# Technological Substitution of Jobs and the Transferability of Human Capital

Yuchen Guo KU Eichstätt-Ingolstadt, ifo Institute Simon Wiederhold KU Eichstätt-Ingolstadt, ifo Institute

### Motivation

- Existing literature on the aggregate decline of manual-routine occupations due to substitution by automation capital (e.g., Autor and Dorn, 2003; Goos et al., 2014)
- But: Evidence on how **individuals** working in these occupations **fare** after (technology-induced) displacement and on the **sources of adjustment costs** is lacking
- Occupation- and task-specific human capital (e.g., Gibbons and Waldman, 2004; Gathmann and Schönberg, 2010) and changes in the occupational structure may be a major reason why manual-routine workers might face particular difficulties to adjust to labor market shocks

## **Research Question**

Do workers initially employed in manual-routine occupations face **more difficult transitions** after job displacement than other displaced workers and, if so, **why**?

## **Empirical Strategy**

#### **Exploit exogenous job losses due to plant closures**

• **Plant closures** as job separations arguably exogenous to worker characteristics and productivity (e.g., Jacobson et al., 1993; Schmieder et al., 2022)

#### Matching on pre-displacement characteristics and wages

- Match displaced workers to non-displaced workers on pre-displacement outcomes and a large number of worker characteristics ("statistical twins")
- Accounts for remaining concerns of treatment selection at the establishment level
   Summary Statistics of Unmatched and Matched Samples

|                            | All<br>Baseline | All<br>Displaced | Difference | $\begin{array}{c} {\rm Matched} \\ {\rm Controls} \end{array}$ | Matched<br>Displaced | Difference             |
|----------------------------|-----------------|------------------|------------|----------------------------------------------------------------|----------------------|------------------------|
| % Manufacturing            | 59.02           | 65.62            | 6.6        | 63.91                                                          | 63.91                | 0 (exact matching)     |
| % Female                   | 32.16           | 32.45            | 0.29       | 30.73                                                          | 30.73                | 0 (exact matching)     |
| % East Germany             | 11.43           | 19.09            | 7.66       | 6.07                                                           | 6.07                 | 0 (exact matching)     |
| % College degree           | 7.42            | 5.53             | 1.89       | 3.69                                                           | 3.69                 | 0 (exact matching)     |
| % Manual-routine intensive | 17.4            | 15.6             | 1.8        | 17.0                                                           | 17.0                 | 0 (exact matching)     |
| Age                        | 41.50           | 41.43            | 0.07       | 41.28                                                          | 41.28                | 0 (exact matching)     |
| Real daily wage            | 111.96          | 110.89           | 11.29      | 110.89                                                         | 109.54               | 1.35                   |
| Days working per year      | 362.03          | 361.80           | 0.14       | 362.12                                                         | 362.35               | (1.07) $0.23$ $(0.84)$ |
| Number of workers          | 731,643         | 21,776           |            | 17,420                                                         | 17,420               |                        |

Notes: This table shows summary statistics of our data. The displaced sample is the subset of workers from the baseline sample that are displaced once due to a plant closure in the period 1980–2016. The matched displaced sample consists of displaced workers from the baseline sample that can be matched to an observationally similar never-displaced (control) workers. t-statistics for the differences in observables between between non-displaced (control) workers and displaced workers after the matching procedure are provided in parentheses.

Data: Administrative German labor market records (SIAB).

## **Data and Variables**

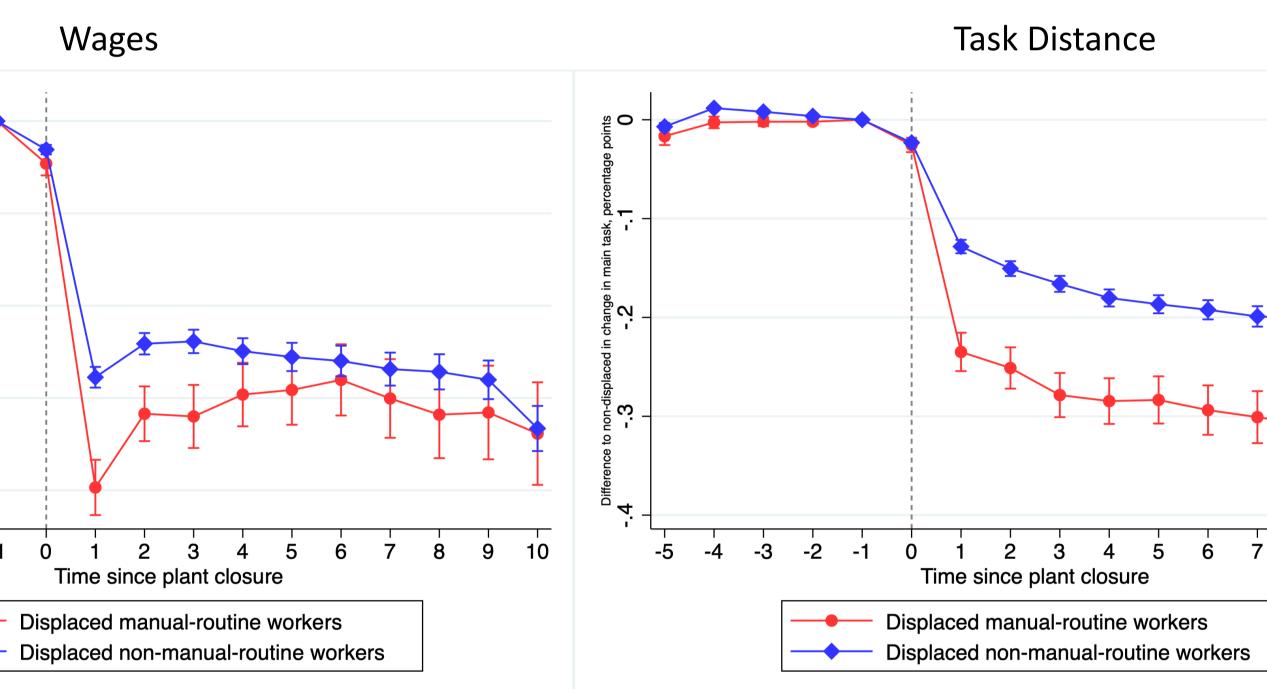
## **Employee Panel: Sample of Integrated Labor Market Biographies (SIAB)**

- Administrative German labor market data
- 2% random sample from the **universe of employees** in Germany subject to social security contributions from 1975—2019
- Complete labor market biographies of workers exact to the day:
  - Employment, wage, establishment, and occupational histories
  - Information about worker demographics (e.g., age, gender, and education), and establishment characteristics (e.g., industry, size, and location)
  - Wages: During unemployment, individuals are assigned their social security benefits as wage income
  - Task distance: Change in the share of the main pre-displacement task in the post-displacement occupation conditional on occupational switching; main pre-displacement task is the task that was performed most often in the last job before displacement

#### **Establishment Panel: Betriebs-Historik-Panel (BHP)**

- Administrative German firm level panel, universe of establishments in Germany from 1975—2019
- **Plant closure**: Establishment ceases to exist from one year to another, no more than 30% of the plant's original employees re-employed in the same plant in the subsequent year (e.g., Hethey-Maier and Schmieder, 2013)

#### **Occupational Task Composition: BERUFENET**


- German dictionary of occupational titles (BERUFENET), similar to US-O\*NET
- 144 occupations at the 3-digit level
- Share of (1) manual-routine tasks, (2) manual non-routine tasks, (3) cognitive routine tasks, (4) analytical non-routine tasks, (5) interactive non-routine tasks
- Manual-routine workers: Above-median share of manual-routine tasks; all other workers are classified as non-manual-routine (e.g., Dengler and Matthes, 2015)

## **Empirical Specification**

$$Y_{it} = \sum_{k=\underline{j}}^{J} \beta_k^1 T_{it}^k + \sum_{k=\underline{j}}^{J} \beta_k^2 T_{it}^k \times Disp_i + \sum_{k=\underline{j}}^{J} \beta_k^3 T_{it}^k \times Occ_i + \sum_{k=\underline{j}}^{J} \beta_k^4 T_{it}^k \times Disp_i \times Occ_i + \alpha_i + \tau_t + X_{it}' \Gamma + \epsilon_{it}$$

- $Y_{ij}$ : Outcome of interest (e.g., wages, employed, occupational switching) of individual i at time t
- $T_{it}^k$ : Indicators for being observed at time k relative to the displacement event at k=0
- $Disp_i$ : Indicator for being a worker affected by job displacement due to plant closure
- $Occ_i$ : Indicator for being employed in a manual-routine-intensive occupation pre-displacement
- $\alpha_i$ : Individual fixed effects;  $\tau_t$ : Calendar year fixed effects
- $X_i$ : Vector of time-varying controls (i.e., quadratic polynomial in age)
- $\epsilon_{it}$  : Idiosyncratic error term
- Implement alternative event-study estimators to account for heterogeneous treatment effects over time (e.g., Callaway and Sant'Anna, 2021)

## Main Results



- Wages: Manual-routine workers face significantly larger reductions in real daily wages than non-manual-routine workers immediately after displacement (39% vs. 28%).
- Differences persist up to 3 years after displacement
- Task distance: Manual-routine workers switch to more distant occupations, experience a larger decline in their main task share compared to non-manual-routine workers (23% vs. 12%)
- Consistent with the secular decline in routine occupations, manual-routine workers have fewer
   re-employment opportunities in the same or skill-related occupations
- → Larger losses in occupation- and task-specific human capital, shown to be an important component of workers' wages (e.g., Gibbons and Waldman, 2004; Poletaev and Robinson, 2008; Kambourov and Manovskii, 2009; Gathmann and Schönberg, 2010; Nedelkoska et al., 2022)

## **Further Results and Robustness**

#### **Further Results**

- Larger displacement-induced wages losses for manual-routine workers result from both
  - Extensive margin (52% higher propensity of being unemployed)
  - Intensive margin (41% larger wage losses conditional on being employed)
  - Compared to non-manual-routine workers, manual-routine workers are
    - 33% more likely to **switch (4-digit) occupations** directly after displacement (conditional on re-employment)
    - 11% less likely to **change district of workplace** directly after displacement (conditional on re-employment)

#### **Entropy Balancing**

- Manual-routine and non-manual-routine workers differ along various dimensions (e.g., education, age, gender, industry)
- Reweight manual-routine workers to obtain **covariate balance** between manual-routine and non-manual-routine workers (e.g., Hainmueller, 2012; Illing et al., 2021)

## Conclusions

More difficult transitions after labor market shocks for workers who are initially employed in manual-routine occupations:

- Larger wages losses for manual-routine workers, which stem from both a higher propensity of being unemployed and larger wage losses conditional on finding re-employment
- Switch to more distant occupations than non-manual-routine workers
- Patterns are consistent with **declining re-employment opportunities** in (skill-related) manual-routine occupations