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Abstract

This paper tests asset pricing models using individual stocks as test assets, rather

than sorted portfolios. Sorted portfolios have the severe limitation that the researcher

must know, in advance, reliable predictors of expected returns. We show how to

generate appropriately sized tests and verify that our tests have considerable test power.

In simulations when the CAPM describes the population, our tests (correctly) reject the

Fama and French (2015) six factor model 97.5% of the time, while our tests (incorrectly)

reject the CAPM less than 5%. We apply our tests to several leading factor models

and reject nine of the eleven models tested. The instrumented factor model of Kelly

et al. (2019) stands out as the most successful.
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1 Introduction

Empirical asset pricing models are primarily tested on portfolios, rather than on individual

stocks. This requires the researcher to take a stand on which sorting variables are reliable

predictors of expected returns across stocks. The rising concern that many of these char-

acteristics are unreliable out-of-sample casts doubt on these tests. If the characteristics are

the result of data snooping, then a true model may be rejected.

We test asset pricing models using individual stocks. We compare the cross-sectional

alpha across individual stocks to thousands of new bootstrapped histories generated from an

adjusted version of the original sample, altered so that the alpha is zero. The new histories

capture the statistical structure of the original data but generate new distributions of the

cross-sectional alpha that would be observed under the null hypothesis.

This procedure is an adaptation of methodology developed by Kosowski et al. (2006)

and Fama and French (2010) in the fund performance literature. Their insight is that we

can evaluate whether some fund managers have “skill” without having to pre-specify the

predictors of that skill. Skill is alpha relative to a model in the mutual fund literature just as

mispricing is alpha relative to a model in the asset pricing literature. Just as managers will

outperform or underperform their benchmarks, stocks will outperform or underperform an

asset pricing model. But by comparing sample alpha generated by this random variation to

data generated by a simulated population, otherwise identical, where all alphas are known

to be zero, we can evaluate whether the sample alpha is sufficient to reject that the true

alpha is zero.

This approach allows us to test asset pricing models without taking a stand on the

hundreds of stock pricing characteristics (Harvey et al., 2016) and whether they were data

snooped (Lo and MacKinlay, 1990). Whereas, in traditional tests, if the models are tested

on characteristic sorted portfolios that are formed on ex post performance, rather than ex

ante differences in expected returns, the true asset pricing model will likely be erroneously

rejected. Our methods do not require researchers to make the difficult choice about which

characteristics will generate reliable test portfolios.

Individual stocks raise several issues. Individual stocks have non-normal distributions

and dependent correlation structures that can make generating tests of the appropriate test

size difficult. We show these concerns are justified. We simulate separate populations, where
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the CAPM or Fama French six factor (FF6) model perfectly describe the population. When

the Fama and French (2010) procedure is adapted without alteration, the resulting test sizes

for a traditional 5% test are 23% for the CAPM and 26% for the FF6 model. The procedure

rejects the true model 23% to 26% of the time. We show how to expand the confidence

intervals to find tests of appropriate size.

Additionally, individual stocks have poorly estimated betas that raise issues of statistical

power. After constructing confidence intervals of the appropriate size, we show that our tests

remain powerful. In our simulations, even when our most conservative adjustment is applied

guaranteeing test size below 5%, the procedure correctly rejects the FF6 model when the

CAPM is the true model 97.5% of the time. When the population follows the FF6 model,

the procedure correctly rejects the CAPM 83.2% of the time. The simulations suggest these

corrections are excessively conservative leading to a test size well below 5%. We also explore

optimized confidence intervals that maximize power, while maintaining a given test size.

These optimized confidence intervals increase test power to 99.9% and 91.0%, respectively.

We proceed to test several of the leading asset pricing models in the field. These models

include the CAPM (Sharpe, 1964), the Fama and French factor models, including the three

factor model with size and value factors (Fama and French, 1993), the five factor model

that adds profitability and investment factors (Fama and French, 2015), a six factor model

that adds the momentum factor of Carhart (1997), and the five factor model of Pástor and

Stambaugh (2003) that combines size, value and momentum factors with a traded liquidity

factor. Additionally, we test two versions of the Q-factor model, a four factor version of Hou

et al. (2015) with market, size, investment and profitability factors and a five factor version

that adds an expected investment growth factor (Hou et al., 2021). We also test the four

factor model of Stambaugh and Yuan (2017), which combines the market and size factors

with two factors, mgmt (management) and perf (performance), formed to capture mispricing.

Lastly, we test three versions instrumented principal components (IPCA) factors of Kelly

et al. (2019). Each model is six factors. The restricted and unrestricted versions differ in

that the former creates IPCA factors restricts the explanatory power of the characteristics to

be through the common factors. The models are similar in that they are both formed using

the entire sample. The third version, out-of-sample, forms IPCA factors using an expanding

window limiting the concern for look-ahead-bias in the model parameters.

The star of these tests is the IPCA model of Kelly et al. (2019). When tested on individual
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stocks, all other models are rejected, even with our most conservative thresholds. The IPCA

restricted model, and importantly, the out-of-sample IPCA model, both pass our tests, even

at our less conservative thresholds, where the statistical power to reject is highest.

We develop a simple measure of combined mispricing, which captures the difference from

the observed t-statistics of alpha at each decile from the alpha expected under the null

hypothesis. We reject when this distance is so large it is out of the confidence interval.

Our composite mispricing measure captures the combined differences from the realizations

expected under the null hypothesis of zero alphas.

Next, we revisit our tests removing the small, but plentiful micro-cap stocks from our

sample. Several models perform better on this subsample, especially the Fama and French

style models. We still reject the CAPM and, interestingly, a six factor Fama and French

model that adds momentum to the five factor version, but we do not reject the three or

five factor models in this sample. That we can add factors to a model and observe its

performance deteriorate demonstrates the benefit of these tests relative to others explored

in the literature. Barillas and Shanken (2017, 2018) show that many tests, when factors are

appropriately included as test assets, devolve into tests of which set of factors generate larger

ex post Sharpe ratios. But in the presence of data snooped characteristics, this conclusion

may lead to a problematic cycle of adding high ex post Sharpe ratio factors that were not ex

ante predictors of expected return. The true asset pricing model would be rejected for not

including these snooped factors and would not be able to price managed portfolios formed

on these snooped characteristics.

Individual stocks provide a check on this cycle. False factors formed on ex post alphas

may perform well at pricing portfolios formed on the same or similar characteristics that

capture these ex post alphas (Ferson et al., 1999, 2003), but these factors should not perform

well at pricing individual stocks. We demonstrate an extreme version of this by creating an

extremely high ex post Sharpe ratio factor model from a set of hundreds that Hou et al.

(2015) explored. Given that the model appeals to no theory and is chosen only on ex post

performance measures, we think it highly likely to be data snooped. We show, despite its

high Sharpe ratio, our model can be rejected due to its substantial mispricing of individual

stocks.

Our paper is indebted to a considerable and growing literature exploring fund perfor-

mance. Kosowski et al. (2006) and Fama and French (2010) pioneer this bootstrap approach
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in the fund performance literature. The central question in these papers, do fund managers

have skill? has a clear analogue to our question, does a factor model price stocks? as skill

and mispricing are both defined as alpha relative to a model. Despite this close connection,

the efficacy of this methodology has not been evaluated in the context of asset pricing tests

across individual stocks. We show when properly applied this methodology generates ap-

propriate size and considerable power in asset pricing tests of factor models on individual

stocks. These tests are close in spirit to the size and power tests Harvey and Liu (2020)

use to reevaluate and reconcile early contradictions of Kosowski et al. (2006) and Fama and

French (2010), the latter finding no evidence for fund manager skill, in contrast to the former.

The fund performance literature has expanded to identifying the distribution of skill (Barras

et al., 2010; Chen et al., 2017; Ferson et al., 2019) as well as detecting skill out-of-sample

(Harvey and Liu, 2018; Giglio et al., 2019).

Harvey and Liu (2019) make an important first attempt to bring this literature into the

cross-section of stock returns. These authors ask, starting with a set of candidate factors and

adding each factor one at a time, when is the growing factor model no longer significantly

better at explaining alpha after controlling for multiple testing? When should we stop

adding an additional factor from a larger set? This question aligns closely with their goal

of narrowing down a large set of candidate factors, motivated by the growing characteristics

“zoo” documented by Harvey et al. (2016). A drawback of this approach is that, due to

the adjustments for multiple hypotheses, the threshold for retaining a factor is dependent

on how many factors one starts with. Adding irrelevant factors raises the threshold for

an additional factor to significantly improve the overall model and can result in a smaller

number of retained factors.

Our question stems from the literature on testing asset pricing models. Does a set of

factors explain a set of test assets or are the pricing errors sufficiently large that we can reject

the model? In this setting, the models are self-contained and rely on different theoretical

motivations. Whereas, it may not be theoretically coherent to combine a mispricing factor of

Pástor and Stambaugh (2003) with an investment factor of Hou et al. (2015) and an IPCA

factor of Kelly et al. (2019). We show, contrary to the thrust of the literature, that this

adapted methodology generates tests on individual stocks that have appropriate size and

considerable power.

Also inspired by the fund performance literature, Barras (2019) adapts the false discov-
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eries approach of Barras et al. (2010) to measure the proportion of mispricing on micro

portfolios that contain only a small number of stocks. This approach captures some of the

benefits of portfolios in estimating betas, as well as the broad spread betas generated by

individual stocks. But the approach still requires pre-specifying characteristics to create the

micro portfolios, and Barras (2019) shows the false discoveries approach has low power on

individual stocks.

Considerable progress has been made taking cross-sectional asset pricing approaches to

individual stocks. These papers pre-specify factors and explore whether the betas on these

factors align with average returns, generating a risk premium. Estimation error in the betas

creates an errors-in-variables problem that biases the betas downward (Blume, 1970). Ang

et al. (2020) argues that while the measurement errors in the betas are larger across individual

stocks, the larger cross-sectional spread in the betas more than offsets this error leading to

more precise risk premium estimates in individual stocks. Jegadeesh et al. (2019) tackle the

errors-in-variables problem directly using an instrumental variables approach that uses in

sample beta estimates as instruments for out-of-sample betas. Raponi et al. (2020) explore

large N, fixed T cross-sectional tests of beta-pricing models on individual stocks.

Gagliardini et al. (2016) extend the two-pass regression methodology to large panels with

time-varying risk premiums and loadings. Chaieb et al. (2021) apply this methodology to

asset pricing models in a large panel of international stocks. The two pass approach requires

the tested model to specify all of the asset pricing factors, even if the factors are not priced.

If omitted factors are present, the risk premia of the second pass estimates do not converge

to the risk premia of the priced factors (Gagliardini et al., 2016; Gagliardinia et al., 2020).

While Gagliardini et al. (2019) suggest a diagnostic test for the presence of omitted factors,

this is a heavy burden to impose on model specification. The set of potential priced factors

is already immense (Harvey et al., 2016), but the set of unpriced factors is may be even

larger. This intuition is captured by Roll and Ross (1984), “firms are in industries together,

or inhabit the same region of the country, or produce substitute or complement products,

or compete for the same labor, etc...We expect there are as many factors as there are sets

of assets.” Since our methodology utilizes the time-series tests, rather than the two-pass

approach, our tests are valid in the presence of omitted factors. This alternative approach

provides a complement to the growing literature on cross-sectional asset pricing tests in large

panels.
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While tests of characteristic portfolio sorts have valuable uses, they have the clear draw-

back of having to prespecify reliable predictors of expected returns. There is no consensus

on which of the hundreds of return predictors are reliable. Additionally, important drivers

of cross-sectional variation in expected returns may remain unknown. By dis-aggregating

tests of factor models down to the level of individual stocks, our tests provide an alternative

that does not require adjudicating these difficult questions.

2 Methodology

We start with a sample of N stocks captured by a statistical factor model (represented here

as a one factor model for ease of explication).

Ri,t = αi + βi,1F1,t + εi,t

We test the traditional null hypothesis for asset pricing that all of the (population) alphas

equal zero for the N stocks.

H0 : α1 = α2 = ... = αN = 0

Even if the population alphas are zero and the model explains all of the variation in

average returns across stocks, we know that the observed, in-sample alphas will not be zero

in any finite sample. We test the null hypothesis by creating a pseudo-population, in which

the null hypothesis is true, that is otherwise identical to the sample. By resampling from

this pseudo-population, we simulate data generated under the null hypothesis. Then we can

ask, are the sample observed alphas consistent with the null hypothesis being true? or are

the observed alphas so significantly different than those simulated, that the null hypothesis

is unlikely to be true?

We create an empirical distribution by first running N time-series regressions to estimate

the in-sample alphas and betas of our N stocks. We create a new “population” by subtracting

the estimated alphas from the sample of stock returns.

Zi,t = Ri,t − α̂i = β̂i,1F1,t + ε̂i,t
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This creates a panel of N stocks and T time periods. We resample from this panel by

drawing one of the T time-periods from the panel and retaining the entire cross-section of

stocks in that time period and the observed realizations of the candidate model’s factors.

We continue this cross-sectional bootstrap T times to create a new sample. This sample

is consistent with the null hypothesis, but retains the cross-sectional dependencies in the

original data. We repeat the time-series regressions on our new sample of stocks and generate

new alpha estimates.

We condense this new set of alphas into a set of P percentiles. This allows us to ask,

is the alpha we observe at a given percentile in the sample data consistent with the alpha

we would expect to observe at that percentile if the null hypothesis was true? Since we

test the null hypothesis at P separate percentiles, we adjust the individual tests for multiple

hypotheses to achieve the appropriate aggregate test size. Our most conservative criterion

applies the Bonferroni correction, taking the original test size (αs) and dividing by P tests.

The Bonferroni correction is conservative. It guarantees the aggregate adjusted test size is

no greater than the acceptable level, but the resulting test size can be considerably less. An

overly conservative correction can result in a decline in test power, the ability to reject a false

null hypothesis. We also explore an alternative approach that we call optimized confidence

intervals. In this approach, we progressively lengthen the confidence intervals uniformly

across percentiles, until our desired test size of 5% is reached. These optimized confidence

intervals maximize the power of our tests given a desired test size.

The tests have thus far been described in terms of sample and resampled alpha, but Fama

and French (2010) focus their attention on the alphas’ t-statistics. This approach has the

advantage of controlling for residual risk, as well as accounting for variation in the sample

size across stocks. Our simulations tackle both approaches, while our main empirical results

focus attention on the t-statistics.

3 Simulations of Methodology

In this section, we describe simulations that verify our methodology and explore its statistical

power. Rather than construct artificial stock data, we adjust real stock data to create the
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appropriate statistical setting, while preserving much of the structure of the original data.1

We explore the size and power of the methodology in two different settings. In the first,

we construct a population in which the data generating process is the CAPM. When the

CAPM is the candidate model, the null hypothesis holds and the size of the test is how

often the method rejects the true model. We also test a Fama and French six factor model

on the same sample, that includes the market, size (smb), value (hml), profitability (rmw),

investment (cma) and momentum (umd) factors. Since the population is described by the

CAPM, when the FF6 model is the candidate, the null hypothesis is false and the power

of the test is how often we reject this false null hypothesis. Next, we reverse the example

creating a population that is described by the FF6 model. Now when the CAPM is the

candidate model, the simulation explores the test’s power to correctly reject a false model,

and when the FF6 model is the candidate model, the simulation explores the resulting test

size, incorrectly rejecting the true model.

3.1 Simulation Procedure

We construct the zero-alpha population by first estimating the alpha for all the stocks in our

data and then subtracting this estimated alpha from the series of returns. For the CAPM,

we regress excess returns on the market factor in a series of N time-series regressions.

Rit = αi + βimktrft + εit

We subtract the estimated alpha from our sample to create a zero-alpha population

(ZAP) of stock returns.

Rit − α̂i = ZAPit

We then resample T periods with replacement from this zero-alpha population to create

a simulated sample of stocks. We also retain the factor realizations for these T periods.

Now, with this sample generated under a known data generating process, we specify a

candidate factor model, either the CAPM or FF6 model, and test the null hypothesis that

the alphas of all stocks are jointly zero. We then proceed to estimate the sample observed

1Harvey and Liu (2020) use a similar simulation approach to compare methods in the fund performance
literature.
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alpha given the candidate factor model using the returns and factors from the simulated

sample. We then subtract this estimated alpha to create a sample data set true under

the null hypothesis. We resample cross-sectionally T periods with replacement from this

pseudo-population to generate test statistics. From our zero-alpha population of stocks, we

create 1000 samples. For each individual sample, we bootstrap 1000 new samples under the

candidate null hypothesis. In total, 1,000,000 (1000 by 1000) samples under each of two data

generating processes (CAPM and FF6) and two candidate models (CAPM and FF6).

3.2 Simulation Data

Our simulations are built from a large sample of U.S. stocks that are modified to create a

new population, and then resampled to preserve the original samples important features,

such as cross-sectional dependencies and extreme return realizations. Our sample consists

of stock returns from the Center for Research in Security Prices (CRSP). Our sample starts

in July of 1964 and ends in December of 2018. We restrict our sample to common equity

(shrcd 10 or 11) from the major exchanges, New York Stock Exchange, NASDAQ and NYSE

America (exchcd 1, 2 or 3). To be included in our sample a stock must have a share price and

outstanding shares in the month before the return date and at least 36 non-missing returns.

Table 1 shows summary statistics of the data in our sample. The first four columns show

the results of time-series regressions on individual stocks. We aggregate at the stock level and

report nine percentiles, displayed in the first column. The second through fourth columns

show R-squareds, alphas and t-statistics for both the CAPM in Panel A and the FF6 model

in Panel B. These three columns capture several the difficulties in asset pricing tests tests

across individual stocks. The spread in explained variation is large with 10% having R-

squareds smaller than 1.1% and 10% have R-squareds larger than 27.4% for the CAPM. The

FF6 model generates a smaller, but still large, 10th percentile to 90th percentile range of 7.9%

to 40.1%. The low explained variation lead to alphas and t-statistics that are estimated with

considerable error making traditional asset pricing tests infeasible or uninformative. The

next column shows large spreads in sample alphas. The third column of t-statistics, show

that these large alphas are measured with considerable error. The t-statistic range from the

10th percentile to 90th percentile of -1.61 to 1.57 is not obviously different than expected

from chance alone.
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The last two columns show the transformed data. We add or subtract a constant to each

stock’s monthly returns to create a population with zero alpha for a given model without

changing the percent of variation explained. In Panel A, the sample has been transformed

to have zero alpha under the CAPM, so the last two columns show the remaining alphas and

t-statistics for the FF6 model. In Panel B, the sample has been transformed to have zero

alpha under the FF6 model, so the last two columns show the remaining CAPM alpha and

t-statistics. These last two columns represent new populations that will be used to test size

and power. The t-statistics in the last column again demonstrate the challenge of evaluating

asset pricing models on individual stock returns. The 10th to 90th percentile of t-statistics

range from -0.85 to 1.07 for the CAPM and from -1.06 to 0.75 for the FF6 model. Our

simulations will explore whether it is possible to sort through the considerable uncertainty

in these estimates across individual stocks to generate appropriately sized tests that remain

reasonably powerful.

3.3 Simulation Results

Our simulation data retains the cross-sectional dynamics and resulting challenges of testing

asset pricing models on individual stocks. Nevertheless, we are able to proceed by aggregating

information across the distribution of observed alphas and comparing to the distribution of

observed alphas expected under the null hypothesis. We draw (with replacement) 654 months

of factors and stocks from our population of stocks transformed to be fully described by the

CAPM (or FF6 model) to generate a single sample. We treat this as if it were the data

actually observed from July 1964 to December 2018.

We take this data through our procedure. First, we estimate the alphas observed for

each stock with at least 36 observations using time-series regressions on the candidate model.

These are our sample alphas for this simulated history. Then, we generate a new pseudo-

population from this history of returns by subtracting these sample alphas. This generates

a new pseudo-population of stock returns fully described by the null hypothesis for each

candidate model. We bootstrap from this pseudo-population to generate a new sample and

factors and use this sample to estimate the observed alphas. We repeat this resampling

procedure 1000 times. This simulates one run of a researcher receiving a history of returns

and then testing a candidate model. We repeat by resampling a new history of returns
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until we reach 1000 simulations. With 1000 potential histories and 1000 bootstraps of each

history, the simulation requires 1,000,000 total bootstrap samples.

We condense the sample history of data from July 1964 to December 2018 to 9 observed

deciles. We condense each of the 1000 bootstrap samples generated under the null hypothesis

of no alpha as well. By comparing the sample observed alpha at a given percentile to the

percentiles generated by our 1000 simulations, we generate test statistics to evaluate whether

the sample data is significantly different than that expected under the null hypothesis. If

a given percentile is out of the range generated by our simulations, then we reject that the

sample data is consistent with the null hypothesis. Since we are testing a hypothesis at

several deciles, we must increase the 95% confidence interval in a way that preserves the 5%

overall size of our test.

The left panel of Figure 1 shows the results of the very first simulated history. We have

generated a history of returns from a population constructed so that the CAPM holds. In

this population, CAPM alphas are zero for all stocks. The panel shows the results when the

CAPM is the candidate model being tested. The blue dots show the t-statistics of alphas at a

given decile of time-series regressions of the stock returns on the excess market return. The t-

statistics of alphas are shown for the 10th percentile, 20th percentile, 30th percentile and so on

up to the 90th return percentile. The gray lines are the confidence intervals generated under

the null hypothesis that stocks have CAPM alpha. Since the hypothesis is being tested at

nine points, the confidence intervals are adjusted using the Bonferroni correction for multiple

hypotheses to 99.44%, wider than the 95% required for one test2. This guarantees an overall

test size of 5% or less.

In the first simulation, the 40th percentile stock has a CAPM t-statistic of -0.18. This

value is well within the 99.44% confidence interval the generated under the null hypothesis

that the CAPM is true, which is -0.56 to -0.04. In this example, the CAPM null is not

rejected at the 40th percentile. After we examine the other eight deciles, we see that it

is not rejected at any point. The CAPM candidate model has failed to be rejected under

the null hypothesis that the CAPM describes the data. Since, by construction, the CAPM

describes all average returns in population, this is a success. An appropriately sized test

would only reject the true model 5% of the time. In contrast, when that same history of

2The Bonferonni correction takes the total desired size, 5%, and divides by the number of hypothesis
tests, nine, giving an adjusted size of 5%

9 = 0.555%. This yields an adjusted confidence interval of 99.44%.
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returns is tested against the FF6 candidate model, as shown in the right panel of Figure 1,

we reject the null hypothesis that the FF6 model is true. Since the candidate model is false,

the CAPM describes the sample returns, not the FF6 model, this is a success. Specifying

the null hypothesis with a false candidate model tests the power of our procedure. To test

models, we require a procedure that fails to reject the true null hypothesis, but succeeds at

rejecting false null hypotheses.

In our simulations, we create two populations. One in which the CAPM describes ex-

pected returns and one in which the FF6 model describes expected returns. Additionally, we

specify the null hypothesis relative to both candidate models. This setup gives us two tests

of size, one when the CAPM holds in population and the CAPM is the candidate model

and one when the FF6 model holds in population and the FF6 is the candidate model, and

two tests of power, when the CAPM describes the population, while the FF6 is the candi-

date model and conversely when the FF6 describes the population and the CAPM is the

candidate model.

Table 2 shows the result of these four cases. The top panel shows the results, when

the conservative Bonferroni corrections are used. The top of the panel shows the CAPM

and FF6 candidate models tested against CAPM population at the 9 deciles between the

10th and 90th percentiles. Using the t-statistic as the test statistic of interest, the CAPM

is rejected 1.5% of the time. We require a procedure to reject at least 5% of the time, but

the Bonferroni corrections are typically conservative, which lowers the size of the test. The

next row shows that the false candidate model, FF6, is rejected 97.5% of the time. Even

with the conservative Bonferroni corrections, the procedure retains considerable test power.

When the alpha statistic is used the size of the test is 3.2% and the power is 98.8%. Again,

this is within the required range, though conservative for test size, but retains considerable

test power.

The next panel shows the same size and power tests, when the FF6 model describes the

population. Now, the FF6 model is the true candidate model and the CAPM is the false

candidate model. When the FF6 model is the true model it is rejected 3.3% of the time

when the t-statistic is the statistic used and 4.9% when the alpha is the test statistic used.

The model rejects the false CAPM 83.2% of the time using the t-statistic and 78.8% of the

time using the alpha.

The next panel of Table 2 shows the Optimized Confidence Interval. These confidence

13



intervals maximize test power for a given test size. We gradually decrease the length of the

confidence interval uniformly across the percentiles, until the test size is close to 5%. We

search across a discrete grid, so the match is only approximate.3 Comparing the top and

bottom panels, we see that the optimized confidence intervals do increase test power. When

the CAPM describes the population, the already high FF6 test power increases from 97.5%

to 99.9% t-statistics are the test statistic and from 98.8% to 99.9% when alphas are the test

statistic. When the FF6 model describes the population, the CAPM test power increases

from 83.2% to 91% t-statistics are the test statistic and from 78.8% to 81.2% when alphas

are the test statistic.

Figure 2 captures the trade-off in test size and test power across different confidence

intervals. The left panel shows the results when the CAPM generates the population and

the right panel shows the results when the FF6 model generates the population. The x-axis

is the length of the confidence interval. The left y-axis is the size of the test (how often the

true null hypothesis is rejected) and the right y-axis is the power of the test (how often the

false model is rejected). In both figures, test size declines linearly as confidence intervals

widen, while test power declines non-linearly. The dash-dotted line in the figure displays

the Bonferroni correction mandates and shows it enforces a conservative test size, below

5% in both panels. We uniformly narrow the confidence intervals so that the test size is

exactly 5%. This approach will yield greater test power. The dashed line in the figures

shows this optimized confidence interval. In both figures, the optimized confidence interval

yields additional test power.

Next, we expand the percentiles from 9 to 99. This yields a finer grid over which to

search for mispricing and extends the search further into the tails. It is infeasible to attempt

a Bonferroni adjustment as the confidence intervals generated will be extremely wide with

this number of test assets. The Bonferroni adjustment is increasingly conservative as the

multiple test results become increasingly correlated. Since test results one percentile apart

are likely to be more correlated than 10 percentiles apart, the Bonferroni adjustments are

likely to be excessively conservative. We instead form “optimized” confidence intervals,

searching over the same discrete grid looking for the test size closest to 5%.

The bottom right panel of Table 2 shows the results for simulations over 99 percentiles.

The column labeled “CI” displays the size of the confidence interval, such that the rejection

3We search over twenty-five confidence intervals starting with 95.0% and increasing 0.2% until 99.8%.
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rate of the correct model is as near as possible to 5% within the discrete grid we search over.

In the top panel, the CAPM describes the population data. When the CAPM is also the

candidate model, the length of the confidence interval that generates test size nearest to 5%

is 98.4%. The rejection rate this yields is 5.2%. The next row preserves this same confidence

interval, but now tests the (false) FF6 model, which does not describe the population data.

This model is correctly rejected in 99.9% of our simulations. When the exercise is repeated

for the distribution of alphas (as opposed to t-statistics), the optimized confidence interval

is 99.4% and the test size yielded is 4.7%. When this length confidence interval is tested on

the false FF6 model, the model correctly rejects 99.7% of the time.

The bottom of Panel B repeats this exercise for population alphas that are zero under

the FF6 model. When the FF6 is the candidate model the optimized confidence interval is

99.4% and rejects the correct model 4.6% of the time. When this size confidence interval

is preserved and the (false) CAPM is the candidate model, the model is rejected 96.7%.

Repeating the same exercise with the distribution of alphas, yields a confidence interval of

99.6%, a rejection rate of the true model of 5.6% and a rejection rate of the false model of

90.4%.

Taken as a whole, the results in Table 2 show some gains in test power when confidence

intervals are optimized to generate a test size near 5%. The test power when the more

conservative Bonferroni corrections determine the confidence intervals over 9 percentiles of

t-statistics is 97.5% rejecting FF6 and 83.2% rejecting the CAPM, while the optimized

confidence intervals reject 99.9% and 96.7% of the time over 99 percentiles. Figure 3 shows

the size-power trade-off graphically when the distribution of t-statistics are used for our

tests. As the confidence interval increases, size (blue line) declines linearly. Power (red line)

declines slowly at first, but more rapidly as the confidence interval widens. The dotted line

shows the length of the confidence interval that generates test size of approximately 5%.

3.4 Simulation Results and Data Snooping

Our simulations create two distinct worlds. The first is a world in which the Fama and French

six factor model is true. There are five additional asset pricing factors that along with the

market portfolio characterize expected returns across stocks. The CAPM is not sufficient to

explain expected returns and should be rejected. The second is a world in which the CAPM
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is true, only the market portfolio and market beta contribute to a stock’s expected return.

The Fama and French six factor model should be rejected.

In the multifactor setting, the CAPM is an incomplete description of asset prices. But

in the CAPM setting, what is the Fama and French six factor model? Recall that we do

not manipulate the Fama and French factors. The factors have CAPM alpha in population.

Traditional asset pricing tests, such as the spanning tests, would all reject the CAPM even

though it is the true model. Barillas and Shanken (2017, 2018) show that a number of asset

pricing tests reduce to the spanning tests and that factor models can be tested by comparing

their ex post Sharpe ratios. But in this setting the Fama and French six factor has the higher

ex post Sharpe ratio, even though it is not the true model and should be rejected.

The reason the Fama and French model can be wrong and still outperform in this world is

because the FF6 model is, in effect, cheating. The only way to form the FF6 factors from the

individual stocks in our sample is to condition on information unknowable in advance. The

FF6 factors are traded factors in the sense that they are combinations of tradeable securities,

but they are untradeable in the sense that the information necessary to form them is only

available ex post.

For instance, consider creating HML, which has CAPM alpha, in the CAPM world. The

expected return is equal to

E[HMLt] = α + βE[Rm,t]

.

The HML factor is a set a of weights, wi,t, on each stock each period that combine returns

in a way that generates the HML factor.

HMLt =
∑

wi,tRi,t =
∑

wi,t(βiRm,t + εi,t)

The last equal sign follows, because the CAPM is true, so no stock has alpha. Substituting

the second line into the first and using
∑
wi,tβi = βHML, gives:

E[HMLt] = α + βE[Rm,t] = βHMLE[Rm,t] + E[
∑

wi,tεi,t]

Creating the HML’s CAPM alpha when the CAPM is true requires choosing weights so

that the error terms sum to the alpha.
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α = E[
∑

wi,tεi,t]

Since the error terms have ex ante expectation of zero, this requires ex post knowledge

of the error terms. The HML is a traded factor, but it is not available to any investor in real

time.

The FF6 factors in these simulations are impossibly good. They represent exactly the

type of data snooping that is central to our motivation. It is as if researchers had searched

over many possible managed portfolios and retained as factors ones with the attributes of

the FF6 factors. In any set of returns, test assets can be formed on some characteristic or

trading signal to generate alpha relative to a factor model. Even the true model, when tested

on these assets, will be rejected. In our tests, as the simulations show, those impossibly good

factors can still be rejected. Individual stocks are a natural test asset to guard against this

form of data snooping.

3.5 Synthetic Alpha

The preceding simulations show that our procedure has appropriate test size, while retaining

considerable power across two prominent models, the CAPM and the FF6. By using one

model to generate a zero-alpha data set and another model as the candidate tested, these

simulations generate a spread in alpha across stocks that is the basis to reject false models.

The overall power of the test will depend on the distribution of this latent alpha. In this

section, we explore the test power of our procedure across different distributions of alpha.

We start with the sample data that has been transformed to have zero alpha under the

CAPM.

ZAPit = βimktrft + εit

We then generate a distribution of alpha from normal distribution with mean zero and

standard deviation, σ

αi ∼ N (0, σ)

and add it to the zero alpha portfolios
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ZAPit = αi + βimktrft + εit

We vary the standard deviation across a range from 0.05% to 1.00%. The larger the

spread in alphas the greater power our test will have to reject false models. We repeat the

simulations described above to explore the range over which we should expect reasonably

powerful tests.

Figure 4 shows the results of these simulations. The power to reject false models rises

quickly in the range of standard deviations of alpha from 0.25% to 0.70% from near 5%

rejection rate to a 90% rejection rate. We find the power rapidly increases from over 50% to

over 90% in the range from 0.60 to 0.70.

It is worth pausing to consider what a reasonable range of standard deviation of alpha

across stocks is. Consider for example a world where stock returns are determined by the

FF6 model:

Rit = βimktrft + βismbt + βihmlt + βirmwt + βicmat + βimomt + εit

If the CAPM is the candidate model being tested, the population alpha across stocks is

determined by the distribution of the stocks betas and the expected returns on the additional

factors.

E[αi] = siE[smb] + hiE[hml] + riE[rmw] + ciE[cma] +miE[mom]

The standard deviation of alpha across stocks is given by

σ(α) =
√
E[smb]2σ2(si) + E[hml]2σ2(hi) + E[rmw]2σ2(ri) + E[cma]2σ2(ci) + E[mom]σ2(mi)

If we replace the sample realizations of average factor returns and the variance of es-

timated betas from our data into the equation above, the standard distribution of alpha

across firms is 1.50%. Since variation in the betas is in part due to sampling error, this

1.50% overstates the true variation in betas. We can estimate the true underlying variation

in betas by decomposing sample variation from the true variation (Fama and French (1997),

Lewellen and Nagel (2006)).
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σ2(β̂) = σ2(βTrue) + σ2(et)

Under standard OLS assumptions and assuming a stable beta, the variance across esti-

mated betas equals the true variance across betas plus the average variance of the sampling

error. Using this decomposition results in a standard deviation of alphas of 0.83%, well into

the range that we expect to have very high test power as shown in Figure 4.

4 Data

Our sample consists of stock returns from the Center for Research in Security Prices (CRSP).

We restrict our sample to common equity (shrcd 10 or 11) from the major exchanges, New

York Stock Exchange, NASDAQ and NYSE America (exchcd 1, 2 or 3). To be included in

our sample a stock must have a share price and outstanding shares in the month before the

return date and at least 36 non-missing returns. Our full sample starts in July of 1964 and

ends in December of 2018. The sample is limited by the availability of the factor models to

start in July of 1969 and end in May of 2014.4 Since we wish to compare performance across

models, we present results for all models in this subsample.

In addition to our main results, we explore two subsamples of stocks, “No Micros” and

“Large Stocks.” We define micro-cap stocks are defined as stocks that begin the month with

less market equity that the bottom 20th percentile of the NYSE for that month, and large

cap stocks as those with market equity greater than the 50th percentile of NYSE stocks

(Fama and French (2008)).

We apply our simulation method to 16 risk factors proposed in the literature. Specifically,

we use market (mkt), size (smb), book-to-market (hml), profitability (rmw), and investoment

(cma) from Fama and French (2015), liquidity (psl) from Pástor and Stambaugh (2003),

profitability (roe) and investment (ia) from Hou et al. (2015), and two composite factors

(mgmt and perf) from Stambaugh and Yuan (2017). We also apply our method to six

instrumented PCA factors from Kelly et al. (2019).5

4

5We thank Ken French, Robert Stambaugh, Lu Zhang,and Seth Pruitt for making the factors publicly
available on their webpages.
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5 Testing Models with Individual Stocks

In this section, we use our approach to test several of the most influential factor models in

empirical asset pricing. Motivated by our simulations for each model, we show two sets of

results. For the first test, we take a conservative approach. We extract alphas at each of nine

deciles (from the 10th to 90th percentile) and apply the Bonferonni corrections. These tests

guarantee a test size of 5% or less. The second test extracts alphas from each of ninety-nine

percentiles (from the 1st to 99th percentile). We use a confidence interval of 99% for our 99

percentile tests. This number is between the optimized confidence intervals found to yield

the appropriate test power in Table 2 (98.4% for CAPM and 99.4% for FF6). Based on our

simulations, we expect this to generate a test size near 5% for the models tests.

Figure 5 tests the CAPM. In both the decile panel on the left and the percentile figure

on the right, the average observed t-statistic is larger than the confidence interval in the

middle of the distribution leading to rejection in both panels. The results suggest there are

alphas (possibly latent factors) that a wide cross-section of stocks are exposed to, including

the median stock in the sample.

Stocks with extreme t-statistics, the tenth and ninetieth percentile, are within the confi-

dence interval. In traditional characteristic sorted portfolio tests most of the information is

concentrated in the extreme portfolios. These stocks may have extreme loadings on a factor

omitted from the pricing model, and consequently high-low extreme portfolios produce the

most statistical power to reject a tested model. In these tests of individual stocks, we more

commonly observe rejection towards the middle of the distribution. For individual stocks,

stocks appear to have similar outcomes at the extremes as would be consistent with “luck.”

Extreme performances in individual stocks may have more to do with consistently surpassing

(or failing to meet) investor expectations, than especially high or low cost of equity. Addi-

tionally, the confidence intervals at the tails of our distributions are often wider, since there

is more uncertainty in estimating the tails of a distribution.

Next, Figure 6 shows the results for the Fama and French models. The top panels

are Fama and French (1993) that adds smb (size) and hml (book-to-market) factors to the

CAPM. The middle panels are Fama and French (2015) five factor models that adds rmw

(profitability) and cma (investment) to the three factor model. The bottom panel, we call

FF6, adds umd (momentum) to the five factor model as an updating of the popular Carhart
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(1997) four factor model.

All three models are rejected across both the conservative Bonferonni tests (left column)

and the optimized percentile tests (right column). The models explain more of the cross-

sectional t-statistic distribution. Adding factors that explain the time-series variation of

returns can have the effect of narrowing the confidence intervals by decreasing the contri-

bution of residual variance. These narrower confidence intervals relative to the CAPM are

apparent in Figure 6. Despite the narrower confidence intervals, more of the cross-sectional

t-statistics are found in within the range of ordinary variation. In the left panel, both the

three and five factor models are rejected in the 20th to 50th percentiles, while the six fac-

tor model is rejected at all but the top two deciles. Similar patterns are apparent in the

right panel using optimized confidence intervals. This mispriced stocks are always above the

intervals, suggesting stocks in the sample have alpha relative to the factors.

Next, Figure 7 shows the results for two versions of the Q-factor model. The top panel

shows Hou et al. (2015) (HXZ4) which combines the market with size, profitabilty and

investment factors. The bottom panel shows the model of Hou et al. (2021) (HXZ5) which

adds a profitability growth factor to the four factor model. The results across the two panels

are very similar. The models are rejected in both cases in a pattern similar to the FF6 factor

model. Most stocks have more alpha than expected by chance, especially in the bottom of

the distribution.

To streamline the results, the two models of Figure 8 are grouped by their common

author, even though they are not conceptually related. The top panel shows the five factor

model of Pástor and Stambaugh (2003), which adds a liquidity factor to the Carhart (1997)

four factor model. The bottom panel shows the four factor mispricing model of Stambaugh

and Yuan (2017). The model combines several anomalies related to management (mgmt)

and performance (perf) with the market and a size factor. The top panel shows the liquidity

factor does not improve much on the Fama and French models. The bottom panel shows

some improvement from the mispricing model at the extremes, but the model is still rejected.

Figure 9 shows the most successful models, the IPCA factors of Kelly et al. (2019). These

models use an “instrumented” form of principal components over thirty-six characteristics

that have been formed into basis assets. The figure shows three versions of the model,

which each have size factors. The first is the “Restricted” model of Kelly et al. (2019),

which is their baseline model. The characteristics are restricted to explain average returns
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through common factors as opposed to allowing for characteristic mispricing. The second

version is the out-of-sample version of the restricted model. The full sample model forms

principal components over the entire sample, maximally explaining the variation across the

basis assets. The out-of-sample version performs this in an expanding window. Lastly, the

“Unrestricted” model relaxes the restricted version by allowing characteristics to explain

average returns in a way unrelated to common factors.

The top two rows show that the Kelly et al. (2019) Restricted model is the only model

we test that is not rejected. Both the full sample and out-of-sample versions pass our

statistical tests. Neither model is rejected at any percentile. The bottom panel shows that

the unrestricted version of the factors is rejected. Most stocks have higher t-statistics than

would be expected by chance. The median stock has positive alpha against the unrestricted

model, seemingly shifting the entire distribution of observed t-statistics up and above the

confidence intervals formed under the null hypothesis.

5.1 Mispricing Measure

In this section, we suggest an intuitive approach to combine the results presented so far into

a single mispricing measure. A model is accepted or rejected based on whether the observed

mispricing across percentiles is within the range of the confidence interval. If the observed

mispricing is far from that expected by chance, then we reject the model.

We suggest a measure of mispricing that captures how far the t-statistics of alpha are

from the average of our simulations. An absolute measure of mispricing is the average of the

absoluted difference at each of the nine deciles from the mean of the simulations:

|M |= 1

9

90∑
i=10

|t(α)oi − t(α)µi |

And a squared measure of mispricing is the squared deviations from the average of the

simulations:

M2 =
1

9

90∑
i=10

(t(α)oi − t(α)µi )2

These measures capture the combined mispricing across the nine deciles. Additionally,
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by comparing to the mispricing measures calculated across the 10,000 simulations for each

model, we can calculate a p-value for the extent of mispricing.6

Figure 10 shows this simulated p-value for the CAPM. First, we find the mean of the

t-statistics at each of the nine deciles from the 10,000 simulations. Then we compare each of

the simulations individually to those means at the nine deciles and find |M | and M2 for each

of the simulations. Last, we calculate the mispricing measures observed in the sample and

compare to the distribution of mispricing measures found in the simulations. The left panel

of Figure 10 shows the absolute mispricing measure and its simulated distribution under the

null hypothesis, while the right panel shows the squared mispricing measure.

Table 3 shows the resulting mispricing measures across models. The top panel shows the

absolute mispricing measure and the bottom panel shows the squared mispricing measure.

The models are sorted from lowest mispricing to highest mispricing and the two measures

always agree on the ordering and produce similar p-values. The only model that is not

rejected at the 5% level is the KPS-restricted model. As shown in Figure 9, this model

has a very small absolute mispricing averaging to only one basis point across deciles. The

poorest performing models, the CAPM and KPS-Unrestricted have on average 35 basis

points absoluted mispricing over the nine deciles.

The KPS out-of-sample model does not perform as impressively when viewed in terms of

the mispricing measure. The out-of-sample model has higher mispricing measures than all of

the Fama and French style models as well as the mispricing and liquidity models. But, unlike

these models, the KPS out-of-sample model is not rejected with a low p-value. The p-value of

0.08 puts this model on the margin of conventional levels of significance. This suggests that

some of the success of the out-of-sample model comes from injecting additional uncertainty

in the confidence intervals. A model that succeeds by blowing up the standard errors is not

obviously preferable to a model that has less mispricing, but is more convincingly rejected.

The second best performing model is the Fama and French three factor model. This

model has less mispricing than the Fama and French five and six factor models and the five

factor model of Pástor and Stambaugh (2003) that adds momentum and liquidity to the

Fama and French three factor model. Additionally, the five factor model of Hou et al. (2021)

performs slightly better than its four factor counterpart. That more factors does not always

6We have not reported a p-value up to this point, because with multiple comparisons extreme p-values
are more likely to occur by chance, distorting the usual interpretation.
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generate less mispricing suggests that testing asset pricing models with individual stocks

may provide a natural balance for tests that require pricing extreme characteristic portfolios

or high Sharpe ratio factors.

5.2 Empirical Results Without Micro-cap Stocks

A number of the models perform poorly when tested on individual stocks. Individual stocks

may be an especially high bar for factor models. To enhance robustness, factor models often

curtail the weight put on stocks with very low market equity. For instance, within the small

cap universe (less than 50th percentile market equity on NYSE) Fama and French (1993)

value-weight stocks across characteristic sorted portfolios. So called micro-cap stocks that

have a lower market equity than the 20th percentile NYSE stock are less the 3% of total

market equity but account for 60% of the entire NYSE-NASDAQ-AMEX universe (Fama

and French, 2008).

In this section, we drop all micro-cap stocks and reanalyze each model. Figure 11 shows

a selection of models retested on this sample. Interestingly, the CAPM across the top panel

is still rejected, but the next two panels show the Fama and French three and five factor

models are no longer rejected. The bottom panel shows that the six factor model that

includes momentum is not rejected across nine deciles, but is rejected across ninety-nine

percentiles. The only instance where the two tests disagree.

Table 4 shows the results for a wider selection of models, sorted by our absolute mispricing

measure. Using the mispricing measures, several models are not rejected at the 5% level of

significance, including the Fama and French (2015) five factor model, the Fama and French

(1993) three factor model, the Hou et al. (2015) four factor model, the Stambaugh and

Yuan (2017) four factor model and the Kelly et al. (2019) out-of-sample model. Again, it is

apparent that adding factors does not necessarily improve model performance. The Pástor

and Stambaugh (2003) model adds momentum and liquidity factors to the Fama and French

three factor model but has more mispricing and is rejected at a p-value of 0.00. Adding a

momentum factor to the Fama and French five factor model also worsens performance for

the Fama and French six factor model.

The overall best performing model under both absolute and squared mispricing is the

Fama and French five factor model. The two measures generally agree in the rank order of
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the models, though small differences in the measures lead to the Hou, Xue, and Zhang four

factor model falling from second to fourth under the squared mispricing measure.

The last two columns report the results for our two tests across deciles and percentiles.

The second to last column shows the more conservative Bonferroni test over nine deciles and

the last column shows the optimized confidence intervals over 99 percentiles. The two tests

agree for all but the Fama and French six factor model. Only the KPS-Restricted model is

rejected by the mispricing measures, but not by the percentile tests.

6 A Data Snooped Model

In order to further distinguish our tests from other asset pricing tests, we consider a model

that we think is quite likely to be data snooped. We are confident it is data snooped,

because we have done the snooping. Hou et al. (2020) replicate 452 different anomalies.7

We take seven anomalies notable for how exceptional their Sharpe ratios are. From these

characteristics, we build seven factors from value-weighted, decile sorts on each characteristic.

We take the extreme high and low return portfolios and generate high minus low hedge

portfolios from each characteristic.

The seven characteristics (along with their resulting monthly Sharpe ratios and the t-

statistics on whether the factor returns are different than zero) are cumulative abnormal

stock returns around earnings announcements (Abr1 0.21, 4.81), change in analysts earnings

forecast (dEf1 0.21, 4.71), twelve-month industry lead-lag effect in prior returns (Ilr12 0.15,

3.45), twelve-month quarterly earnings to price (Epq12 0.10, 2.21), change in net operating

assets (dNoa 0.11, 2.59), four-quarter change in return on equity (dRoe1 0.23, 5.23), and

seasonality (R[2,5]a 0.18,4.19). We combine these seven factors with the market factor and

test the resulting model on individual stocks.

Figure 12 shows that this model can be rejected using our method. Even though a mean-

variance efficient combination of the resulting factor model has an extremely high Sharpe

ratio (almost three times that of the market), that would help it in many asset pricing

tests (Barillas and Shanken, 2017, 2018), our test can distinguish it from the true model.

The average alphas are above the confidence intervals, suggesting that many stocks load

7We are grateful the authors have made the resulting test portfolios available at http://global-
q.org/testingportfolios.html.
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negatively on the factors.

It is not unique to our tests that a high Sharpe ratio factor model can still fail to price

test assets.8 But, since both generation of traditional factor models and test assets require

strong assumptions about how characteristics relate to expected returns, individual stocks

have the advantageous feature of avoiding this predicament entirely. There may well be

instances where characteristic sorted portfolios have the advantage of focusing a test on

certain hard to price relationships across stocks, and in doing so increase test power, but if

the future evolutions of factor models are more closely approaching the true mean-variance

frontier, improvement on these tests should not come at the expense of pricing individual

stocks. Individual stocks can provide some counterbalance to explaining patterns in the data

that are only apparent after that data has been thoroughly examined.

7 IPCA Models

The IPCA models of Kelly et al. (2019) have a structural difference from the other asset

pricing models considered. Rather than sort stocks into value-weighted portfolios, stocks are

first sorted into basis assets long each individual characteristic, then factors are extracted

from these basis assets. Because their main unit of analysis is individual stocks, these basis

assets are more like equal-weighted portfolios than value-weighted. They take advantage of

characteristics spread across the whole cross-section and not just across large stocks. The

IPCA model also differs in that it explores a much larger cross-section of “anomalies.” The

procedure uses 36 firm characteristics to form six factors, while the other models use sorts

over only six characteristics.

In this section, we explore the net effect of these differences in approach to examine where

the superior performance of the IPCA factors in individual stocks stems from. We create

IPCA factors using the Kelly et al. (2019) methodology with a smaller subset of character-

istics to see if the out-performance is driven by the structure of IPCA or the additional firm

characteristics.9 We reproduce the three versions of the Kelly et al. (2019) models, restricted,

8As Barillas and Shanken (2017) put it, “There is certainly no guarantee that the model identified as best
is a good model. To address this issue, which entails evaluation of the overall performance of the model, all
information about the pricing of excluded factors.”

9We are grateful to Seth Pruitt for making the replication code available on his website https:

//sethpruitt.net/research/.
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unrestricted and out-of-sample, but with only a subset of the characteristics. We use a six

characteristic version that includes beta, size, book-to-market, investment, profitability and

momentum. We also use a five characteristic version that omits beta and instead augments

IPCA factors with the market factor.

Table 5 shows the mispricing measures for these models. Interestingly, the IPCA models

perform better without the additional characteristics, especially out-of-sample. The KPS

out-of-sample model with six characteristics has an absolute mispricing measure of 0.06 basis

points and is not rejected with a p-value of 0.42. With all 36 characteristics the mispricing

measure is 0.26 basis points and a p-value of 0.08. The IPCA model with five characteristics

augmented with the market factor has the lowest mispricing measures and is not rejected

with p-values of 0.16 and 0.24. The highest mispricing measures are produced by the IPCA

models with thirty-six characteristics, though only the Unrestricted version is rejected. In

summary, the IPCA structure is a promising way to build asset pricing models, especially if

pricing the entire cross-section of stocks is the goal, but the method actually performs better

when a smaller, more selective set of firm characteristics is used.

8 Conclusion

We test factor models over the cross-section of individual stocks. Using innovations emerging

from the fund performance literature (Kosowski et al., 2006; Fama and French, 2010), we

show that comparing observed alpha over percentiles of individual stocks to distributions

simulated under the null hypothesis of no mispricing can generate appropriately sized tests

with surprisingly high statistical power. We test several leading models on individual stocks

and find that many can be rejected. If we omit the tiny, but plentiful, micro-cap stocks, the

models perform better as a whole, but many can still be rejected.

When all stocks are used as test assets, the best factors are generated by the IPCA

methodology of Kelly et al. (2019), but we find that the methodology performs better when

only a small set of firm characteristics are used. Highlighting the difference between these

tests and traditional asset pricing tests, our tests show models with more factors and higher

ex post Sharpe ratios may perform worse on individual stocks. We test a model that has been

deliberately data snooped with very high Sharpe ratio factors, and show it can be rejected

when tested on individual stocks. Individual stocks do not require strong assumptions about
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the relationship between characteristics and expected returns, and consequently provide a

valuable check on the evolution of factor models. If factor models are truly approaching the

ex ante mean-variance efficient frontier, then better performance on traditional tests should

not come at the expense of pricing individual stocks.
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Table 1: Cross-section of Population Data for Simulations

We generate a population of data by subtracting estimated alpha from sample data. This table summarizes
our original sample data as well as the adjusted data that has zero alpha under either the CAPM or the
Fama French six factor model (FF6).

Panel A shows the data adjusted to have zero alpha under the CAPM. The second, third and fourth columns
show the R-squareds, CAPM alphas, and CAPM t-statistics of time-series regressions of stock returns on the
excess market return for each stock in our sample summarized at nine percentiles. These CAPM alphas are
subtracted from each stock to create a pseudo population that has zero CAPM alpha. The fifth and sixth
columns show the FF6 alphas and FF6 t-statistics on these adjusted returns.

Panel B shows the data adjusted to have zero alpha under the FF6. The second, third and fourth columns
show the R-squareds, FF6 alphas, and FF6 t-statistics of time-series regressions of stock returns on the six
Fama and French factors for each stock in our sample summarized at nine percentiles. These FF6 alphas
are subtracted from each stock to create a pseudo population that has zero FF6 alpha. The fifth and sixth
columns show the CAPM alphas and CAPM t-statistics on these adjusted returns.

Panel A: CAPM
αCAPM = 0

Percentile R2 α t αFF6 tFF6

1 0.01% -6.74 -2.53 -5.89 -1.77
5 0.4% -3.77 -1.61 -2.78 -1.17
10 1.1% -2.38 -1.14 -1.71 -0.85
25 4.1% -0.59 -0.38 -0.57 -0.38
50 9.9% 0.39 0.37 0.10 0.09
75 18.2% 1.03 1.01 0.59 0.61
90 27.4% 1.87 1.57 1.23 1.07
95 32.6% 2.54 1.90 1.84 1.33
99 41.9% 4.57 2.55 3.64 1.82

Panel B: FF6
αFF6 = 0

Percentile R2 α t αCAPM tCAPM
1 2.9% -7.26 -2.52 -3.64 -1.87
5 5.7% -3.73 -1.63 -1.84 -1.34
10 7.9% -2.28 -1.20 -1.23 -1.06
25 13.3% -0.65 -0.48 -0.59 -0.58
50 21.3% 0.23 0.21 -0.10 -0.08
75 31.0% 1.11 0.86 0.57 0.35
90 40.1% 2.37 1.42 1.71 0.75
95 45.7% 3.45 1.78 2.78 1.00
99 56.7% 7.18 2.46 5.89 1.45
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Table 2: Simulation Results for Size and Power

This table shows size and power of our procedure based on nine percentiles with our two methods of generating
confidence intervals. The top sub-panel shows size and power of our procedure when the population is the
CAPM and the bottom sub-panel shows size and power of our procedure when population is generated under
the FF6 model.

For the top sub-panel, we first adjust the sample data so that the CAPM alpha is zero for all stocks. This
creates a new pseudo population in which we know the CAPM describes expected returns on all stocks. We
then bootstrap by randomly drawing 654 months and retaining the entire cross-section of stocks and factors
from each month. This creates a new sample drawn from a known population. Next, to calculate observed
alphas for CAPM and FF6, we run the following time-series regressions across each stock.

Rit = αi + βimktrft + εit

Rit = αi + βimktrft + βiSMBt + βiHMLt + βiRMWt + βiCMAt + βiMOMt + εit

To calculate size and power, we first subtract the CAPM estimated alphas from the sample of stock returns
creating a new pseudo population, in which, the tested model is true. We re-sample from this pseudo
population to generate 1000 samples to construct our confidence intervals. We reject a model if an observed
alpha is outside the confidence interval. In the last step, we calculate size (power) for each confidence interval
if the CAPM (FF6) observed alpha is outside the confidence interval.

We repeat this excercise allowing both CAPM and FF6 to be null hypothesis and candidate (four combina-
tions) and for both alphas and t-statistics.
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Panel A: Bonferonni Confidence Intervals

Model Stat Test Rejection
Pop: αCAPM = 0

CAPM t Size 1.5%
FF6 t Power 97.5%

CAPM α Size 3.2%
FF6 α Power 98.8%

Pop: αFF6 = 0
FF6 t Size 3.3%
CAPM t Power 83.2%

FF6 α Size 4.9%
CAPM α Power 78.8%

Panel B: Optimized Confidence Intervals

9 Deciles 99 Percentiles
H1 Stat Test CI Rejection CI Rejection

Pop: αCAPM = 0
CAPM t Size 97.8% 5.1% 98.4% 5.2%
FF6 t Power 97.8% 99.9% 98.4% 99.9%

CAPM α Size 99% 4.7% 99.4% 4.7%
FF6 α Power 99% 99.9% 99.4% 99.7%

Pop: αFF6 = 0
FF6 t Size 99% 4.9% 99.4% 4.6%
CAPM t Power 99% 91.0% 99.4% 96.7%

FF6 α Size 99.4% 5.1% 99.6% 5.6%
CAPM α Power 99.4% 81.2% 99.6% 90.4%
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Table 3: Mispricing : All Stocks

This table shows our two measures of mispricing and a p-value based on 10,000 simulations under the null
hypothesis of no mispricing. Each measure is the average mispricing across nine deciles (10, 20, 30, ..., 90).

Absolute Mispricing:

|M |= 1
9

∑90
i=10|t(α)oi − t(α)µi |

Squared Mispricing:

M2 = 1
9

∑90
i=10(t(α)oi − t(α)µi )2

To create each measure, we first use the sample data to estimate the sample observed alpha across all stocks.
We retain the nine percentiles (10th, 20th,..., 90th) or 99 percentiles (1st,2nd,...99th). Then, we adjust the
sample data, so that the factor model alpha is zero for all stocks. This creates a new pseudo population in
which the factor model describes expected returns on all stocks. We then bootstrap by randomly drawing
539 months and retaining the entire cross-section of stocks and factors from each month and estimate the
alphas by running time-series regressions for each stock. We retain the percentiles for each new sample
generated from this pseudo population. We repeat this procedure 10,000 times.

We calculate the mispricing measures from the mean t-statistic of our 10,000 simulations. We use the
distribution of mispricing over the 10,000 simulations to report an empirical p-value.

Model |M | P-Value M2 P-Value
KPS-R 0.01 0.89 0.000 0.90
FF3 0.14 0.01 0.022 0.01
FF5 0.17 0.00 0.029 0.00
Stambaugh & Yuan 0.20 0.00 0.043 0.00
FF4 + Liquidity 0.23 0.00 0.056 0.00
FF6 0.23 0.00 0.057 0.00
KPS-OOS 0.26 0.08 0.068 0.09
HXZ4 0.28 0.00 0.083 0.00
HXZ5 0.30 0.00 0.094 0.00
CAPM 0.35 0.00 0.122 0.00
KPS-U 0.35 0.00 0.134 0.00
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Table 4: Mispricing : No Micro Stocks

This table shows results when our sample is reduced by eliminating micro-cap stocks (market equity below
20th percentile of NYSE). In the first four columns, the table shows our two measures of mispricing and a
p-value for this sample. The last two columns show the main hypothesis tests at each of nine deciles (with
the Bonferonni correction) or ninety-nine percentiles (with our optimized confidence intervals).

For each test, we first use the sample data to estimate the sample observed alpha across all stocks. We retain
the nine percentiles (10th, 20th,..., 90th) or 99 percentiles (1st,2nd,...99th). Then, we adjust the sample data,
so that the factor model alpha is zero for all stocks. This creates a new pseudo population in which the factor
model describes expected returns on all stocks. We then bootstrap by randomly drawing 539 months and
retaining the entire cross-section of stocks and factors from each month and estimate the alphas by running
time-series regressions for each stock. We retain the percentiles for each new sample generated from this
pseudo population. We repeat this procedure 10,000 times.

We calculate the mispricing measures from the mean t-statistic of our 10,000 simulations. We use the
distribution of mispricing over the 10,000 simulations to report an empirical p-value.

Model |M | P-Value M2 P-Value Reject(9) Reject(99)
FF5 0.02 0.87 0.000 0.89 No No
HXZ4 0.09 0.16 0.010 0.18 No No
FF3 0.09 0.06 0.009 0.08 No No
FF6 0.09 0.02 0.009 0.04 No Yes
Stambaugh & Yuan 0.10 0.07 0.012 0.09 No No
KPS-R 0.13 0.02 0.020 0.03 No No
HXZ5 0.16 0.00 0.027 0.01 Yes Yes
FF4 + Liquidity 0.19 0.00 0.038 0.00 Yes Yes
KPS-OOS 0.25 0.20 0.070 0.19 No No
CAPM 0.30 0.00 0.092 0.00 Yes Yes
KPS-U 0.62 0.00 0.403 0.00 Yes Yes
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Table 5: Mispricing : KPS Models

This table shows our two measures of mispricing for different IPCA models (Kelly et al., 2019). Models
with all characteristics include the original 36 firm characteristics. Five characteristics include size,
book-to-market, profitability, investment and momentum formed into five IPCA factors and augmented
with the market factor. Six characteristics adds beta as a characteristic and includes only IPCA factors.
“OOS” designates that the model is formed out-of-sample in an expanding window fashion.

Absolute Mispricing:

|M |= 1
9

∑90
i=10|t(α)oi − t(α)µi |

Squared Mispricing:

M2 = 1
9

∑90
i=10(t(α)oi − t(α)µi )2

To create each measure, we first use the sample data to estimate the sample observed alpha across all stocks.
We retain the nine percentiles (10th, 20th,..., 90th) or 99 percentiles (1st,2nd,...99th). Then, we adjust the
sample data, so that the factor model alpha is zero for all stocks. This creates a new pseudo population in
which the factor model describes expected returns on all stocks. We then bootstrap by randomly drawing
539 months and retaining the entire cross-section of stocks and factors from each month and estimate the
alphas by running time-series regressions for each stock. We retain the percentiles for each new sample
generated from this pseudo population. We repeat this procedure 10,000 times.

We calculate the mispricing measures from the mean t-statistic of our 10,000 simulations. We use the
distribution of mispricing over the 10,000 simulations to report an empirical p-value.

Test Statistic P-Value
KPS Models |M | M2 |M | M2

KPS-Restricted (All characteristics) 0.01 0.000 0.89 0.90
Market + KPS (Five characteristics) 0.05 0.003 0.16 0.24
KPS-OOS (Six characteristics) 0.06 0.004 0.42 0.49
KPS-Restricted (Six characteristics) 0.07 0.005 0.05 0.10
KPS-Unrestricted (Six characteristics) 0.11 0.013 0.00 0.00
KPS-OOS (All characteristics) 0.26 0.068 0.08 0.09
KPS-Unrestricted (All characteristics) 0.35 0.134 0.00 0.00
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(a) CAPM (b) FF6

Figure 1: One Simulation Run When the CAPM Describes the Population

This figure shows the first simulation run when the CAPM describes the population. The left panel shows
our test of the CAPM and the right panel shows our test of the FF6 model. When the observed alphas are
within the confidence intervals, we fail to reject the model (represented with a (blue) dot). When the sample
observed alphas are outside the confidence intervals, we reject the model (represented with a (red) X).

First, we adjust the sample data so that the CAPM alpha is zero for all stocks. This creates a new pseudo
population in which we know the CAPM describes expected returns on all stocks. We then bootstrap by
randomly drawing 654 months and retaining the entire cross-section of stocks and factors from each month.
This creates a new sample drawn from a known population. We then test two models, CAPM and FF6. First,
we estimate each model using N time-series regressions across each stock. From the estimated alpha, we
retain the nine percentiles (10th, 20th,..., 90th). This observed alpha distribution is represented with (blue)
dots and (red) x’s. We then subtract these alphas from the sample of stock returns creating a new pseudo
population, in which, the tested model is true. We re-sample from this pseudo population to generate 1000
samples and retain the 0.28 and 99.72 percentiles to generate the Bonferroni adjusted confidence intervals.
If an observed alpha is outside the confidence interval we reject the model.

Since the CAPM describes the population, a rejection represents an incorrect rejection of the null hypothesis.
Since the FF6 does not describe the population, rejection represents a success, correctly rejecting a false
null hypothesis. The left panel shows the results of one simulation run of the CAPM tested on a sample
drawn from a CAPM population. Then, after repeating this simulation several times, the rejection rate of
the CAPM gives the overall test size, and the rejection of the FF6 gives the overall test power.
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(a) CAPM (b) FF6

Figure 2: Size-Power Trade-off

This figure shows size (blue line) and power (red line) of our procedure based on nine percentiles. The left
panel shows size and power of our procedure when population is generated under the CAPM and the right
panel shows size and power of our procedure when population is generated under the FF6 model. The
green dotted line is the Bonferroni adjusted confidence interval. The black dotted line is the optimized
confidence interval. For the left panel, we first adjust the sample data so that the CAPM alpha is zero for
all stocks. This creates a new pseudo population in which we know the CAPM describes expected returns
on all stocks. We then bootstrap by randomly drawing 654 months and retaining the entire cross-section
of stocks and factors from each month. This creates a new sample drawn from a known population. Next,
to calculate observed alphas for CAPM and FF6, we run the following time-series regressions across each
stock.

Rit = αi + βimktrft + εit

Rit = αi + βimktrft + βiSMBt + βiHMLt + βiRMWt + βiCMAt + βiMOMt + εit

To calculate size and power, we first subtract the CAPM estimated alphas from the sample of stock returns
creating a new pseudo population, in which, the tested model is true. We re-sample from this pseudo
population to generate 1000 samples to construct our confidence intervals. We reject a model if an observed
alpha is outside the confidence interval. In the last step, we calculate size (power) for each confidence interval
if the CAPM (FF6) observed alpha is outside the confidence interval.
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(a) CAPM (b) FF6

Figure 3: Size-Power Trade-off

This figure shows size (blue line) and power (red line) of our procedure based on ninety nine percentiles.
The left panel shows size and power of our procedure when population is generated under the CAPM and
the right panel shows size and power of our procedure when population is generated under the FF6 model.
The black dotted line is the optimized confidence interval.

For the left panel, we first adjust the sample data so that the CAPM alpha is zero for all stocks. This
creates a new pseudo population in which we know the CAPM describes expected returns on all stocks. We
then bootstrap by randomly drawing 654 months and retaining the entire cross-section of stocks and factors
from each month. This creates a new sample drawn from a known population. Next, to calculate observed
alphas for CAPM and FF6, we run the following time-series regressions across each stock.

Rit = αi + βimktrft + εit

Rit = αi + βimktrft + siSMBt + hiHMLt + riRMWt + ciCMAt +miMOMt + εit

To calculate size and power, we first subtract the CAPM estimated alphas from the sample of stock returns
creating a new pseudo population, in which, the tested model is true. We re-sample from this pseudo
population to generate 1000 samples to construct our confidence intervals. We reject a model if an observed
alpha is outside the confidence interval. In the last step, we calculate size (power) for each confidence interval
if the CAPM (FF6) observed alpha is outside the confidence interval
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Figure 4: Rejection Frequencies of Zero-Alpha CAPM based on Different Distribution of
Alpha

This figure shows the sensitivity of our procedure to different distribution of alpha. We generate synthetic
alpha using normal distribution with mean zero and standard deviation, σ. We vary the standard deviation
from 0.05% to 1.00%.

We first create pseudo population in which the CAPM describes expected returns on all stocks. Next, we
generate normally distributed synthetic alphas and add them to our pseudo population. By doing so, we are
able to test power of our procedure based on different distribution of synthetic alphas.
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(a) 9 Percentiles (b) 99 Percentiles

Figure 5: Testing the CAPM Using All Stocks

This figure shows the test of the CAPM for all stocks. The left panel shows the test of the CAPM for
nine percentiles with Bonferroni adjusted confidence intervals. The right panel shows the test of CAPM for
ninety-nine percentiles with our optimized confidence intervals. The sample observed alphas are represented
with (blue) dots and (red) x’s for with red x’s denoting rejections for lying outside the confidence intervals.

To perform our tests, we first use the sample data to estimate the sample observed alpha across all stocks.
We retain the nine percentiles (10th, 20th,..., 90th) or 99 percentiles (1st,2nd,...99th). Then, we adjust the
sample data, so that the CAPM alpha is zero for all stocks. This creates a new pseudo population, in which
the CAPM describes expected returns on all stocks. We then bootstrap by randomly drawing 539 months
with replacement from this population and retain the entire cross-section of stocks and factors from each
month. We estimate the alphas and corresponding t-statistics by running time-series regressions for each
stock. We retain the percentiles for each new sample generated from this pseudo population. We repeat this
procedure 10,000 times to calculate the confidence intervals at each percentile.
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(a) 9 Percentiles (b) 99 Percentiles

(c) 9 Percentiles (d) 99 Percentiles

(e) 9 Percentiles (f) 99 Percentiles
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Figure 6: Testing the Fama and French Models Using All Stocks

This figure shows the test of three Fama and French models for all stocks. All models include the market. The
FF3 model adds smb (size) and hml (value), the FF5 model adds rmw (profitability and cma (investment),
and the FF6 adds umd (momentum). The left column shows the test of the models for nine percentiles
with Bonferroni adjusted confidence intervals. The right column shows the test of the models for ninety-nine
percentiles with our optimized confidence intervals. The sample observed alphas are represented with (blue)
dots and (red) x’s for with red x’s denoting rejections for lying outside the confidence intervals.

To perform our tests, we first use the sample data to estimate the sample observed alpha across all stocks.
We retain the nine percentiles (10th, 20th,..., 90th) or 99 percentiles (1st,2nd,...99th). Then, we adjust the
sample data, so that the CAPM alpha is zero for all stocks. This creates a new pseudo population, in which
the CAPM describes expected returns on all stocks. We then bootstrap by randomly drawing 539 months
with replacement from this population and retain the entire cross-section of stocks and factors from each
month. We estimate the alphas and corresponding t-statistics by running time-series regressions for each
stock. We retain the percentiles for each new sample generated from this pseudo population. We repeat this
procedure 10,000 times to calculate the confidence intervals at each percentile.
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(a) 9 Percentiles (b) 99 Percentiles

(c) 9 Percentiles (d) 99 Percentiles

Figure 7: Testing the HXZ Using All Stocks

This figure shows the test of the two Hou et al. (2015, 2021) models for all stocks. HXZ4 includes the market,
size, investment and profitability factors. HXZ5 adds profitability growth. The left column shows the test of
the models for nine percentiles with Bonferroni adjusted confidence intervals. The right column shows the
test of the models for ninety-nine percentiles with our optimized confidence intervals. The sample observed
alphas are represented with (blue) dots and (red) x’s for with red x’s denoting rejections for lying outside
the confidence intervals.

To perform our tests, we first use the sample data to estimate the sample observed alpha across all stocks.
We retain the nine percentiles (10th, 20th,..., 90th) or 99 percentiles (1st,2nd,...99th). Then, we adjust the
sample data, so that the CAPM alpha is zero for all stocks. This creates a new pseudo population, in which
the CAPM describes expected returns on all stocks. We then bootstrap by randomly drawing 539 months
with replacement from this population and retain the entire cross-section of stocks and factors from each
month. We estimate the alphas and corresponding t-statistics by running time-series regressions for each
stock. We retain the percentiles for each new sample generated from this pseudo population. We repeat this
procedure 10,000 times to calculate the confidence intervals at each percentile.
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(a) 9 Percentiles (b) 99 Percentiles

(c) 9 Percentiles (d) 99 Percentiles

Figure 8: Testing the Stambaugh Models Using All Stocks

This figure shows the test of the FF4 plus liquidity model for all stocks and the Mispricing model. The left
column shows the test of the models for nine percentiles with Bonferroni adjusted confidence intervals. The
right column shows the test of the models for ninety-nine percentiles with our optimized confidence intervals.
The sample observed alphas are represented with (blue) dots and (red) x’s for with red x’s denoting rejections
for lying outside the confidence intervals.

To perform our tests, we first use the sample data to estimate the sample observed alpha across all stocks.
We retain the nine percentiles (10th, 20th,..., 90th) or 99 percentiles (1st,2nd,...99th). Then, we adjust the
sample data, so that the CAPM alpha is zero for all stocks. This creates a new pseudo population, in which
the CAPM describes expected returns on all stocks. We then bootstrap by randomly drawing 539 months
with replacement from this population and retain the entire cross-section of stocks and factors from each
month. We estimate the alphas and corresponding t-statistics by running time-series regressions for each
stock. We retain the percentiles for each new sample generated from this pseudo population. We repeat this
procedure 10,000 times to calculate the confidence intervals at each percentile.
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(a) 9 Percentiles (b) 99 Percentiles

(c) 9 Percentiles (d) 99 Percentiles

(e) 9 Percentiles (f) 99 Percentiles
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Figure 9: Testing the KPS Using All Stocks

This figure shows the test of the three Kelly et al. (2019) models for all stocks. The top panel is the KPS
Restricted model that restricts characteristics to explain returns through common factors. The middle panel
is the same KPS restricted model with estimates formed exclusively out of sample. The bottom panel is the
Unrestricted version that does not restrict characteristics to contribute to returns through common factors.
The left column shows the test of the models for nine percentiles with Bonferroni adjusted confidence
intervals. The right column shows the test of the models for ninety-nine percentiles with our optimized
confidence intervals. The sample observed alphas are represented with (blue) dots and (red) x’s for with red
x’s denoting rejections for lying outside the confidence intervals.

To perform our tests, we first use the sample data to estimate the sample observed alpha across all stocks.
We retain the nine percentiles (10th, 20th,..., 90th) or 99 percentiles (1st,2nd,...99th). Then, we adjust the
sample data, so that the CAPM alpha is zero for all stocks. This creates a new pseudo population, in which
the CAPM describes expected returns on all stocks. We then bootstrap by randomly drawing 539 months
with replacement from this population and retain the entire cross-section of stocks and factors from each
month. We estimate the alphas and corresponding t-statistics by running time-series regressions for each
stock. We retain the percentiles for each new sample generated from this pseudo population. We repeat this
procedure 10,000 times to calculate the confidence intervals at each percentile.
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(a) Absolute difference (b) Squared difference

Figure 10: All Stocks

This figure shows our two measures of mispricing (red line) and histogram bins of realized mispricing from
10,000 simulations under the null hypothesis of no mispricing (blue bins). We construct p-values from the
distribution of mispricing across the simulations. Each measure is the average mispricing across nine deciles
(10, 20, 30, ..., 90).

Absolute Mispricing:

|M |= 1
9

∑90
i=10|t(α)oi − t(α)µi |

Squared Mispricing:

M2 = 1
9

∑90
i=10(t(α)oi − t(α)µi )2
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(a) 9 Percentiles (b) 99 Percentiles

(c) 9 Percentiles (d) 99 Percentiles

(e) 9 Percentiles (f) 99 Percentiles

(g) 9 Percentiles (h) 99 Percentiles
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Figure 11: Testing the CAPM and Fama and French Models Dropping Micro-cap Stocks

This figure shows the test of three Fama and French models model for large and small cap stocks, dropping
the micro-cap stocks. All models include the market. The FF3 model adds smb (size) and hml (value), the
FF5 model adds rmw (profitability and cma (investment), and the FF6 adds umd (momentum). The left
column shows the test of the models for nine percentiles with Bonferroni adjusted confidence intervals. The
right column shows the test of the models for ninety-nine percentiles with our optimized confidence intervals.
The sample observed alphas are represented with (blue) dots and (red) x’s for with red x’s denoting rejections
for lying outside the confidence intervals.

To perform our tests, we first use the sample data to estimate the sample observed alpha across all stocks.
We retain the nine percentiles (10th, 20th,..., 90th) or 99 percentiles (1st,2nd,...99th). Then, we adjust the
sample data, so that the CAPM alpha is zero for all stocks. This creates a new pseudo population, in which
the CAPM describes expected returns on all stocks. We then bootstrap by randomly drawing 539 months
with replacement from this population and retain the entire cross-section of stocks and factors from each
month. We estimate the alphas and corresponding t-statistics by running time-series regressions for each
stock. We retain the percentiles for each new sample generated from this pseudo population. We repeat this
procedure 10,000 times to calculate the confidence intervals at each percentile.
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(a) 9 Percentiles (b) 99 Percentiles

Figure 12: Testing Abnormal Factors Using All Stocks

This figure shows the test of the Abnormal Factors model for all stocks. The left panel shows the test of
the Abnormal Factors model for nine percentiles with Bonferroni adjusted confidence intervals. The right
panel shows the test of Abnormal Factors model for ninety-nine percentiles with our optimized confidence
intervals. The sample observed alphas are represented with (blue) dots and (red) x’s for with red x’s denoting
rejections for lying outside the confidence intervals.

To perform our tests, we first use the sample data to estimate the sample observed alpha across all stocks.
We retain the nine percentiles (10th, 20th,..., 90th) or 99 percentiles (1st,2nd,...99th). Then, we adjust the
sample data, so that the CAPM alpha is zero for all stocks. This creates a new pseudo population, in which
the CAPM describes expected returns on all stocks. We then bootstrap by randomly drawing 539 months
with replacement from this population and retain the entire cross-section of stocks and factors from each
month. We estimate the alphas and corresponding t-statistics by running time-series regressions for each
stock. We retain the percentiles for each new sample generated from this pseudo population. We repeat this
procedure 10,000 times to calculate the confidence intervals at each percentile.
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