
Mortality Beliefs and Saving Decisions: The Role of Personal Experiences*

This paper in a Nutshell:

- I utilize the **death of a close friend as exogenous shock** to an individual's mortality beliefs to establish a causal relationship between **mortality beliefs** and **saving** decisions.
- Saving response to the shock strongly depends on an _ individuals' age, emotional involvement, risk aversion, and

Identification:

Death of a close friend serves as an exogenous shock to mortality beliefs (personal experience):

decays over time.

The experience-based learning model explains how the personal experience translates into mortality beliefs.

Research question:

- 1. Do individuals' mortality beliefs *causally* affect their financial decision making?
- 2. How are personal experiences incorporated into the mortality belief formation process?

Data:

- Representative Panel of the Australian Population.
- 17,000 Individuals interviewed yearly from 2001 to 2019.

Difference-in-differences setting:

Saving Rate_{it} = $\beta * FriendDeath_{it} + HouseholdFE_i + AgeFE_t + \epsilon_{it}$

Advantages of my setting:

- No material impact on a treated individual's wealth.
- No belief updating about hereditary diseases.

Theoretical Framework:

1. Classic life-cycle model:

 $\max \mathbb{E}[\sum_{t=1}^{T} \beta^{t-1} (\prod_{i=0}^{t-2} s_j) u(c_t)]$

Bellman equation:

 $\nu_t(m_t) = \max_{c} u(c_t) + \beta s_t \mathbb{E}[(p_{t+1}/p_t)^{1-\rho} \nu_{t+1}(m_{t+1})]$ Optimal consumption:

$$c_t^* = (\beta s_t)^{-1/
ho} (\mathbb{E}[\cdot])^{-1/
ho}$$

2. Experienced-based learning model (Malmendier et al., 2020) :

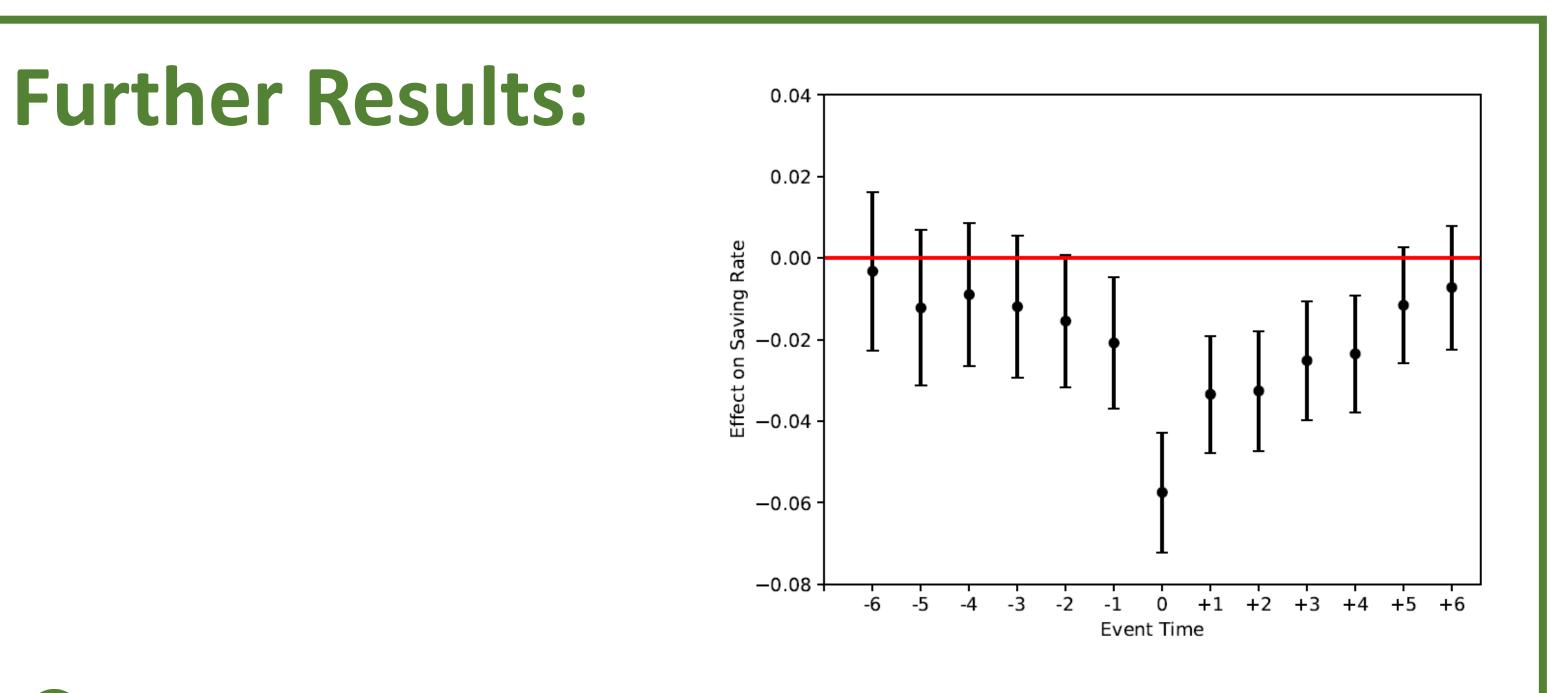
 $w(k,\lambda,age) = \frac{(age+1-k)^{\lambda}}{\sum_{k=0}^{age} (age+1-k')^{\lambda}}$

 \succ Survival probability s_t (partially) formed by weighting past experiences.

Dependent Variable:

Total Expenditure Total Income Saving Rate = $1 - \frac{1}{-1}$

Independent Variable: Dummy equal to 1 if a close friend died in the previous year.


Main Result:

	Saving Rate		Expenditure		
	Short term	Long term	Leisure	Necessities	Healthcare
Death Friend	-0.011^{***} (-3.74)	-0.017^{***} (-4.63)	0.006^{***} (6.39)	0.008^{***} (3.77)	0.002^{***} (3.02)
Household FE Age FE	YES YES	YES YES	YES YES	$\begin{array}{c} {\rm YES} \\ {\rm YES} \end{array}$	YES YES
Observations Adjusted R^2	$92,965 \\ 0.454$	$94,\!115 \\ 0.466$	$99,199 \\ 0.500$	$99,635 \\ 0.476$	$96,974 \\ 0.549$

 \succ Decrease in perceived survival probability s_t decreases optimal consumption (saving rate \downarrow).

Key Predictions of the Theoretical Framework:

- Effect decays over time as the personal experience fades out of memory.
- Younger individuals are more strongly affected as new experience constitutes larger part of set of experiences.
- Emotional reaction to experience necessary for experience to become part of set of experiences.

- Death of a close friend reduces the saving rate by 1.1 pp. in the following year.
- Saving rate is reduced on average by 1.7 pp. over the following years.
- Effect is mostly driven by expenditure on leisure related items (cigarettes, alcohol, meals eaten out...) not healthcare.
 - **Causal Impact of mortality beliefs on households' saving** decisions!

- 1 Effect of exogenous shock decays over time.
- Younger individuals most strongly affected by the personal experience. (2)
- Magnitude of effect moderated by individual's risk aversion. (3)
- Emotional sensitivity crucial for saving rate reduction. (4)

Structural estimations based on the experienced-based learning model and the above graph reveal: Decay parameter λ of around 1.8 (Malmendier & Nagel, 2011: $\lambda = 1.3$ to 1.9)

* Frederik Horn

University of Mannheim

frederik.horn@uni-mannheim.de

