factor returns.  For each factor at each month 

t, we regress each of the three portfolios’ monthly returns from t – 59 to t on the market’s monthly excess returns to obtain each 

portfolio’s CAPM alpha. To be included, portfolios must have 60 non-missing returns over the alpha estimation period. For each 

month t, we count the number of significant factors based on each of the three portfolios’ alphas. A factor is significant at month t 

if the t-statistic of its CAPM alpha on a given portfolio exceeds defined thresholds.  The dotted blue line shows the number of 

significant factors for a t-statistic cutoff of 1.96, the solid orange line uses a t-statistic cutoff of 3.00 and the dashed grey line uses 

a t-statistic cutoff of 4.00. 

 
 

 
 
 

 



45 
 

Figure 2. Time series variation in number of and significance of factors. This figure shows the cumulative 

factors over time as documented in the finance literature. The sample of factors comes from the set of “clear” and “likely” predictors 

provided by Chen and Zimmermann (Forthcoming) from 1931 to 2020. Panel A shows the cumulative number of factors over time 

computed in two ways. The solid black line is incremented at the date of each factor’s first available return given the data available 

today. The dashed blue line is incremented at the date of each factor’s first available return based on the time period of the data 

used in the original paper’s sample. Panel B relates the number of significant factors to the variation in the standard deviation of 

stock-level CAPM alphas. For each month t, we regress each factor’s (stock’s) monthly returns from t – 59 to t on the market’s 

monthly excess returns to obtain each factor’s (stock’s) CAPM alpha. To be included, factors (stocks) must have 60 non-missing 

returns over the alpha estimation period. A factor is counted significant at month t if the t-statistic of its CAPM alpha exceeds 3.00. 

The solid blue line shows the standard deviation of all stock-level CAPM alphas computed at month t. The dashed orange line 

shows the number of significant factors at month t.  The grey vertical bars represent periods of NBER-defined recessions. A 

regression of the number of significant factors on the standard deviation of alphas has a beta of 9.80 and a t-statistic of 4.69. 
 

Panel A: Cumulative factors over time 
 

 
 

Panel B: Number of significant factors relative to stock-level alpha dispersion 
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Figure 3. Time series variation in alphas of various asset pricing models. This figure shows the time series 

variation in the standard deviation of stock-level alphas obtained from various asset pricing models for all common stocks in the 

CRSP universe. For each month t, a stock’s excess monthly returns from t – 59 to t are regressed on factors of various asset pricing 

models to obtain an alpha relative to that asset pricing model. To be included, a test asset is required to have 60 non-missing returns 

over the estimation period. At each month t, we plot the standard deviation of all alphas obtained from a specific asset pricing 

model. We use four samples of test assets when computing the alphas. Figure A4 shows the analog for 25 size/BM portfolios and 

FF30 industry portfolios. The asset pricing models include the Capital Asset Pricing Model (CAPM), the Fama and French (1993) 

3-factor model (FF3F), the Fama and French (2015) 5-factor model (FF5F), the Fama and French (2018) 6-factor model (FF6F), 

the FF3F model augmented with Carhart (1997) momentum factor (FF3F+UMD), the FF3F+UMD model augmented with 

momentum and Pastor and Stambaugh (2003) liquidity factor (FF3F+UMD+PSLIQ), the Stambaugh and Yuan (2017) factor model 

(M4), the Barillas and Shanken (2018) 6-factor model (BS6F) and the Hou et al. (2015) q-factor model (Q4). The standard deviation 

of alphas is in percent per month. The grey vertical bars represent periods of NBER-defined recessions. 
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Figure 4. Time series variation in principal components of factors. Panel A shows the variation in the number 

of significant principal components in the sample of 205 factors across time. For each month t, we regress each factor’s monthly 

returns from t – 59 to t on the market’s monthly excess returns to obtain each factor’s CAPM alpha. A factor is significant at month 

t if the t-statistic of its CAPM alpha exceeds 3.00. To be included, factors must have 60 non-missing returns over the alpha 

estimation period.  The orange dashed line shows the number of significant factors at each date.  We also compute the number of 

significant principal components at each month t by counting the number of principal components required to explain 95% of the 

cumulative variation of a set of factor returns from t – 59 to t. We compute the number of principal components based on two 

rolling samples of factors. The black solid line shows the number of significant principal components for the sample of all factors. 

The blue dotted line shows the number of significant principal components for the sample of factors which have a significant 

CAPM alpha over the previous 60 months. The grey vertical bars represent periods of NBER-defined recessions. Panel B shows 

the cumulative number of principal components at each date that make up different percentages of total variation. 

 

Panel A.  Time series variation in principal components of factors 

 
 

 

Panel B. Cumulative variation explained by principal components of all factor returns 
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Figure 5. Cumulative in-sample Sharpe ratios of portfolios obtained from principal components. This 

figure shows the marginal in-sample Sharpe ratio contributions that additional principal components add to an optimal tangency 

portfolio. From 1968-2020, at each month t, we compute the principal components of the factors’ monthly returns from t – 59 to 

t. Factors must have 60 non-missing returns over the analysis window to be included in the sample at a given month t.  We 

construct up to 59 portfolios by incrementally adding a principal component to the portfolio. The weights in each portfolio are 

chosen to optimize the portfolio’s Sharpe ratio. 
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Figure 6 – Number of PCs and Sharpe ratio of portfolios constructed from out-of-sample principal components. These figures show the number 

of PCs and the maximum Sharpe ratio for portfolios formed from varying number of principal components.  The PCs are calculated from the factor returns from t-59 to t.  The 

portfolios are formed using the out-of-sample data from t+1 to t+36. See section 3.C for the full methodology. Panels A and C compare the number of principal components that 

form a portfolio with the highest Sharpe ratio. The orange dots in panels A and C are the number of principal components that form a portfolio with the maximum Sharpe ratio and 

the blue lines are the number of significant factors at month t. Panels B and D show the Sharpe ratios of portfolios formed from 4 different sets of PCs: 1) the first 5 PCs, 2) the 

average Sharpe ratio across all portfolios formed by increasing numbers of PCs, 3) the maximum number of principal components, and 4) the number of PCs that form the 

portfolio with the maximum Sharpe ratio. Panels A and B show results for PCs formed from all factors. Panels C and D shows results based on the subset of significant factors. 

Panel A  

 
 

Panel B 

 

Panel C 

 

Panel D 
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Figure 7. Effect of principal components’ estimation and forecasting horizons on out-of-sample Sharpe ratios. This figure shows the average Sharpe 

ratios of portfolios formed from increasing numbers of principal components for different estimation windows. The data sample consists of the short and long legs of 15 anomalies 

from 1965 to 2015 as provided by Kozak, Nagel and Santosh (2018).  Panel A shows the averages of rolling in-sample Sharpe ratios obtained from forming optimal portfolios 

consisting of different numbers of principal components. Panel B shows the averages of rolling out-of-sample Sharpe ratios. Panel C shows the averages of rolling out-of-sample 

Sharpe ratios for the 25 size and book-to-market portfolios. Panel D shows the averages of the corresponding out-of-sample Sharpe ratios for the same assets.  The principal 

components are computed on a rolling monthly basis for different estimation windows. The out-of-sample portfolios are constructed using the in-sample optimal weights.  The solid 

red line shows the Sharpe ratios where the sample is split in half and replicates Kozak, Nagel and Santosh (2018). The other lines present in-sample and out-of-sample windows from 

t – k to t, where k can be 10, 5 or 3 years of rolling months of daily returns.   

Panel A: In-sample Sharpe ratios – short/long legs of 15 anomalies 

 

Panel B: Out-of-sample Sharpe ratios – short/long legs of 15 anomalies 

 

Panel C: In-sample Sharpe ratios – 25 Size/BM 

 

Panel D: Out-of-sample Sharpe ratios – 25 Size/BM 
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Figure 8. R-squared and Sharpe Ratios based on Kozak, Nagel, and Santosh (2020) (KNS).  Panel A replicates Figure 3b in KNS, and 

displays the out-of-sample r-squared implied by a range of possible priors regarding the Sharpe ratio (kappa) and for a range of non-zero 

coefficients in an SDF formed based on the principal components of the 50 anomaly return series they study.  Panel B shows the corresponding 

out-of-sample Sharpe ratios actually attained, based on a modified version of their computer code, as described in the text.  Warmer colors indicate 

higher outcomes on both Panels. The red line denotes outcomes for the kappa that generates the highest out-of-sample r-squared. The red ‘+’, ‘x’ 

and ‘●’ denote outcomes when the SDF has non-zero coefficients on 4, 10, and the maximum number of principal components.   The ‘●’ also 

reflects the maximum achievable out-of-sample r-squared in Panel A.  

 

Panel A: Out-of-sample r-squared Panel B: Sharpe ratio 
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Figure 9. Factors fraction of time significant related to the size of its coefficient in optimal unconditional SDF. This figure shows that the coefficients 

in the optimal unconditional SDF of Kozak, Nagel and Santosh (2020) are positively related to the fraction of months that a given factor is significant in the sample. The data consists 

of the 50 anomaly portfolios from Kozak, Nagel and Santosh (2020) for their same sample period. Both axes are based on absolute values, as in that paper, these factor portfolios 

have not been normalized to have positive premia, but instead are based on long-short portfolios of high and low characteristic firms. The x-axis shows the fraction of time a given 

factor is significant relative to the CAPM (absolute t-stat greater than 3.0). The y-axis shows the absolute value of the coefficient in the optimal unconditional SDF as reported in 

Kozak, Nagel and Santosh (2020). The full set of coefficients are obtained from the code posted on Kozak’s website. The red dashed line shows the best fit line with the parameters 

and statistics reported in the text in the figure.   
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Figure 10. Time series of factor significance This figure shows whether a factor at a specific date has a statistically significant CAPM alpha over the preceding 60 

months. For each month t, we regress each factor’s monthly returns from t – 59 to t on the market’s monthly excess returns to obtain each factor’s CAPM alpha. A factor is significant 

at month t if the t-statistic of its CAPM alpha exceeds 3.0. Factors must have 60 non-missing returns over the alpha estimation period. Each horizontal series represents a different 

factor with the blue or grey dots signifying a month in which the factor is significant. A green dot denotes the earliest data used in the original study that identified the factor. A red 

dot denotes the latest data used in the original study. A magenta dot indicates the earliest date for which we are able to estimate the factor’s alpha based on data now available. The 

left vertical axis lists the category of factors according to Chen and Zimmermann (2021). Categories are assigned primarily based on the data source underlying the characteristic 

used to form the factor. The grey vertical bars represent periods of NBER-defined recessions. 
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Figure 11. Simulated distributions for average significance spell lengths and counts. This figure shows simulated distributions of the cross-factor 

average of individual factors’ average spell lengths and spell counts, when each factor has a constant return premium.  We estimate for each factor a constant  

alpha, beta and residual volatility by means of a regression of factor returns on excess market returns.  We create a simulated time series of market returns 

calibrated to the sample mean and standard deviation of the market over the sample period, and generate a simulated time series of returns for each of the 205 

factors based on the simulated market returns, estimated factor alpha and beta, and estimated factor residual volatility, with the length of each factor’s simulated 

time series matched to the number of sample observations for the factor return.  We then estimate rolling 60-month regressions of simulated factor returns on 

simulated market returns, and obtain both the count and average length of significance spells for each simulated factor, when significance is assessed based on t-

statistics ranging from 1.96 to 4.00.  Having done so, we compute the cross-factor average of the spell counts and spell lengths (corresponding to the sample data 

reported in Table 4).   We repeat the simulation 2,000 times to obtain a distribution of the average cross-sectional factor spell lengths and counts.  Panel A 

displays the simulated distributions for the cross-factor average of the average spell lengths, while Panel B corresponding cross-factor average spell counts.  The 

red dashed lines display the corresponding sample outcomes.    

Panel A: Simulated distribution of average spell length 

T-statistic for factor significance: 1.96 

 

T-statistic for factor significance: 2.00 

 

T-statistic for factor significance: 2.50 

 
 
 

  

T-statistic for factor significance: 3.00

 

T-statistic for factor significance: 3.50 

 

T-statistic for factor significance: 4.00 
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Figure 11 continued. 

Panel B: Simulated distribution of average spell count 

T-statistic for factor significance: 1.96 

 

T-statistic for factor significance: 2.00 

 

T-statistic for factor significance: 2.50 

 
 
 

  

T-statistic for factor significance: 3.00

 
 

T-statistic for factor significance: 3.50 

 

T-statistic for factor significance: 4.00 
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Table 1. Relations between number of significant factors and significant principal components This 

table shows the results from regressing the number of significant factors on the number of principal components obtained using 

those factors. For each month t, we regress each factor’s monthly returns from t – 59 to t on the market’s monthly excess returns 

to obtain each factor’s CAPM alpha. A factor is significant at month t if the t-statistic of its CAPM alpha exceeds 3.00. Factors 

must have 60 non-missing returns over the alpha estimation period.  To compute the number of significant principal components 

at each date t, we count the number of principal components required to explain 95% of the cumulative variation of a set of factor 

returns from t – 59 to t. We compute the principal components from four samples of factor returns: 1) monthly returns of all factors, 

2) monthly returns of significant factors, 3) daily returns of all factors, and 4) daily returns of significant factors. We standardize 

each independent variable by subtracting the mean of that variable over the time series and dividing that difference by the variable’s 

standard deviation over the time series. Hansen-Hodrick standard errors with a bandwidth of 60 are in parentheses. ***, **, * 

denote statistical significance at the 1%, 5%, and 10% levels. 

 

 

 

 

(1) (2) (3) (4)

PCs monthly factors 3.62***

(0.63)

PCs monthly sign. factors 3.98***

(0.17)

PCs daily factors 1.04***

(0.13)

PCs daily sign. factors 1.55***

(0.14)

constant -58.51*** 0.15 -16.34*** 17.36***

(14.89) (2.48) (5.24) (4.91)

R-squared 0.65 0.94 0.75 0.83

N 1075 1075 1075 1075

Dep var: Number of significant factors
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Table 2. Relation between the number of significant factors in-sample and out-of-sample Sharpe ratios. This 

table shows the results of a regression of the maximum Sharpe ratios and number of principal components that generate those 

Sharpe ratios on the number of factors that are statistically significant in sample. The maximum Sharpe ratio is obtained from the 

optimal portfolio of out-of-sample PCs and the number of PCs that make up the maximum Sharpe ratio portfolio. The PCs are 

calculated from the factor returns from t-59 to t.  The portfolios are formed using the out-of-sample data from t+1 to t+36. See 

section 3.C for the full methodology. The regression results correspond to Figure 9. Hansen-Hodrick standard errors with a 

bandwidth of 60 are in parentheses. ***, **, * denote statistical significance at the 1%, 5%, and 10% levels. 

 

 

 

 

 

 

Max SR Num PCs Max SR Num PCs

Number of significant factors (1) (2) (3) (4)

0.01*** 0.35*** 0.02*** 0.54***

(0.00) (0.08) (0.00) (0.03)

Intercept 0.97*** 31.28*** 0.93*** 2.56**

(0.13) (3.41) (0.14) (1.17)

R-squared 0.26 0.27 0.40 0.82

N 1039 1039 1005 1005

All factors Significant factors

Principal components obtained from sample of:
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Table 3. Out-of-sample Sharpe ratios for portfolios consisting of varying numbers of principal 

components. This table provides descriptive statistics regarding the Sharpe ratios shown in Figures 6 and 7. Panel A tabulates 

statistics for Figure 6 Panels B and D. It shows the out-of-sample Sharpe ratios of portfolios formed from 4 different sets of PCs: 

1) the first 5 PCs, 2) the average Sharpe ratio across all portfolios formed by increasing numbers of PCs, 3) the maximum number 

of principal components, and 4) the number of PCs that form the portfolio with the maximum Sharpe ratio. The “Difference from 

SR of 5 PCs” shows the increase in the Sharpe ratio of a given portfolio relative to the portfolio formed by the first 5 PCs. The 

PCs are calculated from the factor returns from t-59 to t.  The portfolios are formed using the out-of-sample data from t+1 to 

t+36. See section 3.C for the full methodology. Panel B tabulates statistics for Figure 7 panels B and D. It shows the increase in 

the out-of-sample Sharpe ratio between a portfolio consisting of the first 5 principal components and the portfolio of the 

maximum number of principal components for two different sets of test assets as used in Kozak, Nagel and Santosh (2018). The 

two sets of test assets are the long and short legs of 30 anomalies and the 25 size-B/M portfolios. The principal components are 

computed on a rolling monthly basis for different in-sample and out-of-sample estimation windows. The out-of-sample portfolios 

are constructed using the in-sample optimal weights.  The in-sample window of 25 and out-of-sample window of 25 replicates 

Kozak, Nagel and Santosh (2018) and matches the red solid lines in Figure 7. 

 

Panel A: Out-of-sample Sharpe ratios for portfolios of varying number of PCs 

 

 

 

Panel B: Difference in out-of-sample Sharpe ratios of 5 PC and maximum PC portfolios 

 

5 PCs Average Max PCs Max SR 5 PCs Average Max PCs Max SR

Mean 0.382 0.840 1.122 1.350 0.729 1.074 1.185 1.641

Std dev 0.369 0.352 0.496 0.510 0.359 0.399 0.493 0.575

N 600 600 600 600 586 600 600 600

Difference from SR of 5 PCs 0.458 0.740 0.968 0.344 0.456 0.911

% difference 120% 194% 253% 90% 119% 238%

PCs from all factors PCs from sig factors only

In-sample Out-of-sample Anomalies Size/BM

25 25 0.061 0.303

10 10 0.499 0.896

10 5 0.623 1.110

10 3 0.603 1.174

5 5 0.490 0.939

5 3 0.447 1.035

3 3 0.556 0.842

Test assetsRolling estimation window (years)
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Table 4. Summary statistics of factor significance spells across various thresholds of significance. For each month 

t, we regress each factor’s monthly returns from t – 59 to t on the market’s monthly excess returns to obtain each factor’s CAPM 

alpha. A factor is significant at month t if the t-statistic of its CAPM alpha exceeds one of the various thresholds listed in the table. 

Factors must have 60 non-missing returns over the alpha estimation period.  A significance spell for a given factor is the number 

of months (i.e., spell length) the factor is continuously significant. Panel A shows the proportion of factors that exhibit at least one 

significance spell before (after) the sample period of the original paper to identify the factor. Panel B provides summary statistics 

on the number of significance spells for the cross-section of factors. Panel C computes each factor’s average length of a spell and 

shows summary statistics of this measure for the cross-section of factors conditional on having at least one significance spell. The 

exceptions are that “Abs min” and “Abs max” show the absolute minimum and maximum spell length of all factors. ***, **, * 

represent significance at the 10%, 5% and 1% level relative to the simulated distribution in Figure 11. 

 

Panel A: Proportion of factors with at least one significance spell  
 

 
 
 

Panel B: Number of significance spells per factor  
 

 
 
 

Panel C: Average length of significance spell  
 

 

t-statistic p-value

before 

original 

sample

after 

original 

sample

1.96 0.050 77.2 92.6

2.00 0.046 77.2 92.1

2.50 0.012 66.9 82.3

3.00 0.003 54.3 68.5

3.50 0.001 44.1 50.7

4.00 0.000 23.6 36.5

% significant:

t-statistic p-value Mean SD Median Min Max

1.96 0.050 11.9*** 6.9 11 0 35

2.00 0.046 11.7*** 6.9 11 0 37

2.50 0.012 9.8 6.5 9 0 33

3.00 0.003 7.7*** 5.8 6 0 23

3.50 0.001 5.2*** 4.6 4 0 21

4.00 0.000 3.5*** 4.2 2 0 19

Cross-sectional statistics of factors' spell counts

t-statistic p-value Mean SD Median Min Max Abs Min Abs Max

1.96 0.050 32.3*** 52.9 20.0 1.4 535 1 624

2.00 0.046 32.0*** 52.6 20.0 1.2 535 1 624

2.50 0.012 22.1*** 25.7 15.1 1 233 1 572

3.00 0.003 21.8*** 45.5 12.7 1 523 1 523

3.50 0.001 18.3*** 30.3 11.4 1 260 1 427

4.00 0.000 20.1*** 29.6 12.2 1 233 1 415

Cross-sectional statistics of factors' average spells
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Table 5. Relations between the number of significant factors and the standard deviation of stock-level alphas This table shows the results of regressing 

the number of significant factors in each period on the standard deviation of CAPM alphas for all common stocks in the CRSP universe. For each month t, we regress each factor’s 

monthly returns from t – 59 to t on the market’s monthly excess returns to obtain each factor’s CAPM alpha. A factor is significant at month t if the t-statistic of its CAPM alpha is 

greater than 3.00. The dependent variable is a count of the number of significant factors at each month t. Stock-level CAPM alphas are obtained by regressing a stock’s returns from 

t – 59 to t on the market return. The standard deviation is either equal-weighted or value-weighted (using each stock’s market capitalization at t – 60). We control for the mean 

standard error and the mean residual volatility of the stock-level CAPM alphas. We standardize each independent variable by subtracting the mean of that variable over the time 

series and dividing that difference by the variable’s standard deviation over the time series. To be included, stocks and factors must have 60 non-missing returns over the alpha 

estimation period.  Hansen-Hodrick standard errors using a bandwidth of 60 are in parentheses. ***, **, * denote statistical significance at the 1%, 5%, and 10% levels. 

 

 

 

  

(1) (2) (3) (4) (5) (6)

Equal-weighted (%):

Standard deviation of alphas 9.80** 22.69* 22.22*

(4.69) (11.79) (11.37)

Mean standard error of alphas -14.47

(10.44)

Mean residual volatility -14.14

(9.93)

Value-weighted (%):

Standard deviation of alphas 9.39** 12.57** 12.61**

(4.68) (5.62) (5.54)

Mean standard error of alphas -4.67

(4.05)

Mean residual volatility -4.85

(3.92)

R-squared 0.18 0.26 0.27 0.17 0.19 0.19

N 1075 1075 1075 1075 1075 1075

Dep var: Number of significant factors
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Table 6. Comovement of the number of significant factors and economy and firm characteristics This table shows the results of regressing the number 

of significant factors in each period on various economic measures at each month for the sample of factors from 1968-2020. For each month t, we regress each factor’s monthly 

returns from t – 59 to t on the market’s monthly excess returns to obtain the factor’s CAPM alpha and its corresponding standard error. A factor is significant at month t if the t-

statistic of its CAPM alpha is greater than 3.00. The dependent variable is a count of the number of significant factors at each month t. The number of public firms is a count of all 

common stocks at t traded on the NYSE, NASDAQ or Amex at month t. The NBER recession indicator is an indicator equal to one if the month is classified as an NBER recession 

and zero otherwise. The unemployment rate is the number of unemployed as a percentage of the labor force as provided by the U.S. bureau of labor statistics. The federal funds rate 

is the established rate by the Federal Reserve at month t. The 10-year treasury bond yield is the market yield on U.S. treasury securities at a 10-year constant maturity. The percent 

of dividend-paying firms is the total number of common stocks which have paid a dividend in the previous 12 months divided by the number of firms at month t. The mean institutional 

ownership is the fraction of a firm’s shares outstanding held by 13-f firms. The economic complexity index is a measure of economic complexity used from Simoes and Hidalgo 

(2011). Diversity of firm characteristics is a measure of diversity in the cross-sectional characteristics across firms. See Appendix Table A1 for a complete description of the measures.   

See the appendix for a similar analysis using the sample of factors from 1931-2020. Hansen-Hodrick standard errors are in parentheses. ***, **, * denote statistical significance at 

the 1%, 5%, and 10% levels. 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Number of public firms 26.74*** 6.03 -4.97

(7.97) (4.79) (19.75)

NBER recession indicator -11.90** -7.29** -2.27

(5.58) (3.50) (3.70)

Unemployment rate -5.30 -10.66*** -9.81***

(4.22) (2.31) (1.73)

Fed funds rate 7.58 -5.28*** -2.90

(5.36) (1.77) (4.63)

10-year T-Bond yield 9.22* 16.51*** 1.83

(5.31) (3.44) (5.94)

% dividend-paying firms -12.09* -3.81 -16.19

(6.21) (7.80) (17.84)

Mean institutional ownership -16.81*** -20.14

(4.46) (13.18)

Economic complexity index 6.79 0.75 -3.91

(4.20) (2.24) (2.54)

Mean Amihud illiquidity 8.25 9.43*** 0.70

(11.77) (3.52) (4.55)

Diversity of firm characteristics 17.23*** 10.39** 18.51**

(5.71) (4.66) (7.46)

R-squared 0.50 0.03 0.05 0.12 0.17 0.11 0.46 0.09 0.01 0.38 0.71 0.80

N 636 636 636 636 636 636 483 600 636 600 600 456

Dep var: Number of significant factors
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Appendix:  

I. The Potential Role of Idiosyncratic Volatility: Theory and Intuition 

Consider an APT-type return process with the market factor, 𝑓, and a vector 𝑔 of additional non-

market factors.  The exposure vectors are 𝛽 and 𝛾. 

 𝑅𝑖,𝑡 = 𝛽𝑖,𝑡𝑓𝑡 + 𝛾𝑖,𝑡
′ 𝑔𝑡 + 𝜖𝑖,𝑡 (1) 

Parameter Definitions. We assume for simplicity the market and non-market factors are orthogonal, but 

this is not necessary for the main points.  The idiosyncratic returns 𝜖 are also orthogonal to all the factors.  

There are two sets of parameters: those for the factors and those for the distribution of stocks in the cross-

section.  Though formally we will allow them to be time varying, we will assume for a given sample 

window that the parameters are fixed to simplify the notation.  Further, we will assume the cross-sectional 

stock level exposures are constant over the sample windows.  Also, we will assume all the factors and 

idiosyncratic shocks are independent across time. 

We will then compare the key statistics of interest as a function of these parameters, which one 

can think of as changing across sample windows.  We can generalize to the parameters changing within 

the sample windows. Doing so leaves the main conclusions, except for in perverse situations. 

All parameters are assumed to be normally distributed with mean denoted by 𝜇 and variances 

denoted by 𝛴 (unless a scalar as in the case of idiosyncratic shocks, in which case we will denote the 

standard deviation as 𝜎).  The idiosyncratic shocks are mean zero by construction.  The cross-section 

distribution of the idiosyncratic shock variance must be non-normal.  We take no stand on that 

distribution beyond it having a defined mean: �̅�𝑡  There are a finite number of stocks 𝑁 in the cross-

section. 

 

Statistics of interest. In this section we derive how the key statistics used in the empirical section depend 

upon the parameters of the return generating process.  For all statistics we focus on the expected value of 
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these statistics given the parameters.  This expectation is across both time series draws in a particular 

sample period and across cross-sectional draws of stocks. 

Consider the regression of individual stocks over a 60-month sample window on the market 

factor 𝑓: 

 𝑅𝑖,𝑡 = 𝛼𝑖,𝑇 + 𝛽𝑖,𝑇𝑓𝑡 + 𝜃𝑖,𝑡      for 𝑡 ∈ {𝑇 − 59, … , 𝑇} (2) 

 

We compute the cross-sectional variance of the alpha estimates and the average of the standard 

variances.  (We focus on variances rather than standard deviations for tractability.)  For these calculations, 

we ignore the variation in the market factor that is not removed by the regressions, as this is not the main 

focus of the paper.  

We then focus on regressions of non-market factor returns on the market factor: 

 𝑔[𝑘]𝑡 = 𝑎 + 𝑏 𝑓𝑡 + 𝜂𝑘,𝑡      for 𝑡 ∈ {𝑇 − 59, … , 𝑇}, (3) 

where 𝑘 denotes the kth non-market factor.  We compute the expected probability of the factor having an 

intercept greater than a statistical cutoff 𝑡∗.  Because the market and non-market factors are orthogonal, 

we again will ignore the limited variation introduced by random variation in the market factor.   

A. Cross-sectional variance of stock level alphas 

The estimated alpha from the stock-level regression, Equation (2), (ignoring the market factor 

contribution) is 

 

�̂�𝑖,𝑇 =
1

𝑇
∑ (𝜖𝑖,𝑡 + 𝛾𝑖,𝑡

′ 𝑔𝑡)

𝑇

𝜏=𝑇−59

 (4) 

We suppress the time subscripts on the parameters since we are assuming the parameters are 

constant through the estimation window. The cross-sectional variance of these alphas is 

 
𝜎𝛼,𝑇,𝐶𝑆

2 =
1

𝑁 − 1
∑(�̂�𝑖,𝑇 − �̂�𝑇)2

𝑖𝜖𝑁

 (5) 

 

where 
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�̂�𝑇 =

1

𝑁
∑ �̂�𝑖,𝑇

𝑖∈𝑁

 (6) 

 

Plugging Equations (6) and (4) into Equation (5) and taking its expectation gives 

 
𝐸[𝜎𝛼,𝑇,𝐶𝑆

2 ] = (
𝑁 − 1

𝑁
) [

�̅�𝜖
2

60
+ 𝜇𝑔

′ 𝛴𝛾𝜇𝑔 +
1

60
ℎ(𝛴𝛾 , 𝛴𝑔)] (7) 

where ℎ is a symmetric increasing function of the two variances.  

Thus, the expected cross-sectional variance is determined primarily by the non-market factor 

premia 𝜇𝑔 and the cross-sectional exposure to the factors 𝛴𝛾. It is less so determined by the average 

idiosyncratic risk and the combined variation in the exposure to the factors and factor volatility. 

B. Average standard variance of the alphas 

The standard variance of the stock-level alphas from Equation (2), ignoring the contribution from 

the modeled factors realizations, is 

 

[𝑆𝐸(𝛼𝑖,𝑇)]
2

=  (
1

60 − 2
) (

1

60
) ∑ (𝜖𝑖,𝑇 + 𝛾𝑖,𝜏

′ −
1

60
∑ {𝜖𝑖,𝑠 + 𝛾𝑖,𝑠

′ 𝑔𝑠}

𝑇

𝑠=𝑇−59

)

2𝑇

𝜏=𝑇−59

 (8) 

Taking expectations and then averaging across firms in the cross-section yields 

 
𝐴𝑣𝑒 (𝐸 [𝑆𝐸(𝛼𝑖,𝑇)

2
]) = (

1

60 − 2
) (

59

60
) [�̅�𝜖

2 + 𝜇𝛾
′ 𝛴𝑔𝜇𝛾 + ℎ(𝛴𝛾 , 𝛴𝑔)] (9) 

Thus, this average standard variance is more heavily dependent upon the idiosyncratic risk and 

the combined volatility of the factor and factor exposure than the cross-sectional standard deviation, and 

comprises a good control variable for these components. It also depends upon the interaction of the 

average factor exposure and the volatility of the factor, which under the assumption that average factor 

exposures outside the market are close to zero, will contribute a negligible amount. Hence, this makes a 

good control to remove the parts of the cross-sectional standard deviation of alpha that are of less interest. 

Comparing equations (7) and (9) it can be observed that the cross-sectional variance of alpha 

estimates contains variation attributable to return premia associated with non-market factors while the 
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average standard error of the alpha estimates does not.   Further, the cross-sectional mean exposures to 

non-market factors, which appear in expression (9), are empirically small (perhaps in part because factor 

returns are based on long-short portfolios, where the long and short legs have offsetting exposures).     

The cross-sectional mean non-market factor exposure is .006, while the median is -.015, implying that the 

𝜇𝛾
′ 𝛴𝑔𝜇𝛾 term in (9) is relatively unimportant.  As a consequence, idiosyncratic return volatility is 

relatively more important in explaining the average standard error of the alpha estimates, while return 

premia associated with non-market factors are relatively more important in explaining cross-sectional 

variation in market-model alpha estimates.  Thus, when both the volatility and the average standard error 

of alpha estimates are included as explanatory variables in the same regression, the coefficient on the 

former primarily reflects the effect of non-market return factor premia, while the coefficient on the latter 

primarily reflects average idiosyncratic risk.    

C. Probability that unmodeled factors are significant 

In the empirical section we measure the statistical (and economic significance) of the unmodeled 

factors by looking at the t-values of the intercept of the unmodeled factors on the modeled factors. In 

particular, we calculate the number of significant factors as those with t-values above a cutoff 𝑡∗. To 

understand how the likelihood of a factor being significant is a function of the parameters, we compute 

the expected power. We begin by considering the case where the factor is directly observable and then 

generalize to the case where the factor is formed from a long-short portfolio from characteristic-based 

sorts. 

C.1  Power of observable factor 

This case corresponds directly to the regression in Equation (3). Again, we ignore the 

contribution of the random realization of the market factor. The expected power for factor k is a standard 

calculation: 

 
1 − 𝛷 (𝑡∗ −

√60𝜇𝑔[𝑘]

𝜎𝜂𝑘

) (10) 
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where 𝛷 is the CDF of a standard normal distribution.  As would be anticipated, power increases in the 

factor premium and decreases in the volatility of the factor, 𝜎𝜂𝑘
.  Thus, other things equal there will be a 

positive correlation between the cross-sectional variance of alphas from individual stock regressions and 

the number of significant factors. 

C.2. Power of unobservable factor 

The positive relation between the number of listed firms and the number of significant factors is 

potentially attributable in part to the increased precision of the factor measurement with more firms. To 

assess this issue, let the non-market factors be unobserved, but let there be an observable firm level 

characteristic 𝐶[𝑘]𝑖,𝑡 that is jointly normal with firm 𝑖's factor exposure 𝛾[𝑘]𝑖,𝑡. Let the variance-

covariance matrix for this joint distribution be 𝛴𝐶,𝑡 For conciseness, we assume that the characteristics 

and exposures are fixed over a sample window. Let us form the factor 𝐺[𝑘]𝑖,𝑡during 𝑡 ∈ {𝑇 − 59, … , 𝑇}  

from a long-short portfolio. The long and short ends are formed by sorting all stocks at 𝑇 − 60 into 𝑄 

quintiles based on the characteristic 𝐶[𝑘]𝑖,𝑇−60 

The factor 𝐺[𝑘] so formed will be a function of the number of firms and the number of quintiles. 

Our interest lies in the expected mean and the expected variance of the factor, as these affect the power to 

detect its significance. For a finite number of firms, the breakpoints and hence, average exposure, to 𝑔[𝑘] 

will vary from sample to sample based on the random realizations of the characteristics and factor 

exposures. The amount of variation in these will decrease in the number of firms, however these 

exposures will not vary in expectation with the number of firms. Hence the contribution to the expected 

mean and variance of the factor 𝐺[𝑘] will not vary from the exposure to 𝑔[𝑘] as the number of firms 

change.  

Nevertheless, the total expected variance of 𝐺[𝑘] will vary with the number firms due to amount 

of idiosyncratic risk that diversifies away in the long and short end of the portfolio. The number of firms 

in each long and short portfolio is 
𝑁

𝑄
. Under the assumption of idiosyncratic risk being independent of 

everything else, the expected variance of the idiosyncratic risk in each of these portfolios is 
𝑄

𝑁
�̅�𝜖

2. Because 
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this risk is additive across the long and short portfolio the total variance of factor 𝐺[𝑘] due to this 

diversified idiosyncratic risk is 

 2𝑄

𝑁
�̅�𝜖

2. (11) 

 

Thus, this component decreases in the number of firms. Since the variance of the factor decreases 

as we increase the number of firms, the power to detect a factor as significant increases with the number 

of firms, as shown in (10).  Thus, either increasing the factor premium of 𝑔 or the number of firms (via 

reduced volatility) can drive the number of significant factors detected. To distinguish whether the 

relation we find between the number of firms and the number of significant factors is driven by only the 

later or both parameters, we can take advantage of the standard error of the intercept estimates in the 

regression 

 𝐺[𝑘]𝑡 = 𝑎 + 𝑏′𝑓𝑡 + 𝜂𝑘,𝑡  for 𝑡 ∈  {𝑇 − 59, … , 𝑇} (12) 

which is also driven by this idiosyncratic risk in the long-short portfolio (Equation (11)). Thus, we can 

regress the number of significant factors on the average intercept estimates (alphas) and the average 

intercept standard errors. The prediction is that we will observe a positive coefficient on the former and a 

negative coefficient on the later. If both are true, then the relation between the number of significant 

factors and the number of firms is not simply attributable to increased precision in the observability of the 

unmodeled factors from an increasing number of firms.  
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II. Simulation  

We simulate a time series of returns for a total of 205 factors for 96 periods t = 1 to t = 96.  All factor 

returns are assumed to follow a normal distribution. The number of priced factors varies from n = 1 to n 

= 100 (as in the actual data), with the remaining factors being unpriced. Priced factors have a positive 

mean return, 𝜇𝑝, and standard deviation, 𝜎𝑝.  Unpriced factors have a zero mean return and standard 

deviation, 𝜎𝑢. We begin our analysis by assuming all factors to be independent, that is the cross-

correlations among factors is 0.  

After constructing the simulated factor returns for 96 time periods and 205 factors, we compute the 

principal component factor loadings for the set of simulated factor returns for the in-sample period of the 

first 60 months, t =1 to t=60.  We construct the out-of-sample principal components by applying the in-

sample factor loadings to the out-of-sample simulated data for the final 36 months, i.e., from t =61 to t 

=96. We then construct in-sample and out-of-sample portfolios with an increasing number of principal 

components included in each portfolio and measure the Sharpe ratios.  More specifically, we construct 

optimized portfolios based on the first, first two, first three, etc., up to the first 59 principal components. 

In the in-sample case, portfolio weights are chosen to optimize the portfolio Sharpe ratio. For the out-of-

sample portfolios, we use the optimal portfolio weights from the in-sample portfolios.  We repeat this 

simulation 10,000 times resulting in 59 portfolios from 10,000 draws of simulated data.  We average the 

Sharpe ratio within portfolios of the same number of principal components across all simulations, 

resulting in 59 average Sharpe ratios. We report the maximum Sharpe ratio of the 59 portfolios and the 

number of principal components that are used to form this Sharpe ratio. 

To capture the time variation in the number of significant factors and the Sharpe ratios of those 

factors, we calibrate the mean of the priced factors, 𝜇𝑝, and the standard deviations, 𝜎𝑝, of the priced 

factors by using the values measured in the actual data during a high Sharpe ratio regime (e.g., around 

1986) or during a low Sharpe ratio regime (e.g., around 1967 or 2009 – See figure 6 Panels B and D).  We 

also vary the standard deviation of the unpriced factors, 𝜎𝑢, between the high and low values observed in 

the data for each of these two regimes. Table A5 presents the numerical values of these parameters. More 
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specifically, 𝜇𝑝 varies between 0.4% and 1.6%, 𝜎𝑝 is calibrated to be either 1.8% or 3.2%, and 𝜎𝑢 is 

calibrated to be either 2.5% or 3.6%. All are monthly values.  

The baseline scenario is calibrated to match the parameters measured in the data during a high SR 

regime with a low standard deviation of unpriced factors. The blue solid line in Figure A6 Panel A 

presents the maximum portfolio Sharpe ratios of the baseline scenario as a function of the number of 

priced factors.  We find that increasing the number of priced factors while holding other parameters 

constant increases the out-of-sample Sharpe ratios. This increase occurs at a decreasing rate as more 

priced factors are likely to be partially redundant with earlier factors. Importantly, at 50 priced factors, the 

simulation matches the Sharpe ratios of approximately 2.5 and 0.7 measured in the data and shown in 

Figure 9 Panel B for the high and low regime periods.  As expected, the change in the unpriced standard 

deviation (as shown by the dotted lines), has little effect on the Sharpe ratios, suggesting the out-of-

sample Sharpe ratios are a good measure of redundancy.  

Panel B of Figure A6 shows the maximum out-of-sample portfolio Sharpe ratios as a function of 𝜇𝑝 

for 1, 50 and 100 priced factors. For each case, we vary 𝜎𝑝 between 1.8% and 3.2%, and 𝜎𝑢 between 

2.5% and 3.6%.  We find that an increase in the mean of the priced factors results in monotonically 

increasing Sharpe ratios, again confirming that the out-of-sample Sharpe ratios is a reliable measure 

reflecting the number of priced factors. The figure also reveals that as the unpriced factor standard 

deviations increase, the out-of-sample Sharpe ratios decrease. This variation in the parameters allows us 

to match the out-of-sample Sharpe ratios found in the actual data. 

Thus far, we have assumed independence between all factors, both unpriced and priced.  We now 

assess the extent to which this assumption has on the out-of-sample Sharpe ratios. We focus on 

correlations between same-type (i.e., priced/priced or unpriced/unpriced) factors and cross-correlations 

between different-type (i.e., priced/unpriced) factors.  In Figure A6 Panel C, we plot the maximum Sharpe 

ratios for all correlations varying from 0.00 to 0.20 and as a function of the number of priced factors. We 

present results for a calibration with the cross-correlations zeroed out and the cross-correlation positive 
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and equal to the same-type correlations. Our first finding is that the maximum out-of-sample Sharpe ratio 

is decreasing as the mean correlation among factors is increasing. As the correlation increases, the priced 

factors become increasingly redundant resulting in lower Sharpe ratios. This suggests that the data must 

have a high number of priced factors as we require very low correlations among priced factors to match 

the data. We also observe that for correlations greater than 0.05, positive cross correlation among priced 

and unpriced factors results in increased out-of-sample Sharpe ratios. Essentially, positive cross-

correlations allow for free hedges from the unpriced factors. This is not economically sensible. Therefore 

we focus on the case where these cross-correlations are zero. If the correlations are sufficiently low, the 

free hedges become small and contribute very little to the diversification effects in the portfolio and, 

thereby, the out-of-sample Sharpe ratio. 

Finally, we explore how the correlation affects the number of principal components that yields the 

portfolio with the maximum Sharpe ratio as a function of the number of priced factors and mean 

correlation between same-type factors. Panel D of Figure A6 shows that in the case where the factors are 

independence, the number of priced factors is positively correlated with the number of principal 

components generating the portfolio with the maximum Sharpe ratio. This positive correlation is 

consistent with the data (Panels A and C in Figure 6 and Table 2).  This result is also the analog of the 

hump-shaped pattern of the out-of-sample Sharpe ratios found in Panel B of Figure 7.  

 In contrast, as the correlation among same-type factors increases, however, we see a strong negative 

correlation with the number of principal components that make up the out-of-sample portfolio with the 

highest Sharpe ratio. In essence, the same-type correlations increase the redundancy among priced factors, 

thereby limiting the number of principal components that provide marginal increases to the Sharpe ratio. 

That this correlation negative correlation is counter to the data is further evidence against the redundance 

of the significant factors we observe in the data. Overall, the simulation provides evidence of limited 

redundancy in factor data and confirms the magnitudes of out-of-sample Sharpe ratios obtained from the 

data. 
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Appendix Figures and Tables 

 

Appendix Figure A1. Time series variation in the number of significant factor portfolios. The time series 

variation in the number of significant factors based on the alphas of 1) the long-short portfolio of the factor (solid orange line), 2) 

the long-only portfolio of the factor (dashed grey line), and 3) the short-only portfolio of the factor (dotted blue line).   For each 

factor at each month t, we regress each of the three portfolios’ monthly returns from t – 59 to t on the market’s monthly excess 

returns to obtain each portfolio’s CAPM alpha. To be included, portfolios must have 60 non-missing returns over the alpha 

estimation period. For each month t, we count the number of significant factors based on each of the three portfolios’ alphas. A 

factor is significant at month t if the t-statistic of its CAPM alpha on a given portfolio exceeds 3.0.  
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Appendix Figure A2. Effect of principal components’ estimation and forecasting horizons on out-of-sample Sharpe ratios – alternative 

factor data. This figure replicates Figure 10 in the main text but uses the Chen and Zimmerman factors rather than the data provided by Kozak, Nagel and Santosh (2018). This 

figure shows the average Sharpe ratios of portfolios formed from increasing numbers of principal components for different estimation windows. The data sample consists of the short 

and long legs of 15 anomalies from 1972 to 2015 as provided by Chen and Zimmerman (2021). The 15 anomalies are used in Kozak, Nagel and Santosh (2018).  Panel A shows the 

averages of rolling in-sample Sharpe ratios obtained from forming optimal portfolios consisting of different numbers of principal components. Panel B shows the averages of rolling 

out-of-sample Sharpe ratios. Panel C shows the averages of rolling out-of-sample Sharpe ratios for the 25 size and book-to-market portfolios. Panel D shows the averages of the 

corresponding out-of-sample Sharpe ratios for the same assets.  The principal components are computed on a rolling monthly basis for different estimation windows. The out-of-

sample portfolios are constructed using the in-sample optimal weights.  The solid red line shows the Sharpe ratios where the sample is split in half and replicates Kozak, Nagel and 

Santosh (2018). The other lines present in-sample and out-of-sample windows from t – k to t, where k can be 120, 60 or 36 months of daily returns.   

Panel A: In-sample Sharpe ratios – 15 anomalies 

 

Panel B: Out-of-sample Sharpe ratios – 15 anomalies 

 

Panel C: In-sample Sharpe ratios – 25 Size/BM 

 

Panel D: Out-of-sample Sharpe ratios – 25 Size/BM 
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Appendix Figure A3. Number of firm-level non-missing characteristics over time.  This figure shows the 

number of firms grouped by the total number of non-missing characteristics for each firm at each month in the sample. For each 

firm at each date, we compute the number of non-missing characteristics in the original sample of cross-sectional characteristics 

provided by Chen and Zimmerman (2021). Panel A shows the cumulative number of firms as the number of characteristics 

increases across groupings for the full sample from 1925-2020.  Panel B shows the cumulative percentage of firms at each date 

that fall in each grouping for the subsample of years 1963-2020. 

Panel A: Cumulative number of firms grouped by number of non-missing characteristics (1925-

2020) 
 

 
 

Panel B: Percentage of firms grouped by number of non-missing characteristics (1963-2020) 
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Appendix Figure A4. Time series variation in alphas of various asset pricing models This figure shows the 

time series variation in the standard deviation of alphas obtained from various asset pricing models of different sets of test assets. 

For each month t, a test asset’s excess monthly returns from t – 59 to t are regressed on factors of various asset pricing models to 

obtain an alpha relative to that asset pricing model. To be included, a test asset is required to have 60 non-missing returns over the 

estimation period. At each month t, we plot the standard deviation of all alphas obtained from a specific asset pricing. We use four 

samples of test assets when computing the alphas. Figure 3 in the main text shows the analog for all stocks in the CRSP universe. 

Panel A below consists of the 25 size and book-to-market portfolios. Panel B consists of the Fama-French 30 industry portfolios. 

The asset pricing models include the Capital Asset Pricing Model (CAPM), the Fama and French (1993) 3-factor model (FF3F), 

the Fama and French (2015) 5-factor model (FF5F), the Fama and French (2018) 6-factor model (FF6F), the FF3F model augmented 

with Carhart (1997) momentum factor (FF3F+UMD), the FF3F+UMD model augmented with momentum and Pastor and 

Stambaugh (2003) liquidity factor (FF3F+UMD+PSLIQ), the Stambaugh and Yuan (2017) factor model (M4), the Barillas and 

Shanken (2018) 6-factor model (BS6F) and the Hou et al. (2015) q-factor model (Q4). The standard deviation of alphas is in percent 

per month. The grey vertical bars represent periods of NBER-defined recessions. 

 

 

Panel A: 25 size and book-to-market portfolios  
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Appendix Figure A4 continued. 

 

 

Panel B: 30 Fama-French industry portfolios  
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Appendix Figure A5. Cumulative number of non-missing cross-sectional characteristics over a 

firm’s lifecycle. This figure shows the average number of cross-sectional characteristics available for each firm in a given 

month since the firm first appears in the cross-sectional characteristics dataset of Chen and Zimmerman (2021). The first month 

the firm appears is indexed at zero.  The blue line is for firms that first appeared at any time during the sample.  The orange line 

is the set of firms that first appeared after January 1963.  
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Appendix Figure A6 – Simulation of Sharpe ratios obtained from portfolios of out-of-sample principal components. These figures show the 

maximum Sharpe ratios of portfolios consisting of out-of-sample principal components constructed using simulated data. The simulation assumes 205 factors.    Panel A 

shows how the maximum Sharpe ratios vary with the number of priced factors under parameters obtained from the factor returns during periods of high and low Sharpe 

ratios, and high and low standard deviations of unpriced factors. Panel B shows how the maximum Sharpe ratios vary with the mean return of the priced factors, while also 

varying the number of priced factors and the standard deviations of the priced and unpriced factors. Panel C shows how the Sharpe ratios vary with the number of priced 

factors and different correlations of the factors. The solid lines in Panel C represent the case when zero cross-correlation exists between the priced and unpriced factors, 

while the dashed lines have those correlations set to the same mean as the correlations.  Panel D shows the number of principal components in the portfolio that yields the 

maximum Sharpe ratio for the case of zero cross-correlations between priced and unpriced factors. 

Panel A 

 
 

Panel B 

 

Panel C 

 

Panel D 
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Appendix Table A1. Variable definitions This table summarizes the various variables we use throughout the analysis.  The variables are listed in order of appearance in 

the paper. 

Variable name Description 
Number of significant 

factors 

The total number of significant factors at each month t.  At each month t, we regress each factor's returns from t-60 

to t-1 on the market's excess returns over the same period to obtain the factor's CAPM alpha. A factor is considered 

significant if the t-statistic of its CAPM alpha is greater than 3.00. To be included, the factor must have zero non-

missing returns over the 60-month period. Factors come from Chen and Zimmerman (2021) and are categorized as 

"clear" or "likely" predictors. 

Standard deviation of 

stocks' alphas 

The equal-weighted (value-weighted) cross-sectional standard deviation of stocks' alphas at month t.  At each 

month t, we regress each factor's returns from t-60 to t-1 on the market's excess returns to obtain the stock's CAPM 

alpha. To be included, the stock must have zero non-missing returns over the 60-month period.  Stocks are all 

common stocks (CRSP share codes 10 or 11) listed on the NYSE, AMEX and NASDAQ. The value-weighted 

cross-sectional standard deviation is weighted by each stock's market capitalization at t-61. Units are expressed as 

percentage points. This measure is standardized across the sample for ease of interpretability. 

NBER recession A recession indicator equal to 1 if the economy at month t was in a recession as defined by the National Bureau of 

Economic Research. Data can be obtained here: https://fred.stlouisfed.org/series/USREC 

25 Size and Book-to-

Market portfolios 

Monthly equal-weighted returns from 25 size and book-to-market portfolios provided on Ken French's website: 

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

30 Fama-French 

industry portfolios 

Monthly equal-weighted returns from Fama-French 30 industry portfolios provided on Ken French's website: 

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

Number of significant 

principal components 

The number of significant components at month t required to explain 95% of the variation in factor returns from t-

60 to t-1.  The set of factors may be either all factors or only significant factors during the time period.  Returns 

may be at either the monthly or daily frequency. 

Significance spell of 

factor 

The number of consecutive months for which a factor remains significant. 
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Mean standard error of 

alphas 

The equal-weighted average standard error of CAPM alphas for all stocks at month t. The value-weighted mean 

standard error is weighted by each stock's market capitalization at t-61. This measure is standardized across the 

sample for ease of interpretability. 

Mean residual 

volatility 

The average residual volatility across stocks obtained from the 60-month stock-level CAPM regressions at each 

month t. This measure is standardized across the sample for ease of interpretability. 

Number of public 

firms 

The total number of CRSP common stocks listed on the NYSE, AMEX or NASDAQ at time t.  This measure is 

standard across the sample for ease of interpretability. 

Number of public 

firms at beginning of 

estimation period 

The total number of CRSP common stocks listed on the NYSE, AMEX or NASDAQ at time t-60. This measure is 

standard across the sample for ease of interpretability. 

Number of public 

firms with alpha at t 

The total number of CRSP common stocks at month t listed on the NYSE, AMEX or NASDAQ for which an alpha 

can be calculated (i.e., stock has zero non-missing returns from t-60 to t-1). This measure is standard across the 

sample for ease of interpretability. 

Mean absolute alpha The equal-weighted average of the absolute value of alpha for all factors at month t.  This measure is standardized 

across the sample for ease of interpretability. 

Mean standard error of 

alphas 

The equal-weighted average standard error of alphas for all factors at month t.  This measure is standardized across 

the sample for ease of interpretability. 

Unemployment rate The percentage of the labor force unemployed at t as determined by the US Bureau of Labor Statistics. This 

measure is standardized across the sample for ease of interpretability. Data can be obtained here: 

https://fred.stlouisfed.org/series/UNRATE 

Fed funds rate The federal funds rate at the end of each month t. This measure is standardized across the sample for ease of 

interpretability. Data can be obtained here: https://fred.stlouisfed.org/series/FEDFUNDS 
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10-year Treasury 

Bond yield 

The 10-year Treasury bond yield at the end of each month t. This measure is standardized across the sample for 

ease of interpretability. Data can be obtained here: https://fred.stlouisfed.org/series/DGS10 

% of dividend-paying 

firms 

The total number of common stocks which pay a dividend divided by the total number of common stocks at each 

month t. A stock is defined as paying a dividend if at least one dividend was paid over the previous year. This 

measure is standardized across the sample for ease of interpretability. 

Mean institutional 

ownership 

The average institutional ownership across stocks at month t. For each stock at month t, the percentage of 

institutional ownership is determined by the total number of shares held by institutions divided by the total number 

of shares outstanding.  Institutional shareholdings are obtained from Thomson-Reuters 13-F database. This 

measure is standardized across the sample for ease of interpretability. 

Economic complexity 

index 

An annualized measure of economic complexity based on the complexity of trade activities within the United 

States. Each month t uses the measure from December of the most previous year.  This measure is standardized 

across the sample for ease of interpretability. Data can be obtained here: https://oec.world/en/rankings/legacy/eci 

Mean Amihud 

Illiquidity 

For each stock in each month, we compute the Amihud (2002) illiquidity measure using daily data. We require at 

least 10 trading days in a month. We then average this measure across all stocks in that month.  

 

Diversity of firm 

characteristics 

We compute the standard deviation for each of the 205 cross-sectional characteristics across firms in each month t. 

We then standardize each of these characteristic standard deviations based on the entire time series for that 

characteristic.  We then sum all the standardized characteristics available at each month. Finally, we move the 

measure 36 months back in time to account for the delayed introduction of characteristics during the first 3 years 

from which a firm first appears in the data. The final measure used in the regression is standardized across the 

sample for ease of interpretability. 
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Appendix Table A2. Comovement of the number of significant factors with the number of public firms This table shows the results of regressing the 

number of significant factors in each period on the number of public firms at each date. For each month t, we regress each factor’s monthly returns from t – 59 to t on the market’s 

monthly excess returns to obtain each factor’s CAPM alpha. A factor is significant at month t if the t-statistic of its CAPM alpha is greater than 3.00. The dependent variable is a 

count of the number of significant factors at each month t. The number of public firms consists of all common stocks trading on the NYSE, NASDAQ or Amex and is computed in 

three ways: 1) all public firms at month t, 2) all public firms at month t – 59, and 3) all public firms with a non-missing alpha over the period t – 59 to t. To be included, stocks and 

factors must have 60 non-missing returns over the alpha estimation period. Panel A covers the sample of factors from 1931-2020. Panel B covers the sample of factors from 1968-

2020. We standardize each independent variable by subtracting the mean of that variable over the time series and dividing that difference by the variable’s standard deviation over 

the time series. Hansen-Hodrick standard errors are in parentheses. ***, **, * denote statistical significance at the 1%, 5%, and 10% levels. 

 

 
 

(1) (2) (3) (4) (5) (6) (7) (8)

Total number of firms:

At time t 18.24*** 29.89** 26.74*** 32.46**

(3.08) (13.76) (7.97) (12.99)

At time t-60 15.42*** 5.98 13.86*** 2.85

(3.92) (9.28) (4.88) (9.51)

with 60-month alpha 15.69*** -18.23 17.01*** -11.10

(3.70) (11.37) (5.67) (11.58)

R-squared 0.63 0.45 0.47 0.67 0.50 0.17 0.19 0.52

N 1075 1075 1075 1075 636 636 636 636

1931-2020 1968-2020

Dep var: Number of significant factors
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Appendix Table A3. Disentangling noise from power This table shows the results of regressing the number of significant factors in each period on the cross-sectional 

mean of the absolute value of all factors’ CAPM alphas, the mean standard error of those alphas and the number of public firms. For each month t, we regress each factor’s monthly 

returns from t – 59 to t on the market’s monthly excess returns to obtain the factor’s CAPM alpha and its corresponding standard error. The dependent variable is a count of the 

number of significant factors at each month t.  A factor is significant at month t if the t-statistic of its CAPM alpha is greater than 3.00. To be included, factors must have 60 non-

missing returns over the alpha estimation period. The number of public firms is a count of all common stocks outstanding at t. We standardize each independent variable by subtracting 

the mean of that variable over the full time series and dividing that difference by the variable’s standard deviation over the time series. Hansen-Hodrick standard errors with a 

bandwidth of 60 are in parentheses.  ***, **, * denote statistical significance at the 1%, 5%, and 10% levels. 
 

 

   
 

(1) (2) (3) (4) (5) (6) (7) (8)

Mean standard error of factor alphas -8.69** -2.69 -30.01*** -19.39*** -17.01 -17.61** -37.64*** -34.61***

(3.48) (1.98) (6.98) (6.72) (13.42) (8.22) (4.03) (4.13)

Number of public firms 17.31*** 11.16*** 26.91*** 7.97***

(2.90) (1.67) (7.26) (1.67)

Mean factor absolute alpha 27.08*** 18.51*** 37.26*** 31.47***

(7.75) (6.63) (3.80) (4.35)

R-squared 0.14 0.64 0.67 0.83 0.09 0.60 0.90 0.92

N 1075 1075 1075 1075 636 636 636 636

Dependent var: Number of significant factors

1931-2020 1968-2020
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Appendix Table A4. Comovement of the number of significant factors and economy and firm characteristics This table shows the results of regressing 

the number of significant factors in each period on various economic measures at each month. For each month t, we regress each factor’s monthly returns from t – 59 to t on the 

market’s monthly excess returns to obtain the factor’s CAPM alpha and its corresponding standard error. A factor is significant at month t if the t-statistic of its CAPM alpha is 

greater than 3.00. The dependent variable is a count of the number of significant factors at each month t. The number of public firms is a count of all common stocks at t traded on 

the NYSE, NASDAQ or Amex at month t. The NBER recession indicator is an indicator equal to one if the month is classified as an NBER recession and zero otherwise. The 

unemployment rate is the number of unemployed as a percentage of the labor force as provided by the U.S. bureau of labor statistics. The federal funds rate is the established rate by 

the Federal Reserve at month t. The 10-year treasury bond yield is the market yield on U.S. treasury securities at a 10-year constant maturity. The percent of dividend-paying firms 

is the total number of common stocks which have paid a dividend in the previous 12 months divided by the number of firms at month t. The mean institutional ownership is the 

fraction of a firm’s shares outstanding held by 13-f firms. The economic complexity index is a measure of economic complexity used from Simoes and Hidalgo (2011). Diversity of 

firm characteristics is a measure of diversity in the cross-sectional characteristics across firms. See Appendix Table A1 for a complete description of the measures.   The sample 

covers factors from 1931-2020. Hansen-Hodrick standard errors are in parentheses. ***, **, * denote statistical significance at the 1%, 5%, and 10% levels. 
 

Sample of factors from 1931-2020  
 

   

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Number of public firms 18.24*** 5.85 5.40 -4.97

(3.08) (6.41) (4.73) (19.75)

NBER recession indicator -9.41** -9.90** -8.92** -2.27

(4.66) (4.17) (4.10) (3.70)

Unemployment rate 0.11 -11.16*** -9.76*** -9.81***

(4.38) (1.77) (2.33) (1.73)

Fed funds rate 8.95* -5.62** -4.20* -2.90

(5.18) (2.46) (2.18) (4.63)

10-year T-Bond yield 9.64* 15.46*** 15.04*** 1.83

(5.23) (4.48) (3.77) (5.94)

% dividend-paying firms -12.12*** -1.32 -2.65 -16.19

(4.47) (8.98) (7.94) (17.84)

Mean institutional ownership -16.81*** -20.14

(4.46) (13.18)

Economic complexity index 5.59 1.83 -3.91

(4.72) (2.30) (2.54)

Mean Amihud illiquidity -5.30*** 12.97*** 11.84*** 0.70

(1.90) (4.33) (4.22) (4.55)

Diversity of firm characteristics 14.76*** 9.32* 10.13** 18.51**

(4.76) (5.29) (4.97) (7.46)

R-squared 0.63 0.02 0.00 0.16 0.18 0.28 0.46 0.06 0.05 0.42 0.67 0.70 0.80

N 1075 1075 876 798 708 1075 483 648 1075 1039 672 648 456

Dep var: Number of significant factors
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Appendix Table A5. Simulation calibrations This table provides initial calibrations for the results found in Figure A1 Panel A. 

 

Scenario 𝜇𝑝 𝜎𝑝 𝜎𝑢 𝜌𝑝𝑢 

Baseline: High SR priced, 

low unpriced SD 

0.016 0.032 0.025 0 

High SR priced, high 

unpriced SD 

0.016 0.032 0.036 0 

Low SR priced, low 

unpriced SD 

0.004 0.018 0.025 0 

Low SR priced, high 

unpriced SD 

0.004 0.018 0.036 0 

 


