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Abstract

I study the role of education as self-exploration. Students in my model have
different priors about their talents and update their beliefs after receiving noisy
signals about themselves. I characterize a socially optimal design of the signal
structure. An optimal structure encourages a career in which participating students
are on average more confident. I apply the model to students in the United States
and estimate its parameters from data. Advanced science classes in high school
tend to encourage science majors in college. Their estimated self-exploration value
is a 5-percent average increase in future earnings.

Keywords: Education, Occupational choice, Value of information, Information
design
JEL Codes: I21, J24, D83

1 Introduction

1.1 Motivation and results

People commonly say that education is not just about gaining skills or a diploma but also
about finding oneself, about one’s interests and talents. Through experimentation and
experience, students realize what they like and what they are good at. In primary school,
these experiments are often classroom exercises, toys, and games. In secondary school,
they are reading, problem-solving, discussion, and writing. In college, they are general
education classes before declaring one’s major. Even in more specialized, graduate and
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Figure 1: Advanced Science Classes and Changes in Science Self-Efficacy

Note: This figure shows the average degrees of science self-efficacy of total 14,447 students
who were 9th graders in 2009 from the public-use dataset of the High School Longitudinal
Study (HSLS). Science self-efficacy refers to the tendency to agree that the respondent is
confident about doing well in exams, understanding textbooks, mastering the skills, and
doing the required assignments in the sciences. The participants are 2,587 students who took
one or more Advanced Placement science classes in high school, whereas the non-participants
are the remaining 11,860 students who did not take any. The error bar indicates the size
of the 95% confidence interval of the estimated difference-in-differences coefficient computed
with robust standard errors clustered for each student. See Table 1 in Subsection 5.3 for all
estimated coefficients.

professional schools, there are classes across different subfields. Likewise, all stages of
education involve some degree of self-exploration.

Survey data of high school students support this view that education reveals in-
formation to students about themselves. The public-use dataset of the High School
Longitudinal Study of 2009 (HSLS) contains a measure of students’ confidence in their
science ability near the beginning and the end of high school. Students taking advanced
science classes in high school such as the Advanced Placement (AP) appear to lose
significant self-confidence in the sciences (Figure 1). Such belief-updating in school
suggests a need for a theory of education beyond the human capital view (that education
directly increases one’s skills) and the signaling view (that education informs others
about one’s skills).

Motivated by the commonplace notion and the empirical observation, I study the
role of education as self-exploration. Students in my model have different prior beliefs
about their talents: whether they are talented hunters or talented gatherers. With
costly effort, they can participate in an educational program that sends noisy signals
about their talents. After observing a signal, each student chooses a career in hunting
or gathering. Truly talented hunters are better off choosing hunting and truly talented
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gathers are better off choosing gathering.
In this simple setting, I characterize the socially optimal design of the signal structure

of education (hereafter educational structure). An educational structure is optimal if
and only if (a) it is optimal for the average participant and (b) it induces the set of
participants that value the information the most (Theorem 1). The intuition behind
this result is that every participating student’s ex ante expected payoff is linear in his
prior belief, allowing the optimal structure to depend only on the average belief of
the participants. This characterization simplifies the optimization problem of searching
over an infinite parameter space into that of searching over a finite collection of potential
participant sets.

Building on this result, I prove that a socially optimal educational structure encour-
ages a career in which its participating students are on average more confident (Theorem
2). If the average participant is believed to have greater comparative advantage in
gathering, the educational structure should be gathering-encouraging. That is, the
signal accuracy for the truly talented gatherer should be greater than that for the truly
talented hunter. I say that such a signal structure is gathering-encouraging, in that it
has a relatively higher chance of misleading students with no talent in gathering into the
gathering career. Similarly, if the average participant is believed to have comparative
advantage in hunting, the educational structure should be hunting-encouraging.

An important extension I consider is a model in which education allows students
to not only learn about themselves but also to accumulate human capital, increasing
future productivity directly. I show that the results from the benchmark model continue
to hold with some modification. When we allow human capital accumulation, students
participate in education for different reasons. Some are sufficiently certain about their
talents and have nothing to gain from additional information, yet still participate to
raise their ex post productivity. Others are less certain about their talents and gain
from both. I show that an optimal information structure of education encourages the
career in which this latter group of students are on average more confident.

To illustrate an application, I adapt the model for advanced science education in
the United States and estimate its parameters using a sample of 6,638 high school
students who later attended 4-year colleges. The estimated parameters imply that most
students’ confidence in the sciences is low, ranging from about 15 to 31 percent. Despite
this comparative disadvantage, advanced science classes tends to encourage students
to pursue science majors in college. Under the current structure, students without
science talent receive accurate signals only 74 percent of the time, whereas students
with science talent receive accurate signals 91 percent of the time. As a result, the
estimated average value of providing these classes is a 5-percent increase on students’
future earnings. However, under the opposite structure of signals, the estimated value
would be 12 percent. The interpretation is that the current advanced science classes in
U.S. high schools are overly recommending the sciences to a student population whose
confidence in the subject is low.
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1.2 Related literature

The contribution of this study is formalizing the value and design of the self-exploring
aspect of education largely overlooked by the existing theories. The model is an appli-
cation of the theories of information design and costly information acquisition.

Human capital and signaling On the one hand, the foundational human capital
models by Becker (1962, 2009), Ben-Porath (1967), and Mincer (1974) see education
as an investment that directly enhances one’s productivity. On the other hand, the
alternative, signaling models by Arrow (1973), Spence (1978), and Weiss (1995) see
education as a socially wasteful but privately valuable means to inform firms about
one’s productivity. Following these models, the vast empirical literature attributes the
return to education to either human capital investment or signaling (Card, 1994, 1999,
2001; Kroch and Sjoblom, 1994; Altonji, 1995; Keane and Wolpin, 1997; Altonji and
Pierret, 1998; Chevalier et al., 2004; Psacharopoulos and Patrinos, 2004; Fang, 2006;
Lange, 2007; Hussey, 2012; Patrinos, 2016; Aryal, Bhuller, and Lange, 2019; Huntington-
Klein, 2021). Both views assume that students are fully informed about themselves. In
contrast, students in my model are only partially informed about themselves. The value
of education as self-exploration is in reducing that self-uncertainty. This third view fills
the gap between the two existing theories by proposing a role of education that is both
privately and socially valuable but does not directly increase one’s productivity.

Belief-updating Many papers include empirically driven models with students’
uncertainty and belief-updating about themselves. In a key early work, Manski (1989)
views college education as an experimentation on students’ ability to graduate. Despite a
possible dropout, attending college can increase students’ ex ante expected utility if the
payoff from graduation is large enough.1 In Altonji (1993), students are uncertain about
their preferences between fields and learn them after first year of college. In Arcidiacono
(2004), Altonji, Blom, and Meghir (2012), and Altonji, Arcidiacono, and Maurel (2016),
students are unsure about their multidimensional ability and preferences across different
fields of study. Different beliefs lead to varying ex ante expected returns to different fields
of study. Empirically, Stinebrickner and Stinebrickner (2014) find from survey data that
many students enter college with optimistic beliefs about completing science degrees,
yet relatively few students end up completing them after updating their beliefs. In a
randomized controlled trial, Owen (2020) finds that male and female students update
their beliefs differently when informed about their relative performance in science classes.
Using university administrative data and a regression discontinuity design, Li and Xia
(2022) estimate that higher grades caused students more likely to major in those subjects,
and argue that grades let students to learn their comparative advantage.

To my knowledge, only one existing paper, Arcidiacono, Aucejo, Maurel, and Ransom
1Similarly, Comay, Melnik, and Pollatschek (1973) examine students facing uncertainty about

graduation, although they do not highlight the effect of education on ex ante expected payoffs.
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(2016), examines the value of an optimal information structure. They estimate a model
of belief-updating students choosing education and occupations, and find that college
graduates would have 33 percent higher wages under perfect information about their
abilities. Compared to their work, mine abstracts from multistage educational choices
and multidimensional abilities. Instead, it focuses on a single-stage educational choice
when ability is binary. The gain from this simplification is that it provides the first
mathematical characterization of a socially optimal educational structure when perfect
information is infeasible.

Information design My work is an application of the established ideas of Bayesian
persuasion and information design to the problem of educational design. The canonical
paper by Kamenica and Gentzkow (2011) examines a Sender’s optimal choice of the
information structure that affects the Receiver’s behavior. Many extensions of their
model, as surveyed by Bergemann and Morris (2019) and Kamenica (2019), include
incorporating (i) multiple receivers, (ii) multiple senders, and (iii) dynamic elements.
My work belongs to the first category; more specifically, it belongs to the class of models
with multiple Receivers with heterogeneous beliefs whose actions have no consequences
on other Receivers’ utility. Under this category, Alonso and Câmara (2016) consider the
problem of a politician sending a public signal to influence voters with different beliefs.
For another example, Arieli and Babichenko (2019) examine the problem of a seller
sending private signals to potential buyers to persuade them to purchase a product.
Mine differs from these existing works in that each Receiver has his own independent
state rather than a common state of the world.

Costly information acquisition My work is also related to the eminent literature
on rational inattention and costly information acquisition such as Matějka and McKay
(2015) and Caplin, Dean, and Leahy (2019). These studies use cost functions based on
the distribution of posterior beliefs, notably the changes in the Shannon entropy. In
comparison, I use a cost that is a direct function of the parameters of the information
structure. In the terminology of Denti, Marinacci, and Rustichini (2022), the cost
function is experiment-based rather than posterior-based.

1.3 Outline

Section 2 describes the model of education as an experiment on students’ talents. Section
3 analyzes the optimal design of education for students’ aggregate welfare. Section 4
examines the effects of changes in beliefs, technology, and the cost of effort. Section
5 extends the benchmark model to allow stochastic choice, human capital investment,
imperfectly observed beliefs, and more than two talents and careers. Section 6 estimates
the educational structure of advanced science classes in U.S. high schools. Section 7
concludes.
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2 Model of Education as Self-Exploration

There are students indexed as i ∈ I = {1, 2, . . . , n}. Student i’s state or talent is
ωi ∈ Ω = {ωg, ωh} where ωg denotes being a talented gatherer and ωh denotes being a
talented hunter. Each student i has a rational and publicly known prior belief pi ∈ (0, 1)

on the event that ωi = ωh. A student’s action or career is a ∈ A = {ag, ah} where ag
denotes a gathering career and ah denotes a hunting career. A student’s productivity is
u(ω, a) where u : Ω × A −→ R+. The only restriction on u is that a talented gatherer
is better off choosing the gathering career and a talented hunter is better off choosing
the hunting career. That is, u(ωg, ag) > u(ωg, ah) and u(ωh, ah) > u(ωh, ag). The values
ug = u(ωg, ag)− u(ωg, ah) and uh = u(ωh, ah)− u(ωh, ag) are called the mismatch costs
of a talented hunter and a talented gatherer.

Before deciding on a career, students may participate in an educational program by
paying a costly effort δ ≥ 0 to receive a signal s ∈ S = {sg, sh}. Signals are realized with
conditional probabilities Pr(sg|ωg) = 1−Pr(sh|ωg) = γ and Pr(sh|ωh) = 1−Pr(sg|ωh) =
η. The interpretation is that γ represents the accuracy of signals when the true state is
ωg, and η represents the accuracy of signals when the true state is ωh. The ordered pair
(γ, η) ∈ Θ is the educational structure, where

Θ =
{
(γ, η) ∈ [0, 1]2

∣∣ γ + η ≥ 1
}

is its parameter space. The posterior belief function is Qγ,η : (0, 1)× S −→ (0, 1) whose
value is the posterior belief q after receiving signal s under the educational structure
(γ, η) when the prior belief is p. Specifically, by Bayes’ rule, the posterior belief function
is

Qγ,η(p, s) =


(1− η)p

γ(1− p) + (1− η)p
if s = sg, and

ηp

(1− γ)(1− p) + ηp
if s = sh.

The signals sg and sh are interpreted as recommendations toward gathering and hunting,
respectively.2 An educational structure (γ, η) ∈ Θ is uninformative if γ + η = 1,
informative if γ + η > 1, and perfectly informative if γ = η = 1. Figure 2 illustrates
each student’s sequential choices.

The educational designer is an imaginary agent representing teachers, parents, and
policymakers who collectively shape the underlying educational structure. However,
their attention is limited, so not every educational structure is feasible. Its choice is
restricted to an element of the feasible set Θ̂ = {(γ, η) ∈ Θ | C(γ, η) ≤ B}, where B > 0

is a constant called the educational attention budget, and the educational attention cost
function C : Θ −→ R satisfies Assumptions 1–3.

2This interpretation is valid as long as γ + η ≥ 1 as required by (γ, η) ∈ Θ and is without loss of
generality. If we instead have γ + η ≤ 1, we may relabel the probabilities as γ′ = 1− γ and η′ = 1− η
as well as relabeling the signals as s′g = sh and s′h = sg to arrive at the same interpretation.
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Figure 2: Education and Occupational Choice

Note: This figure illustrates the sequence of moves of every student i given
his prior belief pi = Pr(ωi = ωh) and the educational structure (γ, η). If
the student participates in the educational program, Nature sends a signal sg
(encourage gathering) or sh (encourage hunting) with conditional probabilities
Pr(sg|ωg) = 1− Pr(sh|ωg) = γ and Pr(sh|ωh) = 1− Pr(sg|ωh) = η.

Assumption 1 (Smoothness). C is continuously differentiable.

Assumption 2 (Curvature). C is strictly increasing in γ and η on Θ and strictly convex
on the interior of Θ.

Assumption 3 (Boundary regularity). C satisfies
(a) C(γ, η) = 0 if γ + η = 1,
(b) C(γ, η) > B if γ = η = 1, and
(c) limγ→1

∂
∂γ
C(γ, η) = limη→1

∂
∂η
C(γ, η) = ∞.

Assumption 3(a) means that uninformative education is always feasible. Assumption
3(b) means that perfectly informative education is infeasible. Assumption 3(c) means
that a signal accuracy (γ or η) is infinitely costly on the margin as it approaches 1.
Figure 3 illustrates the feasible set of educational structures.

Example 1 (Expected reduction in entropy from a fixed prior). Let λ > 0 and p0 ∈ (0, 1)

be given. Let H : (0, 1) −→ R be defined as H(p) = (1 − p) log(1 − p) + p log p. Let
the educational cost function be C(γ, η) = λ (H(p0)− E [H(Qγ,η(p0, s))]), where the
expectation is taken with respect to the possible realizations of the signal s. Then C

satisfies Assumptions 1–3.

The ex post payoff of a student i with state ωi ∈ Ω and career ai ∈ A is u(ωi, ai)−δdi
where di = 1 for a participant and di = 0 for a non-participant. Every student updates
his belief using Bayes’ rule and chooses an action that maximizes his expected payoff at
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Figure 3: Feasible Education

each stage. As a tie-breaking rule, students that are indifferent between participating
and not participating do not participate. Students that are indifferent between the
hunting and gathering careers choose hunting. These tie-breaking rules, however, apply
only in knife-edge cases and affect neither the value nor the optimal design of education.

3 Optimal Design of Education

3.1 Characterization

Let V : (0, 1) × Θ −→ R map a student’s prior belief p ∈ (0, 1) and an educational
structure (γ, η) ∈ Θ to the student’s ex ante expected payoff under (γ, η) conditional on
p. Then

V (p, γ, η) = max {V0(p), V1(p, γ, η)− δ} ,

where V0(p) is a non-participating student’s expected productivity and V1(p, γ, η) is a
participating student’s expected productivity before receiving a signal from the educa-
tional structure (γ, η). Let

Ug(p) =
∑
ω∈Ω

Pr(ω)u(ag, ω) = (1− p)u(ag, ωg) + pu(ag, ωh), and (1)

Uh(p) =
∑
ω∈Ω

Pr(ω)u(ah, ω) = (1− p)u(ah, ωg) + pu(ah, ωh). (2)

The two functions Ug(p) and Uh(p) represent the expected productivity of choosing
gathering and hunting, respectively, when one’s belief is p. Then the functions V0 and
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V1 take values

V0(p) = max{Ug(p), Uh(p)}, and
V1(p, γ, η) = E

[
V0
(
Qγ,η(p, s)

)
| p, γ, η

]
,

where the expectation is taken with respect to the possible realizations of the signal s.
Let the student welfare function W : Θ −→ R be defined as

W (γ, η) =
∑
i∈I

V (pi, γ, η).

An educational structure (γ∗, η∗) in the feasible set Θ̂ is (socially) optimal if W (γ∗, η∗) ≥
W (γ, η) for all (γ, η) ∈ Θ̂. The participant set of an educational structure (γ, η) is the set
of students i ∈ I that participates in (γ, η). An educational structure (γ, η) is nontrivial
if its participant set is nonempty. Let pD = 1

|D|
∑

i∈D p
i for all nonempty subsets D ⊂ I.

Let P(I) denote the collection of all subsets of I.

Definition. Let F : (0, 1) −→ Θ̂ map p to the solution (γ, η) of the system of equations

∂
∂γ
C(γ, η)

∂
∂η
C(γ, η)

=
1− p

p

ug
uh

and C(γ, η) = B. (3)

To verify that F is well-defined, observe that the system of equations (3) is the first
order condition to the problem of maximizing (1− p)ugγ+ puhη subject to C(γ, η) = B.
The maximizer exists because the maximand is continuous in (γ, η) and the constraint
set is closed and bounded. By Assumption 3(c), the solution is an interior point of Θ.
It is unique because C is strictly convex. Figure 4 illustrates the definition of F .

Theorem 1. Suppose (γ∗, η∗) ∈ Θ̂ is nontrivial. Then (γ∗, η∗) is optimal if and only if
its participant set D∗ satisfies (γ∗, η∗) = F (p̄D∗) and

D∗ ∈ argmax
D∈P(I)

W
(
F (p̄D)

)
. (4)

This result means that finding an optimal educational structure is equivalent to (i)
targeting the average student of a group, and (ii) finding the best group of students to
target. In other words, a benevolent educational designer trying to maximize students’
welfare does not lose anything by taking a two-step procedure: first finding an optimal
subset of students and then applying an optimal design as a function of only the average
belief of that subset. This characterization of optimal education simplifies the designer’s
problem of searching for (γ∗, η∗) over an infinite set Θ to that of searching for D∗ over
a finite collection P(I).

Define ΘD as the set of (γ, η) under which the set of participants is D. Let us prove
several lemmas that are part of the proof of the theorem.
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Lemma 1. The student welfare function W (γ, η) is
(a) continuous on Θ,
(b) strictly increasing in γ and η on the nontrivial subset of Θ,
(c) affine on ΘD for every D ⊂ I, and
(d) convex.

Proof. Observe that

W (γ, η) =
∑
i∈I

V (pi, γ, η) =
∑
i∈I

max
{
V0(p

i), V1(p
i, γ, η)− δ

}
. (5)

Observe that a participant’s expected productivity is

V1(p, γ, η) =
∑
ω∈Ω

∑
s∈S

∑
a∈A

Pr(ω) Pr(s |ω) Pr(a | s)u(ω, a).

I claim that Pr(ag|sg) = Pr(ah|sh) = 1 for any participant. Suppose that this statement
is false. Then (i) Pr(ag|sg) = Pr(ag|sh) = 1, (ii) Pr(ah|sg) = Pr(ah|sh) = 1, or (iii)
Pr(ah|sg) = Pr(ag|sh) = 1. In all of the three cases, V0(p) ≥ V1(p, γ, η), meaning that
the student does not participate, a contradiction.

Then

V1(p, γ, η) = (1−p)
[
γu(ωg, ag)+(1−γ)u(ωg, ah)

]
+p

[
(1−η)u(ωh, ag)+ηu(ωh, ah)

]
, (6)

so V1(p, γ, η) is linear in (γ, η) and strictly increasing in γ and η.
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Observe from equation (5) that we can write

W (γ, η) = max
D∈P(I)

 ∑
i∈I\D

V0(p
i) +

∑
i∈D

[V1(p
i, γ, η)− δ]

 .

Let W (γ, η|D) denote the maximand in the above equation. Then W (γ, η|D) is affine
in (γ, η). It is strictly increasing in γ and η as long as D is nonempty. Since W (γ, η)

is a maximum of an affine function, it is continuous and convex. Because W (γ, η) is
a maximum of strictly increasing function on the nontrivial subset of Θ, it is strictly
increasing in γ and η on the nontrivial subset of Θ. Finally, observe that W (γ, η) =

W (γ, η|D) wherever (γ, η) ∈ ΘD, for all D ⊂ I. So W (γ, η) is affine on ΘD for all D ⊂ I.
■

Lemma 2. An optimal educational structure exists.

Proof. By Assumptions 1–3, the feasible set Θ̂ is closed and bounded. By Lemma 1, the
student welfare function W is continuous. So by Weierstrass’s Extreme Value Theorem,
there exists (γ∗, η∗) ∈ Θ̂ such that W (γ∗, η∗) = sup(γ,η)∈Θ̂W (γ, η). ■

Lemma 3. Every nontrivial optimal educational structure is an interior point of Θ.

Proof. Suppose that (γ∗, η∗) ∈ Θ is nontrivial and optimal. Because at least one student
participates in (γ∗, η∗), V0(pi) < V1(p

i, γ∗, η∗) for some i ∈ I. This result is impossible
if γ∗ + η∗ = 1, so γ∗ + η∗ > 1. Because the perfectly informative education (1, 1) is
infeasible and the marginal costs of γ and η approach infinity as each goes to 1, γ∗ < 1

and η∗ < 1. Thus (γ∗, η∗) ∈ Int Θ. ■

Lemma 4. Suppose (γ∗, η∗) ∈ ΘD∗ is optimal and D∗ is nonempty. Then (γ∗, η∗) =

F (pD∗).

Proof. By Lemma 3, (γ∗, η∗) is in the interior of Θ. Then (γ∗, η∗) is a solution to the
problem

max
(γ,η) ∈ Int Θ ∩ ΘD∗

W (γ, η) subject to C(γ, η) ≤ B.

First, suppose that (γ∗, η∗) is in the interior of ΘD∗ . SinceW is affine on ΘD∗ (Lemma
1) and C is strictly convex (Assumption 2), (γ∗, η∗) is the only interior solution in ΘD∗ .
Then the first order conditions to the above maximization problem are

∂
∂γ
C(γ∗, η∗)

∂
∂η
C(γ∗, η∗)

=

∂
∂γ
W (γ∗, η∗)

∂
∂η
W (γ∗, η∗)

and C(γ∗, η∗) = B.
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Observe that

∂

∂γ
W (γ∗, η∗) =

∂

∂γ
W (γ∗, η∗|D∗) =

∂

∂γ

∑
i∈D

V1(p
i, γ∗, η∗) =

∑
i∈D∗

(1− pi)ug, and

∂

∂η
W (γ∗, η∗) =

∂

∂η
W (γ∗, η∗|D∗) =

∂

∂η

∑
i∈D

V1(p
i, γ∗, η∗) =

∑
i∈D∗

piuh.

The above two equations together imply that

∂
∂γ
W (γ∗, η∗)

∂
∂η
W (γ∗, η∗)

=
1− pD∗

pD∗

ug
uh
, (7)

thus (γ∗, η∗) = F (pD∗).
Second, suppose that (γ∗, η∗) is on the boundary of ΘD∗ . I claim that every nonempty

ΘD for some D ⊂ I is a convex polygon. A student i ∈ I participates under (γ, η) if
and only if V1(pi, γ, η)− δ > V0(p

i). Since V1 is affine in (γ, η), i ∈ I participates under
(γ, η) if and only if (γ, η) is in the intersection of Θ and some halfspace in R2. Then
D ⊂ I is the set of participants under (γ, η) if and only if (γ, η) is in the intersection of
Θ and n halfspaces in R2. So a nonempty ΘD is a convex polygon.

Define

Φ+ = {(γ, η) ∈ Θ | η > η∗,W (γ, η) = W (γ∗, η∗)}, and
Φ− = {(γ, η) ∈ Θ | η < η∗,W (γ, η) = W (γ∗, η∗)}.

Because W is continuous and strictly increasing on the nontrivial subset of Θ (Lemma
1), Φ+ and Φ− are curves. For every ε > 0, let Bε(γ

∗, η∗) denote the open ball around
(γ∗, η∗) with radius ε. Let D+ and D− denote the participants such that ΘD+ and ΘD−

are convex polygons that contain Φ+ ∩ Bε(γ
∗, η∗) and Φ− ∩ Bε(γ

∗, η∗) for all ε ∈ (0, ε̄)

for some ε̄ > 0.
Suppose pD+ ̸= pD− . Then pD+ > pD− by the convexity of W (Lemma 1). Then

because C is smooth (Assumption 1), Φ+ or Φ− intersects with the interior of the feasible
set Θ̂. Then there exists some (γ′, η′) ∈ Θ̂ such that W (γ′, η′) > W (γ∗, η∗). Then (γ∗η∗)
cannot be optimal.

So it must be that pD+ = pD− . Then pD+ = pD = pD− , for every D such that
ΘD is adjacent to (γ∗, η∗) because D = D+ or D = D− or pD+ ≥ pD ≥ pD− by the
convexity of W . Then W is differentiable at (γ∗, η∗). Then the first order conditions of
the maximization problem yield (γ∗, η∗) = F (pD∗). ■

Proof of Theorem 1 First, I show the “only if” part of the statement. Suppose
(γ∗, η∗) ∈ Θ̂ is nontrivial. Suppose (γ∗, η∗) is optimal. By Lemma 4, the participant set
D∗ of (γ∗, η∗) satisfies (γ∗, η∗) = F (pD∗). Since (γ∗, η∗) is optimal, W (γ∗, η∗) ≥ W (γ, η)
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Figure 5: Every nonempty ΘD is a convex polygon: an example with three students

for all (γ, η) ∈ Θ. Then for all D ⊂ I, we have

W (F (pD∗)) = W (γ∗, η∗) ≥ W (F (pD)).

So D∗ satisfies (4).
Second, I show the “if” part of the statment. Suppose (γ∗, η∗) ∈ Θ̂. Suppose its

participant set D∗ satisfies (γ∗, η∗) = F (pD∗) and (4). I need to show that (γ∗, η∗) is
optimal. Suppose it is not. Then by Lemma 2, some other optimal (γ′, η′) exists. Let D′

denote the participant set under (γ′, η′). By Lemma 4, (γ′, η′) = F (pD′). Because (γ′, η′)
is optimal and (γ∗, η∗) is not, W

(
F (p′D)

)
> W

(
F (pD∗)

)
. Then D∗ does not satisfy (4),

a contradiction. So (γ∗, η∗) is optimal. ■

A key step in the proof of Theorem 1 is that a participant’s ex ante expected
productivity V1(p, γ, η) is affine in p and affine in (γ, η) separately. This result arises
because every participating student necessarily follows the action recommended by the
signal he receives—otherwise, the signal is not useful to him and he would not participate
in the first place. This fact makes every nonempty set ΘD of educational structures that
induce a participant set D a convex polygon, as illustrated in Figure 5. It also makes
the student welfare function W affine on each ΘD, so that each iso-welfare curves are
kinked lines as in Figure 6. Then an optimal education must occur at the tangency of
its iso-welfare curve and the feasible set, leading to the condition (γ∗, η∗) = F (pD∗).
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Figure 6: The student welfare function W is affine on ΘD

3.2 Direction of encouragement

Let us place an additional restriction on the cost function C for the remainder of the
paper.

Assumption 4 (Symmetry). C(γ, η) = C(η, γ) for any γ and η.

This assumption means that, for any budget B > 0, if an educational structure (γ, η)
is feasible, the opposite structure (η, γ) is feasible as well. Although this assumption
is not crucial, it simplifies the analysis and interpretation of the results that follow.
Building on this assumption and Theorem 1, we get the next result about the direction
of encouragement under an optimal educational structure:

Theorem 2. Suppose (γ∗, η∗) ∈ ΘD∗ is nontrivial and optimal. Then pD∗ = ug
ug+uh

implies γ∗ = η∗, pD∗ <
ug

ug+uh
implies γ∗ > η∗, and pD∗ >

ug
ug+uh

implies γ∗ < η∗.

This result means that an optimal education encourages a career in which the average
participant is more confident. By being more confident in gathering or hunting, I mean
that the belief is smaller or larger than the threshold ug

ug+uh
. In other words, a student

is believed to have comparative advantage in gathering if p < ug
ug+uh

and in hunting if
p > ug

ug+uh
. This interpretation is valid because

Ug(p) ≷ Uh(p) if and only if p ≶
ug

ug + uh
,

where Ug(p) and Uh(p) are defined as in (1) and (2). Furthermore, by encouraging
the gathering career and the hunting career, I mean the conditions γ > η and γ <

14



η, respectively. To see why, observe that the probability of receiving a gathering-
recommending signal sg for a student with belief p is

Pr(sg|p) =
∑
ω∈Ω

Pr(ω) Pr(sg|ω) = (1− p)γ + p(1− η),

which is strictly increasing in γ and strictly decreasing in η. Since Pr(sh|p) = 1 −
Pr(sg|p), the opposite is true for Pr(sh|p), the same student’s probability of receiving a
hunting-recommending signal. So γ > η means that the educational structure tends to
recommend the gathering career with a greater probability. In particular, for a student
with belief p = 0.5, Pr(sg|p) < 0.5 < Pr(sh|p). Similarly, γ < η means that the
educational structure tends to recommend the hunting career with a greater probability.
The condition γ = η means that the educational structure is balanced.

Recall that F : (0, 1) −→ Θ̂ is defined as the vector-valued function that maps a
belief p to the solution (γ, η) of the system of equations (3). Let Fg and Fh be the two
component functions of F . That is, let Fg : (0, 1) −→ [0, 1] and Fh : (0, 1) −→ [0, 1] such
that F (p) = (Fg(p), Fh(p)).

The following lemma is used in the proof of the theorem.

Lemma 5. Fg is strictly decreasing in p and Fh is strictly increasing in p.

Proof. Suppose 0 < p < p′ < 1 and let (γ, η) = F (p) and (γ′, η′) = F (p′). Then

∂
∂γ
C(γ, η)

∂
∂η
C(γ, η)

=
1− p

p

ug
uh

>
1− p′

p′
ug
uh

=

∂
∂γ
C(γ′, η′)

∂
∂η
C(γ′, η′)

.

Since C is strictly increasing in both variables and is strictly convex, the above inequality
implies γ > γ′ and η < η′. ■

Proof of Theorem 2 By Theorem 1, (γ∗, η∗) = F (pD∗). Suppose pD∗ = ug
ug+uh

.
Then

∂
∂γ
C(γ∗, η∗)

∂
∂η
C(γ∗, η∗)

=
1− pD∗

pD∗

ug
uh

= 1.

Then by the strict convexity (Assumption 2) and symmetry (Assumption 4) of C,
γ∗ = Fg(pD∗) = Fh(pD∗) = η∗. Next, suppose pD∗ < ug

ug+uh
. By Lemma 5, γ∗ =

Fg(pD∗) > Fg

(
ug

ug+uh

)
= Fh

(
ug

ug+uh

)
> Fh(pD∗) = η∗. Finally, suppose pD∗ >

ug
ug+uh

.

Then γ∗ = Fg(pD∗) < Fg

(
ug

ug+uh

)
= Fh

(
ug

ug+uh

)
< Fh(pD∗) = η∗. ■

Figure 7 illustrates the proof of Theorem 2. The function F maps a belief p to the
point on the boundary of the feasible set whose slope is −1−p

p

ug
uh

. When the average
belief of the participating students is equal to the threshold ug

ug+uh
, this slope is −1, so

(γ∗, η∗) is on the midpoint of the boundary. When the average belief is greater than
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Figure 7: Optimal educational structure and the direction of encouragement

the threshold, this slope is flatter, so (γ∗, η∗) is closer to the upper-left corner of the
parameter space Θ. When the average belief is less than the threshold, this slope is
steeper, so (γ∗, η∗) is closer to the bottom-right corner of the parameter space Θ.

3.3 Participant sets

Theorems 1 and 2 tell us to target an optimal set of participants and toward which
direction, without telling us what such a set may look like. The next result characterizes
the set of participants under any educational structure.

Theorem 3. A nonempty subset D ⊂ I is a participant set under some (γ, η) ∈ Θ if
and only if there exists an interval (b, c) ⊂ (0, 1) that satisfies
(a) (Separation). i ∈ D if and only if pi ∈ (b, c), and
(b) (Regularity).

δ(c− b) ≤ min
{
(1− c)

[
Ug(b)− Uh(b)

]
, b

[
Uh(c)− Ug(c)

]}
. (8)

The separation condition means that a student participates if and only if he is
sufficiently uncertain about his talent: that is, his belief is within an interval (b, c).
Put differently, if two students with different beliefs participate, any student with an
intermediate belief between the two also participates. The regularity condition requires
that such interval does not tilt too much toward either direction. When δ = 0, the
condition is equivalent to only requiring that the threshold ug

ug+uh
belongs to the interval.

The condition becomes stricter as δ increases. Taken together, the theorem means that
any participant set characterized by a regular interval of beliefs can be induced by some
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Expected Productivity
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Non-participants

Value and Cost of Education

O 1 p
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Figure 8: Any participation set is separated by an interval

O 1 pb c O 1 pb c

Satisfies regularity Violates regularity

Figure 9: Interval regularity: satisfied (left) and violated (right)

educational structure.
Figure 8 illustrates why any participant set is separated by an interval. For a

fixed educational structure (γ, η), the left panel shows the expected productivity of
participants and non-participants depending on their prior beliefs. Students who are
sufficiently confident in either careers do not change their career choice regardless of
signals, so they do not not find education valuable. Those who are sufficiently uncertain
base their actions on the recommendations they receive, so they find education ex ante
valuable. The value of education shown on the right panel represents this difference
between participants’ and non-participants’ expected productivity. The participation
set is the set of students whose value of education is greater than the cost of effort, with
beliefs anywhere between the two intersections.

Figure 9 shows examples in which the regularity condition is satisfied (left) and
violated (right). Each panel indicates an interval (b, c). The area of the shaded rectangle
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at the bottom represents the left-hand side of (8). The areas of the top left and top right
shaded triangles represent each of the two terms being minimized over on the right-hand
side of (8). The regularity condition is violated if the bottom rectangle’s area is larger
than any of the two top rectangles’ areas.

Let us make the following definition and establish two lemmas for the proof of the
theorem.

Definition. Let α, α : Θ −→ R such that

α(γ, η) =
(1− γ)ug + δ

(1− γ)ug + ηuh
and α(γ, η) =

γug − δ

γug + (1− η)uh
.

Lemma 6. A student with belief p participates under (γ, η) ∈ Θ if and only if α(γ, η) <
p < α(γ, η).

Proof. A student with belief p participates under (γ, η) ∈ Θ if and only if

V1(p, γ, η)− V0(p) > δ.

We know V1(p, γ, η) from equation (6). Observe also that V0(p) = Ug(p) if p ≤ ug
ug+uh

,
and V0(p) = Uh(p) if p ≥ ug

ug+uh
. Then

V1(p, γ, η)− V0(p) =

{
−(1− p)(1− γ)ug + pηuh if p ≤ ug

ug+uh
,

(1− p)γug − p(1− η)uh if p ≥ ug
ug+uh

.
(9)

This value is greater than δ if and only if (1−γ)ug+δ
(1−γ)ug+ηuh < p < γug−δ

γug+(1−η)uh . ■

Lemma 7. For all (γ, η) ∈ Θ, ug
ug+uh

is a maximizer of the problem

max
p∈(0,1)

[
V1 (p, γ, η)− V0(p)

]
. (10)

The maximized value of (10) is (γ + η − 1) uguh
ug+uh

.

Proof. Equation (9) implies

V1

(
uguh
ug + uh

, γ, η

)
− V0

(
uguh
ug + uh

)
≥ V1 (p, γ, η)− V0(p),

for all p ∈ (0, 1). ■

Proof of Theorem 3 First, I show the “only if” part of the theorem. Suppose D is
a nonempty participant set under (γ, η). Then V1(p

i, γ, η)− V0(p
i) > δ for some i ∈ D.

Then (γ + η − 1) uguh
ug+uh

> δ by Lemma 7. Let b = α(γ, η) and c = α(γ, η). Then by
Lemma 6, i ∈ D if and only if (b, c). So condition (a) is satisfied. Furthermore, observe
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that

(1− c)
[
Ug(b)− Uh(b)

]
− δ(c− b) =

(1− η)uh · [(γ + η − 1)uguh − δ(ug + uh)]

[(1− γ)ug + ηuh] · [γug + (1− η)uh]
, (11)

b
[
Uh(c)− Ug(c)

]
− δ(c− b) =

[(1− γ)uh + 2δ] · [(γ + η − 1)uguh − δ(ug + uh)]

[(1− γ)ug + ηuh] · [γug + (1− η)uh]
. (12)

Both (11) and (12) are positive because (γ+η−1) uguh
ug+uh

> 0. So condition (b) is satisfied.
Second, I show the “if” part of the theorem. Let a nonempty subset D ⊂ I be given.

Suppose there exists an interval (b, c) ⊂ (0, 1) that satisfies conditions (a) and (b). I
need to show that there exists (γ, η) ∈ Θ that induces D. Observe that ug

ug+uh
∈ (b, c).

Consider the system of linear equations

V1(b, γ, η)− V0(b) = δ, and (13)
V1(c, γ, η)− V0(c) = δ. (14)

Any solution (γ, η) ∈ Θ to this system of equations induces D.
Let γ′, γ′′, η′, η′′ ∈ (0, 1) be defined so that

V1(b, γ
′, 1)− V0(b) = δ,

V1(b, 1, η
′)− V0(b) = δ,

V1(c, γ
′′, 1)− V0(c) = δ, and

V1(c, 1, η
′′)− V0(c) = δ.

The line segment between the two points (γ′, 1) and (1, η′) is the set of (γ, η) ∈ Θ that
satisfy equation (13). Similarly, the line segment between the two points (γ′′, 1) and
(1, η′′) is the set of (γ, η) ∈ Θ that satisfy equation (14). Then there exists a solution to
the system of equations (13)–(14) if (and only if) the two line segments have a nonempty
intersection, i.e. either (i) γ′ ≥ γ′′ and η′ ≤ η′′ or (ii) γ′ ≤ γ′′ and η′ ≥ η′′. Condition
(b) implies that γ′ ≥ γ′′ and η′ ≤ η′′. ■

4 Comparative Statics

4.1 Changes in beliefs

We now examine the optimal design of education and educational participation when
students’ beliefs change. Let p denote the vector of beliefs (p1, p2, . . . , pn). Let p′

denote the vector of beliefs (p′1, p′2 . . . , p′n). For any D,D′ ⊂ I, let pD = 1
|D|

∑
i∈D p

i

and p′D′ = 1
|D′|

∑
i∈D′ p′i.

Corollary 1. Suppose (γ∗, η∗) ∈ ΘD∗ is optimal for students with beliefs p. Suppose
(γ′, η′) ∈ ΘD′ is optimal for students with beliefs p′. Then the following statements are
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equivalent:
(a) pD∗ < p′D′,
(b) γ∗ > γ′, and
(c) η∗ < η′.

Proof. Suppose (a) holds. Then Theorem 2 implies (b) and (c). Suppose (b) or (c)
holds. Then Lemma 5 implies (a). ■

This corollary means that when beliefs change, education should become more hunting-
encouraging if and only if the average belief of the resulting participant set is more
hunting-confident than that of the previous participant set. In the special case when the
participant set remains the same as D′ = D∗, the interpretation is simply that education
should become more hunting-encouraging if and only if the current participants become
more hunting-confident.

There are two cases when it is reasonable to assume D′ = D∗. First, an obvious
sufficient condition is that the educational attention budget B is large enough to always
induce everyone to participate.

Corollary 2. Suppose {(γ, η) ∈ Θ | C(γ, η) = B} ⊂ ΘI . Then D′ = D∗ = I.

Proof. Because C(γ, η) = B implies (γ, η) ∈ ΘI , every optimal educational structure is
in ΘI . ■

Second, another sufficient condition is that the changes in beliefs are sufficiently
small. Write the student welfare function as

W (γ, η,p) =
∑
i∈I

max
{
V0(p

i), V1(p
i, γ, η)− δ

}
.

Corollary 3. Suppose (γ∗, η∗) is the unique maximizer of W (γ, η,p) subject to (γ, η) ∈
Θ̂. Suppose (γ∗, η∗) is in the interior of ΘD∗. Then there exists ε > 0 such that for any
belief vector p′, ||p′ − p||2 < ε implies

argmax
(γ,η)∈Θ̂

W (γ, η,p′) ⊂ ΘD∗

Proof. By the Maximum Theorem, the maximizer of W (γ, η,p) with respect to (γ, η) ∈
Θ̂ is upper-hemicontinuous at p. Since the maximizer is a singleton at p, it is continuous
at p. ■

Figures 10 and 11 illustrate the two sufficient conditions for the participant set to
remain the same after changes in beliefs. When the educational attention budget is large
(Figure 10), the upper-right boundary of the feasible set is contained in the polygon ΘI ,
the set of educational structure that induce everyone to participate. When the changes
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Figure 10: Every student participates regardless of changes in beliefs when the
educational attention budget is large
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Figure 11: Participation set remains the same when changes in beliefs are small
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in beliefs are small (Figures 11), the change in the optimal educational structure, too,
is small. The new structure remains in the original polygon ΘD.

Next, we take the educational structure as given and look at how students’ partici-
pation and welfare change as students become more confident.

Definition. A belief vector p′ is more dispersed than p if, for all i ∈ I, pi ≤ ug
ug+uh

implies p′i ≤ pi and pi ≥ ug
ug+uh

implies p′i ≥ pi.

Corollary 4. Let (γ, η) ∈ Θ be given. Suppose D and D′ are the participant sets under
(γ, η) when students’ beliefs are p and p′, respectively. Suppose p′ is more dispersed
than p. Then
(a) D′ ⊂ D, and
(b) W (γ, η,p′)−W (0.5, 0.5,p′) < W (γ, η,p)−W (0.5, 0.5,p).

Proof. For all i ∈ I, p′i ≤ pi ≤ ug
ug+uh

or ug
ug+uh

≤ pi ≤ p′i. Suppose i ∈ D′. Then by
Lemma 6, i ∈ D. Then D′ ⊂ D.

From equation (9), every j ∈ I satisfies

V1(γ, η, p
′j)− V0(p

′j) ≤ V1(γ, η, p
j)− V0(p

j).

Then

W (γ, η,p′)−W (0.5, 0.5,p′) =
∑
j∈D

max
{
V1(γ, η, p

′j)− V0(p
′j), 0

}
≤

∑
j∈D

max
{
V1(γ, η, p

j)− V0(p
j), 0

}
= W (γ, η,p)−W (0.5, 0.5,p),

as desired. ■

In other words, as students become more confident, the set of participating students
srhinks and the welfare gain from education decreases.

4.2 Changes in technology

Consider changes in technology reflected through changes in the ex post productivity
u(ω, a).

Corollary 5. Let the belief vector p be given. Suppose (γ∗, η∗) ∈ ΘD∗ is optimal when
the mismatch costs are ug and uh. Suppose (γ′, η′) ∈ ΘD∗ is optimal when the mismatch
costs are u′g and u′h. Then the following statements are equivalent:

(a)
ug
uh

>
u′g
u′h

,

(b) γ∗ > γ′, and
(c) η∗ < η′.

22



Proof. Theorem 2 implies that (γ∗, η∗) = F (pD∗) and (γ′, η′) = F
(
pD∗

u′g
u′h

uh
ug

)
. Then by

Lemma 5, (a), (b), and (c) are equivalent. ■

This corollary means that the education should become more hunting-encouraging
if and only if the technological change widens the mismatch cost of talented hunters.
Consider a technological innovation that improves the productivity of talented hunters
(ωh) choosing the hunting career (ah) but not others: for example, an introduction of a
sophisticated weapon. Then the education should be more hunting-encouraging.

Note that this corollary assumes that the optimal educational structure remains the
same before and after the technological change. As in the case of changes in beliefs, this
assumption is reasonable if (a) the technological change is sufficiently small or (b) the
educational attention budget (B) is sufficiently large.

4.3 Change in the cost of effort

An increase in the students’ cost of effort shrinks the participation set and the welfare
gain from education. Write the student welfare function as

W (γ, η,p, δ) =
∑
i∈I

max
{
V0(p

i), V1(p
i, γ, η)− δ

}
. (15)

Corollary 6. Let the belief vector p be given. Let (γ, η) ∈ Θ be given. Suppose D

and D′ are the participant sets when the costs of participation are δ and δ′, respectively.
Suppose δ′ > δ. Then
(a) D′ ⊂ D, and
(b) W (γ, η,p, δ′)−W (0.5, 0.5,p, δ′) < W (γ, η,p, δ)−W (0.5, 0.5,p, δ).

Proof. Lemma 6 implies (a). Equation (15) implies (b). ■

5 Extension

The benchmark model examined so far yields readily interpretable properties. However,
its assumptions may be too strong in practice, for example, in an empirical application.
First, students’ educational participation and career decisions in the benchmark model
are deterministic and do not allow errors. Second, students in the benchmark model do
not learn anything that directly improves their productivity. Third, their prior beliefs
are perfectly observable to an econometrician. Fourth, their ability and career choices
are binary. This section considers extensions of the model in these four directions.
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5.1 Stochastic choice

Consider the following modifications to allow students’ choices to be stochastic. In
the educational choice stage, a student i ∈ I with prior belief pi participates under
educational structure (γ, η) ∈ Θ if and only if

V1(p
i, γ, η)− δ + νi1 > V0(p

i) + νi0,

where νi0 and νi1 are random variables. The interpretation is that these random vari-
ables represent mistakes in students’ choices or factors other than their beliefs and the
educational structure. Following the earlier definitions, the functions V1 and V0 are the
ex ante productivity when a student with belief p chooses to participate under (γ, η)

and does not, respectively. Then a student i’s probability of participation given a prior
belief pi is

Pr(di = 1|pi) = 1− Pr
[
νi1 − νi0 ≤ V0(p

i)− V1(p
i, γ, η) + δ

]
= 1−G

[
V0(p

i)− V1(p
i, γ, η) + δ

]
,

where G is the cumulative distribution function of the random variable νi1 − νi0. For ex-
ample, if both νi1 and νi0 are independently and identically distributed as Gumbel(0, βd),
the cdf G is the logit function:

G(v) =
ev/βd

1 + ev/βd
.

In the career choice stage, a student i ∈ I with a posterior belief qi chooses the
hunting career if and only if

Ug(q
i) + νig ≤ Uh(q

i) + νih,

where νig and νih are random variables. The interpretation is the same as those for νi0 and
νi1. As in the benchmark model, the functions Ug and Uh are the expected productivity
of choosing gathering and hunting careers given posterior belief q:

Ug(q) = (1− q)u(ωg, ag) + qu(ωh, ag), and
Uh(q) = (1− q)u(ωg, ah) + qu(ωh, ah).

Then a student i’s probability of choosing the hunting career given a posterior belief qi

is

Pr(ai = ah|qi) = Pr
[
νig − νih ≤ Uh(q

i)− Ug(q
i)
]

= H
[
Uh(q

i)− Ug(q
i)
]
,

where H denotes the cumulative distribution function of the random variable νig − νih.
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For example, if νig and νih are independently and identically distributed as Gumbel(0, βa),
H(v) = ev/βa

1+ev/βa
.

With these choice probabilities, the function V0 takes values

V0(p) = [1− Pr(ah|p)] · Ug(p) + Pr(ah|p) · Uh(p).

Recall that Qγ,η(p, s) is the posterior belief function whose value is the posterior belief
after receiving signal s when the prior belief is p. The function V1 takes values

V1(p, γ, η) = Pr(sg|p, γ, η)V0
(
Qγ,η(p, sg)

)
+ Pr(sh|p, γ, η)V0

(
Qγ,η(p, sh)

)
.

The ex ante productivity of a student with belief p before making the participation
decision is

V (p, γ, η) = [1− Pr(d = 1|p, γ, η)]V0(p) + Pr(d = 1|p, γ, η) [V1(p, γ, η)− δ] .

The student welfare function is

W (γ, η) =
∑
i∈I

V (pi, γ, η).

An educational structure (γ∗, η∗) is optimal if it maximizesW (γ, η) subject to (γ, η) ∈ Θ̂.
In general, it is difficult to characterize the optimal design of education in this

stochastic choice setting. However, there is a special case in which the optimum is
the same as in the benchmark model.

Definition. The extended model with stochastic choice features fixed probabilities of
mistakes if, for some for some α, β ∈ (0, 0.5)

G(v) =


0 if v < −M
α if −M ≤ v < 0,

1 otherwise,
and H(v) =


0 if v < −M
β if −M ≤ v < 0,

1 otherwise,

where M is a constant greater than uguh
ug+uh

. A set D ⊂ I is an expected participant set
under (γ, η) ∈ Θ if

D =
{
i ∈ I|V1(pi, γ, η)− δ > V0(p

i)
}
.

Let ΘD denote the set of educational structures whose expected participant set is D.
An educational structure (γ, η) ∈ ΘD is nontrivial if D is nonempty.

Theorem 4. Theorem 1 holds in the extended model with fixed probabilities of mistakes.
That is, suppose (γ∗, η∗) ∈ Θ̂ is nontrivial. Then (γ∗, η∗) is optimal if and only if its
expected participant set D∗ satisfies (γ∗, η∗) = F (p̄D∗) and

D∗ ∈ argmax
D∈P(I)

W
(
F (p̄D)

)
.
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Proof. Fix a nontrivial educational structure (γ, η) ∈ Θ. Observe that

V (p, γ, η) = max
{
(1− α)[V1(p, γ, η)− δ] + αV0(p),

α[V1(p, γ, η)− δ] + (1− α)V0(p)
}
.

We have
V1(p, γ, η) =

∑
ω∈Ω

∑
s∈S

∑
a∈A

Pr(ω) Pr(s |ω) Pr(a | s)u(ω, a).

LetD denote the expected participant set under (γ, η). By Lemma 7,M > V1(p, γ, η)−
V0(p) − δ for all p ∈ (0, 1) and for all (γ, η) ∈ Θ. Then for all i ∈ D, Pr(ag|sg) =

Pr(ah|sh) = 1− β and Pr(ah|sg) = Pr(ag|sh) = β, so

V1(p
i, γ, η) = pi

[
γ
(
(1− β)ugg + βugh

)
+ (1− γ)

(
βugg + (1− β)ugh

)]
+ (1− pi)

[
(1− η)

(
(1− β)uhg + βuhh

)
+ η

(
βuhg + (1− β)uhh

)]
,

where ugg = u(ωg, ag), ugh = u(ωg, ah), uhg = u(ωh, ag), and uhh = u(ωh, ah). Then for
all i ∈ D,

∂

∂γ
V1(p

i, γ, η) = (1− 2β)(1− p)ug,

∂

∂η
V1(p

i, γ, η) = (1− 2β)puh.

For those not in the expected participant set under (γ, η), either Pr(ag|sg) = Pr(ag|sh) =
1− β or Pr(ah|sg) = Pr(ah|sh) = 1− β, so

V1(p
i, γ, η) = V0(p

i).

Then

V (pi, γ, η) = (1− 2α) ·max
{
V1(p

i, γ, η)− V0(p
i)− δ, 0

}
+ V0(p

i),

thus
W (γ, η) = (1− 2α) ·

∑
i∈D

[V1(p, γ, η)− V0(p)− δ] +
∑
i∈I

V0(p
i).

Lemmas 1–3 hold in the extended model from the above equation. Therefore, wherever
W is differentiable, we have

∂
∂γ
W (γ, η)

∂
∂η
W (γ, η)

=

∑
i∈D

∂
∂γ
V1(γ, η)∑

i∈D
∂
∂η
V1(γ, η)

=

∑
i∈D(1− pi)ug∑

i∈D p
iuh

=
1− pD
pD

ug
uh
.

So Lemma 4 holds in the extended model. The rest follows from the same proof as in
Theorem 1. ■

26



O 1

Belief on Being a Talented Hunter

Expected productivity

Mistake-adjusted expected productivity

q

Figure 12: Fixed probability of mistakes shrinks expected mismatch costs
proportionally

Corollary 7. Theorem 2 holds in the extended model with fixed probabilities of mistakes.
That is, suppose (γ∗, η∗) ∈ ΘD∗ is nontrivial and optimal. Then pD∗ = ug

ug+uh
implies

γ∗ = η∗, pD∗ <
ug

ug+uh
implies γ∗ > η∗, and pD∗ >

ug
ug+uh

implies γ∗ < η∗.

Proof. From Theorem 4, pD∗ =
ug

ug+uh
implies γ∗ = η∗. Observe that the first component

of F is decreasing in p and the second component of F (p) is increasing in p. Then
pD∗ <

ug
ug+uh

implies γ∗ > η∗, and pD∗ >
ug

ug+uh
implies γ∗ < η∗. ■

This corollary mean that, with a fixed probability of mistakes, an optimal educational
structure encourages a career in which only the expected participants are more confident
on average. By expected participants, we mean those who intend to participate, not
those who end up participating by mistake. The reason is that the non-expected
participants do not value the information from educational signals in the first place.
Furthermore, the same belief threshold ug

ug+uh
determines whether a set of expected par-

ticipants are confident in the gathering or the hunting career. The result arises because
the fixed probability of mistakes shrinks the expected mismatch costs proportionally.
Figure 12 illustrates this point.

5.2 Human capital accumulation

Next, we consider an extended model with human capital accumulation. That is, educa-
tion not only informs students about their talents but also directly increases students’
ex post productivity.

Define the human capital accumulation function as ψ : Ω×A −→ R that maps (ω, a)
to the increase in the ex post productivity for a participating student with talent ω and
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career a. Then a student’s ex post payoff is

u(ω, a) + [ψ(ω, a)− δ]d,

where d is the indicator of participation. Let ψg denote ψ(ωg, ag)−ψ(ωg, ah) and let ψh
denote ψ(ωh, ah)−ψ(ωh, ag). Let us maintain our earlier assumption that the mismatch
costs are positive: ug > 0 and uh > 0. Assume also that ug + ψg > 0 and uh + ψh > 0,
ensuring that the costs of mismatches between talents and careers remain positive after
students gain additional human capital. Let Fψ : (0, 1) −→ Θ̂ map p to the solution
(γ, η) to the system of equations

∂
∂γ
C(γ, η)

∂
∂η
C(γ, η)

=
1− p

p

ug + ψg
uh + ψh

and C(γ, η) = B.

Definition. A participating student is a complier if Pr(ag|sg) = Pr(ah|sh) = 1. A
participating student is a always-gatherer if Pr(ag|sg) = Pr(ag|sh) = 1. A participating
student is an always-hunter if Pr(ah|sg) = Pr(ah|sh) = 1.

In the benchmark model without human capital accumulation, every participant
was a complier. However, with human capital accumulation, distinguishing compliers,
always-gatherers, and always-hunters is important because students participate in edu-
cation for different reasons. Some may value the signals about their talents and follow
the recommended careers (thus called compliers). Others may be certain that they will
pursue gathering or hunting regardless of the signals they receive (thus called always-
gatherers or always-hunters, respectively), yet still be willing to participate to increase
their future productivity.

Say that the compliant participant set of an educational structure (γ, η) is the set
of participants who are compliers under (γ, η). Let ΘD denote the set of educational
structures under which the compliant participant set is D. An educational structure
(γ, η) ∈ ΘD is nontrivial if D is nonempty.

Theorem 5. Theorem 1 holds in the extended model with human capital accumulation
if F is replaced with Fψ. That is, suppose (γ∗, η∗) ∈ Θ̂ is nontrivial. Then (γ∗, η∗) is
optimal if and only if its compliant participant set D∗ satisfies (γ∗, η∗) = Fψ (p̄D∗) and

D∗ ∈ argmax
D∈P(I)

W
(
Fψ(p̄D)

)
.

Proof. Let (γ, η) ∈ ΘD be given. Let Dg denote the set of participating always-gatherers
under (γ, η). Let Dh denote the set of participating always-hunters under (γ, η). We
have

V (p, γ, η) = max{V1(p, γ, η)− δ, V0(p)}.

We have
V1(p, γ, η) =

∑
ω∈Ω

∑
s∈S

∑
a∈A

Pr(ω) Pr(s |ω) Pr(a | s)u(ω, a).
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For all i ∈ D, Pr(ag|sg) = Pr(ah|sh) = 1. Then for all i ∈ D,

V1(p, γ, η) = (1− p)
[
γ(ugg + ψgg) + (1− γ)(ugh + ψgh)

]
+ p

[
(1− η)(uhg + ψhg) + η(uhh + ψhh)

]
,

denoting ugh = u(ωg, ah), ψgh = ψ(ωg, ah), and so on. Then for all i ∈ D,

∂

∂γ
V1(p

i, γ, η) = (1− p)(ug + ψg),

∂

∂η
V1(p

i, γ, η) = p(uh + ψh).

In contrast, Pr(ag|sg) = Pr(ag|sh) = 1 for all i ∈ Dg and Pr(ah|sg) = Pr(ah|sh) = 1

for all i ∈ Dh. Writing Ψg(p) = (1 − p)ψ(ωg, ag) + pψ(ωh, ag) and Ψh(p) = (1 −
p)ψ(ωg, ah) + pψ(ωh, ah), we have

V1(p, γ, η) = V0(p) + Ψg(p) for all i ∈ Dg, and
V1(p, γ, η) = V0(p) + Ψh(p) for all i ∈ Dh.

Then

W (γ, η) =
∑
i∈D

V1(p
i, γ, η) +

∑
i∈Dg

[V0(p) + Ψg(p)] +
∑
i∈Dh

[V0(p) + Ψh(p)]

+
∑

i∈I\(D∪Dg∪Dh)

V0(p).

Lemmas 1–3 hold in the extended model from the above equation. Therefore, wherever
W is differentiable, we have

∂
∂γ
W (γ, η)

∂
∂η
W (γ, η)

=

∑
i∈D

∂
∂γ
V1(γ, η)∑

i∈D
∂
∂η
V1(γ, η)

=

∑
i∈D(1− pi)(ug + ψg)∑

i∈D p
i(uh + ψh)

=
1− pD
pD

ug + ψg
uh + ψh

.

So Lemma 4 holds in the extended model. The rest follows from the same proof as in
Theorem 1. ■

Corollary 8. Theorem 2 holds in the extended model with human capital accumulation
if ug

ug+uh
is replaced with ug+ψg

ug+ψg+uh+ψh
. That is, suppose (γ∗, η∗) ∈ ΘD∗ is nontrivial and

optimal. Then pD∗ = ug+ψg

ug+ψg+uh+ψh
implies γ∗ = η∗, pD∗ <

ug+ψg

ug+ψg+uh+ψh
implies γ∗ > η∗,

and pD∗ >
ug+ψg

ug+ψg+uh+ψh
implies γ∗ < η∗.

Proof. From Theorem 5, pD∗ = ug+ψg

ug+ψg+uh+ψh
implies γ∗ = η∗. Observe that the first

component of Fψ(p) is decreasing in p and the second component of Fψ(p) is increasing
in p. Then pD∗ <

ug+ψg

ug+ψg+uh+ψh
implies γ∗ > η∗, and pD∗ >

ug+ψg

ug+ψg+uh+ψh
implies γ∗ < η∗.

■
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Figure 13: Human capital accumulation changes the mismatch costs for
participants

This corollary means that, with human capital accumulation, an optimal educational
structure encourages a career in which only the compliant participants are confident on
average. This result is due to the fact that always-gatherers and always-hunters would
participate in education only because of its human capital value, not its information
value. Meanwhile, the threshold belief level adjusts to ug+ψg

ug+ψg+uh+ψh
because the direct

changes to ex-post productivity change the mismatch costs for all participants. Figure 13
illustrates this point. The three linear pieces in the participants’ expected productivity
(in red) represent the expected productivity of always-gatherers, compliers, and always-
hunters.

5.3 Imperfectly observed beliefs

The next extension addresses a practical concern that an econometrician typically does
not observe students’ beliefs as probabilities but rather observe them on some arbitrary
scale. For example, many survey data report respondents answers as an index or
standardized scores.

Suppose students i ∈ I = {1, . . . , n} are randomly sampled from a population.
Let us maintain that the prior belief of each student i ∈ I is pi ∈ (0, 1) and his
participation decision is di ∈ {0, 1}. If he does not participate, he receives no signal. If he
participates, he receives a signal si ∈ {sg, sh} with conditional probabilities P (sg|ωg) = γ

and P (sh|ωh) = η. The posterior belief satisfies

qi =

{
pi, if di = 0

Qγ,η(p
i, s) if di = 1.
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From Bayes rule, the posterior belief function Q takes values

Qγ,η(p
i, sg) =

(1− η)pi

γ(1− pi) + (1− η)pi
, and

Qγ,η(p
i, sh) =

ηpi

(1− γ)(1− pi) + ηpi
.

Suppose an econometrician does not observe these beliefs but only observes their stan-
dardized values. That is, the econometrician observes the prior belief scores x1, x2, . . . , xn
and the posterior belief scores z1, z2, . . . , zn, where, for every student i ∈ I,

xi =
pi − µp
σp

, (16)

zi =
qi − µq
σq

. (17)

The constants µp and µq are the means of prior and posterior beliefs of all students and
σp and σq are their standard deviations.

Let E[xi | di = 1] and E[zi | di = 1] denote the averages of xi and zi among partic-
ipants. Similarly, let E[xi | di = 0] and E[zi | di = 0] denote the averages of xi and zi
among non-participants.

Definition. The difference-in-differences in belief scores between participants and non-
participants is

ϕ =
(
E[zi | di = 1]− E[xi | di = 1]

)
−
(
E[zi | di = 0]− E[xi | di = 0]

)
. (18)

Theorem 6. Suppose E[xi | di = 1] > E[xi | di = 0]. Then the educational program is
informative if and only if ϕ < 0. Suppose E[xi | di = 1] < E[xi | di = 0]. Then the
educational program is informative if and only if ϕ > 0.

Proof. Observe that qi = pi + ϵi where

ϵi =


0, if di = 0

(1− η)pi

γ(1− pi) + (1− η)pi
− pi, if di = 1 and si = sg, and

ηpi

(1− γ)(1− pi) + ηpi
− pi, if di = 1 and s = sh.

Then E[ϵi|pi] = 0, thus µq = µp and σ2
q = σ2

p + Var(ϵ). Also, Var(ϵ) > 0 if and only if
γ + η > 1. So the educational program is informative if and only if σq > σp.

Moreover, from equations (16)–(17) and the fact that µq = µp, we have

zi =
σp
σq
xi +

ϵi
σq
.
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By substituting for zi into (18), we obtain

ϕ =

(
σp
σq

− 1

)(
E[xi | di = 1]− E[xi | di = 0]

)
.

Suppose E[xi | di = 1] > E[xi | di = 0]. Then the condition σq > σp is equivalent to
the condition ϕ < 0. Therefore, the educational program is informative if and only if
ϕ < 0. Similarly, suppose E[xi | di = 1] < E[xi | di = 0]. Then the condition σq > σp is
equivalent to the condition ϕ < 0. Therefore, the educational program is informative if
and only if ϕ > 0. ■

This theorem means that the difference-in-differences in belief scores between par-
ticipants and non-participants only tells us how the educational structure is informative
about students’ talents. It does not tell us whether students become more confident in
one direction or not. The reason is that participants’ beliefs become more dispersed if and
only if the educational structure is informative. The participants’ average posterior belief
remains at the average prior belief, by Bayes plausibility. Therefore, if the educational
structure is informative, the greater dispersion shrinks the participants’ posterior belief
scores toward zero. If the educational structure is uninformative, the participants’
posterior belief scores remain at the prior belief scores.

With a dataset of belief scores xi and zi, define variables yi0 = xi, yi1 = zi, post0 = 0,
and post1 = 1 for all i ∈ I. We can estimate the coefficients of the linear regression

yit = β0 + β1 di + β2 postt + ϕ di × postt + εit, (19)

where the error term ε satisfies E[εit|di, postt] = 0. Then the coefficient ϕ from this equa-
tion satisfies the definition of the difference-in-differences, and is consistently estimated
with the ordinary least squares (OLS) estimator.

Table 1 shows an example of such difference-in-difference linear regression estimates.
The High School Longitudinal Study (HSLS) of 2009 contains data on students’ self-
efficacy in sciences and maths in standard scores in their 9th and 12th grades. Self-
efficacy refers to the tendency to agree that the respondent is confident about doing well
in exams, understanding textbooks, mastering the skills, and doing the required assign-
ments in the subject. The dataset also contains information on students’ coursework in
advanced sciecne or math classes during high school. The estimate of the difference-in-
differences in science self-efficacy scores is significantly negative, implying that advanced
science classes in high school are informative about students’ own science ability. In
contrast, the same estimate in math self-efficacy score does not significantly differ from
zero, implying that advanced math classes in high school are not informative about
students’ own math ability. Figure 1 from the Introduction is a graphical representation
of the estimated regression of science self-efficacy.
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Table 1: Advanced math and science classes and students’ self-efficacy scores: difference-
in-differences regressions

Dependent variable: Standard score in

Independent variables Science Self-efficacy Math Self-efficacy

Intercept -0.026*** -0.005
(0.009) (0.009)

Advanced science participation 0.499***
(0.020)

Advanced math participation 0.458***
(0.019)

Post 0.041*** -0.018*
(0.011) (0.010)

Advanced science participation × Post -0.228***
(0.025)

Advanced math participation × Post 0.013
(0.022)

R-squared 0.024 0.031
Observations per student 2 2
Number of participants 2,587 2,702
Number of non-participants 11,860 13,154

Note: This table shows the ordinary least squares (OLS) estimates of the difference-in-
differences regression (19) using the public-use dataset of the High School Longitudinal
Study (HSLS) of 2009. Science self-efficacy and math self-efficacy refers to the tendency
to agree that the respondent is confident about doing well in exams, understanding
textbooks, mastering the skills, and doing the required assignments in the sciences and maths,
respectively. Advanced science participation equals 1 if a student participated in at least one
Advanced Placement science class and equals 0 otherwise. Advanced science participation
equals 1 if a student participated in at least one Advanced Placement science math and
equals 0 otherwise. Post equals 0 if the student was in 9th grade and equals 1 if the student
was in 12th grade. Numbers in paranthese are robust standard errors clustered for each
student. Stars *, **, and *** indicate statistical significance at 10, 5, and 1 percent levels.
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5.4 Many talents and many careers

The final extension in this subsection allows more than two talents and more than
two careers. It is difficult to characterize the optimal design of education with many
talents and many careers. However, we can continue to analyze the value of education:
in particular, how the value of education can be separated into ex ante and ex post
components. This extension aligns the model more closely with the empirical literature
on the returns to multiple educational field and occupational choices, for example,
Altonji, Arcidiacono, and Maurel (2016) and Arcidiacono et al. (2020).

Let the space of talents (states) Ω be any finite set {ω1, ω2, . . . , ωm}. Let the set
of careers (actions) A be any finite set {a1, a2, . . . , ak}. Each student i has a publicly
known rational belief pi ∈ ∆(Ω). The ex post productivity function is u : Ω× A −→ R.
The human capital accumulation function is ψ : Ω×A −→ R. An individual i’s ex post
payoff is

u(ωi, ai) + [ψ(ωi, ai)− δ]di,

where δ ≥ 0 is the cost of participation and d is the indicator of a student’s participation.
An individual i’s outcome is

yi = u(ωi, ai) + ψ(ωi, ai)di + εi,

where εi is an independently and identically distributed error. The educational signal
space is S = {s1, s2, . . . , sk}. Education is a signal with a conditional probability π :

Ω −→ ∆(S). Educational structure refers to the conditional probability π.
The expected productivity of choosing a career a without human capital accumula-

tion is
Ua(p) =

∑
ω∈Ω

p(ω)u(ω, a).

The expected human capital accumulation of choosing a career a is

Ψa(p) =
∑
ω∈Ω

p(ω)ψ(ω, a).

For all a ∈ A, let νa be an independently and identically distributed random variable.
A student with a participation decision d and a posterior belief q chooses a career a if

Ua(q) + Ψa(q)d+ νa ≥ Ua′(q) + Ψa(q)d+ νa′ . (20)

Let µa(q) denote the probability of the event (20) conditional on q and d = 0. Let µψa (q)
denote the probability of the event (20) conditional on q and d = 1. A non-participant’s
expected productivity is

V0(p) =
∑
a∈A

µa(p)Ua(p).
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A participant’s expected productivity given a posterior belief q ∈ ∆(Ω) is

V ψ
0 (q) =

∑
a∈A

µψa (q) [Ua(q) + Ψa(q)] .

Let Qπ(p, s) denote the posterior belief for a student with belief p who receives a signal
s ∈ S from an educational structure π. A participant’s expected productivity is

V ψ
1 (p, π) = E

[
V ψ
0

(
Qπ(p, s)

) ∣∣∣ p] ,
where the expectation is taken with respect to the possible realizations of the signal s.

The individual treatment effect for student i is

τ i = E[yi|i, di = 1]− E[yi|i, di = 0].

The individual conditional treatment effect for student i given a career a is

τ ia = E[yi|i, di = 1, ai = a]− E[yi|i, di = 0, ai = a].

Theorem 7. The individual treatment effect satisfies

τ i =
∑
a∈A

µa(p
i)τ ia + V ψ

1 (pi, π)− V ψ
0 (pi).

Proof. We have

E[yi|i, di = 1] =
∑
a∈A

∑
s∈S

Pr(a, s|i, di = 1)E[yi|i, di = 1, ai = a, si = s]

=
∑
s∈S

Pr(s|i, di = 1)V ψ
0

(
Qπ(p

i, s)
)

= V ψ
1

(
pi, π

)
,

where the second equality uses the fact that Pr(a, s|i, di = 1) = Pr(a|i, di = 1, si =

s) Pr(s|i, di = 1) and the definition of V ψ
0 . Also,

E[yi|i, di = 0] =
∑
a∈A

Pr(a|i, di = 0)E[yi|i, di = 0, ai = a].

Then from the definition of τ i, we have

τ i = V ψ
1 (pi, π)−

∑
a∈A

µa(p
i)E[yi|i, di = 0, ai = a]
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Then by subtracting and adding back the same terms, we can write

τ i = V ψ
1 (pi, π)−

∑
a∈A

µa(p
i)E[yi|i, di = 1, ai = a]

+
∑
a∈A

µa(p
i)E[yi|i, di = 1, ai = a]−

∑
a∈A

µa(p
i)E[yi|i, di = 0, ai = a],

(21)

By the definition of Ua and Ψa, E[yi|i, di = 1, ai = a] = Ua(p
i)+Ψa(p

i). Then the second
term of (21) is V ψ

0 (p). By the definition of τ ia, the sum of the third and fourth terms of
(21) is

∑
a∈A µa(p

i)τ ia. Thus, we have

τ i =
∑
a∈A

µa(p
i)τ ia + V ψ

1 (pi, π)− V ψ
0 (pi),

as desired. ■

This theorem means that the individual treatment effect is decomposed into the sum
of individual conditional treatment effects across all careers and the value of information
from the educational signal. The first component represents the human capital accumu-
lation from education (the ex post gains), whereas the second component represents the
self-exploration value of education (the ex ante gains).

Define the (local) average treatment effect for any set D ⊂ I of students as

ATED = E[τ i | i ∈ D],

a simple average of the treatment effect τ i over all i ∈ D. Define the (local) conditional
average treatment effect for a subset D of choosing a career a as

CATED(a) = E[τ ia | i ∈ D],

a simple average of the conditional treatment effect τ ia given the career a over all i ∈ D.

Corollary 9. Suppose that µa(pi) and τ ia are uncorrelated for a set D of students. Then

ATED =
∑
a∈A

E[µa(pi)] · CATED(a) + E
[
V ψ
1 (pi, π)− V ψ

0 (pi)
∣∣∣ i ∈ D

]
.

This corollary suggests that the (local) average value of self-exploration from educa-
tion can be estimated as a residual. It is the difference between the aggregate return to
education (the average treatment effect) and the return to education that controls for
occupational choices (a weighted average of the conditional average treatment effects).
Therefore, one can test the significance of the self-exploration value of education by
estimating the size of this residual.

For example, Lemieux (2014) uses Canadian survey and census data of about 11,000
respondents to estimate the return to college education (a Bachelor’s degree) on earnings
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with (i.e. CATE) and without (i.e. ATE) occupational controls. Estimating that the
ATE is about 55 percent and the weighted average of CATE’s across 24 occupational
categories is about 31 percent, he concludes that the difference of about 24 percentage
points is due to the better occupational choices rather than direct increase in produc-
tivity.

6 Empirical Application: Advanced Science Education

To illustrate an application of the self-exploration model of education, I estimate the
value and design of advanced science classes in U.S. high schools.

Advanced Placement (AP) classes—or International Baccalaureate (IB), their inter-
national equivalent—are an important part of American high school education. They
are college-level classes available to participating high schools in various subjects such
as sciences (physics, chemistry, biology, and environmental science), math (calculus and
statistics), social studies, and English. The program is popular because it lets advanced
students pursue a subject more deeply and earn college course credit. 38 percent of U.S.
public high school graduates in the class of 2020 have participated in at least one AP
class (College Board, 2020).

AP science classes are also an education policy tool because of its potential role in
encouraging students into sciences. For example, former President George W. Bush
(2006) supported expanding the AP science courses for this reason:

Third, we need to encourage children to take more math and science, and to make sure those
courses are rigorous enough to compete with other nations. [...] Tonight I propose to train
70,000 high school teachers to lead Advanced Placement courses in math and science, bring
30,000 math and science professionals to teach in classrooms, and give early help to students
who struggle with math, so they have a better chance at good, high-wage jobs. [...]

My estimates of high school students’ confidence in the sciences and the educational
structure of the AP science classes suggest that the average value of providing these
classes are about a 5-percent increase in students’ earnings 8 years after their high
school graduation. However, the estimates suggest that the classes may be too science-
encouraging relative to the students’ comparative advantage. With the opposite, science-
discouraging design, the value of these classes would increase by 7 percentage points.

6.1 Data

I use the public-use datasets of the High School Longitudinal Study (HSLS) and the
Education Longitudinal Study (ELS). First, the HSLS contains survey and transcript
data following a nationally representative sample of 23,503 students who were 9th graders
in 2009, from 944 high schools across 10 states in the United States. The survey dataset
contains observations from three periods: years 2009, 2012, and 2016. I use the data
on the students’ initial self-efficacy standard scores xi in science, their participation
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decisions di into any AP science classes, and their decisions ai to pursue a STEM (science,
technology, engineering, and math, including computer science; hereafter science) major
in college. The variable di equals 1 if the student participated in at least one AP science
class, and 0 otherwise. The variable ai equals 1 if the student indicated at the end of
high school that he will pursue science major in college. I only use the data of students
who have attended some 4-year colleges by the year 2016. There are 8,294 such students,
which constitute about 35% of all respondents. After dropping observations with missing
initial self-efficacy scores, there are 6,638 observations of students in the baseline sample.

Second, I use both the HSLS and the ELS3 to obtain the predicted values of students’
annual log earnings yit as of 8 years after their graduation from high school.4 The
predicted log earnings correspond to students’ ex post productivity in the model. I
compute the predicted values on two estimated regressions: (a) a Logit regression on
the binary outcome of being employed (having any earnings) and (b) an OLS regression
on the actual earnings. The explanatory variables are the students’ gender, race,
parental education, college selectivity, completed college major, and college grades.
Therefore, the predicted values from these regressions reflect the predictions based on
the information at the time of completing college degrees. Appendix Table A.1 shows
the estimated coefficients of these regressions. The pseudo-R2 and the adjusted R2 for
the two regressions are about 5 percent and 10 percent, respectively. I compute the
predicted earnings yi for my sample as

yi =Pr( employedi | controlsi ) · E[ log(earningsi) | controlsi ]
+
(
1− Pr( employedi | controlsi )

)
· log(100),

(22)

where i represents a respondent from the HSLS sample, Pr(employedi|controlsi) is the
predicted probability of i having some reported earnings, and E[log(earningsi)|controlsi]
is i’s predicted log earnings conditional on being employed. The predicted probability
of i having no reported is 1 − Pr(employedi|controlsi). The term with log(100) means
that I assume that the respondents with no reported earnings had an annual earnings of
100 U.S. dollars.5 Thus, the resulting predicted earnings measure yi does not condition
on i being employed; large variations in yi reflect the probabilities that respondents are
not matched in the labor market.

Table 2 shows the summary statistics of these data. The 6,638 students in the baseline
sample—all of the 4-year-college-attending respondents—had an average initial self-
efficacy in sciences around 0.2. Since the variable is standardized in the total population

3Similar to HSLS but conducted earlier, the Education Longitudinal Study (ELS) contains survey
and transcript data following a nationally representative sample of 15,362 high school students who
were 10th graders in 2002.

4The reason for this step is that the most recent data of the HSLS are from year 2016. The
earnings data, in particular, would represent the respondents’ income in year 2015, only 3 years after
the respondents’ high school graduation. This means that most students’ earnings would be from
part-time jobs and would not necessarily represent their long-run productivity.

5The 100 dollars is the observed minimum of all annual earnings reported in the Education
Longitudinal Study (ELS).
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Table 2: Summary of beliefs, choices, and outcomes

Initial Self-Efficacy

in Science (xi)

Predicted Log

Earnings (yi)

Sample Obs Mean Std Dev Mean Std Dev

All 6,638 0.206 (0.960) 9.106 (0.899)

Non-participant, non-science major 3,892 0.030 (0.949) 9.116 (0.841)

Non-participant, science major 857 0.355 (0.928) 9.081 (1.028)

Participant, non-science major 1,104 0.376 (0.903) 9.172 (0.853)

Participant, science major 785 0.676 (0.896) 8.995 (1.065)

Female 3,681 0.068 (0.959) 9.061 (0.877)

Non-participant, non-science major 2,296 -0.083 (0.947) 9.102 (0.825)

Non-participant, science major 336 0.224 (0.899) 8.761 (1.019)

Participant, non-science major 700 0.265 (0.927) 9.201 (0.814)

Participant, science major 349 0.516 (0.926) 8.797 (1.049)

Male 2,957 0.377 (0.934) 9.163 (0.923)

Non-participant, non-science major 1,596 0.192 (0.930) 9.135 (0.862)

Non-participant, science major 521 0.439 (0.938) 9.288 (0.981)

Participant, non-science major 404 0.568 (0.827) 9.123 (0.915)

Participant, science major 436 0.805 (0.850) 9.153 (1.052)

Note: The summary statistics are from a baseline sample of 6,638 high school students who were 9th
graders in 2009 and enrolled in 4-year colleges during the period 2012-2016. The sample uses the public-
use dataset of High School Longitudinal Study (HSLS). Participants are students who have taken at
least one Advanced Placement (AP) science classes during high school (that is, di = 1). Science majors
are students who considered majoring in a STEM field most seriously when first entering college (that
is, ai = 1). Initial self-efficacy in science (xi) measures the tendency to agree that the respondent
is confident about doing well in exams, understanding textbooks, mastering the skills, and doing the
required assignments in the sciences and maths, respectively. The measure is standardized to have zero
mean and unit standard deviation for the total population of students. Predicted log earnings (yi) are
predicted values of log earnings 8 years after high school graduation. They are based on an estimated
regression of log earnings on gender, race, parental education, college major, college selectivity, and
college grade point average (GPA) using the public-use data of the Education Longitudinal Study
(ELS).
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of students, this statistic means that the 9th grade students who later attended 4-year
colleges were on average more confident in the sciences than others. Their mean predicted
log earnings is 9.1, about 8,955 U.S. dollars. In other words, an average student in the
sample faced an expected earnings at this level, taking into account the probability that
they may not be employed.

Each of the 6,638 students in the sample belongs to one of four groups depending on
their participation in AP science classes and their major choice: (1) a non-participant
and a non-science major, (2) a non-participant and a science major, (3) a participant
and a non-science major, and (4) a participant and a science major. About 28% partic-
ipated in some Advanced Placement science classes, and about 71% of the participants
eventually chose to pursue a science major when they first entered college. In contrast,
among the non-participants, much smaller percentage, 22%, chose to pursue a science
major. The (3) participant-and-non-science-major group had the highest predicted log
earnings, followed by (1), (2), and (4).

We see a roughly similar distribution of choices in the female and male subsamples:
AP science participants had much higher percentage of students who later chose to pur-
sue science majors. However, we also see remarkable differences. The female subsample
had much lower confidence in the sciences than the male subsample for all of the four
groups. The female subsample also had lower predicted earnings for all of the four
groups, and did so especially for the two groups that chose to pursue science majors.

6.2 Estimation

I infer the parameters of the extended model using maximum likelihood estimation.
The benchmark model analyzed in Sections 2–3 are not adequate for estimation because
its predictions are deterministic, whereas students’ decisions in the data are noisy.
The extended model for estimation includes three additional components introduced
in Section 5: stochastic choice, human capital accumulation, and imperfectly observed
beliefs. It maintains the assumption of binary states (talent in non-science or science)
and binary actions (decisions to pursue a non-science major or a science major).

Consider a student i ∈ I while suppressing the index. As a convention, let us
interpret the hunting talent (ωh) and the hunting career (ah) as the science talent and
the choice to pursue a science major in college. Similarly, let us interpret the gathering
talent (ωg) and the gathering career (ag) as the non-science talent and choice to pursue
a non-science major. Let us maintain that the prior belief score x in science satisfies

x =
p− µp
σp

,

where p is the student’s prior belief in science that is unobservable to the econometrician.
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The student’s participation decision follows

d =

{
1, if V ψ

1 (p, γ, η)− δ + ν1 > V0(p) + ν0

0, otherwise,

where V ψ
1 is the expected earnings of a participant with belief under the educational

structure (γ, η) and the human capital accumulation function ψ : Ω × A −→ R. The
error terms ν0 and ν1 are independently and identically distributed as Gumbel(0, βd). A
higher βd means that the errors ν0 and ν1 have greater variance.

The student’s decision to pursue a science major in college follows

a =

{
0, if Ug(q) + νg > Uh(q) + νh

1, otherwise,

by letting ag = 0 and ah = 1. The error terms νg and νh are independently and identically
distributed as Gumbel(0, βa).

Finally, a person’s ex post productivity y, measured in the data as predicted earnings,
is

y = u(ω, a) + [ψ(ω, a)− δ]d+ ε,

where the error term ε is independently and identically distributed as N(0, σε).
Let us denote the parameter vector as

Λ = (µp, σp, γ, η, δ, βd, βa, ugg, ugh, uhg, uhh, ψgg, ψgh, ψhg, ψhh, σε) .

where we denote ugh = u(ωg, ah), ψgh = ψ(ωg, ah), and so on. Let x = (x, d, a, y) denote
the data vector for the student i. The likelihood function for this student is

Li(Λ|x) = fd,a,y|Λ,x(d, a, y |Λ, x) =
∑
ω∈Ω

∑
q∈(0,1)

fd,q,a,ω,y|Λ,x(d, q, a, ω, y|Λ, x), (23)

where fd,a,y|Λ,x denotes the joint probability density function of observed variables (d, a, y).
This joint probability density function is computed by summing fd,q,a,ω,y|Λ,x over the
unobservables ω and q. We have

fd,q,a,ω,y(d, q, a, ω, y|Λ, x)
= Pr(d|Λ, p) · Pr(q|Λ, p, d) · Pr(a|Λ, d, q) · Pr(ω|Λ, q) · f(y|Λ, d, a, ω).
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The first probability term is

Pr(d = 1|Λ, x) =
exp

{
1
βd

[
vψ(µp + σpx, γ, η)− δ

]}
1 + exp

{
1
βd

[
vψ(µp + σpx, γ, η)− δ

]} , and

Pr(d = 0|Λ, x) = 1− Pr(d = 1|Λ, x),

where vψ(p, γ, η) = V ψ
1 (p, γ, η)− V0(p). The second probability term, Pr(q|Λ, p, d) is

Pr(q|λ, p, d) =


1 if d = 0 and q = p

(1− p)γ + p(1− η) if d = 1 and q = Qγ,η(p, sg)

(1− p)(1− γ) + pη if d = 1 and q = Qγ,η(p, sh)

0 otherwise.

The third probability term is

Pr(a = 0|Λ, q, d) =
exp

{
1
βa

[
Ug(q) + Ψg(q)− Uh(q)−Ψh(q)

]}
1 + exp

{
1
βa

[
Ug(q) + Ψg(q)− Uh(q)−Ψh(q)

]} , and

Pr(a = 1|Λ, d, q) = 1− Pr(a = 0|Λ, q).

The fourth probability term is simply Pr(ω|Λ, q) = q. The last term is

f(y|Λ, d, a, ω) = ϕ

(
y − u(ω, a)− ψ(ω, a) · d

σε

)
,

where ϕ is the probability density function of the standard normal distribution.
The maximum likelihood estimator is the vector Λ̂ in the set of possible parameters

that maximize the sum of log likelihood
∑

i∈I logLi(Λ|xi). The estimated variance-
covariance matrix of the estimator is the inverse of the minus Hessian of the sum of log
likelihood with respect to the parameter vector.

6.3 Results

Table 3 shows the estimates of the model parameters. Under the first category, we have
parameters about beliefs, education, and choices. The estimated mean of prior beliefs,
µp, is 0.26. The estimated standard deviation of prior beliefs, σp, is 0.03. Taken together,
these two estimates imply that students’ beliefs are scattered roughly between 20 and 30
percent. Most 9th grade students have only about a quarter chance of having a science
talent.

The central parameter of our interest, the information structure (γ, η) of advanced
science classes, is estimated to be (0.74, 0.91). That is, the signal accuracy for a
student talented in non-science is 74 percent, whereas that for a student talented in
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Table 3: Parameter estimates and the value of advanced science education

Parameter Description Estimate Std Err
Belief, education, and choices
µp Mean prior belief on science talent 0.256 (0.007)
σp Std dev of prior beliefs on science talent 0.032 (0.003)
γ Signal accuracy for non-science-talented students 0.736 (0.021)
η Signal accuracy for science-talented students 0.909 (0.028)
δ Cost of participation 0.300 (0.032)
βd Scale of participation choice errors 0.159 (0.018)
βa Scale of major choice errors 0.263 (0.021)

Ex post productivity
u(ωg, ag) Non-science-talented student choosing a non-science major 9.412 (0.012)
u(ωg, ah) Non-science-talented student choosing a science major 8.165 (0.042)
u(ωh, ag) Science-talented student choosing a non-science major 7.736 (0.040)
u(ωh, ah) Science-talented student choosing a science major 9.823 (0.029)

Human capital accumulation
ψ(ωg, ag) Non-science-talented student choosing a non-science major -0.030 (0.023)
ψ(ωg, ah) Non-science-talented student choosing a science major -0.381 (0.058)
ψ(ωh, ag) Science-talented student choosing a non-science major -0.399 (0.086)
ψ(ωh, ah) Science-talented student choosing a science major -0.151 (0.041)

Other parameter
σε Std dev of predicted log earnings errors 0.565 (0.006)

Average value of providing advanced science education
W̃ (γ, η) Status quo 0.048 (0.010)
W̃ (0.5, 0.5) No information -0.008 (0.002)
W̃ (η, γ) Opposite educational structure 0.123 (0.030)
W̃ (1, 1) Full information 0.442 (0.032)

Average log likelihood -2.347 –
Pseudo-R2 on participation choice 0.033 –
Pseudo-R2 on science major choice 0.066 –
Observations 6,638 –

Note: This table shows the maximum likelihood estimates of the extended model parameters and the
value of education using a sample of 6,638 respondents in the High School Longitudinal Study (HSLS)
who were 9th graders in 2009. Pseudo-R2 follows McFadden (1973).
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science is 91 percent. This educational structure is highly science-encouraging, in the
sense that 26 percent of students with no talent in science would receive misguided
recommendations to pursue science, whereas few science-talented students would receive
misguided recommendations to pursue anything other than science.

The remaining estimates in the category, though not as important, are informative.
The estimated cost of participation, 0.3, suggests that taking advanced science classes is
significntly painful to students, to a degree that they would avoid it unless they see an
expected 35 percent gain in their future earnings. The two scale parameters of choice
errors, βd and βa estimated as 0.16 and 0.26, indicate that there are significant factors
other than students’ beliefs about their science talent that influence their decisions.6

The next set of parmeters are the values of the ex post productivity function u.
The estimates imply that students who are talented at non-science subjects (correctly)
choosing non-science majors have predicted annual log earnings of 9.4 (about 12,000
USD) 4 years after college graduation. Using the same interpretation, we see that those
talented at non-science subjects who (incorrectly) choose science majors have predicted
annual log earnings of 8.2 (about 3,500 USD). Those talented at science subjects who
(incorrectly) choose non-science majors have predicted annual log earnings of 7.7 (about
2,300 USD). Those talented at science subjects who (correctly) choose science majors
have predicted annual log earnings of 9.8 (about 18,400 USD). The seemingly small
predicted annual earnings, especially for students with “incorrect” choices, are due to the
fact that the predicted log earnings account for the probability of not being employed,
as defined in equation (22).

Next, we have the values of the human capital accumulation function ψ. The estimate
of the value ψ(ωg, ag) is not significantly different from zero, suggesting that taking an
advanced science class in high school does not directly affect the future earnings for a
student talented in non-science subjects majoring in a non-science subject. However,
the estimates of the three remaining function values ψ(ωg, ah), ψ(ωh, ag), and ψ(ωh, ah),
are significantly negative at –0.38, –0.40, and –0.15, meaning that an advanced science
class directly lowers the future earnings of the other students. The negative estimates
are especially large for the mismatched students: non-science-talented students choosing
a science major and science-talented students choosing a non-science major. Although
it may seem strange that the parameters capturing the accumulation of human capital
are negative, a probable reason behind this result is that our estimated model do not
account for different earnings trends over the lifecycle for different student types; it
interprets one’s predicted future earnings 4 years after college graduation as one’s ex
post outcome. If taking an advanced science class in high school is somehow associated
with smaller temporary earnings but larger eventual earnings, the estimated parameters
would capture such association. Therefore, the estimated human capture function ψ

should not be interpreted literally but rather as parameters that capture all ex post
effects.

6With the error terms having a Gumbel distribution, their estimated standard deviations are π/
√
6×

0.16 ≈ 0.21 and π/
√
6× 0.26 ≈ 0.33.
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Figure 14: Estimated expected productivity with and without advanced science
education

The last parameter, σε, is the standard deviation of error term ε on the log of future
earnings, estimated as 0.57. Since this estimate is smaller than the standard deviation
of all predicted log earnings (about 0.9, from the first row of Table 2), it indicates
that the model explains at least some of the variation in the predicted earnings. The
bottom part of Table 3 shows a few other measures of fit. The average of the log
likelihood defined in equation (23) is –2.347, meaning that the (geometric) average of
the likelihood of the data (d, a, y) given the estimated parameters is exp(−2.347) ≈ 10%.
Following McFadden (1973), I also compute the pseudo-R2, for which 0% means that the
model’s predictions are no better than independent and identical draws from a bernoulli
distribution, and 100% means that the predictions are perfectly accurate. The pseudo-
R2s on the participation choice (d) and the science major choice (a) are 3% and 7%,
indicating the model’s moderate fit to the data.

Figure 14 shows these parameters in the estimated version of the earlier Figure 13.
The horizontal axis is a student’s prior belief in science talent. The two thin dashed
lines represent a non-participant ’s expected log earnings Ug(p) and Uh(p) when choosing
to pursue a non-science and science majors, respectively. The dashed blue curve is the
“smoothed” upper envelope of these two lines, representing the expected log earnings
V0(p) of a non-participant who optimally chooses between a non-science or a science
major given his belief p. The smoothing is due to the stochastic choice errors in the
major decision. Similarly, the two thin solid lines represent a participant ’s expected
productivity Ug(p) + Ψg(p) and Uh(p) + Ψh(p) when choosing to pursue a non-science
and science majors, respectively. The solid red curve represents the smoothed upper
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envelope of these two lines, representing the expected log earnings V ψ
1 (p) of a participant

who optimally chooses his major after receiving a signal and updating his belief. The
difference between the solid and dashed curves represent the ex ante gain in log earnings,
the value of taking an advanced science class in high school.

We can further see from Figure 14 the range of students’ prior beliefs and the
structure of advanced science education. The figure’s shaded area indicates the esti-
mated range of the student beliefs, from about 15 to 31 percent. Notably, all students
have prior beliefs significantly below the threshold levels where the thin straight lines
cross, around 40 percent, at which they would be indifferent between choosing a non-
science major or a science major. Thus, in 9th grade, students are believed to have
comparative disadvantage in the sciences; for these students, the optimal educational
structure would be non-science-encouraging according to our theory (Theorem 2 and
Corollary 8). However, the estimated educational structure is science-encouraging. The
estimated expected log earnings for participants (thick solid curve) is such that the
resulting self-exploration value is greater on the other side of the threshold. This shape
of the curve suggests that the student welfare would rise if the advanced science classes
had the opposite structure of the status quo.

I run such thought experiments on four alternative educational structures: (1) the
status quo (γ, η), (2) no information (0.5, 0.5), (3) the opposite structure of the status
quo (η, γ), and (4) full information (1, 1). Under the estimated status quo (0.74, 0.91),
the signal accuracies for the non-science-talented and the science-talented are 74 and 91
percent. Under the no information strcutrue, the signal accuracies are both 50 percent.
Under under the opposite structure, the signal accuracies are 91 and 74 percent. Under
the full information structure, the signal accuracies are 100 percent. To compare these
four structures, I use a modified measure of student welfare W̃ :

W̃ (γ, η) =
1

n

n∑
i=1

Pr(di = 1 | pi)︸ ︷︷ ︸
participation
probability

·
[
V ψ
1 (pi, γ, η)− V0(pi)

]
︸ ︷︷ ︸

value of education

.

That is, I take each student’s value of education (the expected increase in future earnings)
and take an weighted average of this value across all students, with their participation
probabilities as their weights. The straightforward interpretation is that this measure
represents the average value of providing the advanced science education to students. In
other words, it captures the average intent-to-treat effect, where the treatment is taking
an advanced science class in high school.

The remaining part of Table 3 shows the results of these thought experiments.
First, under the status quo, the estimated average value of providing advanced science
education in high school is about 5 percent. The interpretation is as follows. Students
with higher beliefs (closer to 31%) have higher participation probability and larger value
of advanced science education. Students with lower beliefs (closer to 15%) have lower
participation probability and smaller value of advanced science education. On average,
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Figure 15: The value and design of advanced science education under estimated
and hypothetical educational structures

after adjusting for the participation probabilities, the value of advanced science education
is a 5-percent increase in students’ predicted earnings 4 years after college.

Second, under the no-information structure, the estimated value of providing ad-
vanced science education is –0.8 percent. Since there is no information gain from this
structure, this estimate represents the human capital component of the total value of
providing this education. Thus, the negative (although small) estimate suggests that
participation in an advanced science class is negatively associated with ex post earnings.

Third, under the opposite structure, the estimated value of providing the advanced
science education is 12 percent. The intuition behind this gain compared to the status
quo is that most students have low confidence in the sciences. Thus, it is better to make
the structure science-discouraging : signals to non-science-talented students should be
more accurate than those to science-talented students. The higher signal accuracy for
the non-science-talented students would mean that fewer non-science-talented students
would receive misguided recommendations to pursue science.

Fourth, under the full information, the estimated value of providing the advanced
science education is 44 percent. The full-information structure means that everyone
who takes an advanced science class receives a perfectly accurate signal about oneself.
Receiving such a signal means that one can choose the correct major and get higher
future earnings with certainty. It is thus not surprising that the estimated value of the
full information is so large.

Figure 15 illustrates the four educational structures on the parameter space and their
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welfare implications. The red diamond marker represents the estimated educational
structure of the status quo, whereas the black circle markers in the counter-clockwise
order represent the educational structures under no information, opposite information,
and full information. The gray dotted curve is the iso-cost curve, the set of points
with the same value of information cost C(γ, η) whose functional form is the expected
reduction in entropy from a fixed prior p0 = 0.5, from Example 1. The blue solid curve
is the iso-welfare curve, the set of points with the same welfare Ŵ (γ, η). Recall from
equation (7) that the slope of an iso-welfare curve is inversely related to the average belief
p. Because the students’ estimated average belief is low, the iso-welfare curve passing
through the status quo has a steep slope. We see that the iso-welfare curve passing
through the hypothetical opposite structure is much closer to the upper-right corner,
nearly tangent to the iso-cost curve and thus closer to being a feasible optimum. The
figure also shows that the no-information structure would be feasible but not optimal;
the full-information structure would be infeasible.

Lastly, parameter estimates from female and male subsamples reveal that there may
be important differences in the educational structure faced by students of different gen-
ders. Appendix Table A.2 shows the estimated parameters and their welfare implications
using female and male subsamples. An immediately noticeable difference is that female
students have a significantly lower average belief (20 percent) in science talent than their
male counterparts (39 percent). However, female students are estimated to face more
informative educational structure, as both of their signal accuracy parameters, γ and η,
are greater than those of male students. As a result, the estimated welfare gain from
advanced science classes for female students is 4.2 percent in future earnings, whereas
that for male students is statistically indistinguishable from zero. Welfare estimates
under the hypothetical educational structures suggest that female students would benefit
significantly from a more non-science-encouraging educational structure, whereas male
students would gain little. Appendix Figure A.1 illustrates this result.

7 Conclusion

This paper has shown that it is useful to think of education as finding oneself. A
benevolent educational designer should encourage a career in which participants are on
average more confident. This property of an optimal educational structure extends to
settings with stochastic choice and human capital accumulation. An econometrician
can estimate the parameters of this model and infer counterfactual outcomes even if
students’ beliefs are imperfectly observed.

An important caveat to the paper’s conclusions is that it assumes that students’ prior
beliefs are rational—that they represent the true probabilities of their talents. If, for any
reason, a group of students’ beliefs are biased and differ from their actual probabilities,
the optimal educational structure may differ. For example, it may still be desirable to
design classes to encourage an under-confident group of students to pursue sciences if
their socioeconomic background contributes to such a bias.
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Appendix

Table A.1: Estimated regressions of labor market outcomes on demographics and
educational outcomes

Dependent variable (Model):
Has any earnings (Logit) Log earnings (OLS)

Independent variable Estimate Std Err Estimate Std Err

Gender
Female 0.074 (0.072) -0.193*** (0.026)
Unknown 1.017 (0.951) 0.598 (0.990)

Race
Amer. Indian/Alaska Native, non-Hispanic 0.808 (0.742) -0.362* (0.212)
Asian, Hawaii/Pac. Islander,non-Hispanic -0.762*** (0.104) -0.084* (0.049)
Black or African American, non-Hispanic -0.105 (0.114) -0.129*** (0.045)
Hispanic, no race specified -0.028 (0.194) -0.018 (0.075)
Hispanic, race specified -0.319** (0.150) -0.089 (0.058)
More than one race, non-Hispanic -0.408*** (0.154) -0.023 (0.060)
Unknown -0.013 (1.092) -0.647 (0.641)

Parental education
Less than high school 0.249 (0.214) -0.207** (0.093)
Associate’s degree 0.220 (0.141) 0.015 (0.047)
Bachelor’s degree 0.031 (0.090) 0.001 (0.031)
Master’s degree -0.036 (0.107) -0.009 (0.037)
Ph.D/M.D/Law/other high lvl prof degree 0.040 (0.127) -0.053 (0.048)
Unknown -1.314 (1.092) -0.218 (1.178)

College selectivity
Highly selective, 4-year institution -0.055 (0.087) 0.139*** (0.029)
Inclusive, 4-year institution -0.082 (0.103) -0.052 (0.039)
Selectivity not classified, 4-year institution 0.018 (0.111) -0.060 (0.043)

College major
Agriculture, Agriculture Operations, and Related Sciences (1) 0.252 (0.421) -0.104 (0.200)
Natural Resources and Conservation (3) 0.739 (0.538) -0.009 (0.115)
Architecture and Related Services (4) 2.161** (1.022) -0.113 (0.173)
Communication, Journalism, and Related Programs (9) 0.968*** (0.226) 0.173*** (0.057)
Computer and Information Sciences and Support Services (11) 1.283*** (0.435) 0.386*** (0.118)
Education (13) 0.885*** (0.237) 0.164*** (0.058)
Engineering (14) 0.747*** (0.221) 0.583*** (0.056)
Engineering Technologies/Technicians (15) 1.553** (0.733) 0.362* (0.215)
Foreign languages, literatures, and Linguistics (16) 0.269 (0.342) 0.085 (0.139)
Family and Consumer Sciences/Human Sciences (19) 1.247** (0.525) 0.092 (0.109)
English language and literature/letters (23) 0.162 (0.228) -0.216** (0.104)
Liberal arts/sci/gen studies/humanities (24) 1.309** (0.523) -0.091 (0.136)
Biological and biomedical sciences (26) -0.578*** (0.151) -0.320*** (0.087)
Mathematics and statistics (27) 1.118** (0.477) 0.079 (0.104)
Multi/interdisciplinary studies (30) 0.656** (0.320) -0.068 (0.116)
Parks/recreation/leisure/fitness studies (31) 0.197 (0.251) -0.069 (0.099)
Physical sciences (40) -0.251 (0.288) -0.086 (0.153)
Psychology (42) 0.568*** (0.192) -0.095 (0.075)
Security and protective services (43) 0.745** (0.343) 0.315*** (0.083)
Public administration/social service (44) 1.204** (0.471) 0.100 (0.095)
Social sciences (45) 0.758*** (0.168) 0.001 (0.062)
Visual and performing arts (50) 0.826*** (0.210) -0.185*** (0.069)
Health/related clinical sciences (51) 1.238*** (0.230) 0.447*** (0.061)
Business/management/marketing/related (52) 0.990*** (0.136) 0.435*** (0.037)
History (54) 0.382 (0.284) -0.201* (0.115)
Other 1.391*** (0.398) -0.072 (0.085)

College grades
College grade-point average (GPA), standardized 0.053 (0.044) 0.121*** (0.018)

Intercept 1.392*** (0.097) 10.080*** (0.036)

Pseudo-R2 0.053 – - -
Adjusted R2 – – 0.098 –
Observations 6,908 – 5,808 –

Note: This table shows the estimated regressions of labor market outcomes on demographics and education. The estimates
use the public-use dataset of the Education Longitudinal Study (ELS) that follow respondents who were 10th graders in
2002. Has any earnings is an indicator variable that equals 1 if a respondent has any earnings as of 2012 and equals 0
otherwise. Log earnings is as of 2012 among respondents who have any earnings in that year. Parental education is the
highest degree earned by either of respondents’ parents/guardians. College major is the major or field of study on the
respondent’s most recent bachelor’s degree. College grade-point average is the respondent’s GPA on the transcripts of all
known institutions attended. The standard errors for the OLS estimates are heteroskedasticity-robust. Stars *, **, and ***
indicate statistical significance at 10, 5, and 1 percent levels.
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Table A.2: Parameter estimates and the value of advanced science education: female vs.
male subsamples

Female Male
Parameter Estimate Std Err Estimate Std Err
Belief, education, and choices
µp 0.202 (0.008) 0.393 (0.017)
σp 0.025 (0.004) 0.017 (0.006)
γ 0.759 (0.032) 0.743 (0.022)
η 0.973 (0.062) 0.868 (0.022)
δ 0.258 (0.041) 0.192 (0.047)
βd 0.134 (0.023) 0.051 (0.019)
βa 0.300 (0.027) 0.155 (0.050)

Ex post productivity
u(ωg, ag) 9.366 (0.014) 9.543 (0.024)
u(ωg, ah) 8.102 (0.055) 8.210 (0.080)
u(ωh, ag) 7.582 (0.046) 8.214 (0.066)
u(ωh, ah) 9.714 (0.053) 9.844 (0.037)

Human capital accumulation
ψ(ωg, ag) 0.010 (0.028) -0.173 (0.042)
ψ(ωg, ah) -0.317 (0.077) -0.467 (0.103)
ψ(ωh, ag) -0.272 (0.112) -0.960 (0.139)
ψ(ωh, ah) -0.151 (0.070) -0.133 (0.054)

Other parameter
σε 0.551 (0.008) 0.601 (0.013)

Average value of providing advanced science education
W̃ (γ, η) 0.042 (0.013) 0.043 (0.035)
W̃ (0.5, 0.5) -0.003 (0.004) 0.000 (0.024)
W̃ (η, γ) 0.204 (0.094) 0.043 (0.035)
W̃ (1, 1) 0.396 (0.042) 0.523 (0.070)

Average log likelihood -2.213 – -2.465 –
Pseudo-R2 on participation choice 0.030 – 0.040 –
Pseudo-R2 on science major choice 0.067 – 0.061 –
Observations 3,681 – 2,957 –

Note: This table shows the maximum likelihood estimates of the extended model parameters
and the value of education using a sample of 3,681 female respondents and 2,957 male
respondents in the High School Longitudinal Study (HSLS) who were 9th graders in 2009.
See Table 3 for the description of parameters. Pseudo-R2 follows McFadden (1973).
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Figure A.1: The value and design of advanced science education: female vs.
male subsamples
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