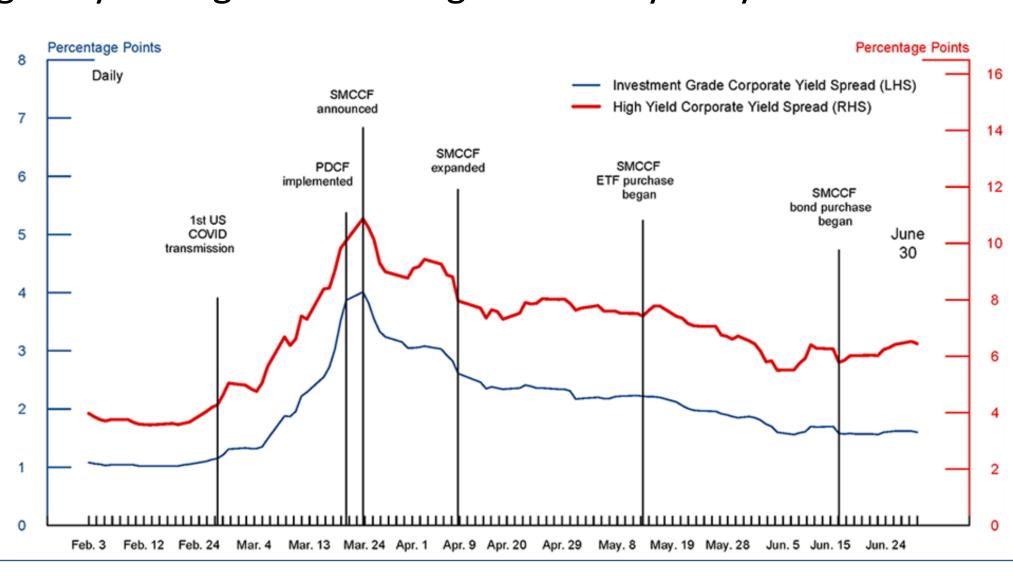
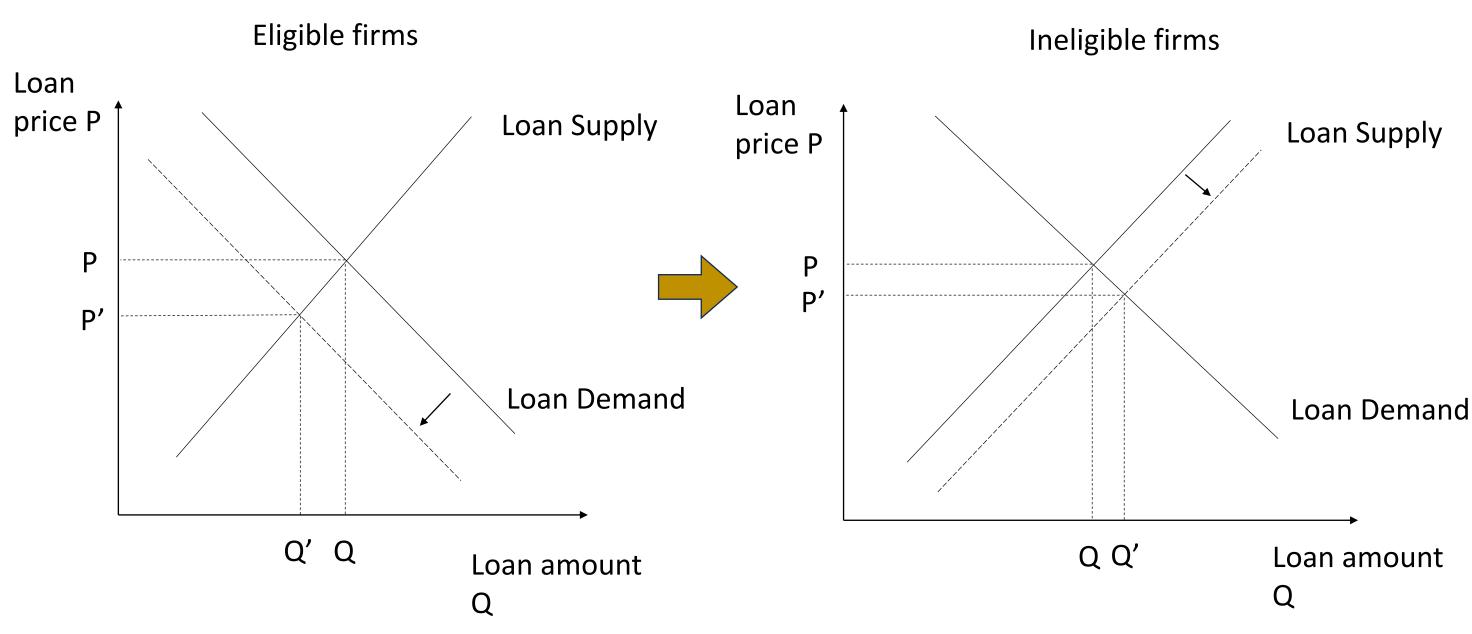


Expanding the Reach of Corporate Bond Purchase Program: the Spillover Effect of SMCCF on Bank-dependent Firms


Chenyu (Sophia) Mao¹ ¹University of Maryland, College Park

Motivation

- Corporate bond purchases have become a popular monetary policy tool
- Many research focus on how these programs affect corporate bond market
- But less is known about its effect on **bank loan market**, and the consequential effect on **bank-dependent firms**
- This paper studies Fed's SMCCF and its spillover effect on the loan market


Secondary Market Corporate Credit Facility (SMCCF) Timeline

- Event Study before & after announcement date: March 23, 2020
- Bond eligibility: rating > BBB- rating & maturity < 5 years

Empirics

- Datasets: DealScan Syndicated Loan + TRACE Enhanced + Compustat/Capital IQ
- Time Period: 2018Q 2022Q4
- Identification Assumption:
 - 1. No significant debt issuance diff. btw eligible and ineligible firms pre-SMCCF
 - 2. SMCCF does not affect banks differentially/directly

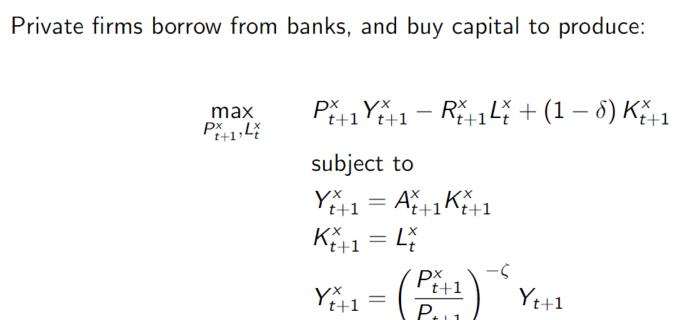
Result 1: Eligible firms decrease loan demand

$$Loan_{iit} = a_{ii} + a_{it} + \beta_1 * Eligible_i * Post_t + \theta' X_{it-1} + \epsilon_{iit}$$

Result 2: Banks with higher exposure to eligible firms does not change loan supply

$$Loan_{ijt} = a_{ij} + a_{it} + \beta_2 * IGShr_i * Post_t + \theta' X_{it-1} + \epsilon_{ijt}$$

where $IGShr_j = \frac{\sum term\ loans\ to\ all\ eligible\ firms}{\sum term\ loans\ to\ all\ firms}$ for each bank j


Result 3: Only Constrained banks with higher exposure to eligible firms increase loan supply to in eligible firms

$$Loan_{ijt} = a_{ij} + a_{it} + \beta_2 * IGShr_j * Post_t + \delta BankCAR_j * Post_t$$
$$+ \gamma IGShr_j * BankCAR_j * Post_t + \theta' X_{it-1} + \epsilon_{ijt}$$

where $BankCAR_i$ is the Tier-1 Risk-Adj Capital Ratio for bank j

 $\gamma < 0$: Constrained banks with high IG share increase loan supply

Model

Private & Public Firms

Public firms issue bonds and loans, buy capital to produce: $P_{t+1}^{y}Y_{t+1}^{y} - R_{t+1}^{y}L_{t}^{y} - R_{t+1}^{B}B_{t} + (1-\delta)K_{t+1}^{y} - \frac{1}{2}\kappa\left(B_{t} - \bar{B}_{t}\right)^{2}$ $K_{t+1}^y = (L_t^y + B_t)$ Equilibrium bond issuing decision $B_t = \bar{B}_t + rac{R_{t+1}^y - R_{t+1}^B}{2}$

Optimal borrowing decision:

Public firm loan demand curve: **flatter** than private firms $L_{t}^{x} = \left\lceil \frac{\left(1 - 1/\zeta\right) M_{t+1}^{1/\zeta} \left(A_{t+1}^{x}\right)^{1-1/\zeta}}{R_{t+1}^{x} - (1 - \delta)} \right\rceil^{\zeta} \qquad L_{t}^{y} = \left\lceil \frac{\left(1 - 1/\zeta\right) M_{t+1}^{1/\zeta} \left(A_{t+1}^{y}\right)^{1-1/\zeta}}{R_{t+1}^{y} - (1 - \delta)} \right\rceil^{\zeta} - \bar{B}_{t} - \frac{R_{t+1}^{y} - R_{t+1}^{B}}{\kappa}$

where $M_{t+1} = P_{t+1}^{\zeta} Y_{t+1}$ is the downstream demand where firms take as given.

Representative bankers with capital (net worth) N_t :

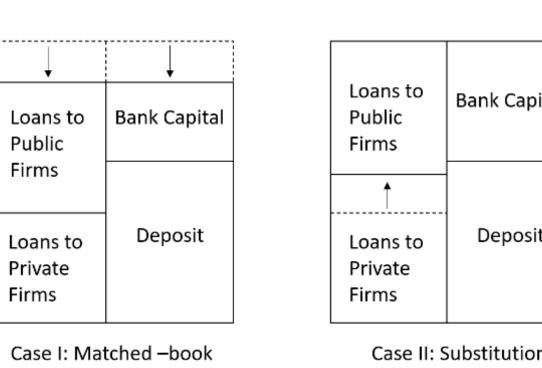
where $\Pi_{t+1}^{\mathit{bank}}$ is the profit rebates to household in period t+1

Banks

 $V\left({{N_t}} \right) = \mathop {\max }\limits_{R_{t + 1}^y,R_{t + 1}^ imes,L_t^ imes,L_t^ imes,D_t} {E_t}{\Lambda _{t,t + 1}}\left({\Pi _{t + 1}^{bank} + {V_{t + 1}}\left({{N_{t + 1}}}
ight)} \right)$ subject to $L_t^x + L_t^y = D_t + N_t$ (balance sheet constraint) $L_t^{\times} + L_t^{y} \leq \phi N_t$ (capital constraint) $N_{t+1} = (1 - \sigma) \left[R_{t+1}^{y} L_{t}^{y} + R_{t+1}^{x} L_{t}^{x} - R_{t+1}^{f} D_{t} \right]$

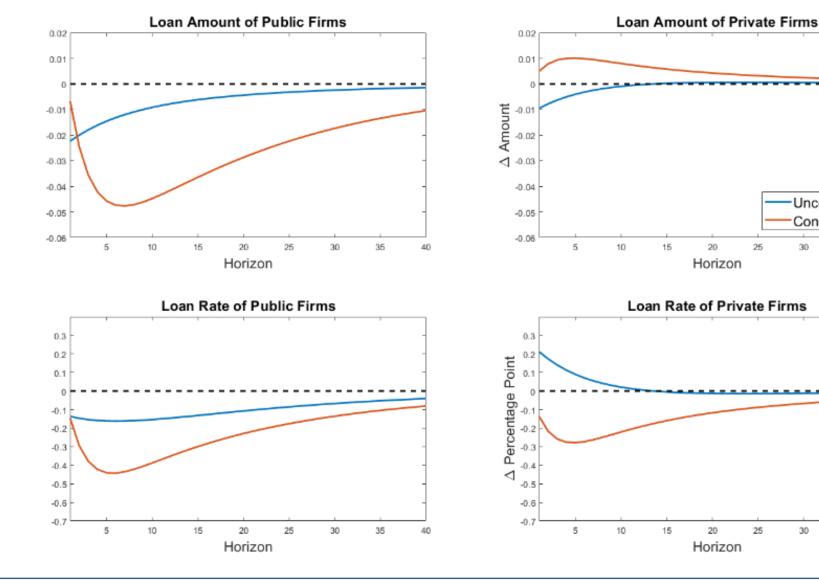
When bankers are unconstrained ($\lambda_t = 0$): $L_t^i + \left(R_{t+1}^i - R_{t+1}^f\right) \frac{\partial L_t^i}{\partial R_{t+1}^i} = 0$

 $\Pi_{t+1}^{bank} = rac{\sigma}{1-\sigma} N_{t+1}$


When bankers are **constrained** ($\lambda_t > 0$), we have $L_t^i + \left(R_{t+1}^i - R_{t+1}^f\right) \frac{\partial L_t^i}{\partial R_{t+1}^i} < 0$ $L_t^x + L_t^y = \phi N_t$

Bank Capital

Deposit


(constrained banks)

Bank Capital Loans to Public Firms Deposit Loans to Private

- Summary
- 1. For public firms, loan amount \checkmark loan spread \checkmark
- 2. For private firms, when banks are unconstrained, limited spillover effect
- 3. When banks are constrained, private firms' loan amount \uparrow loan spread \downarrow

(unconstrained banks)

Empirical Results

	(1) Pr(Loan)	(2) Pr(Loan)	(3) Pr(Loan)	(4) Loan Spread	(5) Loan Spread	(6) Loan Spread
β 1: Post × Eligible	-1.891*** (0.390)			-30.70* (17.51)		
β 2: Post × IG Shr		-0.328 (0.623)	4.348*** (1.645)		0.0611 (4.822)	-13.94 (20.17)
δ : Post $ imes$ BankCAR			5.636*** (1.590)			-18.19 (19.84)
γ : Post \times IG Shr \times BankCAR			-5.266*** (1.739)			13.76 (20.42)
Pair FE	Yes	Yes	Yes	Yes	Yes	Yes
Borrower × Time FE	No	Yes	Yes	No	Yes	Yes
Lender × Time FE	Yes	No	No	Yes	No	No
Observations	67651	22030	22027	808	1215	1215

Policy Implications

- Corporate bond purchases have boarder effects beyond the targeted markets.
- It affects bank-dependent firms by decreasing targeted firms' loan demand and then increasing loan supply of related banks to untargeted firms.
- This channel only operates through constrained banks.

Contact

Chenyu (Sophia) Mao University of Maryland, College Park Email: maocy@umd.edu

Selected References

- 1. Arce, O., Mayordomo, S., and Given, R. (2021). Making room for the needy: The credit-reallocation effects of the ECB's corporate QE. Review of Finance, 25(1):43–84.
- Bordo, M. D. and Duca, J. V. (2022). How new fed corporate bond programs cushioned the covid-19 recession. Journal of Banking & Finance, 136:106413 3. Boyarchenko, N., Kovner, A., and Shachar, O. (2022). It's what you say and what you buy: A holistic evaluation of the corporate credit facilities. Journal of Financial Economics, 144(3):695–
- 4. Gertler, M. and Karadi, P. (2013). QE 1 vs. 2 vs. 3. . . : A Framework for Analyzing Large-Scale Asset Purchases as a Monetary Policy Tool. International Journal of Central Banking, 9:49 Gilchrist, S., Wei, B., Yue, V. Z., and Zakrajsek, E. (2020). The fed takes on corporate credit risk: An analysis of the efficacy of the SMCCF. Technical report, National Bureau of Economic
- 6. Grosse-Rueschkamp, B., Steffen, S., and Streitz, D. (2019). A capital structure channel of monetary policy. Journal of Financial Economics, 133(2):357–378