

Finding a Needle in a Haystack: A Machine Learning **Framework for Anomaly Detection in Payment Systems** Ajit Desai¹, Anneke Kosse² and Jacob Sharples¹ ¹Bank of Canada, ²Bank for International Settlements

Motivation: high-value payment systems (HVPSs) are core to national financial infrastructure.

→Safeguarding them requires real-time transaction monitoring, especially due to growing cyber threats targeting HVPS and its participants.

Layered approach: a system-level centralized and two-layer approach to simplify pattern recognition and anomaly detection in HVPS.

Correctlv-classifie

Missclassified

Classified Payments

Payments Classifier

Pattern Recognition

Anomaly Detection

Bank-A

Bank-B Submitted Payments

Methodology

Results Key results: • Basic transaction & intraday timing features play crucial role for both classification and anomaly detection.

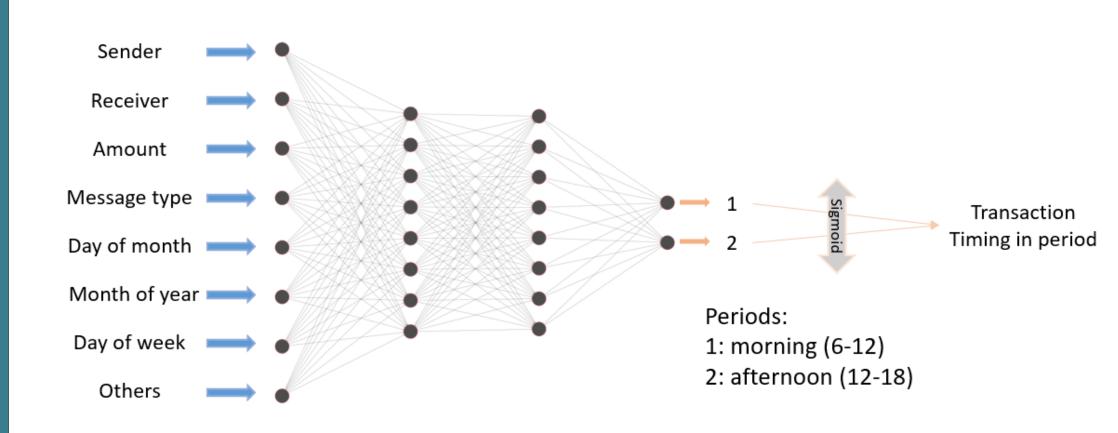
BIS

Problem: due to the substantial volume of HVPS transactions settled each day and the scarcity of anomalous payments to date, detecting anomalies resembles an attempt to find a needle in a haystack.

Solution: we use centralized & layered framework for anomaly detection using data-driven and nonlinear machine learning (ML) tools. →The first layer screens typical payments, streamlining the subsequent anomaly detection task in the second layer.

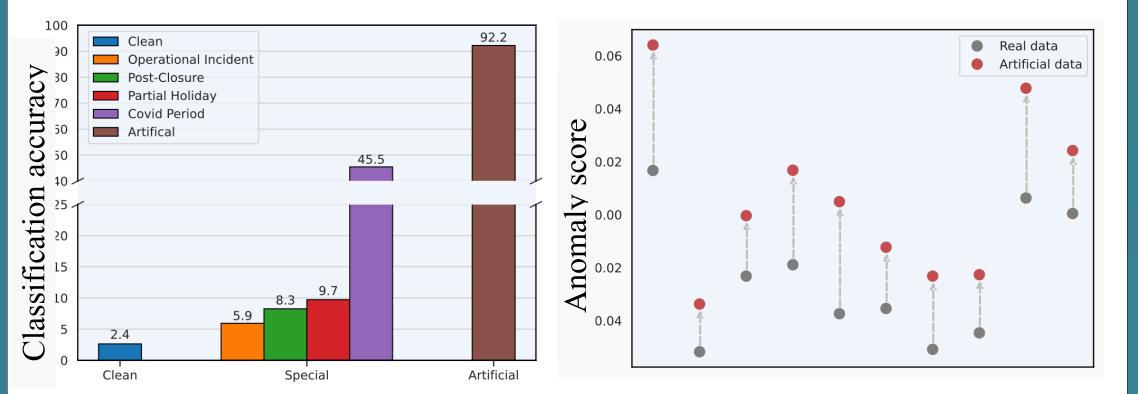
Layer 1 - classification: supervised ML algorithm to classify payments based on their submission time. \rightarrow we use the correctly classified payments to study

Settled


 Models are relaying upon multilateral and bilateral payment coordination to learn patterns and detect anomalies. • ML models from both layers can be interpreted to understand predictions.

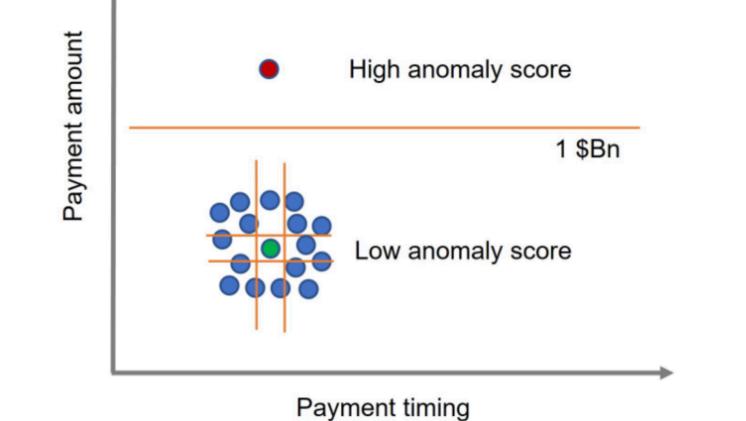
• Approach is flexible to use for different types of HVPS and it can employ more ML tools to enhance robustness.

Model performance - Layer 1 & layer 2


Payments data: transactionlevel data from Canada's HVPS: we use clean data for training and a mix of clean & special days data for testing:

participants usual payment submission patterns.

Layer 2 - Anomaly detection: we use only misclassified payments in an unsupervised ML-based isolation forest (IF) model to identify and sort suspicious payments based on anomaly scores.


ctua	l transa	octio	n					
Ciuu	f(×)		11				base value	
-6 -	-5 -4.25 4 -3	-2 -	-1 0	1	2	3	4	5
		<		< <	<	< <	<u> </u>	
	Sender = 6.0		Receiver = 7.0	Period-time = 7	705.0	Multilateral-ti	me = 0.0	
Mo	rning							
	8							
	cially m	anipu		owerlase vtura	ns	act	ion	
	U	anipu		enter a tura		act:	ion	
rtifie	U			edase vtiura	<	<	ion ₈	= 0.0

Low score (-4.25) \rightarrow morning (more blue); and high score (3.02) \rightarrow afternoon (more red)

Takeaways: Our centralized & layered framework, supported by advanced ML tools, offers a systematic approach for realtime transactions monitoring in HVPS. → It holds promise for safeguarding financial market infrastructure while remaining adaptable for broader payment system applications.

- Basic transaction features
- Liquidity features
- Intraday timing features
- Timestamp features

*Note: The opinions here are of the authors and do not necessarily reflect the ones of the Bank of Canada or the Bank for international settlements