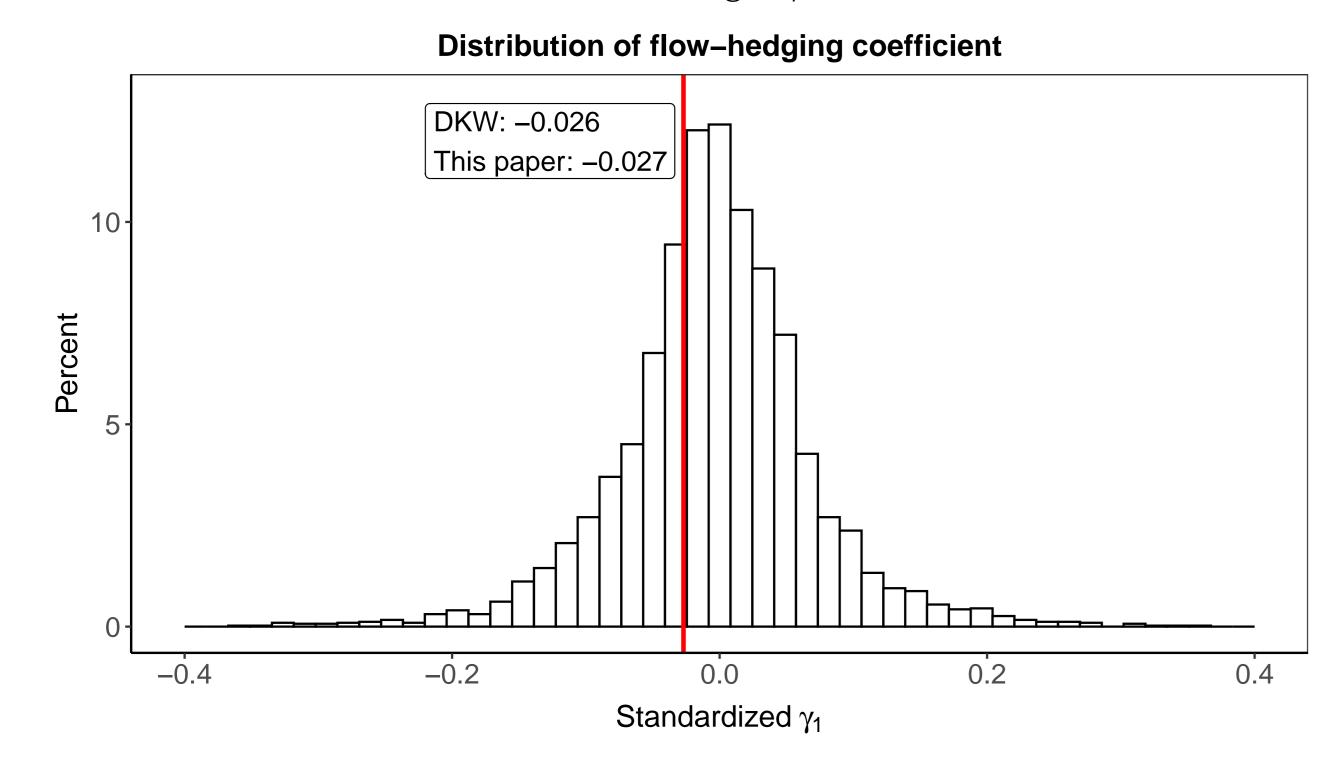

Flow Hedging and Mutual Fund Performance

Du Nguyen

Trulaske College of Business, University of Missouri-Columbia


MOTIVATION AND RESEARCH QUESTIONS

- Dou, Kogan, and Wu (2023) (DKW) show that the aggregate mutual fund hedges against systematic flow risk by titling away from stocks that have high flow beta.
- DKW show empirical evidence through the regression:

A negative estimate of γ_1 suggests a hedging behavior.

• However, there also exists a significant heterogeneity in this behavior in the cross-section of funds when re-estimating Equation 1 at the fund level.

- Research questions:
- 1. Why almost half of active funds do not hedge against flow risk?
- 2. What is the implication of hedging on fund performance?

PAPER SUMMARY

- I document that almost half of U.S. active funds do not exhibit flow hedging.
- A model in which funds that have more precise information about future flows can explain their weaker tilt away from high flow-beta stocks.
- Funds that do not hedge outperform hedging funds on risk-adjusted basis, and their behavior depends on the volatility of public information.

A MODEL OF FLOW HEDGING IN AN INFORMATION ECONOMY

• Payoff u and flow F of the risky asset:

$$u, F \sim N\left(\begin{bmatrix} \bar{u} \\ \bar{F} \end{bmatrix}, \begin{bmatrix} \rho_u & \psi \\ \psi & \rho_F \end{bmatrix}\right), \quad \psi > 0.$$

• Public signal (s_1) about u and private signal (s_2) about F:

$$s_1, s_2 | u, F \sim N\left(\begin{bmatrix} u \\ F \end{bmatrix}, \begin{bmatrix} \rho_1 & 0 \\ 0 & \rho_2 \end{bmatrix}\right)$$

Terminal wealth in 2nd period:

$$\omega = \underbrace{e}_{\text{endowment}} + \underbrace{(u-p)}_{\text{capital gain}} \times \underbrace{capital gain} \times \underbrace{capital for risky asset}_{\text{common flow}} + \underbrace{F}_{\text{common flow}}$$

- Investors choose x to maximize CARA expected utility.
- Price p is partially revealing and obtained with the market clearing condition.
- Solutions:
- Optimal demand:

$$x^{j*} = \underbrace{\frac{1}{\gamma} \frac{E_{\mathbf{s}}(u^j - p)}{\mathsf{Var}_{\mathbf{s}}(u^j)}}_{\mathsf{mean-variance\ tradeoff}} - \underbrace{\beta_{\mathsf{flow}} \frac{\mathsf{Var}_{\mathbf{s}}(F^j)}{\mathsf{Var}_{\mathbf{s}}(u^j)}}_{\mathsf{hedging\ component}}, \ \mathsf{for}\ j = \{\mathsf{Informed}, \mathsf{Uninformed}\}.$$

• Difference in holdings between informed and uninformed:

$$\Delta \propto \underbrace{\left[\frac{\psi\left(\rho_{\theta}-\rho_{2}\right)(\rho_{u}+\rho_{1})}{\gamma}\right]}_{\text{private signal coefficient}>0} s_{2} + \underbrace{\left[\frac{(\rho_{F}\rho_{1}+\rho_{u}\rho_{F}-\psi^{2})(\rho_{u}\rho_{F}-\psi^{2})(\rho_{\theta}-\rho_{2})}{\rho_{1}\kappa_{1}\kappa_{2}}\right]}_{\text{flow risk coefficient}>0} \beta_{\text{flow}}$$

- Model predictions:
- 1. $\partial \Delta/\partial \beta_{\text{flow}} > 0$: informed investors hold more risky asset.
- 2. $\partial \Delta/\partial \beta_{\text{flow}} \partial \rho_1 < 0$: informed investors reduce exposure to flow risk when public signal is noisy.

MEASURE OF FLOW RISK MANAGEMENT: ACTIVE FLOW BETA

• Active flow beta (AFB): covariance between fund holdings (relative to a benchmark) and holdings' flow betas:

$$AFB_q^j pprox \sum_{i=1}^{N_j} (\omega_{i,q}^j - \omega_{i,q}^{\mathrm{benchmark}}) \beta_{i,q}^{\mathrm{flow}},$$

where:

- AFB_q^j : active flow beta of fund j in quarter q.
- $\omega_{i,q}^j$ ($\omega_{i,q}^{\text{benchmark}}$): weight of holding i in fund j (benchmark).
- $\beta_{i,q}^{\text{flow}}$: flow beta of holding i.

CHARACTERISTICS OF AFB-SORTED FUNDS

High-Low
-101.75
0.72
-0.09***
-16.40***
0.78*
0.15**
1.45
-0.41

TESTING PREDICTION #1: PERFORMANCE OF LOW VS. HIGH AFB FUNDS

Prediction #1: High AFB funds outperform low AFB funds.

	Low (P1)	High (P10)	High-Low
xcess return (%)	0.48	0.90	0.43
	[1.34]	[3.53]	[1.71]
α (Carhart's 4 factors) (%)	-0.43	0.17	0.60
	[-3.26]	[1.51]	[2.78]
lpha (Carhart's 4 factors + LIQUIDITY) (%)	-0.41	0.12	0.53
	[-3.09]	[1.16]	[2.50]

TESTING PREDICTION #2: HEDGING BEHAVIOR WHEN PUBLIC INFORMATION IS NOISY

$$\underbrace{\omega_i^p - \omega_i^{\text{market}}}_{\text{Deviation from stock } i\text{'s}} = \dots + \gamma^p \times \beta_i^{\text{flow}} \times \underbrace{\sigma_i}_{\text{Proxy of public}} + \varepsilon^p, \text{ for p = {Low, High}}$$

- σ_i : analysts' forecast dispersion
- Prediction #2: $\partial \Delta/\partial \beta^{\text{flow}} \partial \sigma < 0$

Portfolio	$oldsymbol{eta}_{flow}$	$oldsymbol{eta}_{market}$	σ	$eta_{flow} imes \sigma$
Low (P1)	-0.074***	-0.022**	-0.158***	0.018**
	(0.006)	(0.009)	(0.020)	(0.009)
High (P10)	0.081***	-0.053***	-0.103***	-0.017
	(0.005)	(0.011)	(0.020)	(0.013)
Difference	0.155***	-0.032*	0.056	-0.035**
	(0.006)	(0.017)	(0.040)	(0.017)

REFERENCE

Dou, W. W., Kogan, L., & Wu, W. (2023). Common Fund Flows: Flow Hedging and Factor Pricing. Journal of Finance, Forthcoming.