The Effectiveness of Development-Oriented Non-Reciprocal Trade Preferences in Promoting Agricultural Trade

William Ridley University of Illinois Farzana Shirin University of Illinois

ASSA Annual Meeting New Orleans, LA

January 6th, 2023

This work was supported by the USDA National Institute for Food and Agriculture, Agricultural and Food Research Initiative Competitive Program, Agriculture Economics and Rural Communities, grant #2022-67023-36382.

Introduction

- Non-reciprocal trade preferences (NRTPs) have proliferated in recent decades (23 providers as of 2023 including EU-27)
 - Intended to facilitate export-driven growth for developing countries (DCs) through enhanced market access
 - Traditionally offered by advanced economies, however, a growing number of non-advanced providers (China, India, Thailand, others)
- NRTPs are of heightened relevance for agricultural trade
 - Tariffs on agricultural products remain enduringly high (average of 21.2% for ag compared to 12.9% for non-ag)
 - ▶ Agriculture still accounts for sizable shares of GDP and employment in DCs

We investigate the trade impacts of NRTPs at a detailed commodity level by conducting two interrelated empirical analyses:

- 1. Assess the trade impacts of NRTPs by estimating a structural gravity model of trade for 23 major agricultural commodities (worth \$519 billion of trade as of 2018)
- 2. Quantify the size of the trade impacts of NRTPs in a counterfactual simulation exercise
 - Focusing in particular on exports from preference beneficiary countries to preference donor countries

Introduction

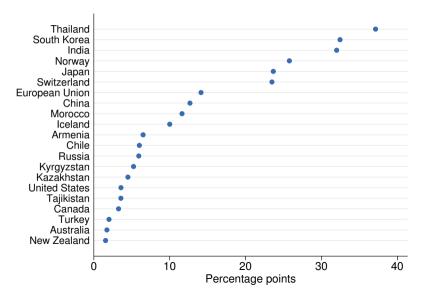
Value added by this paper

- Existing work shows mixed impacts of NRTPs
 - Positive impacts of many NRTPs and Generalized System of Preferences (GSP) (Cirera et al., 2016; Gil-Pareja et al., 2016; Sharma et al., 2019, 2021)
 - Impacts attenuated by preference erosion, policy uncertainty, regulatory burdens (Francois et al., 2006; Hakobyan, 2015; Borchert and Di Ubaldo 2020)
- Most existing analyses focus on broad sectoral aggregations or specific preference schemes (e.g., US or EU GSP); many employ reduced-form gravity estimations
- We evaluate the trade effects of all existing NRTPs in a completely theory-consistent framework at the product level

Introduction

Preview of results

- Econometrics: we estimate tariff elasticities of bilateral trade for 23 products
 - ▶ Implied elasticities of substitution from -6.9 (cocoa beans) to -1.8 (wheat)
- Simulation: we quantify the trade impacts across countries and commodities
 - NRTPs account for \$1.4 billion in expanded exports from beneficiaries to donors relative to a MFN counterfactual
 - Considerable heterogeneity across countries and commodities



Commodities in Analysis

	DC share	Avg. NRTP		DC share	Avg. NRTP
Commodity	of exports	pref. margin	Commodity	of exports	pref. margin
	(%)	(% points)		(%)	(% points)
Avocados	67.2	4.0	Rice	83.2	32.5
Bananas	84.0	10.5	Rubber	93.9	2.3
Cashews	90.3	5.8	Soybean Meal	71.9	5.3
Cocoa Beans	92.3	4.9	Soybean Oil	70.3	5.9
Coffee	59.5	4.3	Soybeans	63.9	5.4
Cotton	48.1	4.3	Sugar	73.6	48.0
Grapes	45.7	4.6	Sunflower Oil	73.0	7.4
Maize	46.8	6.8	Теа	77.9	2.7
Meat (Bovine)	31.4	49.2	Tobacco	73.3	14.5
Meat (Pig)	7.4	12.8	Tomatoes	50.0	17.1
Meat (Poultry)	36.5	10.3	Wheat	48.6	16.4
Palm Oil	91.7	8.4			

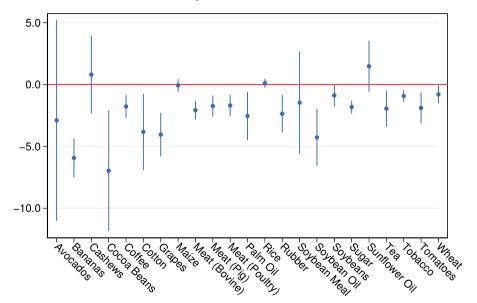
Average Preference Margins by Country

Gravity Model and Empirical Approach

Commodity-level structural gravity model

$$X_{ijkt} = \exp\left\{\beta_{1k}\log\left(1+\tau_{ijkt}\right) + \mathbf{Z}'_{ijt}\boldsymbol{\beta} + \gamma_{ikt} + \delta_{jkt} + \eta_{ijk}\right\} + \epsilon_{ijkt}$$

- Bilateral export volumes (including intra-national trade) as a function of trade policy and FEs
 - τ_{ijkt} : Tariffs (pref. and MFN); from UNCTAD (2022) TRAINS
 - Z'_{ijt} : PTA & WTO indicators
 - ▶ γ_{ikt} , δ_{jkt} , η_{ijk} FEs: exporter-year, importer-year, bilateral pair
- Estimate with PPML separately for each commodity based on annual data for 2000–2018, cluster ϵ_{ijkt} by bilateral pair


Gravity Model and Empirical Approach

Notes on the gravity estimation

- γ_{ikt} and δ_{jkt} perfectly account for multilateral resistance terms (MRTs), market sizes, non-discriminatory policies, etc. (Baldwin and Taglioni, 2006)
- η_{ijk} captures all time-invariant determinants of trade costs and mitigates endogeneity of trade policy (Baier and Bergstrand, 2007)
- Inclusion of intra-national trade volumes: consistency with theory, improved identification of trade policy impacts (Yotov, 2022)

Tariff Elasticity Estimates and 95% Cls

Conditional GE Counterfactual Analysis (Anderson et al., 2018)

Based on econometric estimates, simulate counterfactual bilateral trade volumes for 2018 (latest sample year)

- Baseline: tariff rates under observed NRTPs (τ_{iik}^{B})
- Counterfactual: revert NRTP rates to MFN rates (τ_{ijk}^{C})
- Accounting for both the bilateral (direct) and multilateral (indirect) impacts of changes in trade policy
- Focusing on counterfactual impacts on preference beneficaries' exports to donor countries

Two-step procedure:

Step 1: Given $\hat{\beta}_1$, $\hat{\beta}_k$, and $\hat{\eta}_{ijk}$, estimate the constrained regression

$$X_{ijk} = \exp\left\{\widehat{\beta}_1 \log\left(1 + \tau^{\mathsf{B}}_{ijk}\right) + \mathbf{Z}'_{ij}\widehat{\boldsymbol{\beta}}_k + \gamma_{ik} + \delta_{jk} + \widehat{\eta}_{ijk}\right\} + \epsilon_{ijk}$$

to obtain $\hat{\gamma}_{ik}^{\mathsf{B}}$ and $\hat{\delta}_{ik}^{\mathsf{B}}$ (for insig. $\hat{\beta}_{1}$, use estimates from Fontagné et al., 2022)

- From Fally (2015), the FEs directly capture the MRTs consistent with observed output/expenditures
- Baseline trade:

$$\boldsymbol{X}_{ijk}^{\mathsf{B}} \equiv \exp\left\{\widehat{\beta}_{1}\log\left(1+\tau_{ijk}^{\mathsf{B}}\right) + \boldsymbol{Z}_{ij}^{\prime}\widehat{\boldsymbol{\beta}}_{k} + \widehat{\gamma}_{ik}^{\mathsf{B}} + \widehat{\delta}_{jk}^{\mathsf{B}} + \widehat{\eta}_{ijk}\right\}$$

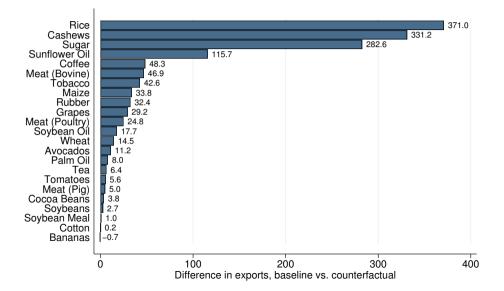
Two-step procedure:

Step 2: Using counterfactual (MFN) tariff rates (τ_{ijk}^{C}) , estimate

$$X_{ijk} = \exp\left\{\widehat{\beta}_1 \log\left(1 + \tau_{ijk}^{\mathsf{C}}\right) + \mathbf{Z}'_{ij}\widehat{\boldsymbol{\beta}}_k + \gamma_{ik} + \delta_{jk} + \widehat{\eta}_{ijk}\right\} + \epsilon_{ijk}$$

to obtain $\hat{\gamma}_{ik}^{\mathsf{C}}$ and $\hat{\delta}_{jk}^{\mathsf{C}}$ (FEs/MRTs under the counterfactual scenario)

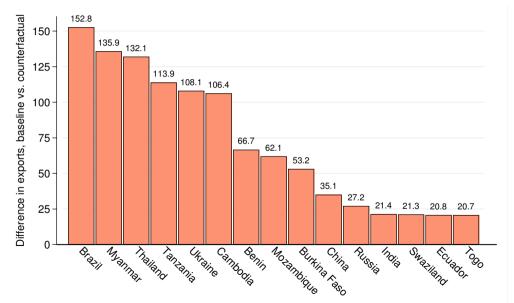
Counterfactual trade:


$$X_{ijk}^{\mathsf{C}} \equiv \exp\left\{\widehat{eta}_{1}\log\left(1+ au_{ijk}^{\mathsf{C}}
ight) + \mathbf{Z}_{ij}^{\prime}\widehat{eta}_{k} + \widehat{\gamma}_{ik}^{\mathsf{C}} + \widehat{\delta}_{jk}^{\mathsf{C}} + \widehat{\eta}_{ijk}
ight\}$$

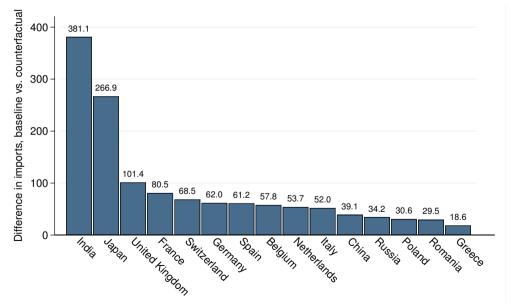
Counterfactual trade impacts:

$$\Delta X_{ijk} \equiv X^{\mathsf{B}}_{ijk} - X^{\mathsf{C}}_{ijk}$$

Counterfactual Trade Impacts by Commodity (in million USD)


Total estimated trade impacts: \$1.4 billion

Largest trade impacts are realized for


- 1. Commodities that face high preference margins
- 2. Commodities for which import demand is elastic
- 3. Commodities for which most exports are from DCs
- However, exceptions to each of these
- Notably, many extensively traded commodities (e.g., wheat, soybeans) see negligible impacts

Counterfactual Export Impacts by Country (in million USD)

Counterfactual Import Impacts by Country (in million USD)

Linkages with the 15 Largest Counterfactual Impacts

Exporter	Importer	Commodity	ΔX_{ijk}
Thailand	Japan	Rice	175.0
Tanzania	India	Cashews	107.8
Benin	India	Cashews	69.2
Colombia	United States	Bananas	63.3
Burkina Faso	India	Cashews	55.1
Mozambique	India	Cashews	38.4
Ukraine	Switzerland	Sunflower Oil	35.3
Cambodia	France	Rice	32.3
Myanmar	China	Rubber	27.0
Myanmar	Belgium	Rice	25.4
China	Japan	Rice	22.9
Brazil	United States	Sugar	21.5
Togo	India	Cashews	19.2
Uganda	India	Coffee	17.4
Brazil	Japan	Maize	17.2

Widely dispersed impacts on exports, concentrated impacts on imports

- Most exporters see expanded trade in only a few commodities
 - e.g., Brazil's sugar exports (\$102.4 million), Myanmar's rice and rubber exports (\$102.7 million and \$23.5 million, respectively)
- Strikingly, many donors which are DCs themselves see large import impacts
 - e.g., India, Thailand
- Muted impacts for many large NRTP providers (US, Canada, Australia)

Conclusion

- We estimate the counterfactual impact of NRTPs to be around \$1.4 billion in expanded exports from beneficiary countries to donor countries
- These impacts exhibit substantial heterogeneity, and most are concentrated in only a handful of commodities
 - Explained by a combination of preference margins, trade elasticities, and importance in DCs' exports
- NRTPs seem to be effective in promoting agricultural trade in some cases, but quite limited in others

