Interim Strategy-Proof Mechanisms: Designing Simple Mechanisms in Complex Environments

Tangren Feng ${ }^{1}$ Qinggong Wu ${ }^{2}$

${ }^{1}$ Bocconi
${ }^{2}$ HKUST

AEA, January 6, 2023

Intro

- Simple mechanism: each agent has one strategy that is optimal regardless of others' strategies

Intro

- Simple mechanism: each agent has one strategy that is optimal regardless of others' strategies
- 2nd price auction, VCG, majority voting...

Intro

- Simple mechanism: each agent has one strategy that is optimal regardless of others' strategies
- 2nd price auction, VCG, majority voting...
- Complex environment: one agent's preferences may depend on others' private info; informational externalities

Intro

- Simple mechanism: each agent has one strategy that is optimal regardless of others' strategies
- 2nd price auction, VCG, majority voting...
- Complex environment: one agent's preferences may depend on others' private info; informational externalities
- job market, school choice, drilling right auction ...

Interim strategy-proof (ISP)/ dominant strategy mechanisms with interdependent values.

ISP Example 0: single unit auction

- 1 seller with single unit of good; 2 buyers
- Buyer i 's type: $\theta_{i} \stackrel{\text { iid }}{\sim} U[0,1]$
- Buyer i 's valuation: $v_{i}(\theta)=\theta_{i}$
- Buyer i 's payoff: $q_{i} \theta_{i}-\tau_{i}$
- q_{i} : the probability i gets the good
- τ_{i} : the transfer i pays

ISP Example 0: single unit auction

- 1 seller with single unit of good; 2 buyers
- Buyer i 's type: $\theta_{i} \stackrel{\text { iid }}{\sim} U[0,1]$
- Buyer i 's valuation: $v_{i}(\theta)=\theta_{i}$
- Buyer i 's payoff: $q_{i} \theta_{i}-\tau_{i}$
- q_{i} : the probability i gets the good
- τ_{i} : the transfer i pays
- Bidding in 2nd-price auctions is simple: just bid the true value

ISP Example 1: single unit auction with informational externalities

- 1 seller with single unit of good; 2 buyers
- Buyer i 's type: $\theta_{i} \stackrel{\text { iid }}{\sim} U[0,1]$

ISP Example 1: single unit auction with informational externalities

- 1 seller with single unit of good; 2 buyers
- Buyer i 's type: $\theta_{i} \stackrel{\text { iid }}{\sim} U[0,1]$
- Buyer i 's ex post valuation: $v_{i}(\theta)=\theta_{i}+\beta\left(\theta_{j}-\frac{1}{2}\right)$

ISP Example 1: single unit auction with informational externalities

- 1 seller with single unit of good; 2 buyers
- Buyer i 's type: $\theta_{i} \stackrel{\text { iid }}{\sim} U[0,1]$
- Buyer i 's ex post valuation: $v_{i}(\theta)=\theta_{i}+\beta\left(\theta_{j}-\frac{1}{2}\right)$
- $\beta>0$: informational externality

ISP Example 1: single unit auction with informational externalities

- 1 seller with single unit of good; 2 buyers
- Buyer i 's type: $\theta_{i} \stackrel{\text { iid }}{\sim} U[0,1]$
- Buyer i 's ex post valuation: $v_{i}(\theta)=\theta_{i}+\beta\left(\theta_{j}-\frac{1}{2}\right)$
- $\beta>0$: informational externality
- Buyer i 's interim valuation: $E\left[v_{i} \mid \theta_{i}\right]=\theta_{i}$
- Buyer i 's payoff: $q_{i} v_{i}(\theta)-\tau_{i}$

ISP Example 1: single unit auction with informational externalities

- 1 seller with single unit of good; 2 buyers
- Buyer i 's type: $\theta_{i} \stackrel{\text { iid }}{\sim} U[0,1]$
- Buyer i 's ex post valuation: $v_{i}(\theta)=\theta_{i}+\beta\left(\theta_{j}-\frac{1}{2}\right)$
- $\beta>0$: informational externality
- Buyer i 's interim valuation: $E\left[v_{i} \mid \theta_{i}\right]=\theta_{i}$
- Buyer i 's payoff: $q_{i} v_{i}(\theta)-\tau_{i}$

Bidding in 2nd-price auctions is NOT simple anymore!

ISP Example 1: single unit auction with informational externalities

- 1 seller with single unit of good; 2 buyers
- Buyer i 's type: $\theta_{i} \stackrel{\text { iid }}{\sim} U[0,1]$
- Buyer i 's ex post valuation: $v_{i}(\theta)=\theta_{i}+\beta\left(\theta_{j}-\frac{1}{2}\right)$
- $\beta>0$: informational externality
- Buyer i 's interim valuation: $E\left[v_{i} \mid \theta_{i}\right]=\theta_{i}$
- Buyer i 's payoff: $q_{i} v_{i}(\theta)-\tau_{i}$

Bidding in 2nd-price auctions is NOT simple anymore!

- Suppose $\theta_{1}=\frac{1}{2}$. Consider the following b_{2}

$$
b_{2}\left(\theta_{2}\right)=\left\{\begin{array}{ll}
1 & \text { if } \theta_{2} \geq \frac{1}{2} \\
\frac{1}{2}-\epsilon & \text { if } \theta_{2}<\frac{1}{2}
\end{array} .\right.
$$

ISP Example 1: single unit auction with informational externalities

- 1 seller with single unit of good; 2 buyers
- Buyer i 's type: $\theta_{i} \stackrel{\text { iid }}{\sim} U[0,1]$
- Buyer i 's ex post valuation: $v_{i}(\theta)=\theta_{i}+\beta\left(\theta_{j}-\frac{1}{2}\right)$
- $\beta>0$: informational externality
- Buyer i 's interim valuation: $E\left[v_{i} \mid \theta_{i}\right]=\theta_{i}$
- Buyer i 's payoff: $q_{i} v_{i}(\theta)-\tau_{i}$

Bidding in 2nd-price auctions is NOT simple anymore!

- Suppose $\theta_{1}=\frac{1}{2}$. Consider the following b_{2}

$$
b_{2}\left(\theta_{2}\right)=\left\{\begin{array}{ll}
1 & \text { if } \theta_{2} \geq \frac{1}{2} \\
\frac{1}{2}-\epsilon & \text { if } \theta_{2}<\frac{1}{2}
\end{array} .\right.
$$

- The expected payoff of bidding $\frac{1}{2}$ is negative.

Question

Question: Does there exist any ISP mechanisms?

An ISP Mechanism

Consider the following mechanism:

$$
q_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{1}{2}+\frac{b_{i}-b_{j}}{2}
$$

An ISP Mechanism

Consider the following mechanism:

$$
\begin{gathered}
q_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{1}{2}+\frac{b_{i}-b_{j}}{2}, \\
\tau_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{b_{i}^{2}}{4} .
\end{gathered}
$$

An ISP Mechanism

Consider the following mechanism:

$$
\begin{gathered}
q_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{1}{2}+\frac{b_{i}-b_{j}}{2}, \\
\tau_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{b_{i}^{2}}{4} .
\end{gathered}
$$

- Suppose i has type θ_{i}. How about overbid by Δ ?

An ISP Mechanism

Consider the following mechanism:

$$
\begin{gathered}
q_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{1}{2}+\frac{b_{i}-b_{j}}{2}, \\
\tau_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{b_{i}^{2}}{4}
\end{gathered}
$$

- Suppose i has type θ_{i}. How about overbid by Δ ?
- Benefit: Extra winning $\mathbb{P}: \frac{\Delta}{2}$

An ISP Mechanism

Consider the following mechanism:

$$
\begin{gathered}
q_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{1}{2}+\frac{b_{i}-b_{j}}{2}, \\
\tau_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{b_{i}^{2}}{4}
\end{gathered}
$$

- Suppose i has type θ_{i}. How about overbid by Δ ?
- Benefit:

$$
\frac{\Delta}{2} \theta_{i}
$$

An ISP Mechanism

Consider the following mechanism:

$$
\begin{gathered}
q_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{1}{2}+\frac{b_{i}-b_{j}}{2}, \\
\tau_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{b_{i}^{2}}{4}
\end{gathered}
$$

- Suppose i has type θ_{i}. How about overbid by Δ ?
- Benefit:
$\frac{\Delta}{2} \theta_{i}$
- Cost: $\frac{\left(\theta_{i}+\Delta\right)^{2}}{4}-\frac{\theta_{i}^{2}}{4}$

An ISP Mechanism

Consider the following mechanism:

$$
\begin{gathered}
q_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{1}{2}+\frac{b_{i}-b_{j}}{2}, \\
\tau_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{b_{i}^{2}}{4}
\end{gathered}
$$

- Suppose i has type θ_{i}. How about overbid by Δ ?
- Benefit:

$$
\begin{array}{r}
\frac{\Delta}{2} \theta_{i} \\
\frac{\Delta^{2}}{4}+\frac{\Delta}{2} \theta_{i}
\end{array}
$$

- Cost:

An ISP Mechanism

Consider the following mechanism:

$$
\begin{gathered}
q_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{1}{2}+\frac{b_{i}-b_{j}}{2}, \\
\tau_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{b_{i}^{2}}{4}
\end{gathered}
$$

- Suppose i has type θ_{i}. How about overbid by Δ ?
- Benefit:

$$
\begin{array}{r}
\frac{\Delta}{2} \theta_{i} \\
\frac{\Delta^{2}}{4}+\frac{\Delta}{2} \theta_{i}
\end{array}
$$

- Overbidding is dominated!

An ISP Mechanism

Consider the following mechanism:

$$
\begin{gathered}
q_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{1}{2}+\frac{b_{i}-b_{j}}{2}, \\
\tau_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{b_{i}^{2}}{4}
\end{gathered}
$$

- Suppose i has type θ_{i}. How about overbid by Δ ?
- Benefit:

$$
\begin{array}{r}
\frac{\Delta}{2} \theta_{i} \\
\frac{\Delta^{2}}{4}+\frac{\Delta}{2} \theta_{i}
\end{array}
$$

- Overbidding is dominated! So is underbidding.

More Questions

Question 1: Any other ISP mechanisms?

Question 2: Why is $\left(q^{*}, \tau^{*}\right)$ ISP while 2nd price auction isn't?

More Questions

Question 1: Any other ISP mechanisms?

More Questions

Question 1: Any other ISP mechanisms?
Answer 1: Yes, many more...

$$
\begin{gathered}
\hat{q}_{i}\left(b_{1}, b_{2}\right)=\frac{1}{2}+\frac{b_{i}^{2}-b_{j}^{2}}{2}, \\
\hat{\tau}_{i}\left(b_{1}, b_{2}\right)=\frac{b_{i}^{3}}{6}+c_{i} .
\end{gathered}
$$

More Questions

Question 1: Any other ISP mechanisms?
Answer 1: Yes, many more...

$$
\begin{gathered}
\hat{q}_{i}\left(b_{1}, b_{2}\right)=\frac{1}{2}+\frac{b_{i}^{2}-b_{j}^{2}}{2}, \\
\hat{\tau}_{i}\left(b_{1}, b_{2}\right)=\frac{b_{i}^{3}}{6}+c_{i} .
\end{gathered}
$$

In general,

$$
\begin{aligned}
q_{i}\left(b_{1}, b_{2}\right) & =f_{i}\left(b_{i}\right)-g_{i}\left(b_{j}\right), \\
\tau_{i}\left(b_{1}, b_{2}\right) & =\int_{0}^{b_{i}} f_{i}(x) d x+c_{i}
\end{aligned}
$$

where f_{i} and g_{i} are increasing functions.

More Questions

Question 2: Why is $\left(q^{*}, \tau^{*}\right)$ ISP but 2nd price auction isn't?
Answer 2: Let's compare them...

A Comparison

Mechanism: 2nd price auction
$q_{i}^{2 n d}\left(b_{i}, b_{j}\right)=\left\{\begin{array}{ll}1 & \text { if } b_{i}>b_{j} \\ 0 & \text { if } b_{i} \leq b_{j}\end{array}\right.$.
$\frac{\partial q_{i}^{2 n d}}{\partial b_{i}}=\left\{\begin{array}{ll}0 & \text { if } b_{i} \neq b_{j} \\ \infty & \text { if } b_{i}=b_{j}\end{array}\right.$.
Depends on b_{j}.
Extreme strategic externality.
Private value environment:
$v_{i}(\theta)=\theta_{i}$
No informational externality.

Mechanism: $\left(q^{*}, t^{*}\right)$
$q_{i}^{*}\left(b_{1}, b_{2}\right)=\frac{1}{2}+\frac{b_{i}-b_{j}}{2}$
$\frac{\partial q_{i}^{*}}{\partial b_{i}}=\frac{1}{2}$
Independent of b_{j}.
No strategic externality.

Interdependent value environment:
$v_{i}(\theta)=\theta_{i}+\beta\left(\theta_{j}-\frac{1}{2}\right)$
Some informational externality.

Beyond the Example?

The toy example.

- 1 seller with single unit of good; 2 buyers
- Buyer i 's type: $\theta_{i} \stackrel{\text { iid }}{\sim} U[0,1]$
- Buyer i 's ex post valuation:
$v_{i}(\theta)=\theta_{i}+\beta\left(\theta_{j}-\frac{1}{2}\right)$
$\left(q^{*}, \tau^{*}\right)$ ISP.

Beyond the Example?

The toy example.

- 1 seller with single unit of good; 2 buyers
- Buyer i 's type: $\theta_{i} \stackrel{\text { iid }}{\sim} U[0,1]$
- Buyer i 's ex post valuation: $v_{i}(\theta)=\theta_{i}+\beta\left(\theta_{j}-\frac{1}{2}\right)$
$\left(q^{*}, \tau^{*}\right)$ ISP.

The general model.

- 1 seller with single unit of good; N buyers
- Any type distribution
- Buyer i 's ex post valuation: $v_{i}(\theta)$

Goal: All ISP mechanisms.

Characterizing ISP Auctions

Theorem
Under some regularity conditions,

$$
M+P E+A S \Leftrightarrow I S P
$$

where
$M=$ Monotonicity
$P E=$ Payoff Equivalence
AS=Additive Separability

Characterizing ISP Auctions

Theorem
Under some regularity conditions,

$$
M+P E+A S \Leftrightarrow I S P
$$

where
$M=$ Monotonicity, $q_{i}\left(t_{i}, t_{-i}\right)$ is increasing in t_{i};
PE=Payoff Equivalence
AS=Additive Separability

Characterizing ISP Auctions

Theorem
Under some regularity conditions,

$$
M+P E+A S \Leftrightarrow I S P
$$

where
$M=$ Monotonicity, $q_{i}\left(t_{i}, t_{-i}\right)$ is increasing in t_{i};
PE=Payoff Equivalence, $\tau_{i}\left(t_{i}, t_{-i}\right)=\int_{\underline{t}_{i}}^{t_{i}} q_{i}\left(x, t_{-i}\right) d x+c_{i}$;
AS=Additive Separability

Characterizing ISP Auctions

Theorem

Under some regularity conditions,

$$
M+P E+A S \Leftrightarrow I S P
$$

where
$M=$ Monotonicity, $q_{i}\left(t_{i}, t_{-i}\right)$ is increasing in t_{i};
$P E=$ Payoff Equivalence, $\tau_{i}\left(t_{i}, t_{-i}\right)=\int_{\underline{t}_{i}}^{t_{i}} q_{i}\left(x, t_{-i}\right) d x+c_{i}$;
AS $=$ Additive Separability, $q_{i}\left(t_{i}, t_{-i}\right)=f_{i}\left(t_{i}\right)-g_{i}\left(t_{-i}\right)$.

Beyond Auctions

What are the optimal ISP auctions that...

- maximizes revenue
- maximizes efficiency
-

What are ISP mechanisms in

- bilateral trade, public goods provision
- collective decision without money
- some other restricted domains

General theory on ISP mechanisms?

Why ISP?

ISP is desirable:

- better prediction
- outcome doesn't depend much on agents' cognitive abilities
- fair
- prevents waste from espionage
- helps agents to avoid strategic mistakes
- generates better information about true preferences

