# **Pollution Abatement Investment under Financial Frictions and Policy Uncertainty**

### Min Fang<sup>1</sup>; Po-Hsuan Hsu<sup>2</sup>; Chi-Yang Tsou<sup>3</sup> <sup>1</sup>University of Florida, <sup>2</sup>National Tsing Hua University, <sup>3</sup>University of Manchester

### Abstract

We examine how financial frictions and policy uncertainty jointly influence firms' investments in pollution abatement.

Our data analyses suggest that financially constrained firms are less likely to invest in pollution abatement and are more likely to release toxic pollutants, with this pattern intensified by policy uncertainty surrounding environmental regulations.

We develop a general equilibrium model with heterogeneous firms, including both financially constrained and unconstrained firms, in which financially constrained firms face increased marginal costs of finance from pollution abatement.

### **Quantitative Analysis**

### A Full-Blown GE Model

#### Heterogeneous Production w/ Pollution Firms:

- Produce and invest in both capital and abatement technology
- Face idiosyncratic productivity shocks and pollution penalty shocks

#### Production and Finance: (Khan and Thomas, 2013)

- Production:  $y_{jt} = z_{jt} k_{jt}^{\alpha}$ ,  $\alpha < 1$  with  $\log z_{jt+1} = \rho \log z_{jt} + \epsilon_{jt+1}$
- Finance: (1) collateral constraints  $b' \leq \theta_k k$ ; (2) non-negative dividend  $d_{jt} \geq 0$ .

#### **Pollution and Abatement:**

The aggregate effect of environmental policies depends on the distribution of financial frictions and policy uncertainty.

### Mechanisms

#### Mechanism: Setup

#### **Mechanism: Constrained Firms**

#### Intuition Here:

▶ 1. Diminishing marginal benefit and increasing marginal cost of abatement investment ▶ 2. Such asymmetry is further amplified by policy uncertainty

#### A firm that solves a one-period problem of abatement:

• an abatement investment a; emission  $e = \frac{\overline{e}}{\epsilon + a}$ ; pollution penalty  $\tau e$ **External financing frictions:** (1) an initial debt **b** (2) receives future financial cost  $-\phi$  if binding  $\mathbf{d} \leq 0$ Policy uncertainty: a pollution penalty  $\tau \sim [0, \overline{\tau}]$  with pdf  $\pi_{\tau}(\tau)$  and s.d.  $\sigma_{\tau}$ 

**The firm's optimization:** (define  $\tilde{a} \equiv a$  as the direct cost of a)



#### Mechanism: the Implication of Financial Frictions

#### Takeaways:

1. Financial cost and benefit asymmetry in abatement  $a \rightarrow$  constrained  $a_c^* \downarrow$ 

2. Higher initial debt further decreases financial benefit  $\rightarrow$  constrained  $a_c^* \downarrow$ 

**Figure: Abatement Investment Subject to Financial Frictions** 

A constrained firm that has high initial debt  $b_c: \rightarrow \text{low cutoff } \hat{a}_c(\bar{\tau}, b_c)$ ▶ an optimal abatement investment:  $a_c^* > \hat{a}_c(\bar{\tau}, b_c)$ • there exists a cutoff  $\hat{\tau} = \frac{1-b-\tilde{a}}{e}$  such that  $d \leq 0$  if  $\tau > \hat{\tau}$ financial costs and benefits enter the MC and MB curves

| MC = | $\underbrace{1}_{\text{direct cost}}$ | + | $\underbrace{(-\varphi)\frac{\pi_{\tau}(\hat{\tau})}{1-\Pi_{\tau}(\hat{\tau})}\frac{d\hat{\tau}}{d\tilde{a}}\frac{d\tilde{a}}{da}}_{\text{financial cost}}$ | = | $1 + \varphi \frac{\pi_{\tau}(\hat{\tau})}{1 - \Pi_{\tau}(\hat{\tau})} \frac{(\epsilon + a)}{\bar{e}}$                  |
|------|---------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------|
| MB = | $-E[\tau]\frac{de}{1}$                | + | $(-\phi) \frac{\pi_{\tau}(\hat{\tau})}{1 - \pi_{\tau}(\hat{\tau})} \frac{d\hat{\tau}}{l} \frac{de}{l}$                                                      | = | $\frac{\bar{e}E[\tau]}{(a+a)^2} + \phi \frac{\pi_{\tau}(\hat{\tau})}{1-\Pi_{\tau}(\hat{\tau})} \frac{(1-b-a)}{\bar{e}}$ |

| direct benefit | $1 - \Pi_{\tau}(\hat{\tau}) \text{ de da}$<br>financial benefit | $(\epsilon+a)^2$ | - Ι-Πτ(τ) |  |
|----------------|-----------------------------------------------------------------|------------------|-----------|--|
|                |                                                                 |                  |           |  |

• where  $\frac{\pi_{\tau}(\hat{\tau})}{1-\Pi_{\tau}(\hat{\tau})}$  is the hazard rate of incurring d < 0, external financing cost  $\phi$ the marginal financial cost increases in a the marginal financial benefit decreases in a and b

#### Borrow subject to collateral constraints + non-negative dividend requirement

#### A General Equilibrium Block

- A family of representative households consumes and supplies labor
- Dis-utility of representative households from pollution emissions
- Aggregate capital and abatement technology producers

#### **Policy Uncertainty Shocks**

Moments

**Output and Finance** 

1-year autocorrelation of output

3-year autocorrelation of output

5-year autocorrelation of output

Annual exit rate of firms

Mean of debt/asset ratio

Pollution and Abatement

Mean of emission intensity

Median of emission intensity

P75/P25 of emission intensity

Ratio of zero pollution penalty

Mean of pollution penalty

Size ratio of entrant relative to average

Standard deviation of emission intensity

Standard deviation of pollution penalty (normal)

Standard deviation of pollution penalty (elevated)

MIT Shocks to the variance of the idiosyncratic pollution penalty shocks

Table: : Targeted Moments: Model and Data

#### Emission: $e_{jt} = \frac{\bar{e}}{x_{jt}} z_{jt} k^{\alpha}_{jt}$ , where $\bar{e}$ is the default level of emission intensity

- Abatement tech:  $x_{jt+1} = (1 \delta_x)x_{jt} + a_{jt+1}$ , where  $\delta_x$  is the depreciation
- Abatement investment:  $a_{it+1} \ge 0$
- **Environmental Policy Uncertainty:**
- Pollution penalty:  $\tau_{jt} e_{jt}$  (Shapiro and Walker, 2018)
- ldiosyncratic shock  $\tau_{jt}$  i.i.d across firms following  $\tau_{jt} \sim \text{Lognormal}(\mu, \sigma)$
- Shocks to environmental policy uncertainty will be reflected in changes in  $\sigma_{\tau}$

#### **Figure: Impulse Responses of Abatement Investment**



#### Mechanism: the Implication of Policy Uncertainty

The hazard rate  $\frac{\pi_{\tau}(\hat{\tau})}{1-\Pi_{\tau}(\hat{\tau})}$  increases with  $\sigma_{\pi}$  (e.g., Arellano, Bai, Kehoe, 2019) **Takeaway:** 3. Financial cost and benefit asymmetry in a enlarged  $\rightarrow a_c^* \Downarrow$ 

Figure: Abatement Investment Subject to Policy Uncertainty

## Conclusions

Effectiveness of environmental policy depends on FCs and policy uncertainty.



### **Empirical Analysis**

#### Data Sources I: (pollution, abatement, and production at facility-level)

- **Regression Specification: (Poisson and OLS)**
- ► Toxic Release Inventory (TRI) Database by the US Env'tl Protection Agency (EPA)
- Pollution Prevention (P2) Database, also from EPA
- National Establishment Time-Series (NETS) Database

#### Data Sources II: (financial constraint and policy uncertainty)

- CRSP, Compustat, and Others (BEA, BLS, FRED)
- Stateline Database and the CQ Election Electronic Library
- Textual Analysis of Firm-level Uncertainty by Hassan et al. (2019, 2020a, 2020b)
- Connecting Data Sources: (facility-firm-state, 1991-2017)
- Abatement activities and pollution emissions at facility-level
- Financial constraint measures at firm-level
- Policy uncertainty measures at state or firm-level

#### Table: Abatement Investment under Financial Frictions and Policy Uncertainty

| Table: | Toxic Emissions under Financial Frictions and Policy Uncertainty |
|--------|------------------------------------------------------------------|
|        |                                                                  |

|                               | Election-Based Uncertainty |                |                |                |                |                |                | Election-Based               |                       |                             |                             | Text-Based        |                   |                             |                             |                          |                  |
|-------------------------------|----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------------------|-----------------------|-----------------------------|-----------------------------|-------------------|-------------------|-----------------------------|-----------------------------|--------------------------|------------------|
|                               | Poisson                    |                |                |                | OLS            |                |                |                              |                       | (1)                         | (2)                         | (3)               | (4)               | (5)                         | (6)                         | (7)                      | (8)              |
|                               | (1)                        | (2)            | (3)            | (4)            | (5)            | (6)            | (7)            | (8)                          | στ                    | -0.03                       | -0.03                       | 0.39              | 0.37              | -0.01                       | -0.01                       | -0.01                    | -0.01            |
| σ <sub>τ</sub><br>[t]         | 0.00<br>0.21               | 0.01<br>0.61   | -0.00<br>-0.05 | 0.01<br>0.38   | -0.00<br>-0.17 | -0.00<br>-0.12 | -0.00<br>-0.27 | -0.00<br>-0.25               | WW                    | (-0.95)<br>-0.06<br>(-0.83) | (-0.82)<br>-0.07<br>(-0.73) | (1.65)            | (1.56)            | (-1.06)<br>-0.01<br>(-1.41) | (-1.03)<br>-0.01<br>(-1.04) | (-1.39)                  | (-1.33)          |
| WW<br>[t]                     | -0.01<br>-0.21             | -0.03<br>-0.66 |                |                | -0.01<br>-0.74 | -0.01<br>-1.46 |                |                              | $WW\times\sigma_\tau$ | 0.08<br>(2.46)              | $\frac{0.08}{(2.46)}$       |                   |                   | $\frac{0.02}{(2.56)}$       | $\frac{0.02}{(2.62)}$       |                          |                  |
| WW $\times \sigma_{\tau}$ [t] | -0.06<br>-3.70             | -0.06<br>-3.73 |                |                | -0.01<br>-2.86 | -0.01<br>-2.63 |                |                              | SA                    | (2.10)                      | (2.40)                      | -0.13             | -0.16             | (2.50)                      | (2.02)                      | 0.02                     | 0.02             |
| SA<br>[t]                     |                            |                | -0.19<br>-4.41 | -0.21<br>-4.57 |                |                | -0.05<br>-4.46 | -0.06<br>-4.51               | $SA\times\sigma_\tau$ |                             |                             | (-1.57)<br>0.18   | (-1.81)<br>0.17   |                             |                             | (4.00)<br>0.01<br>(2.02) | 0.01<br>(2.00)   |
| $SA \times \sigma_{\tau}$ [t] |                            |                | -0.04<br>-2.52 | -0.04<br>-2.61 |                |                | -0.01<br>-1.92 | - <mark>0.01</mark><br>-1.70 | Observations          | 112,894                     | 111,893                     | (1.81)<br>114,746 | (1.71)<br>113,649 | 64,280                      | 64,142                      | (2.02)<br>65,028         | (2.09)<br>64,853 |
| Observations<br>Controls      | 91,433<br>No               | 89,990<br>Vos  | 93,096<br>No   | 91,351<br>Vos  | 149,882<br>No  | 148,130<br>Voc | 152,272<br>No  | 150,150<br>Voc               | R-squared             | 0.72<br>No                  | 0.72<br>Ves                 | 0.72<br>No        | 0.72<br>Ves       | 0.92<br>No                  | 0.92<br>Ves                 | 0.92<br>No               | 0.92<br>Ves      |
| Facility FE                   | Yes                        | Yes            | Yes            | Yes            | Yes            | Yes            | Yes            | Yes                          | Facility FE           | Yes                         | Yes                         | Yes               | Yes               | Yes                         | Yes                         | Yes                      | Yes              |
| Time ÉE                       | Yes                        | Yes            | Yes            | Yes            | Yes            | Yes            | Yes            | Yes                          | Time FE               | Yes                         | Yes                         | Yes               | Yes               | Yes                         | Yes                         | Yes                      | Yes              |
| Cluster SE                    | Yes                        | Yes            | Yes            | Yes            | Yes            | Yes            | Yes            | Yes                          | Cluster SE            | Yes                         | Yes                         | Yes               | Yes               | Yes                         | Yes                         | Yes                      | Yes              |

- $\mathbf{x}_{\mathsf{p},\mathsf{i},\mathsf{s},\mathsf{t}+\mathsf{h}} = \beta_1 \ \sigma_{\tau|\mathsf{s},\mathsf{t}} + \beta_2 \ \sigma_{\tau|\mathsf{s},\mathsf{t}} \times \ \eta_{\mathsf{i},\mathsf{s},\mathsf{t}} + \beta_3 \ \eta_{\mathsf{i},\mathsf{s},\mathsf{t}} + \beta_4 \ \Gamma_{\mathsf{i},\mathsf{s},\mathsf{t}}$ (2) +  $\beta_5 X_{s,t}$  +  $\beta_6 Rep Ratio_{s,t}$  +  $\psi_p$  +  $\pi_t$  +  $\varepsilon_{p,i,s,t}$ ,
- ▶  $x_{p,i,s,t+1 \rightarrow t+h}$ : abatement by facility p in state s and belonging to parental firm i at from t + 1 to next election t + h
- $\sigma_{\tau|s,t}$ : " = 1" if the most recent state governor vote diff is within 5%; o/w " = 0"
- $\blacktriangleright$   $\eta_{i,s,t}$ : financial constraint of parental firm i in year t (WW and SA, standardized)
- $\blacktriangleright$   $\Gamma_{i,s,t}$ : firm-level controls (size, book-to-market, inv. rate, and ROA)
- X<sub>s,t</sub>: state-level controls (local fundamentals)
- RepRatio<sub>s,t</sub>: number of Rep. wins over the past 4 gubernatorial elections •  $\psi_p$ : facility fixed effects;  $\pi_t$ : time fixed effects; SE cluster at facility-level;

Empirical evidence: higher FCs  $\times$  policy uncertainty  $\rightarrow$  lower abatement.

Preliminary intuition in a simple model shows the mechanism.

Data Model

0.89

0.69

0.53

0.28

0.09

0.34

5.38

5.66

3.05

1.98

0.40

0.02

0.02

0.04

0.90

0.71

0.56

0.28

0.09

0.34

4.16

4.45

1.82

1.56

0.40

0.02

0.02

0.04

Preliminary macro-finance model for quantification.

## What's Next?

Explore more heterogeneity in the data/model.

More rigorous model simulated regressions or SMM.

Optimal policy decision under financial frictions and policy uncertainty.

A combination of financial policy and environmental policy.

## Contact

### Min Fang

University of Florida

▶ With respect to the economic significance: take SA measure in OLS, for example

If the SA index increases by one standard deviation:

1. Pollution abatement activities drop between 5% and 6%

2. With increased policy uncertainty, we find a further reduction of 1%

Email: minfang@ufl.edu Website: www.minfang.info Phone: 5854905613 \*text me if you have any questions!