
A Simple Approach for Measuring Higher-Order Risk
Attitudes

While the importance of the Arrow-Pratt coefficients of second order risk aversion is well established in

economics, the importance of higher-order risk attitudes has only recently begun to be recognized. In this

paper, we introduce a non-parametric approach to directly measure higher-order Arrow-Pratt coefficients

using choices between compound lotteries and show how it can be easily implemented in behavioral studies.

Specifically, we provide a theoretical basis for using risk apportionment to reveal the intensity of higher-order

risk attitudes, and then draw upon our theoretical results to develop a simple, systematic, and generalizable

procedure for eliciting Arrow-Pratt coefficients of prudence, temperance, and other higher-order risk atti-

tudes. We demonstrate our approach in a laboratory experiment and find that the modal subject exhibits

mild prudence and mild temperance in addition to mild risk aversion. Further, we find that degrees of risk

aversion are positively correlated across orders. Finally, while our approach is non-parametric, we note that

behavior is broadly consistent with subjects having utility described by the exponential-power function.
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1. Introduction

Risk attitudes of an economic agent have long been a fundamental issue in economics. Under

expected utility, risk aversion equates to a negative second derivative of the utility function. The

attitudes associated with higher order derivatives, referred to as higher-order risk attitudes, are

now understood to be essential to economic decisions as well. For example, prudence (equated

with a positive third derivative under expected utility) entails aversion to greater downside risks

(Menezes et al. 1980), and a stronger saving motive when future wealth becomes riskier (Kimball

1990). Temperance (equated with a negative fourth derivative under expected utility) implies less

willingness to take on risk in the presence of greater background risk (Kimball 1993), and higher

risk premium when the volatility of consumption growth increases (Gollier 2018).

While the direction of risk attitudes (equated with the sign of the appropriate derivative) serves

as a primitive determinant for economic decisions, the intensity of risk attitudes is indispensable

for quantitative analyses. For second-order risk attitude, Arrow (1971) and Pratt (1964) introduced

the coefficients of absolute and relative risk aversion. For third order, Kimball (1990) introduced the

coefficient of absolute prudence and linked it to the strength of the precautionary saving motives.

For fourth order, Kimball (1992) introduced the coefficient of absolute temperance, which is useful

for analyzing economic decisions involving two or more independent risks (Kimball 1993, Eeckhoudt

et al. 1996, Gollier and Pratt 1996). Caballé and Pomansky (1996) and Denuit and Eeckhoudt

(2010) extend the above manner of quantifying the intensity of risk attitudes via comparing the
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relative magnitudes of successive derivatives of the utility function to all higher orders. The resulting

sequence of coefficients, which can be universally named as the coefficients of Arrow-Pratt absolute

or relative risk aversion for a given order, play an important role in a wide range of economic

applications including investment (Guiso et al. 1996), saving (Eeckhoudt and Schlesinger 2008),

asset pricing (Gollier 2001), bargaining (White 2008), auctions (Esö and White 2004) and so on.

Despite the importance of higher-order risk attitudes, there have been relatively few empirical

attempts to measure higher-order Arrow-Pratt coefficients of risk aversion. For third order, the

coefficient of relative prudence has been estimated assuming a life-cycle consumption model and

using savings data (Dynan 1993, Gourinchas and Parker 2002, Carroll and Kimball 2008). For the

fourth order, we are not aware of any empirical study using naturally occurring data to estimate

coefficients of absolute or relative temperance. In the laboratory, Ebert and Wiesen (2014) jointly

measured the intensity of risk aversion, prudence, and temperance based on risk compensations

while Noussair et al. (2014) rely on the number of prudent choices as a measure of the degree of

prudence, but neither of these papers are able to provide measures of the Arrow-Pratt coefficients.

In this paper, we provide a non-parametric approach to measure higher-order Arrow-Pratt risk

aversion coefficients based on apportioning non-zero-mean risks. Thus, our work goes beyond the

seminal paper by Eeckhoudt and Schlesinger (2006) who show apportioning zero-mean risks can

be used to identify the sign of the nth derivative of utility, which has served as the main method

for studying higher-order risk preferences since it was introduced. For example, Eeckhoudt et al.

(2007) rely on that approach when considering bivariate utility functions; Eeckhoudt et al. (2009)

generalize risk apportionment to a broader class of lotteries; and Crainich et al. (2013) apply

the method to mixed risk lovers. Additionally, the zero-mean risk apportionment approach of

Eeckhoudt and Schlesinger (2006) has become a mainstream tool for experimental studies of higher-

order risk preferences (Deck and Schlesinger 2010, 2014, Haering et al. 2020). Specifically, we

show that apportionment of non-zero-mean risks provides direct boundaries on the Arrow-Pratt

coefficients of risk aversion. That is, while Eeckhoudt and Schlesinger (2006) provide theoretical

justification for a method to determine the direction of higher-order risk attitudes, we provide a

theoretical justification for a method to measure the Arrow-Pratt coefficients of risk aversion.

Our paper is related to the literature on comparative risk aversion. Under a choice-based frame-

work, Chiu (2005) and Denuit and Eeckhoudt (2010) construct lotteries such that the higher-order

intensity of risk aversion between two individuals can be compared through their lottery choices.

The major difference between our paper and previous work is that we adopt the technique of

risk apportionment. Furthermore, the approaches of both Chiu (2005) and Denuit and Eeckhoudt

(2010) require mixed risk aversion, whereas our approach can be applied to decision makers who

are risk seeking or imprudent or intemperate.
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Our framework for identifying the intensity of higher-order risk preferences has several desirable

properties. First, our method does not require any parametric assumption about the specific func-

tional form of the decision makers’ utility. While some empirical papers have tried to estimate the

intensity of higher-order risk attitudes (Dynan 1993, Noussair et al. 2014), thus far such efforts

have had to rely upon additional assumptions regarding preferences, which arbitrarily confines the

degrees of freedom to describe an individual’s behavior. Second, our approach is simple, systematic

and generalizable. It is simple in that it only involves comparisons between two lotteries that are

themselves composed of combinations of certain losses and fifty-fifty lotteries. It is systematic in

that it involves a series of incremental comparisons, similar to the multiple price list approach

popularized by Holt and Laury (2002) for measuring second-order risk attitudes. It is generalizable

in that it can be readily adapted to risk preferences at any order, which stands in contrast to

approaches such as Cohen and Einav (2007) whose approach is context-dependent and difficult to

adapt to arbitrarily high orders of risk attitude.

Finally, our approach directly connects the Arrow-Pratt coefficients of higher order risk aversion

with risk apportionment and captures the sign of successive derivatives of the utility function in a

single procedure. This contrasts with other approaches to comparing the intensity of higher-order

risk attitudes across individuals. For example, Jindapon and Neilson (2007) propose a comparative

statics approach for nth-degree risk aversion in an optimal effort decision. The approach of Liu

and Meyer (2013) involves a comparison of matching probabilities. Recently, Schneider and Sutter

(2021) and Schneider et al. (2022) promote alternative measures to evaluate the strength of nth-

degree risk apportionment as proposed by Crainich and Eeckhoudt (2008) rather than measuring

the Arrow-Pratt coefficients as in our paper.

As a demonstration of our approach, we implement it in a controlled laboratory setting. In

the experiment, we ask subjects to apportion a sequence of nine risks including negative-mean,

zero-mean, and positive-mean risks for three tasks designed to measure the intensity of second-,

third-, and fourth-order risk attitudes, respectively. The results indicated the modal Arrow-Pratt

coefficients of absolute risk aversion, absolute prudence, and absolute temperance are all in the

range of 0.00 to 0.14. Thus, our typical subject exhibits a mild degree of risk aversion consistent

with a large experimental literature, a mild degree of prudence consistent with the relatively small

literature attempting to measure the intensity of third order risk preferences (Noussair et al. 2014,

Dynan 1993), and a mild degree of temperance which is a novel finding in the literature. However,

we also observe a fraction of subjects who exhibit more extreme prudence and temperance as well as

sizable fractions of subjects who exhibit moderate to extreme levels of imprudence or intemperance.

Additionally, we extend Jindapon and Neilson (2007) to cases when decision makers are risk-loving

or imprudent to demonstrate the implications of our laboratory findings.
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While the goal of this paper is to introduce a methodology that can be used to directly measure

the intensity of higher order risk preferences, the data from our experiment allow us to consider

how degrees of risk aversion are related across orders. Among our subjects, their degrees of second

and third order risk aversion are positive and significant as are their degrees of third and fourth

order risk aversion, but the greatest correlation is between second and fourth order degrees of

risk aversion. Finally, we conduct a calibration exercise to determine how well common utility

functions match observed behavior. The results support the finding in Nourssair et al. (2014) that

flexible utility functions are needed to model higher-order risk preferences. Ultimately, we find that

the behavior of most subjects can be reasonably well described with an exponential-power utility

function.

2. Intensity of Higher-Order Risk Preferences

How to characterize the intensity of risk preferences within the expected utility framework is a

fundamental question that has been extensively investigated in the economics literature. To briefly

review the theoretical progress, let u(x) be a von Neumann-Morgenstern utility function of wealth

x that is defined on (0,∞) and continuously differentiable up to the desired order. For n= 1,2, ...,

denote by u(n)(x) the nth derivative of u(x).

Arrow (1971) and Pratt (1964) introduce the coefficient of absolute risk aversion,

−u(2)(x)/u(1)(x), as a measure of second-order risk attitude, which is well used in risk-taking deci-

sions, e.g., investment and insurance choices. To examine the precautionary savings motive, Kimball

(1990) introduces the coefficient of absolute prudence, −u(3)(x)/u(2)(x). The higher the coefficient

of absolute prudence, the higher the strength of the precautionary saving motives. Kimball (1992)

introduces the coefficient of absolute temperance, −u(4)(x)/u(3)(x), and shows that it is related to

how strongly an individual is inclined to avoid binding one risk with another unavoidable indepen-

dent risk. This pattern is extended to higher-order risk attitude by Caballé and Pomansky (1996)

who define −u(n)(x)/u(n−1)(x) as the coefficient of the nth-order absolute risk aversion. Following

Caballé and Pomansky’s terminology, −u(2)(x)/u(1)(x), −u(3)(x)/u(2)(x) and −u(4)(x)/u(3)(x) can

be relabeled as absolute risk aversion of second order, third order and fourth order, respectively.1

As shown by Jindapon and Neilson (2007), given a non-monetary cost of effort, the strength of the

willingness to invest in effort to reduce risk depends on the coefficient of nth-order absolute risk

aversion.

In parallel, Pratt (1964) introduces the coefficients of relative risk aversion −xu(2)(x)/u(1)(x),

while relative prudence −xu(3)(x)/u(2)(x) is proposed by Kimball (1990). Eeckhoudt and

1 Gollier (2018) labels absolute risk aversion of fifth order as absolute edginess when investigating aversion to risks
on the variance of consumption.
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Schlesinger (2008) extend these coefficients to relative temperance −xu(4)(x)/u(3)(x), as well as

higher orders via defining −xu(n)(x)/u(n−1)(x) as the coefficient of the nth-order relative risk aver-

sion. They show that the condition −xu(n)(x)/u(n−1)(x)≥ n−1 is crucial to guarantee an increase

in precautionary saving when there is an increase in risk in the return on saving.

In a seminal paper, Eeckhoudt and Schlesinger (2006) show that the sign of u(n)(x) can be

revealed with choices between simple 50-50 lotteries composed of pure losses and zero-mean risks.

However, their work remains silent on the intensity of nth-order risk preferences. In this section

we extend the approach of Eeckhoudt and Schlesinger (2006) for comparative higher-order risk

aversion with choices between simple lotteries.

2.1. Intensity of Second-Order Risk Aversion

Let w> 0 denote an initial wealth level and ε̃ be a zero-mean risk. An individual is risk averse on

a pre-specified interval [a, b]⊂ (0,∞), if and only if for all lottery pairs supported on [a, b] taking

the form of w+ ε̃ and w, w is always preferred to w+ ε̃. Within the expected utility framework,

risk aversion on [a, b] is equivalent to u(2) ≤ 0 on [a, b] (Rothschild and Stiglitz 1970).

Replacing the zero-mean risk ε̃ with a general non-zero-mean risk δ̃, we can elicit a bound for

−u(2)(x)/u(1)(x) from a choice between

A2 =w+ δ̃ and B2 =w. (1)

Proposition 1. Let A2 and B2 take the form of (1). For u and v that are twice continuously

differentiable with u(1) > 0 and v(1) > 0, the following statements are equivalent:

(i) For all x∈ [a, b], −u(2)(x)/u(1)(x)≥−v(2)(x)/v(1)(x);

(ii) For all A2 and B2 supported on [a, b], Ev(A2) =Ev(B2) always implies Eu(A2)≤Eu(B2).

All proofs are relegated to Appendix A. Intuitively, Proposition 1 can be obtained from Pratt

(1964). To see this, one can rewrite δ̃ = Eδ̃ + (δ̃ − Eδ̃) where the first term is the mean and the

second term is a zero-mean risk. If under v one is indifferent between A2 and B2, it means that

Eδ̃, the mean of the risk δ̃, is exactly the compensating premium necessary to bear the zero-mean

risk δ̃−Eδ̃. Since more risk aversion requires a greater compensating premium, B2 would be more

preferable than A2 under u.

Proposition 1 demonstrates that comparative risk aversion can be revealed with simply lottery

choices. In particular, Proposition 1 shows u is more risk averse than v, if and only if u always favors

the risky lottery less than v. An analogous characterization of −u(2)(x)/u(1)(x)≤−v(2)(x)/v(1)(x)

is available through reversing the inequality in statement (ii). In the special case where v is a linear

(risk neutral) utility function, the equation Ev(A2) = Ev(B2) amounts to requiring δ̃ to have a

zero-mean, reproducing the equivalence of u(2) ≤ 0 with w always being preferred to w+ ε̃.
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The idea of comparing coefficients of risk aversion based on choice behavior was previously

explored by Jewitt (1989) and Chiu (2005). However, in both of those papers the second derivative

of the utility function is required to be negative. In contrast, our analysis imposes no condition on

the second derivative. Thus, relative to Jewitt (1989) and Chiu (2005), we extend the comparison of

risk attitudes to utility functions exhibiting risk seeking behavior while employing simpler lottery

pairs.

2.2. Intensity of Third-Order Risk Aversion

Let k > 0 be a constant and recall that ε̃ denotes a zero-mean risk. Denote by [x;y] a lottery with

a 50-50 chance of receiving either outcome x or outcome y, where x and y themselves may be

lotteries. According to Eeckhoudt and Schlesinger (2006), an individual is called prudent on [a, b],

if and only if for all lottery pairs taking the form of [w;w− k+ ε̃] and [w+ ε̃;w− k] supported on

[a, b], the latter is always preferred to the former. That is, a prudent individual prefers putting a

zero-mean risk at the higher wealth level than at the lower wealth level. Prudence captures aversion

to aggregating a loss with a zero-mean risk. Within the expected utility framework, prudence on

[a, b] is equivalent to u(3) ≥ 0 on [a, b].

As we show in Proposition 2, replacing the zero-mean risk ε̃ with a general non-zero-mean risk

δ̃, we can elicit a bound for −u(3)(x)/u(2)(x) from choices between

A3 =
î
w;w− k+ δ̃

ó
and B3 =

î
w+ δ̃;w− k

ó
. (2)

To do this, we need to distinguish between cases in which u(2) > 0 and u(2) < 0.

Proposition 2. Let A3 and B3 take the form of (2). For u and v that are continuously differ-

entiable up to the third order with u(2) 6= 0 and v(2) 6= 0, consider the following statements:

(i) For all x∈ [a, b], −u(3)(x)/u(2)(x)≥−v(3)(x)/v(2)(x);

(ii) For all A3 and B3 supported on [a, b], Ev(A3) =Ev(B3) always implies Eu(A3)≤Eu(B3);

(iii) For all A3 and B3 supported on [a, b], Ev(A3) =Ev(B3) always implies Eu(A3)≥Eu(B3).

When u(2) < 0 and v(2) < 0, (i) and (ii) are equivalent; when u(2) > 0 and v(2) > 0, (i) and (iii) are

equivalent.

Proposition 2 is analogous to Proposition 1, but for third-order risk attitude. Assuming risk aver-

sion, u is more prudent than v, if and only if u exhibits a stronger propensity to disaggregate the loss

and the risky lottery than v. An analogous characterization of −u(3)(x)/u(2)(x)≤−v(3)(x)/v(2)(x)

is available through reversing the inequalities in statements (ii) and (iii). In the special case where v

is a quadratic (prudence neutral) utility function, the equation Ev(A3) =Ev(B3) amounts to requir-

ing δ̃ to have a zero-mean.2 This reproduces the equivalence of u(3) ≥ 0 with preferring [w+ ε̃;w−k]

2 To see this, we write Ev(A3) −Ev(B3) = 1
2
[Ev1(w+ δ̃) − v1(w)], where v1(x) = v(x− k) − v(x) is linear in x when

v(x) is quadratic.
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over [w;w− k+ ε̃] and the equivalence of u(3) ≤ 0 with preferring [w;w− k+ ε̃] over [w+ ε̃;w− k]

as characterized by Eeckhoudt and Schlesinger (2006).

Chiu (2005) also uses choice behavior to compare coefficients of prudence. However, in Chiu’s

analysis the second and third derivatives of the utility function are required to be negative and

positive, respectively. Our result shows that it is possible to identify the intensity of prudence

without presupposing the signs of the second and third derivatives of the utility function although

our lotteries are special cases of those in Chiu (2005). That is, our approach can accommodate

utility functions exhibiting risk averse or seeking and prudent or imprudent behavior in the same

manner. Moreover, the choices can be presented as simple lotteries with equiprobable outcomes.

2.3. Intensity of Higher-Order Risk Aversion

Comparative risk aversion can be identified for any order with choices between simple lotteries

following the idea of risk apportionment. To do this, we first recall the lotteries introduced by

Eeckhoudt and Schlesinger (2006), whose purpose is identifying the direction of preferences. Let

{ε̃i} denote an indexed set of zero-mean risks that are mutually independent. For w> 0 and k < 0,

Eeckhoudt and Schlesinger define

Â1 =w− k, B̂1 =w,

Â2 =w+ ε̃1, B̂2 =w,

and

Ân =
î
Ân−2 + ε̃Int(n/2); B̂n−2

ó
, B̂n =

î
Ân−2; B̂n−2 + ε̃Int(n/2)

ó
for n≥ 3 where Int(n/2) denotes the greatest integer not exceeding n/2. Based on this definition,

we have

Â3 =
î
Â1 + ε̃1; B̂1

ó
= [w− k+ ε̃1;w] , B̂3 =

î
Â1; B̂1 + ε̃1

ó
= [w− k;w+ ε̃1] ,

Â4 =
î
Â2 + ε̃2; B̂2

ó
= [w+ ε̃1 + ε̃2;w] , B̂4 =

î
Â2; B̂2 + ε̃2

ó
= [w+ ε̃1;w+ ε̃2] .

In the above, B̂1 and B̂2 represent a fixed state, while Â1 represents a certain loss relative to

B̂1 and Â2 represents a risky state relative to B̂2. For n ≥ 3, B̂n and Ân are lotteries involving

B̂n−2 and Ân−2 where B̂n attaches an independent zero-mean risk to B̂n−2 and Ân attaches that

zero-mean risk to Ân−2. Eeckhoudt and Schlesinger prove that (−1)n+1u(n) ≥ 0 if and only if for any

zero-mean risks B̂n is always preferred to Ân. Such a preference is termed as “risk apportionment”

of order n. Risk apportionment captures the aversion to combining “bad”—the additional pure

risk ε̃Int(n/2)—with “bad”—the more risky state Ân−2.

Our lotteries aimed at identifying the intensity of preferences are related to Eeckhoudt and

Schlesinger’s lotteries by replacing the zero-mean risk ε̃Int(n/2) with a general non-zero-mean risk

δ̃. Assuming independence between δ̃ and {ε̃i}, we define

A1 =w− k, B1 =w,

A2 =w+ δ̃, B2 =w,
(3)
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and

An =
î
Ân−2 + δ̃; B̂n−2

ó
, Bn =

î
Ân−2; B̂n−2 + δ̃

ó
, (4)

for n≥ 3. Based on this definition, we have

A3 =
î
Â1 + δ̃; B̂1

ó
=
î
w− k+ δ̃;w

ó
, B3 =

î
Â1; B̂1 + δ̃

ó
=
î
w− k;w+ δ̃

ó
,

A4 =
î
Â2 + δ̃; B̂2

ó
=
î
w+ ε̃1 + δ̃;w

ó
, B4 =

î
Â2; B̂2 + δ̃

ó
=
î
w+ ε̃1;w+ δ̃

ó
.

Allowing δ̃ to have a non-zero-mean and letting

ε̃i = [−ki;ki] where ki > 0, (5)

we can explore the intensity of nth-order risk aversion based on the choice between An and Bn.

Theorem 1. For n≥ 2, let An and Bn be defined as in (3) and (4), with ε̃i specified in (5). For

u and v that are continuously differentiable up to order n with u(n−1) 6= 0 and v(n−1) 6= 0, consider

the following statements:

(i) For all x∈ [a, b], −u(n)(x)/u(n−1)(x)≥−v(n)(x)/v(n−1)(x);

(ii) For all An and Bn supported on [a, b], Ev(An) =Ev(Bn) always implies Eu(An)≤Eu(Bn);

(iii) For all An and Bn supported on [a, b], Ev(An) =Ev(Bn) always implies Eu(An)≥Eu(Bn).

When (−1)nu(n−1) > 0 and (−1)nv(n−1) > 0, (i) and (ii) are equivalent; when (−1)nu(n−1) < 0 and

(−1)nv(n−1) < 0, (i) and (iii) are equivalent.

Theorem 1 generalizes Propositions 1 to 2 to higher orders. For example, the bound for tem-

perance measured by −u(4)(x)/u(3)(x) can be elicited from the choice between A4 and B4. An

analogous characterization of −u(n)(x)/u(n−1)(x)≤−v(n)(x)/v(n−1)(x) is available through revers-

ing the inequalities in statements (ii) and (iii). In the special case where v(n−1) ≡ 0, we can prove

by induction that the equation Ev(An) = Ev(Bn) amounts to requiring δ̃ to have a zero-mean,

reproducing the characterization of (−1)n+1u(n) ≥ (≤)0 that B̂n is always more (less) preferable

than Ân.3

To our knowledge, Denuit and Eeckhoudt (2010) were the first to extend the equivalence between

comparative risk aversion and a binary choice behavior to higher orders. Their lottery pairs, how-

ever, are designed only for utility functions that have positive odd numbered derivatives and

negative even numbered derivatives up to the relevant order, which is a typical feature of the so-

called “mixed risk averse” utility functions (Caballé and Pomansky 1996). In contrast, we construct

lottery pairs by iteration of simple 50-50 lotteries, and hence impose no condition on the sign of

derivatives of up to n−1. The iterative approach also allows the sign of the nth derivative of utility

functions to be either positive or negative, and simplifies the choices to involve only 50-50 lotteries.

3 For example, on fourth order when v is a temperance neutral (cubic) utility function, we write Ev(A4)−Ev(B4) =
1
2
[Ev2(w+ δ̃)−v2(w)], where v2(x) = 1

2
[v(x−k)+v(x+k)]−v(x) is linear in x when v(x) is cubic. Thus, the equation

Ev(A4) = Ev(B4) amounts to requiring δ̃ to have a zero-mean, reproducing the characterization by Eeckhoudt and
Schlesinger (2006) that u(4) ≤ 0 iff [w+ ε̃1;w+ ε̃2] is always preferred to [w;w+ ε̃1 + ε̃2].



9

3. An Implementable Procedure

Theorem 1 provides a means to compare the nth-order absolute and relative risk aversion between

two utility functions. We can bound the nth-order absolute risk aversion of u by comparing u with

v1 and bound the nth-order relative risk aversion of u by comparing it with v2, where v1 and v2

satisfy

− v
(n)
1 (x)

v
(n−1)
1 (x)

= θ1 and −x v
(n)
2 (x)

v
(n−1)
2 (x)

= θ2, θ1, θ2 ∈R,

respectively. While Theorem 1 is stated in terms of comparing the intensities of absolute risk

aversion, it works equally well for relative risk aversion when x > 0. Indeed, when comparing u

with v2 by Theorem 1, we get −u(n)(x)/u(n−1)(x) ≥ or ≤ −v(n)2 (x)/v
(n−1)
2 (x) = θ2/x, which is

equivalent to −xu(n)(x)/u(n−1)(x) ≥ or ≤ θ2. The structural assumptions on v1 and v2 serve as

bases for bounding a subject’s risk attitude, which depends on u. Thus, we do not assume that

one’s utility function u exhibits constant nth-order absolute or relative risk aversion and instead

compare one’s utility function to functions with those specific forms at a given level of wealth. In

fact, our procedure proposes no assumption on the form of individual’s utility function.

For a given order n, a subject faces a task that involves a series of risk apportionment choices

between An and Bn that systematically varies δ̃ holding other parameters fixed. Formally, for choice

j in a Task of Order n, we construct An and Bn following (3) and (4) with task-specific values of

w> 0, k > 0, ε̃i as in (5), and

δ̃j = [−h;h] + lj = [−h+ lj;h+ lj], (6)

where h> 0, −h= l1 < l2 < ... < lJ−1 < lJ = h and J ≥ 3. As j increases from 1 to J , δ̃j moves from

[−2h; 0] to [0; 2h]. We use An(j) and Bn(j) to indicate explicitly the dependence of An and Bn

constructed in this way on j. Then, a Task of Order n is formulated as

Task of Order n= {(An(j),Bn(j)) : j = 1, ..., J}, (7)

in which we present subjects a sequence of lottery pairs and ask them to select their preferred

option in each pair.

To take a numerical third-order example, consider the series of 9 lottery pairs: (A3(j),B3(j)),

j = 1,2, ...,9 with A1 = 13, B1 = 23, h= 4 and lj+1 − lj = 1. Thus, for j = 1, we have δ1 = [−8; 0],

and Choice 1 is between the lottery pair

A3(1) = [13 + [−8; 0]; 23] and B3(1) = [13; 23 + [−8; 0]].
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For j = 2, we have δ2 = [−7; 1]. Choice 2 is between the lottery pair

A3(2) = [13 + [−7; 1]; 23] and B3(2) = [13; 23 + [−7; 1]].

For j = 9, we have δ9 = [0; 8] and Choice 9 is between the lottery pair

A3(9) = [13 + [0; 8]; 23] and B3(9) = [13; 23 + [0; 8]].

The lottery comparison of the form used by Eeckhoudt and Schlesinger (2006) occurs when j = 5,

yielding δ5 = [−4; 4] and a choice over the lottery pair

A3(5) = [13 + [−4; 4]; 23] and B3(5) = [13; 23 + [−4; 4]].

For any sequence of lotteries constructed through the process described above, for j = 2, ..., J−1,

there exist unique nth-order constant absolute and relative risk aversion coefficients, denoted by

Θ1(n, j) and Θ2(n, j) respectively, such that

Ev1(An(j)) =Ev1(Bn(j)) under θ1 = Θ1(n, j), and

Ev2(An(j)) =Ev2(Bn(j)) under θ2 = Θ2(n, j).

These coefficients make individuals with utility functions v1 or v2 indifferent between An(j) and

Bn(j).4 It is shown in Lemma A3 in Appendix A that both Θ1(n, j) and Θ2(n, j) are strictly

increasing in j. As a convention, we set Θ1(n,1) = Θ2(n,1) =−∞ and Θ1(n,J) = Θ2(n,J) =∞.

We can identify both upper and lower bounds on risk attitude at some wealth level from a single

task. This approach to providing bounds on risk attitude is justified by the following corollary.

Corollary 1. For n ≥ 2, consider a Task of Order n as in (7) that is supported on [a, b] ⊂

(0,∞). Let u be a utility function that is continuously differentiable up to order n. When

(−1)nu(n−1) > 0, there exists a unique j∗ ≤ J − 1 such that the individual prefers Bn(j) to An(j)

for j ≤ j∗, but An(j) to Bn(j) for j ≥ j∗+1. When (−1)nu(n−1) < 0, similar behavior holds with the

individual preferring An(j) to Bn(j) for j ≤ j∗, but Bn(j) to An(j) for j ≥ j∗+ 1. For both cases,

there exist x1, x2 ∈ [a, b] such that

Θ1(n, j
∗)≤− u(n)(x1)

u(n−1)(x1)
≤Θ1(n, j

∗+ 1),

Θ2(n, j
∗)≤−x2

u(n)(x2)

u(n−1)(x2)
≤Θ2(n, j

∗+ 1).

4 Here, v1 and v2 are unique up to scaling and addition of polynomials up to order n− 2. Since the moments of An
and Bn are the same up to order n− 2, the scaling factor and the polynomial terms do not affect the subsequent
analysis.
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A premise for Corollary 1 to work is that u(n−1) does not vary in sign over the relevant domain.

Since risk aversion coefficients, −u(n)(x)/u(n−1)(x) or −xu(n)(x)/u(n−1)(x), are definable only for

segments with u(n−1) 6= 0, this premise is not excessively demanding. Under this premise, the

difference between the expected utility of An(j) and that of Bn(j) changes monotonically with j,

yielding a single switch point from preferring Bn(j) to preferring An(j) under (−1)nu(n−1) > 0,

or from preferring An(j) to preferring Bn(j) under (−1)nu(n−1) < 0. As with other techniques for

measuring risk aversion, such as the multiple price list approach used by Holt and Laury (2002),

individuals whose preferences are captured by standard functional forms for utility, should exhibit

a single switch point when going through the J choices of the task. Preference intensity is revealed

by the switch point. Moreover, because the sign of u(n−1) is revealed by the first (and the last)

choice, there is no need to separately elicit information about lower order risk attitudes to bound

the intensity of nth-order preferences. In other words, an nth-order task is sufficient to determine

nth-order preference intensity.

To demonstrate what we can infer from a single task, let us recall the previous example to

illustrate Corollary 1. Suppose that an individual prefers B3(j) to A3(j) for j = 1 and j = 2 and

A3(j) to B3(j) for j = 3 to j = 9. The choices of B3(1) and A3(9) reveal the individual is risk-

averse. An individual with a degree of absolute prudence equal to -0.69 and relative prudence equal

to -14.26 would be indifferent between A3(2) and B3(2). That is Θ1(3,2) =−0.69 and Θ2(3,2) =

−14.26. Furthermore, an individual with a degree of absolute prudence equal to -0.31 and relative

prudence equal to -5.82 would be indifferent between A3(3) and B3(3). That is Θ1(3,3) =−0.31

and Θ2(3,3) =−5.82. Thus, from Corollary 1, we know that the individual who prefers B3(j) to

A3(j) only for j ≤ 2 exhibits

−0.69≤−u
(3)(x1)

u(2)(x1)
≤−0.31 and − 14.26≤−x2

u(3)(x2)

u(3)(x2)
≤−5.82

for some x1 and x2 within [5,31].

Corollary 1 does not impose any assumption about the functional form of u, so that risk attitude

elicited in a wealth range does not imply anything on risk attitude on other wealth ranges.

4. Experimental Design

To demonstrate the implementation of our procedure, we conducted a controlled laboratory exper-

iment. For illustrative purposes, our experimental investigation will focus on the second, third and

fourth order. For each order, we present subjects a task as described in (7), with each task consist-

ing of 9 choices involving J = 9 pairs of lotteries. In total, subjects were asked to make 27 choices

(9 choices/order × 3 orders). At the end of the experiment, one of these 27 choices was randomly

selected and used to determine the subject’s earnings.
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Table 1 All Decision Tasks

Task of Option An(j) Option Bn(j) δ̃1 δ̃9 lj+1− lj Average Payoff

Order 2 18 + δ̃j 18 [−8; 0] [0; 8] 1 18

Order 3 [13 + δ̃j; 23] [13; 23 + δ̃j] [−8; 0] [0; 8] 1 18

Order 4 [18 + [−5; 5] + δ̃j; 18] [18 + [−5; 5]; 18 + δ̃j] [−8; 0] [0; 8] 1 18

Note: This table reports the numerical payoffs used to construct tasks as formulated in (7). Recall that [x;y] denotes a

lottery where there is a 50% chance of receiving x and a 50% chance of receiving y. In An(j) and Bn(j), δ̃j = [−h;h]+lj ,

with δ̃1 = [−2h; 0], δ̃9 = [0; 2h], and lj+1− lj given in the second to the last column. For example, in our Task of Order

3, δ̃1 is [−8; 0], δ̃2 is [−7; 1], and δ̃3 is [−6; 2], and so on.

Before continuing, we note that having 9 choices for a task means subjects can be placed into

10 continuous bins that only overlap at their endpoints.5 The width of each bin depends on the

specific lotteries that are used in the task and one could construct a finer or coarser set of bounds

by using more or fewer lotteries, respectively. This is also true for the multiple price list approach

for measuring second-order risk aversion as in Holt and Laury (2002).6

4.1. Construction of Tasks

For all tasks, δ̃1 = [−2h; 0] in Choice 1 only involves a loss, δ̃5 = [−h;h] in Choice 5 involves 50-50

of equal sized gain and loss, and δ̃9 = [0; 2h] in Choice 9 only involves a gain. Thus, for a Task of

Order n Choice 1 and Choice 9 reveal the direction of the (n−1)th-order risk attitude, while Choice

5 is consistent with Eeckhoudt and Schlesinger (2006) and reveals the direction of the nth-order

risk attitude.

Table 1 provides all 3 tasks used in the experiment, where payoffs are in US dollars. Our Task of

Order 3 is the basis for the numerical example used in the previous section. The numerical payoffs

in the tasks are designed such that risk attitudes associated with indifference between choices are

in the neighborhood of the risk attitudes that have been reported previously in the literature (Holt

and Laury 2002, Bliss and Panigirtzoglou 2004, Noussair et al. 2014). Thus, our specific tasks are

not calibrated to identify particularly extreme levels of risk attitude, although one could design

tasks to partition more extreme risk attitudes using the same technique.

4.2. Steps for Making Choices

Our subjects face multiple choices in each task. To help subjects understand the relationship

between the choices on a task, all nine lotteries for a given order are displayed on the screen at the

5 The bins overlap at the endpoints as a subject could be indifferent for a given choice.

6 We also note that one could attempt to identify the δ̃ that makes a respondent indifferent between An versus Bn,
using a method similar to that of Becker et al. (1964). However, our approach only requires subjects to make binary
comparisons.
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Table 2 The Degree of Risk Aversion Making An(j) and Bn(j) Indifferent

Task of
Choice j

j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

Panel A: Constant Absolute Degrees Θ1(n, j)

Order 2 -0.69 -0.31 -0.14 0.00 0.14 0.31 0.69

Order 3 -0.69 -0.31 -0.14 0.00 0.14 0.31 0.69

Order 4 -0.69 -0.31 -0.14 0.00 0.14 0.31 0.69

Panel B: Constant Relative Degrees Θ2(n, j)

Order 2 -11.81 -5.19 -2.27 0.00 2.40 5.72 12.96

Order 3 -14.26 -5.82 -2.36 0.00 2.21 4.97 10.48

Order 4 -13.44 -5.51 -2.31 0.00 2.30 5.28 11.21

Note: In this table, Panel A and Panel B report the constant degrees of nth-order absolute and relative risk aversion

that make An(j) and Bn(j) in Choice j within the Task of Order n indifferent. Here, n= 2,3,4 and j = 2, ...,8.

same time. The subject then makes choices about apportioning the lotteries in order from δ̃1 to δ̃9.

Figure 1 provides an example of a subject facing Choice 5 in our Task of Order 3 where they are

asked to apportion δ̃5. Once the subject has made all 9 choices for a task, a button appears on the

screen enabling the subject to submit all 9 responses simultaneously. A subject is free to change

their decision regarding the apportionment of a lottery at any point prior to pressing the submit

button.7

The presentation of each choice follows Deck and Schlesinger (2014) and is meant to facilitate a

choice as deciding to combine “good” with “good” or to combine “good” with “bad”. For example,

in the fifth lottery shown in Figure 1 the decision is if one wants to combine a 50-50 lottery that

pays either -$4 or $4 with the bad $13 outcome or the good $23 outcome of an independent 50-50

lottery. A risk averse person would view the -$4 or $4 lottery as a bad while a risk-loving person

would view it as a good. A prudent person would opt to combine the -$4 or $4 lottery with the

$23 outcome. For a person who is risk averse this is combining a good and a bad, whereas for

a risk-loving person this is combining a good with a good. The first lottery shown in Figure 1

also demonstrates how Choice 1 in an nth-order task each identifies the subject’s (n− 1)th-order

preferences. Here the decision is if one prefers to face a 50-50 lottery that pays either -$8 or $0

7 If a subject changes their decision for Choice i with i ≤ 8 the software proceeds to Choice i + 1 and continues
sequentially from that point. Additionally, the software imposes that a subject make a single switch on each task;
however, the subjects are not informed of this in the instructions. Rather, those that attempt to provide responses
that do not conform to a single switch rule are notified of this requirement. This allows us to identify how many
subjects naturally follow a single switch rule. 30% of subjects never exhibited behavior inconsistent with a single
switch. 47% and 8% of the subjects exhibited single switch only for the second and only for the second and third
order task, respectively. The other 15% of subjects did not exhibit single switch on the second order task.
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Figure 1 Subject Interface.

with the bad outcome of $13 or the good outcome of $23 from the independent lottery. This choice

can be rewritten as a choice between lottery A3(1) that pays $5 with probability one fourth, $13

with probability one fourth, and $23 with probability one half and lottery B3(1) that pays $13

with probability one half, $15 with probability one fourth, and $23 with probability one fourth.

The choice of A3(1) over B3(1) implies u($13)−u($5) is smaller than u($23)−u($15), which holds

for a risk seeking person. Similarly, the ninth choice, which is not visible in Figure 1 apportions

the 50-50 lottery with $0 and $8, which is a pure gain and also depends on one’ second-order risk

attitude. The example task measures third-order risk attitude, but for the first choice the preferred

option only depends on one’s second-order risk attitude since the 50-50 lottery with -$8 and $0 is a

pure loss. Similarly, the ninth choice, which is not visible in Figure 1 apportions the 50-50 lottery

with $0 and $8, which is a pure gain and thus depends only one’s second-order risk attitude.

4.3. Procedures

The study was conducted at [Removed for Review]. One hundred subjects were recruited from the

lab’s standing pool of volunteers.8 While many of the subjects had participated in other unrelated

studies, none had participated in a study about risk. The average salient earnings were $18.74 (with

8 Because the experiment is meant to demonstrate the implementation of the procedure laid out in the previous
section and to provide a general sense of the observed degrees of relative and absolute prudence and temperance
rather than testing specific hypotheses, the sample size is arbitrary and not based on statistical power.
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a minimum of $7 and a maximum of $31). Subjects also received a $5 payment for participating

in the study.

Data were collected during fourteen sessions with subjects being recruited for 30 minutes. Each

session involved between 4 and 14 subjects; however, subjects did not interact with each other

during a session. At the start of a session, subjects were seated at individual computer stations

separated by privacy dividers. Subjects read general computerized instructions.9 The paid portion

of the study in which they completed the 3 tasks shown in Table 1 was self-paced. To facilitate

subject understanding, the tasks were presented in order.10 Task specific instructions were presented

just prior to the subjects making their decisions for that task. These instructions remained visible

on the left portion of the screen throughout the time the subject was making decisions.

Once the subject completed all 27 choices over the 3 tasks, the computer randomly selected one

choice from one task to be used in determining the subject’s payment. Any 50-50 lottery required

to determine the outcome of the selected option was resolved through the use of a physical spinner

as had been explained previously to the subjects.11 Each subject complete a survey that consisted

of a single question about gender and was then paid in private and dismissed from the study.

5. Experimental Results

As a preliminary point, we note that the behavior we observe is consistent with the directional

results of Deck and Schlesinger (2014) and Noussair et al. (2014). Effectively, those experiments

only considered choices with zero-mean lotteries (i.e. apportionment decisions of the form in Choice

5 of each of our tasks) and we find that a majority of our subjects indicate a preferences for Bn(5)

over An(5) for all n= 2,3 and 4.

5.1. Intensity of Preference

The main results of the experiment are captured in Figure 2, which presents histograms for each

order of the choice at which subjects changed their apportionment decisions. The relevant risk

attitudes associated with a particular switch point can be found in Table 2.

9 The instructions are available in the supplementary materials.

10 There is a trade-off between simplicity and comprehension on the one hand and the possibility of a task order
effect on the other hand. Randomization of the tasks would control for an order effect, but may increase confusion on
higher order tasks for subjects encountering such tasks initially. More elaborate procedures involving more detailed
instructions, practice tasks, etc. could be used to minimize confusion while allowing for random ordering, but such
procedures would be more time consuming and could themselves influence behavior or introduce experimenter demand
effects. We anticipate that researchers using our approach to measure subjects’ higher order risk attitudes along with
other personal characteristics to explain behavior in experiments will likely opt for the simplest implementation,
which is what we have opted to demonstrate.

11 The subjects were invited to inspect the spinner before beginning the paid portion of the experiment and again
before their final payoff was determined.
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Figure 2 Histogram of Switching in Task of Order n

Overall, 60% of our subjects made choices indicating some degree of 2nd order risk aversion.

For the second order task, the most common switching point was at Choice 6 indicating that

31% of the subjects are slightly risk averse exhibiting second-order absolute risk aversion between

0.00 and 0.14 and second-order relative risk aversion between 0.00 and 2.40. Further, 75% of the

subjects exhibiting second-order absolute risk aversion between -0.14 and 0.31 and 2nd order relative

risk aversion between -2.27 and 5.72 indicating that few subjects have extreme second order risk

attitudes. As an aside, we also report that second-order behavior did not differ by gender (p-value

for χ2 test = 0.598). For comparison, Bliss and Panigirtzoglou (2004) (Table III, p.424) estimated

that the degree of relative risk aversion was between -1.17 and 8.56, a range that covers about

75% of our subjects. Assuming constant relative risk aversion, Brenner (2015) estimated the risk

attitudes of U.S. executives and found the 10th and the 90th percentiles for relative risk aversion

were 0.11 and 6.17, respectively, whereas we find that the 10th and the 90th percentiles among our

subjects are -2.3 and 4.6, respectively. In their lab experiment Holt and Laury (2002) find that 90%

of subjects had relative risk attitudes that fell between -0.15 and 1.37 while we find that about 40%

of our subjects fall in that range. Eeckhoudt and Schlesinger (2008) and Nocetti (2016) show that

whether an individual will save more in response to a first-degree risk increase in future interest
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rates depends on whether the degree of relative risk aversion is greater than one. Of our subjects,

43% have relative risk aversion greater than one. By comparison, using the approach proposed by

Chiu et al. (2012), Noussair et al. (2014) (Table 3, p.335) report that 37% of their subjects have a

degree of relative risk aversion greater than one.

An approximately two-thirds majority of our subjects exhibited some degree of prudence. As

with the second order task, for the third order task the most common switching point was at

Choice 6 indicating that 33% of the subjects are slightly prudent exhibiting third-order absolute

risk aversion between 0.00 and 0.14 and third-order relative risk aversion between 0.00 and 2.21.

Unlike what was observed for second order risk, on the third order tasks a sizeable fraction of the

subjects exhibit extreme attitudes. Only 57% of the subjects exhibiting third-order absolute risk

aversion between -0.14 and 0.31 and third-order relative risk aversion between -2.36 and 4.97, while

14% (13%) of the subjects exhibit third-order absolute risk aversion below -0.69 (above 0.69) and

third-order relative risk aversion below -14.26 (above 10.48). We also note that there is no gender

difference in third order behavior (p-value for χ2 test = 0.266). By comparison, Noussair et al.

(2014) (Table 11, p.347) estimate the degree of relative prudence to be between 1.68 to 2.64 in a

parametric measurement using a demographically representative sample of the Dutch population,

but find that 62% of individuals exhibit a degree of relative prudence above 2. Dynan (1993)

uses the Consumer Expenditure Survey data and assumes constant relative risk aversion utility to

estimate relative prudence and reported a 95-percent confidence interval that ranged from -0.124

to 0.748. Gourinchas and Parker (2002) also used Consumer Expenditure Survey data to identify

parameters for a life cycle consumption model and arrived at value of 1.514 for the degree of

relative prudence for a representative agent. Eisenhauer and Ventura (2003) used the Bank of Italy

1995 Survey of Italian Households’ Income and Wealth and assume iso-power utility to obtain an

estimated average degree of relative prudence of 8.65 and an estimated average absolute prudence

of 0.185.

For the fourth order task, only a slight majority of 54% exhibited temperance. The modal

response was again to switch at choice 6 indicating that this 32% of the subjects exhibited fourth-

order absolute risk aversion between 0.00 and 0.14 and fourth-order relative risk aversion between

0.00 and 2.30. As with the prudence, the degree of temperance exhibited by the subjects is more

extreme than the degrees of second order risk aversion that were exhibited. Only 59% of the subjects

exhibited fourth-order absolute risk aversion between -0.14 and 0.31 and fourth-order relative risk

aversion between -2.31 and 5.28. Finally, as with second and third order behavior, there is no

difference in fourth-order behavior by gender (p-value for χ2 test = 0.582).

As detailed in Section 2, the degree of nth-order risk aversion depends on the sign of the (n−1)th

derivative of the utility function. The structure of the tasks we implement is such that Choice
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Figure 3 Histogram of Switching in Task of Order n Given Sign of (n− 1)th Order Risk Attitude

1 (or Choice 9) of a Task of Order n is sufficient to determine the sign of the (n− 1)th. Hence,

in Figure 3 we separate the behavior of the subjects based on their selection of An(1) or Bn(1).

Because every subject selected B2(1) rather than A2(1), indicating that all of our subjects exhibit

behavior consistent with a monotonically increasing utility function, the figure only shows behavior

for the Tasks of Orders 3 and 4. The top-right portion of Figure 3 shows that risk-averse subjects

most commonly switch at Choice 6. It also indicates that far more subjects switch at Choices 6

through 9 than at Choices 2 through 5. The top-left portion of Figure 3 indicates that risk-loving

subjects most commonly switch at Choice 6 as well. However, by contrast with what is observed

for risk-averse subjects, the numbers of risk-loving subjects who switch at Choices 6 through 9 is

similar to the number who switch at Choices 2 through 5.

What is clear from the top portion of the figure and supported statistically is that those who are

risk averse are more likely to have greater degrees of absolute and relative prudence than are those

who are risk seeking (p-value for χ2 test = 0.027). However, as suggested by the lower portion of

the figure prudent and imprudent people do not exhibit substantially different degrees of absolute

and relative temperance (p-value for χ2 test = 0.596).
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One implication of our results draws upon Jindapon and Neilson (2007) who examine compar-

ative risk aversion in a model where decision makers can exert effort to shift an initial wealth

distribution to a preferred distribution. Specifically, Jindapon and Neilson (2007) showed that if the

initial distribution differs from the preferred distribution by a simple increase in third degree risk,

then a risk-averse agent with preferences captured by the utility function u would invest more effort

than another risk-averse agent whose preferences are captured by the utility function v if and only

if u has a higher degree of absolute prudence than v.12 degree risk. Appendix B extends Jindapon

and Neilson (2007) by assuming that agents are risk-loving instead of risk averse and showing that

when the initial distribution differs from the preferred distribution by a simple increase in third

degree risk, then a risk-loving agent with utility function u would invest more effort than another

risk-loving agent with utility v if and only if u has a lower degree of absolute prudence than v. Note

that subjects who switch at Choice j + 1 has a higher degree of absolute prudence than subjects

who switch at Choice j regardless of second order risk preferences. Thus, in the top-right portion

of Figure 3 subjects who switch at Choice j + 1 would exert more efforts than the subjects who

switch at Choice j or earlier whereas in the top-left portion of Figure 3 subjects who switch at

Choice j+ 1 would exert less efforts than subjects who switch at Choice j or earlier.

Jindapon and Neilson (2007) and our Appendix B also provide a basis for understanding the

implications of observed fourth-order behavior. Jindapon and Neilson (2007) showed that if the

initial distribution differs from the preferred distribution by a simple increase in fourth degree

risk, then a prudent agent with higher degree of absolute temperance is willing to exert more

effort to pursue the preferred distribution than is a prudent agent with a lower degree of absolute

temperance. Thus, in the bottom-right portion of Figure 3 subjects who switch at Choice j + 1

would exert more effort than subjects who switch at Choice j or earlier. Our Appendix B shows

that an imprudent agent with a lower degree of absolute temperance is willing to exert more effort

to pursue the preferred distribution than is an imprudent agent with a higher degree of absolute

temperance. Thus, in bottom-left portion of Figure 3 subjects who switch at Choice j + 1 would

exert less efforts than subjects who switch at Choice j or earlier.

5.2. Cross-Order Correlations

Crainich et al. (2013) offer theoretical arguments as to why risk averters should be more temperate

than risk seekers. While Noussair et al. (2014) observed such a relationship, their analysis used

the number of risk averse and temperate choices as proxies for the intensity of risk aversion and

temperance, respectively. By contrast, our data allow us to examine how degrees of risk aversion

are related across orders. Specifically, we observe the correlation between switching points on the

12 See Appendix B for the definition of a simple increase (decrease) in third
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Table 3 Correlation of Risk Intensities across Orders

All Subjects Risk Averters Risk Lovers

Order 3 Order 4 Order 3 Order 4 Order 3 Order 4

Order 2 0.21∗∗ 0.42∗∗∗ 0.30∗∗ 0.56∗∗∗ 0.13 0.30∗∗

[0.037] [< 0.001] [0.033] [< 0.001] [0.374] [0.037]

Order 3 0.26∗∗∗ 0.32∗∗ 0.23

[0.010] [0.023] [0.112]

Note: Numbers in brackets are p-values for testing the null hypothesis that the correlation is equal to 0 against the

two sided alternative. *,**, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Tasks of Orders 2 and 3 is 0.209 (p-value = 0.037) indicating that a greater degree of absolute

(relative) second order risk aversion is associated with a greater degree of absolute (relative) pru-

dence. Similarly, the degrees of absolute (relative) prudence and absolute (relative) temperance are

positively correlated among our subjects; the correlation between switching points on the Tasks

of Orders 3 and 4 is 0.258 (p-value = 0.010). But the strongest relationship that we observer is

between the degree of second order risk aversion and the degree of temperance; the correlation

between switching points on the Tasks of Orders 2 and 4 is 0.422 (p-value < 0.001). That the

connection between even order risk attitudes is stronger than the relationship between even and

odd orders is consistent with the notion of people being mixed risk averters and mixed risk seekers.

Table 3 examines the correlation among risk attitudes for risk averters and risk lovers separately.

As shown in this table the correlations tend to be stronger among risk averse subjects.

5.3. Parametric Calibration

Finally, while our approach is non-parametric, we report a calibration exercise to determine how

well different utility functions describe observed behavior. Both Noussair et al. (2014) and Schneider

et al. (2022) note that standard utility functions cannot capture the behavior of many respondents.

For example, the commonly used constant relative risk aversion model precludes the possibility of

someone being risk averse and intemperate. Thus, it is important to consider more flexible utility

functions.

For each subject for each of several utility function, we identify the parameter values that best fit

the observed behavior of the subject across all three orders. That is, given a parameterized utility

function we search for the subject specific parameter values that maximize the match between the

predicted choice and the observed behavior of the subjects over all 27 choices between An(i) and

Bn(i) (with n= 2,3,4, i= 1, ...,9). We employ a grid search over a prespecified domain of parame-

ters covering the range of absolute risk aversion detectable in our tasks. The specific functions we
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Table 4 Results of Individual Level Calibration

Utility Function Model Parameters Accuracy

exponential − 1
γ
e−γx γ = 0.15 (0.32) 0.80 (0.14)

power 1
1−γx

1−γ γ = 1.53 (5.34) 0.86 (0.11)

HARA γ
1−γ (x

γ
+ θ)1−γ

γ = 2.20 (6.48)
0.83 (0.12)

θ= 152.76 (82.92)

polynomial ax4 + bx3 + cx2 +x

a=−0.08 (0.24)

0.87 (0.08)b= 1.42 (17.14)

c= 266.40 (580.61)

exponential power − 1
γ
e

1
1−θ x

1−θ γ = 0.26 (1.85)
0.91 (0.08)

θ= 0.30 (0.68)

Note: Parameters give the average of the subject specific calibrated values with standard deviations in parentheses.

Accuracy gives the average across subjects of the percentage of choices by each subject consistent with the subject

specific model with standard deviations in parentheses. HARA denotes the utility function exhibiting hyperbolic

absolute risk aversion. For this model θ + x/γ > 0 is required on the interval [5,31]. For the polynomial function,

values are restricted to be monotone increasing at 5, 10, ..., 30.

consider include the exponential utility function, the power utility function, the hyperbolic absolute

risk aversion function, a fourth order polynomial function, and an exponential-power function.13

Table 4 reports the mean and standard deviation of the subject specific parameters for each

model. For example, when considering the exponential utility function, the average value of γ across

the subjects is 0.15.14 The table also reports the mean and standard deviation of the accuracy

rate for each function when allowing for subject specific parameter values. Thus, allowing for each

subject to have a unique value of γ, on average 80% of a subject’s choices are consistent with the

exponential utility function. Among the utility functions listed in Table 4, the exponential-power

utility function has the greatest average accuracy at 91%.

6. Conclusions

This paper introduces a simple, generalizable, systematic procedure for identifying the intensity of

risk attitudes using the notion of risk apportionment. Our process is systematic in that it involves an

incremental series of binary comparisons. The process is simple in that it only involves comparisons

between two lotteries that are themselves composed of combinations of certain losses and fifty-fifty

lotteries. Further, our approach generalizable as it can be used to identify both relative and absolute

13 We do not consider linear or quadratic utility functions as all choices in the 3rd order task have equal means and
all choices in the 4th order task have equal means and variances and thus these models predict indifference for many
choices. Matlab code for the identification is available in the supplementary materials.

14 This does not imply that 0.15 is the value of γ that best fits all of the data for the exponential utility function.
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risk aversion of any arbitrary degree without relying upon assumptions regarding the respondent’s

underlying preference structure.

We demonstrate the implementation of our approach in a laboratory setting. Consistent with

previous work, we find that a majority of our subjects are non-satiated, risk averse, prudent, and

temperate. Our approach allows us to go further and identify that the typical behavior of our

subjects is modest relative and absolute risk aversion, modest relative and absolute prudence, and

modest relative and absolute temperance. Further, we find that higher order degrees of risk aversion

are positively correlated, although the strongest relationship that we observe is between second

order risk aversion and prudence. Finally, our calibration exercise suggests that behavior is broadly

consistent with the exponential-power utility function.

While we expect that researchers will find our approach useful in quickly and directly measuring

the intensity of higher order risk attitudes, as with any new elicitation technique more examination

is warranted. The fineness of the partition can be adjusted by changing the number risk apportion-

ment choices in a task, but this could impact behavior. Further, the incremental changes to the

risks being apportioned need not be uniform. Introducing such variation could assuage the concern

raised by Harrison and Rutström (2008) that the multiple price list presentation may bias subjects

towards the center row. Similarly, other concerns with the multiple price list approach, such as the

amount of noise in the data overwhelming gender differences as argued by Charness et al. (2018),

may exist with our approach to measuring higher order risk attitudes as well. Thus, we believe it is

an important direction for future work to determine if such concerns and solutions that have been

established in the experimental literature apply to the measurement of prudence and temperance

too. Additionally, future work is needed to verify the external validity of the measurements our

procedure provides.

Appendix
A. Mathematical Proofs

To prove our formal results, we first establish three technical lemmas.

Lemma A1. For u and v that are twice continuously differentiable with u(1) and v(1) having the

same sign, the following statements are equivalent:

(i) −u(2)(x)/u(1)(x)≥−v(2)(x)/v(1)(x) for all x∈ [a, b];

(ii) −[u(1)(x)− u(1)(x− k)]/[u(x)− u(x− k)]≥−[v(1)(x)− v(1)(x− k)]/[v(x)− v(x− k)] for all

x,x− k ∈ [a, b] with k > 0.

Proof. Assume first that u(1) > 0 and v(1) > 0. Since (i) is a direct consequence of (ii) after letting

k → 0, we concentrate on the proof that (i) implies (ii). Statement (i) is equivalent to u(x) =

ϕ(v(x)), where ϕ is twice differentiable with ϕ(1) > 0 and ϕ(2) ≤ 0 (Pratt 1964). By the mean
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value theorem, u(x)−u(x− k) = ϕ(v(x))−ϕ(v(x− k)) = ϕ(1)(v(x− θk))[v(x)− v(x− k)] for some

θ ∈ (0,1). Accordingly,

−u
(1)(x)−u(1)(x− k)

u(x)−u(x− k)
=− ϕ

(1)(v(x))v(1)(x)−ϕ(1)(v(x− k))v(1)(x− k)

ϕ(1)(v(x− θk))[v(x)− v(x− k)]

≥− v
(1)(x)− v(1)(x− k)

v(x)− v(x− k)
,

follows from ϕ(1)(v(x))≤ϕ(1)(v(x− θk))≤ϕ(1)(v(x− k)).

To address the alternative case with u(1) < 0 and v(1) < 0, we introduce û = −u and v̂ = −v,

which satisfy û(1) > 0 and v̂(1) > 0. Because −û(2)(x)/û(1)(x) =−u(2)(x)/u(1)(x), −[û(1)(x)− û(1)(x−

k)]/[û(x)− û(x−k)] =−[u(1)(x)−u(1)(x−k)]/[u(x)−u(x−k)] and similar equations also hold for

v̂ and v, the result follows straightforwardly by adapting the former analysis to û and v̂. Q.E.D.

Lemma A2 below extends Lemma A1 to higher orders.

Lemma A2. For n≥ 3, let Ân and B̂n be the lotteries introduced by Eeckhoudt and Schlesinger

(2006) with w= 0 and ε̃i as in (5). For u and v that are continuously differentiable up to order n

with u(n−1) and v(n−1) having the same sign, define

un−2(x)≡Eu(x+ Ân−2)−Eu(x+ B̂n−2),

vn−2(x)≡Ev(x+ Ân−2)−Ev(x+ B̂n−2).

The following statements are equivalent:

(i) −u(n)(x)/u(n−1)(x)≥−v(n)(x)/v(n−1)(x) for all x∈ [a, b];

(ii) −u(2)
n−2(x)/u

(1)
n−2(x)≥−v(2)n−2(x)/v

(1)
n−2(x) for all x+ Ân−2, x+ B̂n−2 ∈ [a, b].

Proof. For n= 3, u1(x) = u(x− k)− u(x) and v1(x) = v(x− k)− v(x). We apply Lemma A1 with

u(1) and v(1) to get the equivalence between (i) and (ii).

For n= 4, u2(x) = [u(x− k1) + u(x+ k1)]/2− u(x) and v2(x) = [v(x− k1) + v(x+ k1)]/2− v(x).

Accordingly, (ii) implies (i) after letting k1→ 0. To prove that (i) implies (ii), we apply Lemma A1

to u(2) and v(2), and obtain that (i) implies

−u
(3)(x)−u(3)(x− k1)
u(2)(x)−u(2)(x− k1)

≥−v
(3)(x)− v(3)(x− k1)
v(2)(x)− v(2)(x− k1)

.

Similarly, applying Lemma A1 to û(x)≡ u(1)(x)−u(1)(x−k1) and v̂(x)≡ v(1)(x)−v(1)(x−k1) gives

− û
(1)(x+ k1)− û(1)(x)

û(x+ k1)− û(x)
≥− v̂

(1)(x+ k1)− v̂(1)(x)

v̂(x+ k1)− v̂(x)
,

which yields (ii) as û(x+ k1)− û(x) = 2u
(1)
2 (x) and v̂(x+ k1)− v̂(x) = 2v

(1)
2 (x).
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For n≥ 5 the proof is by induction. Suppose that the equivalence between (i) and (ii) holds true

for all orders up to n− 1. For order n, recall that ε̃Int(n/2)−1 = [−kInt(n/2)−1;kInt(n/2)−1] and

un−2(x) =
1

4

[
un−4

(
x− kInt(n/2)−1

)
+un−4

(
x+ kInt(n/2)−1

)]
− 1

2
un−4(x),

vn−2(x) =
1

4

[
vn−4

(
x− kInt(n/2)−1

)
+ vn−4

(
x+ kInt(n/2)−1

)]
− 1

2
vn−4(x).

Applying the equivalence for the fourth order to un−4 and vn−4, we obtain that (ii) is equivalent to

−
u
(4)
n−4(x)

u
(3)
n−4(x)

≥−
v
(4)
n−4(x)

v
(3)
n−4(x)

for all x+ Ân−4, x+ B̂n−4 ∈ [a, b].

We further apply the equivalence for the (n − 4)th order to u(2) and v(2) to obtain that (ii) is

equivalent to (i) for order n. Q.E.D.

Lemma A3. For n ≥ 2, consider a Task of Order n as specified in (7) that is supported on

[a, b]⊂ (0,∞). For each j = 2, ..., J − 1, there exists a unique constant absolute risk aversion coeffi-

cient Θ1(n, j) such that Ev1(An(j)) =Ev1(Bn(j)) under θ1 = Θ1(n, j). Moreover, Θ1(n, j) increases

strictly in j. The same statement holds true for Θ2(n, j), the constant relative risk aversion coeffi-

cient such that Ev2(An(j)) =Ev2(Bn(j)).

Proof. We proceed under the assumption that (−1)nv
(n−1)
1 > 0 as the alternative case (−1)nv

(n−1)
1 <

0 can be addressed by adapting the analysis to −v1. By induction, we have v
(1)

1(n−2) > 0 and

Ev1(Bn(j))−Ev1(An(j)) = v1(n−2)(w)−Ev1(n−2)(w+ δ̃j).

For j = 2, ..., J − 1, the existence and uniqueness of Θ1(n, j) follow from the monotonic-

ity of v−11(n−2)(Ev1(n−2)(w + δ̃j)) with respect to θ1 (Pratt 1964), together with the facts that

limθ1→−∞ v
−1
1(n−2)(Ev1(n−2)(w + δ̃j)) = w + ess sup(δ̃j) and limθ1→∞ v

−1
1(n−2)(Ev1(n−2)(w + δ̃j)) = w +

ess inf(δ̃j).

As j increases, Ev1(n−2)(w+ δ̃j) increases strictly, but Ev1(n−2)(w) does not change. Thus, for any

j1 < j2, Ev1(n−2)(w) =Ev1(n−2)(w+ δ̃j1) under θ1 = Θ1(n, j1) implies Ev1(n−2)(w)<Ev1(n−2)(w+ δ̃j2)

under the same θ1, which further implies Ev1(n−2)(w)<Ev1(n−2)(w+ δ̃j2) under all θ1 ≤Θ1(n, j1) by

virtue of Proposition 1. Accordingly, to achieve Ev1(n−2)(w) =Ev1(n−2)(w+ δ̃j2) under θ1 = Θ1(n, j2),

it must be that Θ1(n, j2)>Θ1(n, j1), which proves the monotonicity of Θ1(n, j) with respect to j.

When j = 1, Ev1(n−2)(w) > Ev1(n−2)(w + δ̃1) for any finite Θ1 ∈ R yielding the convention

Θ1(n,1) = −∞. When j = J , Ev1(n−2)(w) < Ev1(n−2)(w + δ̃J) for any finite Θ1 ∈ R yielding the

convention Θ1(n, j) =∞. Q.E.D.

In what follows, we prove our main results.
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Proof of Proposition 1. To prove that (i) implies (ii), let F and G be the cumulative distri-

bution functions of B2 and A2, respectively. Then, integration-by-parts yields Ev(B2)−Ev(A2) =∫ b
a
v(1)(x)[G(x)−F (x)]dx and

Eu(B2)−Eu(A2)

=

∫ b

a

u(1)(x)

v(1)(x)

Å
−u

(2)(x)

u(1)(x)
+
v(2)(x)

v(1)(x)

ã∫ x

a

v(1)(y)[G(y)−F (y)]dydx

+
u(1)(b)

v(1)(b)

∫ b

a

v(1)(x)[G(x)−F (x)]dx.

Since F intersects G from below once, Ev(B2) = Ev(A2) implies
∫ b
a
v(1)(y)[G(y)−F (y)]dy = 0 but∫ x

a
v(1)(y)[G(y)−F (y)]dy≥ 0 for all x∈ [a, b], which in turn implies Eu(B2)≥Eu(A2).

To show that (ii) implies (i), we argue by contradiction. If −u(2)(x0)/u
(1)(x0)<−v(2)(x0)/v

(1)(x0)

for some x0 ∈ [a, b], then continuity implies −u(2)(x)/u(1)(x) < −v(2)(x)/v(1)(x) on (x0 − ε,x0 +

ε) ∩ [a, b] for some ε > 0. For δ̃ supported on (x0 − ε,x0 + ε) ∩ [a, b], we can follow the proof for

(i) implying (ii) to obtain that Ev(B2) = Ev(A2) always implies Eu(B2) ≤ Eu(A2) and a strict

inequality Eu(B2)<Eu(A2) holds when δ̃ is not constant. This a contradiction to (ii). Q.E.D.

Proof of Proposition 2. For k > 0, recall u1(x) = u(x−k)−u(x) and v1(x) = v(x−k)−v(x). For

individuals with utility function u, the choice between A3 and B3 is based on comparing Eu1(A2)

and Eu1(B2) with a similar result holding for v. We apply Proposition 1 to obtain that (ii) is

equivalent to −u(2)
1 (x)/u

(1)
1 (x)≥−v(2)1 (x)/v

(1)
1 (x) for all x,x− k ∈ [a, b], and further apply Lemma

A2 at the third order to obtain that (ii) is equivalent to (i). Q.E.D.

Proof of Theorem 1. For n≥ 3, let un−2 and vn−2 be defined as in Lemma A2. For an individual

with utility function u, the choice between An and Bn is based on comparing Eun−2(A2) and

Eun−2(B2). A similar statement holds for v. We apply Proposition 1 to obtain that (ii) is equivalent

to −u(2)
n−2(x)/u

(1)
n−2(x) ≥ −v(2)n−2(x)/v

(1)
n−2(x) for all x + An−2, x + Bn−2 ∈ [a, b], and further apply

Lemma A2 to obtain that (ii) is equivalent to (i). Q.E.D.

Proof of Corollary 1. We assume (−1)nu(n−1) > 0 as the case (−1)nu(n−1) < 0 can be addressed

by adapting the above analysis to −u. Recall that for an individual with utility function u, the

choice between An(j) and Bn(j) is based on comparing Eun−2(w + δ̃j) and Eun−2(w). We prove

by induction that u
(1)
n−2 > 0. When j = 1, δ̃1 = [−2h; 0] is a first-degree deterioration relative to 0

and thus w is preferred to w+ δ̃1 by un−2; when j = J , δ̃J = [0; 2h] is a first-degree improvement

relative to 0 and thus w+ δ̃J is preferred to w by un−2. As j increases from 1 to J , Eun−2(w+ δ̃j)

increases but Eun−2(w) does not change, yielding a single point where the individual switches from

preferring w to preferring w+ δ̃j under un−2, or equivalently, from preferring Bn(j) to preferring

An(j) under u.
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When the individual prefers Bn(j) to An(j) for j ≤ j∗ and prefers An(j) to Bn(j) for j ≥

j∗ + 1, we have Eu(Bn(j∗)) ≥ Eu(An(j∗)) and Eu(Bn(j∗ + 1)) ≤ Eu(An(j∗ + 1)). If otherwise

−u(n)(x)/u(n−1)(x)<Θ1(j
∗) or −u(n)(x)/u(n−1)(x)>Θ1(j

∗ + 1) for all x ∈ [a, b], then Theorem 1

would imply Eu(An(j∗))> Eu(Bn(j∗)) or Eu(An(j∗ + 1))< Eu(Bn(j∗ + 1)), which is a contradic-

tion. Q.E.D.

B. Effort-Making Problem

Jindapon and Neilson (2007) examined comparative risk aversion in a model where decision makers

can exert effort to shift an initial wealth distribution (G) to a preferred distribution (F ). Given

that u and v are utility functions that exhibit risk-aversion and/or prudence, their paper provides

conditions on u and v for an individual whose preference is captured by u to exert more effort

than an individual whose preference is captured by v. In this appendix, we extend their model to

consider individuals who are risk loving and/or imprudent.

Assume that an individual with utility function u can invest in an effort e ∈ [0,1] with a non-

monetary cost of effort c(e) where c′(e) > 0 and c′′(e) > 0 such that her wealth distribution will

become eF (x) + (1− e)G(x), where x∈ [a, b]. Thus, the objective of the individual is as follows:

max
e∈[0,1]

∫ b

a

u(x)[edF (x) + (1− e)dG(x)]− c(e).

The first-order condition is ∫ b

a

u(x)d[F (x)−G(x)]− c′(e) = 0,

and the second-order condition holds automatically due to −c′′(e) < 0. Since the second-order

condition does not depend on the sign of u(2), there always exists a unique interior solution if∫ b
a
u(x)d[F (x)−G(x)]> 0, regardless of whether or not the individual is risk averse or risk loving.

Define F (2)(x) =
∫ x
a
F (t)dt and G(2)(x) =

∫ x
a
G(t)dt. Following Jindapon and Neilson (2007), we

assume F differs from G by a simple decrease in third order risk, i.e., F (2)(x) crosses G(2)(x) only

once from below and EF (x) =EG(x). Taking integration by parts, the first-order condition becomes∫ b

a

[−u(2)(x)][G(2)(x)−F (2)(x)]dx− c′(e) = 0.

To compare two individuals with utility functions u and v, denote the optimal effort levels

corresponding to u and v by e∗u and e∗v, respectively.

Proposition B1. Regarding the effort-making problem, we have:

(i) Under u(2) < 0 and v(2) < 0, e∗u ≥ e∗v for any F and G such that F differs from G by a simple

decrease in third degree risk, if and only if −u(3)(x)/u(2)(x)≥−v(3)(x)/v(2)(x) for all x∈ [a, b];
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(ii) Under u(2) > 0 and v(2) > 0, e∗u ≥ e∗v for any F and G such that F differs from G by a simple

decrease in third degree risk, if and only if −u(3)(x)/u(2)(x)≤−v(3)(x)/v(2)(x) for all x∈ [a, b].

Statement (i) in the above proposition is owing to Jindapon and Neilson (2007). Here, we examine

the “if” part of statement (ii). Assume F (2)(x)≤G(2)(x) for x≤ x0 and F (2)(x)≥G(2)(x) for x≥ x0,

and scale u and v so that u(2)(x0) = v(2)(x0). In light of the first-order condition, e∗u ≥ e∗v if and

only if ∫ b

a

ï
− u(2)(x)

u(2)(x0)
+
v(2)(x)

v(2)(x0)

ò
[G(2)(x)−F (2)(x)]dx≥ 0.

If −u(3)(x)/u(2)(x)≤−v(3)(x)/v(2)(x) for all x∈ [a, b], then it holds u(2)(y)/u(2)(z)≤ v(2)(y)/v(2)(z)

for all z ≥ y. Accordingly, we have F (2)(x)≤G(2)(x) and u(2)(x)/u(2)(x0)≤ v(2)(x)/v(2)(x0) for x≤

x0 and F (2)(x)≥G(2)(x) and u(2)(x)/u(2)(x0)≥ v(2)(x)/v(2)(x0) for x≥ x0, which in turn implies the

desired inequality. The “only if” portion of the statement can be proved using the same approach

as in the proof of Theorem 3 in Jindapon and Neilson (2007).

By the same token, we can extend the above analysis to the fourth order. We say F differs from

G by a simple decrease in fourth degree risk, if F (3)(x) =
∫ x
a
F (2)(t)dt crosses G(3)(x) =

∫ x
a
G(2)(t)dt

only once from below, and moreover, EF (x) = EG(x) and EF (x2) = EG(x2) hold. The result is

formally stated as follows, and the proof is omitted.

Proposition B2. Regarding the effort-making problem, we have:

(i) Under u(3) > 0 and v(3) > 0, e∗u ≥ e∗v for any F and G such that F differs from G by a simple

decrease in fourth degree risk, if and only if −u(4)(x)/u(3)(x)≥−v(4)(x)/v(3)(x) for all x∈ [a, b];

(ii) Under u(3) < 0 and v(3) < 0, e∗u ≥ e∗v for any F and G such that F differs from G by a simple

decrease in fourth degree risk, if and only if −u(4)(x)/u(3)(x)≤−v(4)(x)/v(3)(x) for all x∈ [a, b].
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