
Excess Volatility of British Pound: Jumps or Regime Switches?

Jingxian Hu • Boise State University

Introduction

- Explaining the excess volatility of the nominal exchange rate has been a challenge in international finance.
- This paper uses the continuoustime model with the jump-diffusion process and the regime-switching feature to decompose the driving force of the excess volatility of the nominal exchange rate.

Method

- Model: $dX_t = \kappa(Z_t) \left[\theta(Z_t) X_t \right] dt + \sigma(Z_t) dL_t$
- L_t : a Lévy process which follows a normal inverse Gaussian (NIG) distribution.
- $(Z_t)_{t \in [0,T]}$: a continuous time Markov chain with transition probability Π_{ij}^Z .
- $f_{NIG}(x; \alpha, \beta, \delta, \mu) = e^{\delta \gamma + \beta (x-\mu)} \frac{\alpha \delta K_1(\alpha \sqrt{\delta^2 + (x-\mu)^2})}{\pi \sqrt{\delta^2 + (x-\mu)^2}}$: the density function of the NIG distribution.

Two-step estimation:

- Step 1: estimate the regime-switching Gaussian model.
- \succ Step 2: fit the NIG distribution to each regime separately.

This study can shed light on the \bullet unknown structure of the excess volatility of the nominal exchange rate.

100	15	0	200	250
	Nominal E	xchange Rate	(GBP)	

Variance	Skewness	Kurtosis	
1770.49	1.21	3.44	

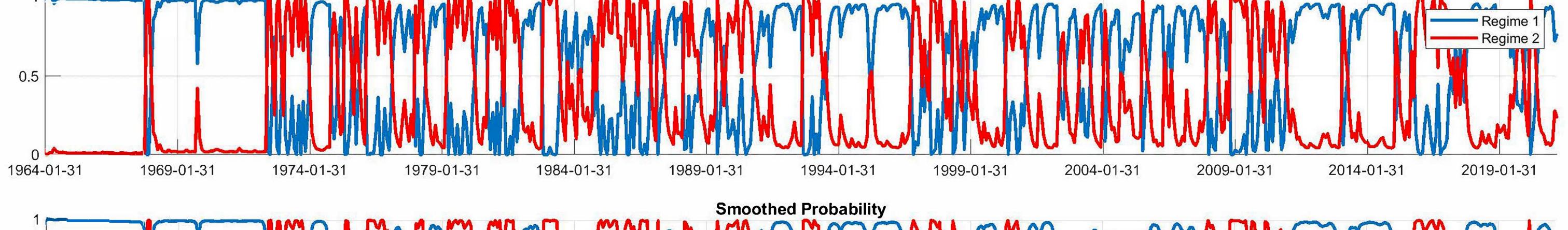
 Table 1. Summary Statistics.

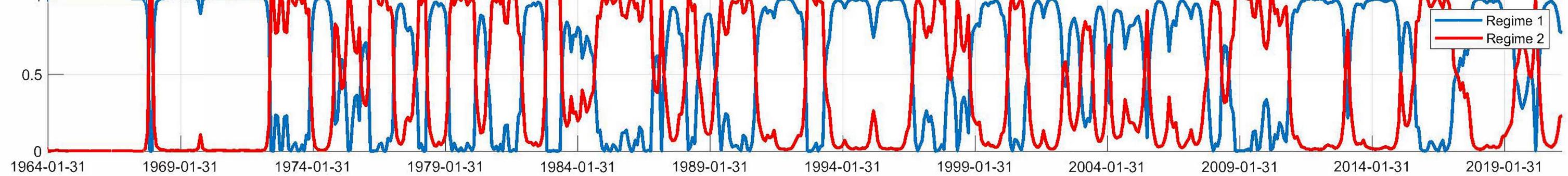
Model comparison:

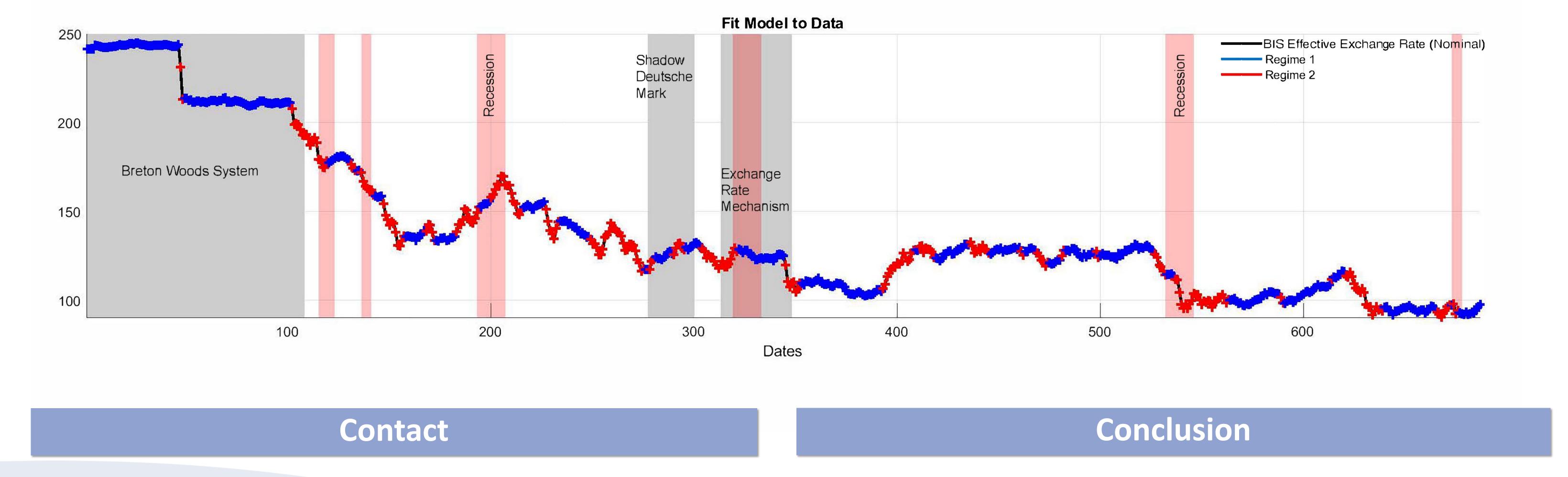
> Regime-switching Gaussian model: $dX_t = \kappa(Z_t) \left[\theta(Z_t) - X_t \right] dt + \sigma(Z_t) dW_t$

> Gaussian model: $dX_t = \kappa(\theta - X_t)dt + \sigma dW_t$

Model Estimation


- α_i : the tail heaviness and the intensity of jumps in state i. Smaller α_i reflects higher intensity of jumps.
- σ_i : the volatility in state i.
- Π_{ii}^Z : the probability of staying in the same regime i.


Diffusion Process	κ_{i}	$ heta_{ ext{i}}$	σ_{i}	Π_{ii}^Z
Regime 1	0.001109	230.486546	0.901875	0.91848
Regime 2	0.032429	110.618922	8.704419	0.87552
NIG Distribution	$lpha_{i}$	eta_{i}	δ_{i}	μ_{i}
Regime 1	0.536864	-0.371010	0.180108	0.172204
Regime 2	2.371331	-0.250890	1.021525	0.108689


Table 2. Estimated Parameters.

- Regime 1 has smaller volatility and is more persistent. However, it faces larger extreme variations when unpredictable jump events happen.
- Switching between regimes adds further change of the volatilities and the jumps.

Model Fitting
Filtered Probability

Comments are welcome and appreciated.

For further information, please contact Jingxian Hu at jingxianecon@gmail.com.

Jumps and regime switches play different roles in the exchange rate volatility. \bullet Understanding the dynamics opens future research to analyze the endogenous • and the exogenous factors in the economic system that generate the excess volatility of the nominal exchange rate.