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OVERVIEW

Classic moral hazard model:
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OVERVIEW

Classic moral hazard model:
® Effort is either binary, or belongs to an interval.
® Main result: contracts are motivated by informativeness.
® Need strong assumptions for wage to increase in output.
Current paper:
¢ Allow agent to choose any output distribution.
® Contracts determined by agent’s marginal costs.

® Wages are increasing whenever costs increase in FOSD.



Two Examples



COMMON SETUP FOR EXAMPLES

A principal (she) contracts with an agent (he).
® Compact set X C R of possible outputs.
® Principal offers agent a (bounded) contract: w : X - R.
® Agent can opt out and get u.

e If opts in, agent covertly chooses a € A ¢ A(X).

Effort costs: C : A = R,, increasing in FOSD.

Payoffs:
Principal: x — w Agent: u(w) — C(«).

u: strictly increasing, differentiable, unbounded, concave.



STANDARD BINARY EFFORT MODEL

X =[L,H], A =A{ay, ay}.
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X=[L7H]7 Az{alaah}'
Suppose principal wants to implement «y,.

Then she offers a contract w that solves:

min/w(x)ah(dx) s.t. (IC)and (IR).

The FOC from this cost minimization problem is:
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So: w is monotone < MLRP holds.
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FLEXIBLE BINARY OUTPUT MODEL
X={L,H}, A=AX=[0,1]

Suppose also C is convex and differentiable.
To implement « € (0, 1), FOC is necessary & sulfficient:
uow(H)-uow(l)=Cla) & w(H)= u_l(u ow(L) + C'(r)).
Implications:

¢ Cost minimization is trivial: min w(L) s.t. IR.

* Shape of contract determined by C' and u.

¢ JC contracts are monotone:

w(H) =u" (wow(L)+Ca)) 2 u (uow(L)) = w(L).



OUR MAIN MODEL

A principal (she) contracts with an agent (he).
® Compact set X C R of possible outputs.
® Principal offers agent a (bounded) contract: w : X - R,.
¢ Limited liability: w(:) = 0.

* Agent covertly chooses a € A = A(X).

Effort costs: C : A - R, continuous, increasing in FOSD.

Payoffs:
Principal: x — w Agent: u(w) — C(w),

u: increasing, continuous, unbounded & u(0) = 0.
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ASSUMPTIONS ON THE COST

Without loss: C is convex.

(if not, replace o with cheapest mixing that averages to «)

Assumption. (smoothness) C is Gateaux differentiable: every
« admits a bounded k,, : X - R s.t.

hm [C(a +¢(8 - a)) a)] = /k ) (B — «)(dx)
forall 5 € A.

® k,(x): MC of increasing probability of output x.
e If X is finite: smooth < differentiable, which holds a.e.

® Cincreases in FOSD < k, increasing V.



FIRST-ORDER APPROACH

Lemma. Foraboundedv: X - R, and « € A,

o € arg max [/v(x),é’ (dx) - C(ﬂ)}

BeA

if and only if

o € arg max [ / o(x)B(dx) - / ka(x)ﬁ(dx)}

BeA

(the “only if” direction also works if C is not convex)
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Consider the problem:

max [av — c(a)]
a€l0,1]

where v € R and c is convex and differentiable.

Standard way of writing FOC for optimal a* € (0, 1) is
v—c'(a*)=0.
An equivalent way of writing the above condition is:
ate argmax,g (a0 - ac'(a™)].

The lemma generalizes the second formulation.



FIRST-ORDER APPROACH

Lemma. Foraboundedv: X - R, and « € A,

o € arg max [/v(x),é’ (dx) - C(ﬂ)}

BeA

if and only if

o € arg max [ / o(x)B(dx) - / ka(x)ﬁ(dx)}

BeA

(the “only if” direction also works if C is not convex)



CHARACTERIZATION OF IC

Say a contract-distribution pair (w, «) is IC if

v € argmaxge 4 [/u o w(x)B(dx) - C(B)}



CHARACTERIZATION OF IC

Say a contract-distribution pair (w, «) is IC if

v € argmaxge 4 [/u o w(x)A(dx) — C(B)}

Proposition. (w, «) is IC if and only if a m € R exists such that

w(x) < u” k(%) + m)

for all x, and with equality a-almost surely.



Proposition. (w, ) is IC if and only if a m € R exists such that
w(x) < u” k(%) + m)

for all x, and with equality a-almost surely.

Proof.



Proposition. (w, ) is IC if and only if a m € R exists such that
w(x) < u” k(%) + m)

for all x, and with equality a-almost surely.

Proof. By Lemma, (w, «) is IC if and only if « solves

max [ [0 w(t) = ka(x)] 8(d).

BeAX



Proposition. (w, ) is IC if and only if a m € R exists such that
w(x) < u” k(%) + m)

for all x, and with equality a-almost surely.

Proof. By Lemma, (w, «) is IC if and only if « solves

max [ [0 w(t) = ka(x)] 8(d).

BeAX

or equivalently, the following holds a-almost surely:

1o w(x) = ko(x) = sup(u o w - ko )(X)



Proposition. (w, ) is IC if and only if a m € R exists such that
w(x) < u” k(%) + m)

for all x, and with equality a-almost surely.

Proof. By Lemma, (w, «) is IC if and only if « solves

max [ [0 w(t) = ka(x)] 8(d).

BeAX

or equivalently, the following holds a-almost surely:

u o w(x) = ko (x) = sup(u o w -k, )(X)
-1

u  (ko(x) + sup(uow -k, )(X)) .

= w(x)



Proposition. (w, ) is IC if and only if a m € R exists such that
w(x) < u” k(%) + m)

for all x, and with equality a-almost surely.

Proof. By Lemma, (w, «) is IC if and only if « solves

max [ [0 w(t) = ka(x)] 8(d).

BeAX

or equivalently, the following holds a-almost surely:

u o w(x) = ko (x) = sup(u o w -k, )(X)
-1

u  (ko(x) + sup(uow —k,)(X)) .

= w(x)



Proposition. (w, ) is IC if and only if a m € R exists such that

w(x) < u_l(ka(x) + 1) =2 Wy ()

for all x, and with equality a-almost surely.



Proposition. (w, ) is IC if and only if a m € R exists such that

wlx) < 7 (ka(x) + m) = Wyr0(x)
for all x, and with equality a-almost surely.
Wing,a
Wiy,

Wiy o




Proposition. (w, ) is IC if and only if a m € R exists such that
w(x) < 1 (ka(x) + m) = Wy (%)

for all x, and with equality a-almost surely.

Wing,
Wiy,

w

Wiy o

supp(a)




Proposition. (w, ) is IC if and only if a m € R exists such that

-1

w(x) s u (ko (x) +m) =2 wy, o(x)

for all x, and with equality a-almost surely.

supp(a)

Win,a

w




Proposition. (w, ) is IC if and only if a m € R exists such that
w(x) < 1 (ka(x) + m) = Wy (%)

for all x, and with equality a-almost surely.

Implications:

wm,a

w

supp(a)




Proposition. (w, ) is IC if and only if a m € R exists such that
w(x) < 17 (ka(x) + ) =t Wy 0 (%)
for all x, and with equality a-almost surely.

Implications:

(i) wlog: setw = wy, 4,
optimize m.
ZUm,a

w

supp(a)




Proposition. (w, ) is IC if and only if a m € R exists such that
w(x) < 17 (ka(x) + ) =t Wy 0 (%)
for all x, and with equality a-almost surely.

Implications:

(i) wlog: setw = wy, 4,

optimize m.
Wi,

=w

supp(a)




Proposition. (w, ) is IC if and only if a m € R exists such that

w(x) < u_l(ka(x) + 1) =2 Wy ()

for all x, and with equality a-almost surely.

Implications:

(i) wlog: setw = wy, 4,
optimize m.
Wi,

=w (ii) Every « is implementable.

supp(a)




Proposition. (w, ) is IC if and only if a m € R exists such that
w(x) < 17 (ka(x) + ) =t Wy 0 (%)
for all x, and with equality a-almost surely.

Implications:

(i) wlog: setw = wy, 4,
W optimize m.
=w (ii) Every « is implementable.
(iif) Cost minimizing m is:

my, = —inf ko (X).

supp(a)




Proposition. (w, ) is IC if and only if a m € R exists such that
w(x) < 17 (ka(x) + ) =t Wy 0 (%)
for all x, and with equality a-almost surely.

Implications:

(i) wlog: setw = wy, 4,
optimize m.

(ii) Every « is implementable.
Wmioo (iii) Cost minimizing m is:
my, = —inf ko (X).

supp(a)
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Claim. C is FOSD monotone < wy, , is increasing Va, m.
(Fact. C is FOSD monotone <= k, is increasing Vo).
Proof of Claim. Recall,

Wora(¥) = 17 (ka(x) + m).

Therefore,

Wy, o i increasing Yo, m < k, is increasing Vo
< (Cis FOSD monotone.

Explanation: by the Fact .



Proposition. (w, ) is IC if and only if a m € R exists such that
w(x) < U™ (ko (x) + 1) =2 Wy ()
for all x, and with equality a-almost surely.
Implications:
(i) Without loss for principal to offer w,, ,, for some m.
(ii) A cheapest contract implementing « is wy,» , for

my = —inf ko (X).

(iif) C FOSD increasing = wage is increasing without loss.
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FLEXIBLE MORAL HAZARD PROBLEMS

We show that in smooth & flexible moral hazard problems:
® Parameters driving contract: k, and u.
® Cost minimization is trivial.
® Every distribution can be implemented.

® FOSD monotonicity = wages increase in output.

In paper, we also have results about principal optimality:
® FOC for the principal (1st order approach is valid).

® Optimality of single, binary, and discrete distributions.



Thanks!



