
Model-Agnostic Covariate-Assisted Inference on Partially Identified

Causal Effects

Wenlong Ji ∗ Lihua Lei † Asher Spector ∗

November 19, 2024

Abstract

Many causal estimands are only partially identifiable since they depend on the unobservable joint
distribution between potential outcomes. Stratification on pretreatment covariates can yield sharper
bounds; however, unless the covariates are discrete with relatively small support, this approach typically
requires binning covariates or estimating the conditional distributions of the potential outcomes given the
covariates. Binning can result in substantial efficiency loss and become challenging to implement, even
with a moderate number of covariates. Estimating conditional distributions, on the other hand, may
yield invalid inference if the distributions are inaccurately estimated, such as when a misspecified model is
used or when the covariates are high-dimensional. In this paper, we propose a unified and model-agnostic
inferential approach for a wide class of partially identified estimands. Our method, based on duality
theory for optimal transport problems, has four key properties. First, in randomized experiments, our
approach can wrap around any estimates of the conditional distributions and provide uniformly valid
inference, even if the initial estimates are arbitrarily inaccurate. A simple extension of our method to
observational studies is doubly robust in the usual sense. Second, if nuisance parameters are estimated
at semiparametric rates, our estimator is asymptotically unbiased for the sharp partial identification
bound. Third, we can apply the multiplier bootstrap to select covariates and models without sacrificing
validity, even if the true model is not selected. Finally, our method is computationally efficient. Overall,
in three empirical applications, our method consistently reduces the width of estimated identified sets
and confidence intervals without making additional structural assumptions.

1 Introduction

1.1 Motivation and problem statement

Many parameters of interest in econometrics and causal inference are only partially identifiable (Manski,
2003; Tamer, 2010; Molinari, 2020). Even in randomized experiments, we cannot observe the joint law of
the potential outcomes (Yi(1), Yi(0)) since we observe at most one outcome per subject; thus, the law of
the individual treatment effect Yi(1)− Yi(0) is unidentifiable. However, most causal parameters of interest
can be bounded using the marginal laws of Yi(1) and Yi(0). Furthermore, incorporating information from
covariates Xi ∈ Rp can substantially reduce the width of the partially identified set.

However, partial identification bounds involving covariates can depend delicately on the relationship between
the outcome and the covariates, making inference challenging. For illustration, we now give three motivating
examples, although we will state a general problem formulation in Section 2. As notation, assume that we
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observe n i.i.d. observations {(Xi,Wi, Yi)}ni=1 for covariates Xi ∈ X , a binary treatment Wi ∈ {0, 1} and an
outcome Yi ∈ Y with potential outcomes Yi(1), Yi(0). This paper focuses on randomized experiments (see
Assumption 2.1) where the marginal laws of (Yi(1), Xi) and (Yi(0), Xi) are identified. Thus, we say that a
parameter is identified if it depends only on these marginal laws.

Example 1 (Fréchet-Hoeffding bounds). For fixed y1, y0 ∈ R, let θ = P(Yi(1) ≤ y1, Yi(0) ≤ y0) denote the
joint CDF of the potential outcomes. θ is not identified but can be bounded. Indeed, without covariates,
Hoeffding (1940); Fréchet (1951) showed that the sharp lower bound on θ is

θ ≥ θL := max(0,P(Yi(1) ≤ y1) + P(Yi(0) ≤ y0)− 1). (1)

With covariates, applying Eq. (1) conditional on Xi and integrating yields the sharp lower bound:

θ ≥ θL := E [max(0,P(Yi(1) ≤ y1 | Xi) + P(Yi(0) ≤ y0 | Xi)− 1)] . (2)

Example 2 (Variance of the Individual Treatment Effect). A natural measure of treatment effect hetero-
geneity is the variance of the individual treatment effect θ = Var(Yi(1)− Yi(0)). If θ is large relative to the
average treatment effect (ATE), the treatment may harm many individuals, and it is unclear if it should be
given to the general population. The sharp lower bound on θ can be written as

θ ≥ θL := Var (E[Yi(1)− Yi(0) | Xi]) + E[VarU∼Unif(0,1)(P
⋆−1
Y (1)|X(U | Xi)− P ⋆−1

Y (0)|X(U | Xi))], (3)

where P ⋆
Y (k)|X denotes the true conditional CDF of Yi(k) | Xi for k ∈ {0, 1}.

Example 3 (ATE with selection bias). Suppose we only observe outcomes for a set of “selected” individuals,
where selection may depend on treatment status. E.g., we only observe wages for individuals who are
employed (Lee, 2009), but treatment may affect employment. Formally, let Si ∈ {0, 1} be the indicator for
the selection event, with Si(1), Si(0) its potential outcomes. A natural estimand is the average treatment
effect (ATE) for the individuals who would be selected with or without the treatment:

θ := E[Yi(1)− Yi(0) | Si(1) = Si(0) = 1]. (4)

θ is only partially identifiable, but as in Example 2, if we can learn the relationship between Yi, Si and
Xi, then we can give sharp bounds on θ. In particular, Semenova (2021) showed that if one assumes that
selection is “monotone” in the treatment, meaning Si(1) ≥ Si(0) a.s., then the sharp lower bound is

θ ≥ θL := EX [E[Yi(1)|Si(1) = 1, Xi, Yi(1) ≤ Qη(Xi)(Xi)]]− E[Yi(0)|Si(0) = 1], (5)

where above, η(Xi) := P(Si(0)=1|Xi)
P(Si(1)=1|Xi)

and Qα(Xi) denotes the α conditional quantile of Yi(1) | Xi. These

bounds are colloquially known as “Lee bounds” (Zhang and Rubin, 2003; Lee, 2009).

Given a partially identified parameter θ, this paper aims to estimate sharp bounds [θL, θU ] which incorporate
information from covariates. This problem is challenging because the bounds typically depend delicately on
the conditional law of Y | X,W , as exemplified by Equations (2)-(5). Thus, most existing approaches to
estimate θL, θU make assumptions allowing uniformly consistent estimation of such nuisance parameters (see
Section 1.3 for a review). This assumption is often implausible when Xi is continuous or high-dimensional,
unless the researcher is willing to impose further assumptions on the conditional distributions (e.g., a
parametric model, smoothness, sparsity), which may not hold in applications.

Thus, in this work, we ask the question: can we convert a working estimate of the conditional law of
Y | X,W into inferential bounds on the sharp identified set [θL, θU ] which are (i) sharp when the working
estimate is consistent and (ii) conservative but valid when the working estimate is arbitrarily inaccurate?

We end this section by noting that this question is motivated by the core philosophy of partial identification.
Indeed, why not simply make enough assumptions so that the parameter θ is identified? In his seminal book,
Manski (2003) answers this question by formulating the law of decreasing credibility:

The credibility of inference decreases with the strength of the assumptions maintained.

Our objective is to enhance credibility by removing any assumptions about the accuracy of the researcher’s
working model of nuisance parameters without sacrificing power when the researcher’s model matches the
ground truth.
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1.2 Contribution and overview of results

Our work introduces a framework for inference on sharp, covariate-assisted partial identification bounds on

causal parameters. If P ⋆ denotes the true joint law of (Yi(1), Yi(0), Xi)
i.i.d.∼ P ⋆ for i ∈ [n], we consider

estimands of the form
θ(P ⋆) := EP⋆ [f(Y (0), Y (1), X)] (6)

for some known function f : Y2×X → R. Many estimands can be reduced to this case, including Examples
1-3, certain conditional expectations, quantiles of treatment effects, and more (see Section 2.5). We let
θL ≤ θ(P ⋆) ≤ θU denote the sharp (population) lower and upper partial identification bounds on θ(P ⋆);

these quantities are defined formally in Section 2.1. Our method outputs estimates θ̂L, θ̂U of the sharp
bounds θL, θU as well as lower and upper confidence bounds θ̂LCB, θ̂UCB. The main idea is to leverage
duality theory for optimal transport problems (reviewed in Section 2.1) to convert any estimate P̂Y |X,W of

the conditional law of the outcome into robust partial identification bounds θ̂L, θ̂U . We emphasize that this
method works automatically for any estimand defined above—in our software, the analyst can specify any
function f and does not need to do any additional calculations to obtain the results. This eliminates the
need for a closed-form representation of θL, θU .

These “dual bounds” have a few appealing properties, listed below.

1. Uniform validity. Our method allows analysts to estimate the law of Y | X,W using any statistical or
machine learning technique, e.g., quantile regression, boosting, neural networks, etc. However, in randomized
experiments with known propensity scores, the resulting confidence bounds are valid even if the estimate
P̂Y |X,W is arbitrarily inaccurate relative to the ground truth P ⋆

Y |X,W . In this sense, our method is “model-
agnostic”: it can leverage models for power without relying on them for validity.

Formally, θ̂L and θ̂U are always conservatively biased in the sense that E[θ̂L] ≤ θL and E[θ̂U ] ≥ θU .
Furthermore, the confidence bounds have uniform asymptotic coverage without any assumptions on the
accuracy of P̂Y |X,W (see Theorem 3.1). Finally our method is also doubly robust in observational studies
where the propensity scores are not known (see Theorem 3.6).

2. Tightness. If one can estimate the relevant nuisance parameters at o(n−1/4) rates, our estimators θ̂L, θ̂U
are asymptotically unbiased and

√
n-consistent for the sharp bounds θL, θU .

3. Easy model selection. A major question in empirical applications is (i) how to select the subset of
the covariates used in the analysis and (ii) how to estimate the outcome model Yi | Xi,Wi. Our method
permits the analyst to use either nested cross-validation and/or the multiplier bootstrap (Chernozhukov
et al., 2013a) to select the tightest bound based on different models or subsets of the covariates.

4. Computational efficiency. To compute our bounds, we propose an algorithm that is computationally
efficient even whenXi is high-dimensional and Yi is continuous. The python package dualbounds implements
this algorithm: https://dualbounds.readthedocs.io/en/latest/.

It is noteworthy that our method achieves uniform validity and tightness simultaneously. If only the former
is required, one can simply throw away all covariates and stick with covariate-independent bounds, which
are by definition not tight. A common remedy is to apply a coarse stratification on a few discrete variables
or to bin covariates in a data-driven fashion. However, unless the covariates are jointly discrete with a
relatively small support, the former strategy could result in considerable efficiency loss and the latter is
challenging to implement even with a moderate number of covariates, since one must balance the trade-off
between increasing the number of bins (to improve efficiency) and ensuring there are enough observations
per bin (which is necessary for inference). On the other hand, most provably tight inferential procedures
crucially rely on (certain aspects of) the conditional distributions being consistently estimated and hence it
is unclear if uniform validity can be achieved (e.g. Semenova, 2023; Levis et al., 2023).

Figure 1 illustrates our contributions in a simple numerical experiment where we estimate lower Lee bounds
as in Example 3. We fit an outcome model estimate P̂Y |X,W assuming Yi(k) | Xi follows a homoskedastic
Gaussian linear model for k ∈ {0, 1}. A naive estimator of θL, which simply plugs in the estimated outcome
model to Equation (5), performs well when the model is well-specified. However, if the errors are made
heteroskedastic, this naive “plug-in” estimator can become conservatively or anticonservatively biased (de-
pending on the form of heteroskedasticity). In contrast, our dual bounds wrap around exactly the same
estimator of the outcome model and provide provable validity under arbitrary misspecification. See Section
5.4 for precise simulation details and an analogous plot showing coverage.
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Figure 1: This figure illustrates our core contribution in a simple setting where we aim to estimate lower
Lee bounds (Example 3). For each method, it shows the average value of the estimate θ̂L, and the dotted
black line shows the true sharp lower bound θL. The green covariate-free approach is highly conservative.
However, under misspecification (in this case, two forms of heteroskedasticity), a naive covariate-assisted
plug-in estimator can become conservative or anti-conservative. In contrast, our “crossfit dual” method is
at worst conservative under misspecification and asymptotically sharp in the well-specified case. See Section
5.4 for precise simulation details.

1.3 Related literature

Partial identification has a long history in econometrics and causal inference, and a great deal of work has
been done to characterize and estimate sharp bounds in various settings (e.g. Manski, 1990, 1997; Balke and
Pearl, 1997; Heckman et al., 1997; Manski and Tamer, 2002; Imbens and Manski, 2004; Firpo and Ridder,
2008; Molinari, 2008a,b; Beresteanu and Molinari, 2008; Lee, 2009; Stoye, 2009; Fan and Park, 2010; Chiburis,
2010; Romano and Shaikh, 2010; Beresteanu et al., 2011; Fan and Park, 2012; Tetenov, 2012; Andrews and
Shi, 2013; Aronow et al., 2014; Fan et al., 2017; Firpo and Ridder, 2019; Kaido et al., 2019; Kline et al., 2021;
Russell, 2021; Jun and Lee, 2023; Ober-Reynolds, 2023; Fava, 2024; Byun et al., 2024); see Manski (2003);
Tamer (2010); Molinari (2020) for a review. When covariates are available, the bounds can be improved by
conditioning on the covariates and aggregating covariate-specific sharp bounds (Chernozhukov et al., 2007;
Chandrasekhar et al., 2012; Chernozhukov et al., 2013c; Semenova and Chernozhukov, 2020; Semenova,
2021, 2023; Lee, 2023; Levis et al., 2023). However, unless the covariates are discrete with a few values,
these methods generally either (a) make assumptions that allow the conditional distributions of the potential
outcomes to be consistently estimated at semiparametric rates or (b) have to discretize covariates in a non-
disciplined way at the cost of efficiency loss. In contrast, our method can handle any type of covariates
without making any assumptions that enable consistent estimates of the conditional distributions.

Our key technical tool is the theory of duality in optimization. This tool is of course not new, although
we use it in a novel way. In particular, many existing works use duality theory as part of an inference
strategy, for example in analysis of certain linear programming problems (e.g., Hsieh et al. (2022); Andrews
et al. (2023); Fang et al. (2023)) and in sensitivity analysis (Dorn and Guo, 2022; Dorn et al., 2022). Most
recently, Semenova (2023) independently developed a dual-based estimator for a class of intersection bounds
(Chernozhukov et al., 2013c). However, they require consistent estimates of the conditional distributions
at semiparametric rates uniformly over the covariate space. Moreover, to ensure a key margin condition in
their proof, they can only consider intersection bounds over finite sets, which in our context requires the
potential outcomes to be discrete.

2 Core Methodology

To aid comprehension, we mostly defer measure-theoretic details to Appendix C.1. We defer computational
details to Section 4. For brevity, we focus on the sharp lower bound θL, but the same method can be used
to estimate upper bounds by simply multiplying θ(P ⋆) by negative one.
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2.1 Assumptions and background on Kantorovich duality

We assume the setting of a randomized experiment, although Section 3.4 relaxes the assumption that the
propensity scores are known.

Assumption 2.1. The propensity scores π(Xi) := P(Wi = 1 | Xi) are known and bounded away from zero
and one, and the potential outcomes (Yi(1), Yi(0)) are conditionally independent of the treatment Wi given
the covariates Xi.

We also allow the analyst to optionally specify additional assumptions about P ⋆, the joint law of (Y (1), Y (0), X),
via conditional moment inequalities, as defined below.

Assumption 2.2. For each x ∈ X , let Wx = {wx,1, . . . , wx,L} denote a finite collection of user-specified
functions mapping Y2 → R for L ∈ N.1 Let P be the following set of distributions:

P =

{
joint distributions P over Y2 ×X s.t. EP [w(Y (0), Y (1)) | X = x] ≤ 0 ∀w ∈ Wx, x ∈ X

}
.

Then we assume P ⋆ ∈ P.

For example, P is the unrestricted set of all joint distributions over Y2×X if Wx is empty for each x ∈ X , in
which case Assumption 2.2 is always satisfied. On the other hand, in the setting of Lee bounds (Example 3)
with compound potential outcomes (Yi(0), Si(0)), (Yi(1), Si(1)), the monotonicity assumption in Lee (2009)
can be enforced by setting Wx to contain the single function w((y0, s0), (y1, s0)) = I(s0 > s1), which ensures
Si(0) ≤ Si(1) a.s. The conditional monotonicity assumption of Semenova (2021) is also a special case of
Assumption 2.2.

Given P, the lower bound θL is the minimum value of θ(P ) for all P ∈ P which are consistent with the true
marginal distributions P ⋆

Y (1),X and P ⋆
Y (0),X :

θL = inf
P∈P

EP [f(Y (0), Y (1), X)] s.t. PY (1),X = P ⋆
Y (1),X and PY (0),X = P ⋆

Y (0),X . (7)

Now, we introduce the dual to this optimization problem. We refer to a collection of functions ν0,x, ν1,x :
Y → R indexed by x ∈ X as dual variables; we use the notation ν = (ν0,x, ν1,x)x∈X to denote the collection
of these functions. 2 Given dual variables ν, the Kantorovich dual function is

g(ν) := EP⋆ [ν0,X(Y (0)) + ν1,X(Y (1))]. (8)

Intuitively, g(ν) is an “average treatment effect” of the transformed potential outcomes Y ′(1) := ν1,X(Y (1))
and Y ′(0) := −ν0,X(Y (0)). Thus, g(ν) is easy to estimate for any fixed ν.

We aim to use g(ν) as a lower bound on θL. To ensure g(ν) ≤ θL holds, we will enforce a collection of known
constraints on ν. In the simplest case where P is unrestricted, we require that ν0,x(y0)+ν1,x(y1) ≤ f(y0, y1, x)
for all y1, y0, x ∈ Y2 × X . In the general case where Wx = {wx,1, . . . , wx,L} is nonempty, we can slightly
loosen these constraints to take advantage of additional assumptions on P. Namely, for x ∈ X , we say that
ν0,x, ν1,x are conditionally valid at x if there are a collection of nonnegative constants {λx,ℓ}Lℓ=1 such that
the following holds:

ν0,x(y0) + ν1,x(y1) ≤ f(y0, y1, x) +

L∑
ℓ=1

λx,ℓ · wx,ℓ(y0, y1) for all y0, y1 ∈ Y (9)

and we let Vx ⊂ {Y → R2} denote the set of all pairs of functions satisfying this condition. Finally, we say
that the full set of dual variables ν = (ν0,x, ν1,x)x∈X are fully valid or “dual-feasible” if ν0,x, ν1,x ∈ Vx are
conditionally valid for every x ∈ X , and we let V ⊂ {Y ×X → R2} denote the set of all valid dual variables.

Computational issues aside (see Section 4), we emphasize that V is a known set which does not depend
on P ⋆. Satisfying this known constraint ensures that weak duality holds, i.e., g(ν) ≤ θL. The theorem
below states this formally; it also states a strong duality result and gives a useful characterization of the
optimal dual variables ν⋆ ∈ argmaxν∈V g(ν).

3 To ease readability, we defer technical regularity conditions
regarding measurability and the proof of Theorem 2.1 to Appendix C.1.

1Our theory allows |Wx| = L to vary with x but for simplicity our notation suppresses this dependence.
2Formally, ν : Y × X → R2 is the function defined by νk,x(y) = νk,x(y) but to avoid confusion we mostly avoid using this

notation.
3As notation, ν⋆ ∈ argmaxν∈V g(ν) denotes any “optimal” dual variables; when the argmax is not unique, ν⋆ represents

an arbitrary choice of maximizer.
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Theorem 2.1 (Kantorovich duality). Under Assumption 2.2, the following holds:

1. Weak duality: For any valid dual variables ν ∈ V, g(ν) ≤ θL.

2. Strong duality: Under mild measurability and regularity conditions on f and Wx stated in Appendix C.1,
there exist ν⋆ = (ν⋆0,x, ν

⋆
1,x)x∈X ∈ V such that g(ν⋆) = θL. Furthermore, for each x ∈ X , ν⋆ satisfies

ν⋆0,x, ν
⋆
1,x ∈ argmax

ν0,x,ν1,x∈Vx

EP⋆
Y (0)|X=x

[ν0,x(Y (0))] + EP⋆
Y (1)|X=x

[ν1,x(Y (1))]. (10)

This theorem has two statistical implications. First, to estimate θL, we need only (i) estimate ν⋆ and (ii)
estimate g(ν⋆). Second, ν⋆ is only a functional of P ⋆

Y (0)|X , P
⋆
Y (1)|X and does not depend on P ⋆

X . We now
use these insights to estimate θL.

2.2 Inference via dual bounds

To motivate our method, recall that the dual function g(ν) is easy to estimate for any fixed choice of ν ∈ V
using an inverse probability weighting (IPW) estimator. Thus, if only we knew the value of ν⋆, we could
easily estimate θL = g(ν⋆). The main idea is to use the first split of the data to estimate ν̂ ≈ ν⋆, and the
second split of the data to estimate g(ν̂). Crucially, even if our first-stage estimate ν̂ is poor, our inference
will be conservative but valid, since weak duality ensures g(ν̂) ≤ θL. And as we will see in Section 3, if ν̂ is
close to ν⋆, then our confidence interval will be tight.

Definition 1 (Dual lower bounds). Given data {(Yi,Wi, Xi)}ni=1, we first randomly split the data into two
disjoint subsets D1 and D2. Then we perform the following steps:

Step 1: On D1, compute any estimator ν̂ ∈ V for ν⋆ ∈ argmaxν∈V g(ν). There are many reasonable ways
to do this, but we suggest the following method:

(a) Step 1a: Compute an estimate P̂Y (0)|X , P̂Y (1)|X of the conditional laws P ⋆
Y (0)|X , P

⋆
Y (1)|X . To do this,

one can use any machine-learning or regression algorithm, such as lasso-based techniques, regularized
quantile regression, or distributional regression — see Section 2.4 for more details.

(b) Step 1b: Let ν̂ maximize the “empirical dual” ĝ which plugs in P̂Y (0)|X , P̂Y (1)|X for P ⋆. Formally, we
use the characterization from Theorem 2.1. For each x ∈ X , define ν̂0,x, ν̂1,x : Y → R as the solution to

ν̂0,x, ν̂1,x ∈ argmax
ν0,x,ν1,x∈Vx

EP̂Y (0)|X=x
[ν0,x(Y (0))] + EP̂Y (1)|X=x

[ν1,x(Y (1))]. (11)

When Eq. (11) does not have a unique solution, we suggest taking the minimum norm solution—see
Appendix D.1 for details. Computing ν̂ may seem challenging, but we will discuss simple methods to
do this in Section 4. For now, we merely note our the final estimator depends only on ν̂0,x, ν̂1,x for
x ∈ {Xi : i ∈ D2} and thus we do not need to solve Eq. (11) for all x ∈ X .

Step 2: Define θ̃L := g(ν̂), and note by weak duality that θ̃L ≤ θL holds deterministically. On D2, we will

define a conservative estimator of θL by using an IPW estimator that is unbiased for θ̃L. Formally:

θ̂L :=
1

|D2|
∑
i∈D2

ν̂1,Xi
(Yi)Wi

π(Xi)
+
ν̂0,Xi

(Yi)(1−Wi)

1− π(Xi)
. (12)

Conditional on D1, θ̂L is a sample mean of i.i.d. terms, and θ̂L is conservatively biased for θL. Thus, we
can compute a lower confidence bound on θL via the univariate central limit theorem. In particular, let σ̂S

denote the sample standard deviation of the summands
{

ν̂1,Xi
(Yi)Wi

π(Xi)
+

ν̂0,Xi
(Yi)(1−Wi)

1−π(Xi)

}
i∈D2

. Then a 1 − α

lower confidence bound (LCB) for θL is

θ̂LCB = θ̂L − Φ−1(1− α)
σ̂S√
|D2|

(13)

where Φ is the standard Gaussian CDF.

We will see in Section 3 that this procedure is uniformly valid (in randomized experiments) and that it
provides an asymptotically exact and sharp lower confidence bound if we can estimate P̂Y (0)|X , P̂Y (1)|X at
semiparametric rates. The main drawbacks of this procedure are that it requires splitting the data and that
Eq. (12) assumes the propensity scores are known. In Section 3, we overcome these drawbacks by employing
cross-fitting and by plugging in estimates π̂ of the propensity scores in observational data. Before presenting
these additional results, however, we first give a few guidelines and examples of how to apply this procedure.
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2.3 Model selection via the multiplier bootstrap

To compute dual bounds, one must estimate the dual variables ν⋆—in practice, we recommend first esti-
mating P̂Y (0)|X , P̂Y (1)|X and then computing ν̂ as per Eq. (11). However, there are many ways to estimate

P̂Y (0)|X , P̂Y (1)|X . E.g., analysts may prefer to use only a subset of the covariates to predict Y , but even after
observing D1, it is not clear which subset of the covariates to choose. And even after making this decision, as
discussed in Section 2.4, there are still countless existing methods to estimate P̂Y (0)|X , P̂Y (1)|X . This raises

the question: in practice, how should analysts choose between K candidate estimates ν̂(1), . . . , ν̂(K) ∈ V of
the dual variables ν⋆? Or more colloquially, how should we perform model selection?

One solution is to perform cross-validation within the first fold (D1) and pick the best-performing model.
This approach is clearly valid since the final estimated dual variables ν̂ still depend only on D1, satisfying
Definition 1. In Section 3.4, we recommend this approach for observational studies, where the validity of
the final bounds may depend on the accuracy of the outcome model. However, in randomized experiments,
we can improve upon this method.

In particular, let θ̃
(k)
L = g(ν̂(k)) denote the dual lower bound on θL implied by the estimate ν̂(k), for

k = 1, . . . ,K. We will estimate maxk∈[K] θ̃
(k)
L , the tightest possible lower bound on θL based on {ν̂(k)}Kk=1,

using the Gaussian multiplier bootstrap (Chernozhukov et al., 2013a), as defined below.

Definition 2 (Dual bounds with the multiplier-bootstrap). Given dual variables ν̂(1), . . . , ν̂(K) ∈ V, for
i ∈ D2, define the IPW summands as:

S
(k)
i :=

ν̂
(k)
1,Xi

(Yi)Wi

π(Xi)
+
ν̂
(k)
0,Xi

(Yi)(1−Wi)

1− π(Xi)
for k ∈ [K]. (14)

Define θ̂
(k)
L = 1

|D2|
∑

i∈D2
S
(k)
i and σ̂2

k = 1
|D2|

∑
i∈D2

(S
(k)
i − θ̂

(k)
L )2 to be the dual estimators and associated

sample variances for each k ∈ [K]. The main idea is to use T := maxk∈[K]

√
nθ̂

(k)
L

σ̂k
as a test statistic and

compute its quantile using the Gaussian multiplier bootstrap. Precisely:

1. Sample Wi
i.i.d.∼ N (0, 1) for each i ∈ D2.

2. Let T (b) = maxk∈[K] σ̂
−1
k

[
1√
|D2|

∑
i∈D2

Wi(S
(k)
i − θ̂

(k)
L )

]
be the bootstrapped test statistic.

3. Let q̂1−α := Q1−α(T
(b) | D) be the 1−α quantile of T (b) conditional on the data. This can be computed

by simulating many bootstrap samples.

Then, return the following multiplier bootstrap (MB) lower confidence bound:

θ̂MB
LCB := max

k∈[K]

{
θ̂
(k)
L − q̂1−α

σ̂k√
|D2|

}
. (15)

The multiplier bootstrap is well-suited to this problem for two reasons. First, our bounds are valid no matter

which model we select, i.e., θ̃
(k)
L ≤ θL always holds. This may not be true in other problems—for example,

when estimating regression coefficients, selecting different subsets of covariates may lead to anticonservative
bias, but in our setting, any bias from misspecification is conservative. Second, after estimating {ν̂(k)}Kk=1,

the dual bounds {θ̃(k)L }Kk=1 can be expressed as marginal moments and estimating them does not require
(e.g.) any complicated M-estimation. As a result, in Section 3.1, we conclude that the multiplier bootstrap
quantile q̂1−α is consistent even if K grows exponentially with a power of n (Chernozhukov et al., 2018b).

Remark 2.1. In some of our empirical applications (Section 5), the estimands can only be expressed as the
ratio of two marginal moments. We can extend the multiplier bootstrap methodology to that setting under
the restriction that K cannot grow with n. For brevity, we present this extension in Appendix D.2.

2.4 Guidelines on estimating the conditional distributions P̂Y (0)|X , P̂Y (1)|X

The first step in computing a dual bound θ̂LCB is to estimate P̂Y (0)|X , P̂Y (1)|X , or equivalently, to estimate
the conditional law of Yi | Xi,Wi. An immense literature exists on this modeling problem (e.g. Koenker
and Bassett Jr, 1978; Chernozhukov et al., 2010, 2013b; Friedman, 2020), and any choice will yield valid
inferences. However, we make a few recommendations here.
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To start, note that it is usually insufficient to model the conditional mean EP⋆ [Yi | Xi,Wi], since the sharp
lower bound θL may depend on the whole conditional law (e.g. Examples 1- 3). Instead, we can apply
distributional regression is devoted to the task of estimating the law Yi | Xi,Wi (see Kneib et al. (2023) for
a review). One way to do this is to fit many quantile regressions. Another simple method is to assume a
Gaussian linear model, i.e.,

Yi = ϕ(Xi,Wi)
Tβ + ϵi (16)

where ϕ(Xi,Wi) ∈ Rd is some feature transformation of Xi,Wi and ϵi
i.i.d.∼ N (0, σ2). To fit this model,

one can (i) adaptively fit the feature representation ϕ using the first fold D1, (ii) fit a regularized estimate

β̂ of β using (e.g.) a cross-validated lasso on D1, and (iii) estimate σ2 using the usual OLS estimator
of the residual variance. Of course, the Gaussian assumption may not always be realistic. Instead, our
default implementation in dualbounds fits the same coefficients β̂ and uses the empirical residuals ϵ̂i := Yi−
ϕ(Xi,Wi)

T β̂ to nonparametrically estimate the law of ϵi. Similarly, in the presence of heteroskedasticity, we
can estimate Var(Yi | Xi,Wi) using a nonparametric estimator like a random forest; clearly, the possibilities

are endless. The main point is that misspecification of these models will not affect the validity of θ̂LCB,
although better models will yield tighter estimates and confidence intervals.

2.5 Examples

In this section, we give a few examples of estimands that fit into the framework from Section 2.2.

Example 1 (Fréchet-Hoeffding bounds). The joint CDF of the potential outcomes evaluated at a fixed
point (y1, y0) ∈ Y2 is clearly an expectation over P , i.e., θ(P ) := EP [I(Yi(1) < y1, Yi(0) < y0)].

Example 2 (Variance of the individual treatment effect). If θ(P ) = VarP (Yi(1)− Yi(0)), we can write

θ(P ) = EP [(Yi(1)− Yi(0))
2]− (EP [Yi(1)− Yi(0)])

2
.

Note that the left-hand term is an expectation over P , and the right-hand term is identifiable: it is just
the ATE squared. Thus, we can apply our methodology to the left-hand term, and we can estimate the
right-hand term by squaring an (e.g.) IPW estimator of the ATE. The only adjustment from Definition 1 is
that we use the bivariate delta method to compute standard errors (see Appendix D.2 for a full derivation).

Example 4 (Makarov bounds). Define θ(P ) := EP [I(Yi(1) − Yi(0) < t)] to be the CDF of the ITE at a
fixed point t ∈ R. Again, θ(P ) is clearly an expectation over P .

We now return to the case of Lee bounds (Example 3) from Section 1.1.

Example 3 (Lee bounds). Suppose θ(P ) := E[Yi(1)−Yi(0) | Si(1) = Si(0) = 1] is the ATE for the “always
takers,” i.e., the subset of individuals who would be selected under treatment or control. In this problem,
we have bivariate potential outcomes of the form (Yi(0), Si(0)) and (Yi(1), Si(1)), which differs slightly from
the notation in Section 2.2. However, the method applies straightforwardly, with the exception that on D1,
we must model the joint conditional law (Yi, Si) | Xi,Wi instead of the marginal conditional law Yi | Xi,Wi.
Of course, this is not hard: to do this, we can first fit (e.g.) a logistic regression to model Si | Xi,Wi and
then fit another distributional regression to model Yi | Xi, Si,Wi, as in Section 2.4.

Although θ(P ) is not an expectation over P , it can be reduced to this case. In particular, note

θ(P ) =
EP [(Yi(1)− Yi(0))I(Si(1) = Si(0) = 1)]

P (Si(1) = Si(0) = 1)
.

To analyze this, there are two cases. First, analysts often make assumptions (e.g., monotonicity) which
ensure that the denominator is identifiable (Lee, 2009; Semenova, 2021). In this case, we can first apply
the standard dual bound methodology to the numerator, which is linear in P . Then, on the second fold
D2, we also estimate the (identifiable) denominator. Finally, we combine estimates for the numerator and
denominator using the bivariate delta method, as in Example 2 (see Appendix D.2 for an explicit calculation).

Second, even when the denominator is unidentifiable, θ(P ) is still quasilinear in P . This means that θ(P ) ≤ c
if and only if

θ(c)(P ) := EP [(Yi(1)− Yi(0))I(Si(1) = Si(0) = 1)]− cP (Si(1) = Si(0) = 1) ≤ 0.
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Since the estimand θ(c)(P ) is an expectation over P , for any c ∈ R, we can compute a lower confidence

bound θ̂
(c)
LCB for θ

(c)
L , where θ

(c)
L is the lower bound on θ(c)(P ). Then, a valid lower confidence bound on θL

is defined as
θ̂L = min{c : θ̂(c)LCB ≤ 0}. (17)

In practice, we can identify the minimum c in Eq. (17) using a grid search or binary search. This procedure
is computationally tractable, although it is more expensive than the case where θ(P ) is an expectation.

The ideas in Example 3 apply to any quasilinear function of P . Two examples are given below.

Example 5 (Conditional treatment effects). Suppose θ(P ) = EP [Yi(1) − Yi(0) | B], where B is some
event which has strictly positive probability under any P ∈ P. Then θ(P ) is quasilinear in P , and we can
compute valid dual bounds as in Example 3. One important special case is the subgroup treatment effect
E[Yi(1) − Yi(0) | Yi(0) ≤ c] defined by Kaji and Cao (2023), where c ∈ R is a constant. When Y (1), Y (0)
measure income, Kaji and Cao (2023) interpreted this estimand as a treatment effect for disadvantaged
individuals whose income would be below a certain level without the treatment.

Example 6 (Quantiles of the ITE). Suppose θ(P ) = Qα(Yi(1)−Yi(0)), where Qα(·) denotes the α-quantile
function. Then θ(P ) is quasilinear in P (Boyd and Vandenberghe, 2004).

3 Theory

3.1 Uniform validity

For expositional convenience, we assume |D2| ≥ cn for some constant c > 0 throughout the section. Through-
out, E[· | D1] denotes an expectation conditional on the first fold of data. All proofs will be presented in
Appendix A.

Our first main theoretical result is that in randomized experiments, θ̂LCB is a valid 1− α lower confidence
bound on θL under arbitrary model misspecification. Note that the following result allows for the analyst to
use any method to estimate the optimal dual variables ν̂ as long as ν̂ ∈ V are dual-feasible. It also places no
restrictions on the relationship between the potential outcomes and Xi, although we do require the following
moment condition on ν̂.

Assumption 3.1. For k ∈ {0, 1}, we assume the fourth moment EP [ν̂k,X(Y (k))4 | D1] ≤ B <∞ is bounded

conditional on D1 and the conditional variance of Si =
ν̂1,Xi

(Yi)Wi

π(Xi)
+

ν̂0,Xi
(Yi)(1−Wi)

1−π(Xi)
is bounded away from

zero, i.e., VarP (Si | D1) ≥ 1
B .

Assumption 3.1 is weak, since in practice one could always “clip” ν̂ below some large value to ensure its
moments exist without violating dual feasibility. It can also be substantially relaxed at the cost of a more
technical statement (see Appendix A.1, Remark A.1). All we need is for the moments of Si to be sufficiently
regular such that we can apply a univariate central limit theorem (CLT) to {Si}i∈D2

conditional on D1.

Theorem 3.1. Assume Assumption 2.1. For any B ≥ 0, let PB ⊂ P denote the set of all laws P ∈ P such
that ν̂ satisfies Assumption 3.1 under P . Then

lim inf
n→∞

inf
P∈PB

P(θ̂LCB ≤ θL) ≥ 1− α.

Proof sketch. Let θ̃L = g(ν̂) denote the effective estimand, as in Definition 1. Then

θL − θ̂LCB = θL − θ̃L︸ ︷︷ ︸
Term A

+ θ̃L − θ̂LCB︸ ︷︷ ︸
Term B

.

Term A is positive deterministically by weak duality. Term B is positive with probability equal to 1 − α
asymptotically by the standard CLT.

Of course, by multiplying θ(P ) by negative one, these theorems prove that we can get a 1 − α upper

confidence bound θ̂UCB on the sharp upper bound θU . These bounds can be combined to cover either the
partially identified set or the parameter θ(P ⋆) (Imbens and Manski, 2004; Stoye, 2009) (see Section 6.4).
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Theorem 3.1 has two key ingredients—(i) weak duality plus (ii) the fact that θ̃L has a representation as a
marginal moment, which allows us to apply the CLT. As discussed in Section 2.3, these properties also allow
us to use the multiplier bootstrap to select a “good” choice of ν̂. In particular, the multiplier bootstrap is

asymptotically valid as long as the central moments of the IPW summands S
(k)
i do not grow too quickly

with n and K, as stated formally below.

Assumption 3.2 (Chernozhukov et al. (2018b)). For K estimates ν̂(1), . . . , ν̂(K) of ν⋆, for i ∈ D2, define
the IPW summands

S
(k)
i :=

ν̂
(k)
1,Xi

(Yi)Wi

π(Xi)
+
ν̂
(k)
0,Xi

(Yi)(1−Wi)

1− π(Xi)
and Zik = S

(k)
i − E[S(k)

i | D1].

We assume there exists ϵ ∈ (0, 1/4), c > 0 such that

Bn := max
k∈[K]

(
(E[|Zik|4 | D1)

1/2 ∨ (E|Zik|3 | D1)
)
+ E

[
max
k∈[K]

|Zik|4 | D1

]1/4
≤ c

n1/4−ϵ

log(Kn)7/4
.

This assumption is weak and is standard in the literature. When ν̂
(k)
1 (Yi, Xi), ν̂

(k)
0 (Yi, Xi) are uniformly

bounded, it is satisfied if logK = O(n1/7−ϵ) for some ϵ > 0, meaning that we can select from many different
models without sacrificing validity.

Corollary 3.1. Suppose the analyst computes K estimates ν̂(1), . . . , ν̂(K) of ν⋆ on D1 and uses the multiplier
bootstrap to compute a lower bound θ̂MB

LCB as defined in Def. 2. Fix c > 0, ϵ ∈ (0, 1/4) and let Pc,ϵ denote
the set of laws P ∈ P such that Assumption 3.2 holds. Then under Assumption 2.1,

lim inf
n→∞

inf
P∈Pc,ϵ

P(θ̂MB
LCB ≤ θL) ≥ 1− α.

3.2 Tightness

Each of the previous results relies on the weak duality result that θ̃L ≤ θL holds deterministically. Although
this ensures that θ̂LCB and θ̂MB

LCB are valid lower confidence bounds, one might worry that it will make
inference too conservative. We investigate this question in this subsection.

3.2.1 General analysis

We now give high-level conditions under which θ̂LCB converges to θL at oracle rates. The main intuition
follows from the decomposition

θL − θ̂LCB = θL − θ̃L︸ ︷︷ ︸
first-stage bias

+ θ̃L − θ̂LCB︸ ︷︷ ︸
variance from the CLT

.

The univariate CLT suggests that the second term is asymptotically exact. Thus, the main question is how
large the first-stage bias is.

The following theorem tells us that the first stage bias is bounded by the product of the errors in estimating
(P ⋆

Y (0)|X , P
⋆
Y (1)|X) and ν⋆. Thus, if the product of the errors decays at an o(n−1/2) rate, the first stage bias

will be negligible compared to the variance from the univariate CLT. As notation, let p⋆0(y0 | x), p⋆1(y1 | x)
denote the conditional densities of Y (0) | X and Y (1) | X with respect to some base measure ψ on Y 4;
similarly, let p̂1(y1 | x), p̂0(y0 | x) denote the estimated densities under P̂Y (0)|X , P̂Y (1)|X .

For each x ∈ X , we define errorP (x) to be the ℓ2 distance between (p⋆0(· | x), p⋆1(· | x)) and (p̂0(· | x), p̂1(· | x)):

errorP (x) :=

 ∑
k∈{0,1}

∫
y∈Y

(p⋆k(y | x)− p̂k(y | x))2ψ(dy)

1/2

. (18)

Similarly, we define errorν(x) to be the corresponding ℓ2 distance between ν̂ and ν⋆:

errorν(x) :=

 ∑
k∈{0,1}

∫
y∈Y

(ν̂k,x(y)− ν⋆k,x(y))
2ψ(dy)

1/2

. (19)

4We choose ψ to be the Lebesgue measure for continuous outcomes and the counting measure for discrete outcomes.
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Theorem 3.2. Suppose strong duality holds, i.e., g(ν⋆) = θL. Then the first stage bias is bounded by the
product of the errors in estimating the laws of Y (k) | X, k ∈ {0, 1} and the error in estimating ν⋆. Formally,

0 ≤ θL − θ̃L ≤ E [errorP (X) · errorν(X) | D1] . (20)

Overall, Theorem 3.2 gives intuition that if strong duality holds, the first stage bias should decay at a faster
rate than EX∼P⋆

X
[errorP (X) | D1], which represents the error in estimating the outcome model. Intuitively,

this is because if P̂Y (0)|X , P̂Y (1)|X is close to P ⋆
Y (0)|X , P

⋆
Y (1)|X , then ν̂ should be close to ν⋆, since ν̂ maximizes

the empirical dual based on P̂Y (0)|X , P̂Y (1)|X , and ν⋆ solves the population dual based on P ⋆
Y (0)|X , P

⋆
Y (1)|X .

We emphasize that as long as strong duality holds, Theorem 3.2 makes no assumptions whatsoever about
the form of θ(P ), the dimension of the covariates X, or the model class P—furthermore, it is a finite-sample
result with no “hidden” constants.

3.2.2 Refined theory for discrete potential outcomes

Previously, we used Theorem 3.2 to argue that the first-stage bias of dual bounds decays faster than the
estimation error of the outcome model errorP (X). Now, we formalize this intuition in the case where Y
has finite support and ν̂ are chosen as the dual variables corresponding to (P̂Y (0)|X , P̂Y (1)|X). In particular,
we use a technical tool called Hoffman constants (Hoffman, 1952), which measure the stability of linear
programs. We provide a detailed discussion of Hoffman constants in Appendix B. Lemma 3.3 now shows
that for each x ∈ X , the error in estimating the dual variables decays linearly in errorP (x).

Lemma 3.3. Suppose Y is finite and consider estimated dual variables ν̂ defined as the minimum-norm
solution of Eq. (11). There exist (i) a collection of finite deterministic Lipschitz constants {H(x) : x ∈ X}
depending only on P ⋆, P and f and (ii) ν⋆ ∈ argmaxν∈V g(ν) such that the following holds deterministically
such that for all x ∈ X :

errorν(x)
2 :=

∑
k∈{0,1}

∑
y∈Y

(ν̂k,x(y)− ν⋆k,x(y))
2 ≤ H(x) · errorP (x)2.

Note that Lemma 3.3 allows for settings where the optimal dual variables ν⋆ are not unique. Nonetheless,
there always exists some choice of ν⋆ ∈ argmaxν g(ν) such that Lemma 3.3 holds.

Combining Theorem 3.2 and Lemma 3.3 establishes that if the error in estimating the outcome model,
errorP (x), decays at o(n

−1/4) rates, then the effective estimand θ̃L = g(ν̂) is statistically indistinguishable
from the sharp lower bound θL. To state this result, we denote Zn = oLk

(an) for a sequence of random
variables Zn and fixed numbers an if (E[Zk

n])
1/k = o(an).

Theorem 3.4. Suppose Y has finite support Y and E[|H(X)|2] <∞. Furthermore, assume that errorP (X) =
oL4(n

−1/4) as n→ ∞, where X denotes a fresh sample of covariates and the expectation is taken over both
X and D1. Then, √

n(θ̃L − θL) = op(1). (21)

Theorem 3.4 shows that as long as one can estimate the conditional laws of the potential outcomes at
semiparametric rates, then θ̂L is asymptotically unbiased. Furthermore, the proof of Theorem 3.4 shows
that θ̂L is asymptotically equivalent to the “oracle” estimator which has perfect knowledge of the outcome
model and uses the optimal dual variables ν⋆ in place of ν̂. Please see Appendix A.2 for further details.

Remark 3.1 (Discussion of Assumptions). Theorem 3.4 makes two main assumptions besides the hypothesis
that errorP (X) = oL4

(n−1/4).

1. A restrictive assumption is that Y has a finite support. One could try to approximate any continuous
distribution by allowing |Y| to grow with n, but we leave this to future work. Nonetheless, the intuition
of Theorem 3.2 suggests that a result similar to Theorem 3.4 likely holds in the continuous case.

2. Theorem 3.4 also requires that H(X) has at least two moments. Since H(X) is provably a finite-valued
random variable, we do not think this assumption is too restrictive, especially since the law of H(X)
only depends on population quantities; additionally, we show in Appendix A.2 that the moments of H(X)
generally do not grow with the dimension of X. Furthermore, we can show that if a certain “general
position” condition holds on the conditional probability mass functions of Y (k) | X, then this moment
condition is satisfied. However, this analysis is rather technical, so we defer it to Appendix B.2.
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Remark 3.2 (Additional comparison to Semenova (2023)). Theorem 3.4 has a similar flavor to The-
orem 3.1 proved in Semenova (2023). However, we use a completely different proof technique, which
yields a complementary result that is stronger in some ways. For instance, Semenova (2023) requires that
supx∈X errorP (x) = op(n

−1/4). This may not be realistic when X is a large continuous set. We only require
the weaker condition that errorP (X) = oL4

(n−1/4). Furthermore, Semenova (2023) does not apply to ν̂,
but rather applies to a different estimator for which the computation time is potentially exponential in |Y|.5
Thus, a major benefit of Theorem 3.4 is that one can compute ν̂ efficiently.

3.3 Cross fitting

This subsection shows that employing cross-fitting can recover the factor of two lost by sample splitting,
without sacrificing validity under most forms of outcome model misspecification or tightness when the
outcome model can be estimated at o(n−1/4) rates. As notation, let θ̂swap

L denote the same estimator as θ̂L
but with the roles of D1 and D2 swapped. The cross-fit estimator is then

θ̂crossfitL :=
θ̂L + θ̂swap

L

2
.

A cross-fit lower confidence bound can be computed as follows. Let ν̂ and ν̂swap denote the estimated dual
variables from D1 and D2, respectively. For ease of exposition, we assume n is even and |D1| = |D2| = n/2.
6 Let Si =

ν̂swap
1,Xi

(Yi)Wi

π(Xi)
+

ν̂swap
0,Xi

(Yi)(1−Wi)

1−π(Xi)
if i ∈ D1. If i ∈ D2, let Si be defined analogously but with ν̂swap

replaced with ν̂. Then if σ̂crossfit
s is the empirical standard deviation of {Si}ni=1, the cross-fit lower confidence

bound is

θ̂crossfitLCB = θ̂crossfitL − Φ−1(1− α)
σ̂crossfit
s√
n

. (22)

We first establish validity when ν̂ is potentially inconsistent. Due to the dependence introduced by cross-
fitting, we need more regularity conditions to show an analogue of Theorem 3.1. Interestingly, we show that
θ̂crossfitLCB is valid under two separate and non-nested conditions.

Theorem 3.5. Assume that ν̂swap is computed using the same procedure as ν̂ (but applied to D2 instead of
D1), so that Assumption 3.1 holds for ν̂swap. Under Assumption 2.1,

lim inf
n→∞

P(θ̂crossfitLCB ≤ θL) ≥ 1− α,

if one of the following holds:

1. Condition 1: There exist deterministic dual variables ν† ∈ V, which are not necessarily optimal,

satisfying the moment conditions in Assumption 3.1 such that E
[(
ν̂k,X(Y (k))− ν†k,X(Y (k))

)2]
→ 0

holds at any rate for k ∈ {0, 1}. Note that we allow {ν†k}k∈{0,1} to change with n.

2. Condition 2: The outcome model is sufficiently misspecified such that the first-stage bias is strictly

larger than n−1/2 in order, i.e.,
√
n(θ̃L − θL)

p→ ∞.

The first condition of Theorem 3.5 shows that if the estimated dual functions ν̂0, ν̂1 are asymptotically
deterministic, though the limits may differ from (ν⋆0 , ν

⋆
1 ), θ̂

crossfit
LCB is a valid lower confidence bound. Similar

conditions on estimated nuisance parameters have been studied in other contexts (Chernozhukov et al.,
2020; Arkhangelsky et al., 2021). A strength of this result is that it allows ν̂0, ν̂1 to converge at arbitrarily
slow rates. Indeed, the proof technique for this result is based on a novel argument leveraging weak duality;
it is not necessarily true that under Condition 1, θ̂crossfitLCB is equivalent to an “oracle” confidence bound
of any form. The second condition suggests that even if this is not true and the fluctuations of ν̂0, ν̂1
do not vanish asymptotically, cross-fitting can be valid if the first-stage bias is sufficiently large, making
θ̂crossfitLCB conservative but valid. Except in pathological examples, we expect the second condition to hold
whenever the first condition does not. Intuitively, if ν̂ has non-vanishing fluctuations, this suggests that ν̂
is not consistently estimating ν⋆, in which case we should expect a substantial conservative bias, satisfying
Condition 2. Thus, in practice, we recommend using cross-fitting.

5This sentence applies to the general method for analyzing linear programs introduced by the first arXiv version of Semenova
(2023). However, this method does not appear in the second version of the paper.

6The results in this section can be easily extended to M -fold cross-fitting for M > 2.
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Remark 3.3. Under the conditions of Theorem 3.5, one can use cross-fitting in combination with a
multiplier-bootstrap-like procedure to perform model selection as long as one chooses among a finite number
of (fit) outcome models. We present this result in Appendix D.2 for brevity.

Now we turn to tightness of cross-fitting when the outcome model can be estimated at o(n−1/4) rates.

Analogous to θ̃L, we define the effective estimand of θ̂crossfitLCB as

θ̃crossfitL = (g(ν̂) + g(ν̂swap))/2. (23)

We now prove that under the same conditions as in Theorem 3.4, namely discrete potential outcomes and
semiparametric convergence rate of errorP (X), θ̃crossfitL is statistically indistinguishable from the sharp lower
bound θL.

Corollary 3.2. Assume the conditions of Theorem 3.4 and that errorP (X) = oL4(n
−1/4) for both folds.

Then √
n(θ̃crossfitL − θL) = op(1). (24)

3.4 Dual bounds for observational studies

So far, our theory has assumed that the propensity scores are known. However, when π(Xi) is unknown,
we can replace the IPW estimator with an augmented IPW (AIPW) estimator to increase robustness. In
particular, define the conditional mean of the estimated dual variables ν̂ as

c0(x) := EP⋆
Y (0)|X=x

[ν̂0,x(Y (0))] and c1(x) := EP⋆
Y (1)|X=x

[ν̂1,x(Y (1))]

so ck(Xi) is the conditional mean of ν̂k,Xi
(Y (k)) given Xi and D1. Also, let ĉ0(x), ĉ1(x) denote esti-

mators of c0(x), c1(x) fit on D1; for example, one can automatically compute ĉ0(x), ĉ1(x) by plugging in
P̂Y (0)|X , P̂Y (1)|X . Lastly, for any i ∈ D2, define the AIPW summand

Si :=Wi
ν̂1,Xi

(Yi)− ĉ1(Xi)

π̂(Xi)
+ (1−Wi)

ν̂0,Xi
(Yi)− ĉ0(Xi)

1− π̂(Xi)
+ ĉ1(Xi) + ĉ0(Xi), (25)

where π̂ are propensity scores estimated on D1. Then, if σ̂
aug
s is the sample standard deviation of {Si}i∈D2

on D2, the “augmented” version of θ̂LCB is

θ̂augLCB :=
1

|D2|
∑
i∈D2

Si − Φ−1(1− α)
σ̂aug
s√
|D2|

. (26)

We can now prove a validity result for θ̂augLCB. There are two cases. In the first case, we assume that the
product of estimation errors for the outcome model and propensity scores decays faster than o(1/n), in

which case θ̂augLCB will be a valid lower confidence bound for θ̃L based on standard results for the AIPW

estimator (Robins et al., 1994). However, even outside this standard regime, θ̂augLCB may still be valid. In the

second case, we assume the outcome model is sufficiently misspecified such that the first stage bias θL − θ̃L
dominates either the error in estimating π or the error in estimating c. In this situation, the fluctuations of
θ̂augLCB around θ̃L are of smaller order than the first-stage bias.

Theorem 3.6. Suppose Assumption 2.1 holds except that the propensity scores are not known. For k ∈
{0, 1}, assume the fourth moments E[|ν̂k,X(Y (k))|4 | D1] ≤ B < ∞ and E[|ĉk(X)|4 | D1] ≤ B < ∞ are
uniformly bounded. Finally, assume that the estimated propensity scores π̂(Xi) are uniformly bounded away
from zero and one.

Let errorn(π̂) := E[(π̂(X) − π(X))2 | D1]
1/2 denote the ℓ2 error in estimating the propensity scores and let

errorn(ĉ) = maxk∈{0,1} E[(ĉk(X)− ck(X))2 | D1]
1/2 denote the ℓ2 error in estimating the conditional mean

of ν̂, where X is an independent draw from the law of Xi. Consider the two conditions below:

• Condition 1: errorn(π̂) = oL2
(1), errorn(ĉ) = oL2

(1), and the “risk-decay” condition holds:

E[errorn(π̂)2]E[errorn(ĉ)2] = o(1/n). (27)

Furthermore, if S̃i =Wi
ν̂1,Xi

(Yi)−c1(Xi)

π(Xi)
+ (1−Wi)

ν̂0,Xi
(Yi)−c0(Xi)

1−π(Xi)
+ c1(Xi) + c0(Xi), we assume Var(S̃i |

D1) ≥ 1
B is bounded away from zero.
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• Condition 2: the outcome model is sufficiently misspecified such that the first-stage bias θ̃L−θL dominates
either errorn(π̂) or errorn(ĉ). More precisely, assume

min(errorn(ĉ), errorn(π̂))

θ̃L − θL

p→ 0.

If either Condition 1 or Condition 2 holds, then θ̂augLCB is asymptotically valid:

lim inf
n→∞

P(θ̂augLCB ≤ θL) ≥ 1− α.

See Appendix A.1 for a proof.

Remark 3.4. In observational studies, the multiplier bootstrap method for model selection from Section
2.3 is not appropriate because the validity of the final bounds may depend on the accuracy of the outcome
model. For example, the multiplier bootstrap might select a highly inaccurate outcome model that yields
(misleadingly) tight bounds. Thus, in observational studies, we recommend that the analyst perform cross-
validation on D1, as discussed in Section 2.3, to select the best-performing outcome model.

4 Computation

4.1 General strategy and ensuring validity

In this section, we discuss how to compute the dual bounds in Definition 1. Computation is straightforward
except for two questions:

• Dual bounds will yield valid results for any estimated dual variables as long as ν̂ ∈ V is dual-feasible.
However, it is not obvious how to ensure that dual-feasibility holds.

• Our recommended approach to estimating the dual variables requires solving the optimization problem

ν̂0,x, ν̂1,x = argmax
(ν0,x,ν1,x)∈Vx

EP̂Y (0)|X
[ν0,x(Y (0)) | X = x] + EP̂Y (1)|X

[ν1,x(Y (1)) | X = x]. (28)

If Y is continuous, this is an infinite-dimensional program, so it is unclear how to solve it.

We now outline a general strategy to answer these questions based on two key observations. Note that for
simplicity, in this section, we assume the response Y is real-valued.

Observation 1: the problem separates in X . Theorem 2.1 makes clear that to compute ν̂ ≈
argmaxν∈V g(ν), it suffices to repeatedly solve the problem conditional on x. The solutions to these prob-
lems are independent in the sense that the value of ν̂0,x, ν̂1,x does not affect the value of ν̂0,x′ , ν̂1,x′ for some
x′ ̸= x. Similarly, by definition we have that ν̂ ∈ V is dual-feasible if and only if ν̂0,x, ν̂1,x ∈ Vx for all x ∈ X .

Observation 2: Only compute what we need. To apply dual bounds, we need to only compute
{ν̂0,x, ν̂1,x}x∈{Xi:i∈D2} to compute the IPW estimator θ̂L and lower confidence bound θ̂LCB—i.e., we do not
need to solve Eq. (28) for all x ∈ X .

These observations have two implications.

Implication 1: ensuring validity. Given any initial estimate ν̂init which may or may not be dual-feasible,
we can convert ν̂init into dual-feasible estimators as follows:

• For x ∈ X , we define cx to be half of the maximum violation of the conditional feasibility constraint.
Namely, for any estimated λ̂x,1, . . . , λ̂x,L ≥ 0, we define:

2cx := max
y1,y0∈Y

ν̂init0,x (y0) + ν̂init1,x (y1)−
L∑

ℓ=1

λ̂x,ℓwx,ℓ(y1, y0)− f(y1, y0, x).

• Then we define the final estimators

ν̂0,x(y0) := ν̂init0,x (y0)− cx and ν̂1,x(y1) := ν̂init1,x (y1)− cx (29)

which are guaranteed to be dual-feasible by definition of V.
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For each x ∈ X , cx can be computed using a two-dimensional grid search—crucially, because this grid search
is low-dimensional, we can accurately compute cx. Furthermore, Observation 2 implies that we only need
to compute cx for {Xi : i ∈ D2}. As a result, the steps above represent a generic algorithm to convert any
initial estimates ν̂init into valid dual estimates ν̂ ∈ V via |D2| grid searches.

Implication 2: a generic strategy for computing optimal dual variables. Similarly, to compute
ν̂ ∈ argmaxν∈V g(ν), we have the following general strategy:

• Step 1: Estimate P̂Y (0)|X , P̂Y (1)|X on D1.
• Step 2: For i ∈ D2, solve the “conditional problem” Eq. (28) for x = Xi and use the outputs

ν̂0,Xi , ν̂1,Xi to compute the IPW summands in the definition of θ̂L and θ̂LCB.

In other words, we need to only solve the conditional problem |D2| times to compute the dual bounds. We
discuss how to do this in the next section.

Remark 4.1. We emphasize that no matter how poorly we solve Eq. (28), as long as we adjust our final
dual variables using Eq. (29), we will get valid lower confidence bounds on θL.

4.2 Finding conditionally optimal dual variables

We suggest a discretization-based method to approximately solve this conditional problem equation (28)
and obtain initial estimates ν̂init0,x , ν̂

init
1,x .

7 The idea is to approximate P̂Y (k)|X=x as a discrete distribution
with support {yk,1,x, . . . , yk,nvals,x} and probability mass function (PMF) pk,1,x, . . . , pk,nvals,x ∈ (0, 1) so that

P̂Y (0)|X=x ≈
nvals∑
j=1

p0,j,xδy0,j,x
and P̂Y (1)|X=x ≈

nvals∑
i=1

p1,i,xδy1,i,x
,

where δz denotes the point mass on z ∈ R. In particular, we suggest taking yk,j,x as the j
nvals+1 th quantile of

P̂Y (k)|X=x and setting pk,j,x = 1
nvals

for k ∈ {0, 1}, j ∈ {1, . . . , nvals}. The conditional optimization problem

then becomes a discrete linear program with 2nvals + L variables and n2vals + L constraints:

max

nvals∑
j=1

p0,j,xν0,x(y0,j,x) +

nvals∑
i=1

p1,i,xν1,x(y1,i,x)

s.t. ν0,x(y0,j,x) + ν1,x(y1,i,x)−
L∑

ℓ=1

λx,ℓwx,ℓ(y0,j,x, y1,i,x) ≤ f(y0,j,x, y1,i,x, x) for all i, j ∈ [nvals]

λx,1, . . . , λx,L ≥ 0,

where the optimization variables are {ν0,x(y0,j,x)}nvals
j=1 , {ν1,x(y1,i,x)}

nvals
i=1 and λx,1, . . . , λx,L. This problem

can be solved efficiently using off-the-shelf LP solvers if, e.g., nvals ≤ 100. Furthermore, when Wx = ∅, this is
the dual to a standard optimal transport problem, so it can be solved even more efficiently using specialized
solvers such as the network simplex algorithm (Flamary et al., 2021). After solving this problem, we obtain
initial values {ν̂init0,x (y0,j,x)}

nvals
j=1 , {ν̂init1,x (y1,i,x)}

nvals
i=1 and we define the full functions ν̂init0,x , ν̂

init
1,x : R → R via

linear interpolation. Then, as described in Section 4.1, we can use a two-dimensional grid search to obtain
valid dual variables ν̂0,x, ν̂1,x. As discussed in Remark 4.1, this gridsearch ensures that the final confidence
bounds are valid even if the discretization yields an inaccurate initial solution ν̂init0,x , ν̂

init
1,x .

5 Empirical applications

We now illustrate our method in applications to two randomized experiments and one observational study.
Code and data are publicly available at https://github.com/amspector100/dual_bounds_paper.

7Our software implements this method by default, although Appendix E.1 discusses an alternative approach based on series
estimators.
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5.1 Persuasion effects of political news

We first analyze data from Gerber et al. (2009), who in 2005 randomly assigned a set of individuals in Prince
William County, Virginia, to receive a free subscription offer for the Washington Post.8 Using administrative
data, they also determined whether each subject voted in the November 2006 elections. Thus, for n = 2400
individuals, Wi ∈ {0, 1} denotes whether individual i received a free subscription to the Washington Post,
and Yi ∈ {0, 1} denotes whether individual i voted in the 2006 elections.

In this context, Jun and Lee (2023) (henceforth JL) studied the “persuasion effect” of the treatment, defined
as the probability that the treatment causes an individual who would not otherwise have voted:

θ(P ⋆) := P ⋆(Y (1) = 1 | Y (0) = 0) =
P ⋆(Y (1) = 1, Y (0) = 0)

P ⋆(Y (0) = 0)
. (30)

This estimand is also known as the Probability of Sufficiency (Pearl, 1999). As noted by JL, without
covariates, the sharp bounds on θ(P ⋆) are rescaled Fréchet-Hoeffding bounds:

θno−covariates
L := max

(
EP⋆ [Y (1)− Y (0)]

1− EP⋆ [Y (0)]
, 0

)
≤ θ(P ⋆) ≤ min

(
EP⋆ [Y (1)]

1− EP⋆ [Y (0)]
, 1

)
:= θno−covariates

U .

However, Gerber et al. (2009) also collected a rich set of covariate information, including demographic
information, political preferences, and previous voter turnout data. Furthermore, θ(P ⋆) takes the form of
an unidentifiable expectation divided by an identifiable expectation (since P ⋆(Y (0) = 0) is identified in Eq.
(30)). Thus, we can use our methodology to form covariate-assisted estimates of the numerator and apply
the bivariate delta method to perform inference on θ(P ⋆), as described in Appendix D.2.

To form the dual bounds, we estimate the conditional laws of Y (1) | X and Y (0) | X using three outcome
models: a cross-validated logistic ridge regression, a random forest, and a k-nearest neighbors (KNN)
classifier, where the covariates are the 43 baseline covariates from Gerber et al. (2009) plus interaction
terms with the treatment. For each outcome model, we form dual bounds following the methodology from
Sections 3.3 and 4 using 10-fold cross-fitting. We also compute non-robust plug-in bounds, which plug in
the estimated conditional distributions and the empirical law of X into Eq. (7); unlike dual bounds, these
bounds can be anti-conservatively biased. We also aggregate the results across all dual bounds using the
multiplier bootstrap-like procedure detailed in Appendix D.2.

Table 1 shows the results, from which we report three main findings. First, the covariate-assisted dual
bounds are more than twice as narrow as the covariate-free bounds. Second, the dual bounds appear to
be more reliable than the covariate-assisted plug-in bounds. For example, the KNN and random forest
outcome models produce plug-in lower bounds larger than 15%. This is implausible because the ATE
point estimate is 0.029 and not significant; indeed, we do not even have power to reject the sharp null
that Y (1) = Y (0) with probability one. In contrast, dual bounds can leverage each outcome model to
provide provably valid confidence bounds without assuming that the outcome model is accurate. Third,
the multiplier bootstrap method successfully selects the tightest lower and upper bounds while providing
rigorous uncertainty quantification.

Remark 5.1. Our analysis is inspired by JL, but it differs from theirs in three ways. First, JL do not
leverage covariates in their main empirical results. Second, JL consider the monotone treatment response
assumption that Y (1) ≥ Y (0) almost surely (Manski, 1997). We chose to avoid this assumption, since prior
work has shown that media exposure can sometimes depress turnout (e.g., Gentzkow, 2006), suggesting the
treatment effect may be heterogeneous even if it is positive on average. Lastly, JL perform an instrumen-
tal variables (IV) analysis where the exposure is whether an individual read the Washington Post and the
outcome is whether an individual voted for a Democrat. However, their exposure and outcome were only
collected for ≈ 30% of the sample who responded to a follow-up survey; thus, by performing an ITT analysis
with voter turnout as the outcome, we avoid any missing data problems. It is possible to extend our method-
ology to IV analyses, but it requires new methodological ideas which we defer to a separate work (Spector
and Lei, 2024).

5.2 Estimating intensive margins

Carranza et al. (2022) conducted a randomized experiment in South Africa where treated individuals received

8The original experiment had a third treatment condition, namely to receive a free subscription offer for the Washington
Times. For simplicity, we follow Jun and Lee (2023) and only analyze subjects in the Washington Post or control treatment
groups.
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Outcome model R2 Dual LB Dual UB Plug-in LB Plug-in UB

No covariates 0.0 0.056 0.966 0.057 0.966
(0.04) [0.0] (0.039) [1.0] (0.034) [0.0] (0.031) [1.0]

Ridge 0.49 0.038 0.365 0.046 0.376
(0.027) [0.0] (0.019) [0.403]

RF 0.365 0.003 0.41 0.158 0.348
(0.022) [0.0] (0.021) [0.451]

KNN 0.358 0.0 0.409 0.192 0.366
(0.019) [0.0] (0.021) [0.45]

Multiplier bootstrap⋆ - 0.056 0.365
[0.0] [0.412]

Table 1: This table shows the lower and upper bounds on P ⋆(Y (1) = 1 | Y (0) = 0) for the experimental
data from Gerber et al. (2009), with standard errors shown in parentheses and confidence bounds shown in
brackets. We do not know how to compute standard errors for the covariate-assisted plug-in bounds, so we
do not list them. ⋆Note that we do not use the exact multiplier bootstrap methodology from Section 2.3.
Rather, we use the variant from Appendix D.2, which permits the use of cross-fitting.

assessment results that they could share with potential employers. They found that treated individuals had
higher employment rates and higher earnings, suggesting that the tests provided useful information about
workers’ skills. However, we might wonder: is the treatment effect driven by increases in employment
(extensive margin), or does the treatment increase hours worked for individuals who would have been
employed with or without the treatment (intensive margin)?

To estimate the intensive margin, Chen and Roth (2023) (henceforth CR) analyzed the following quantities:

E[Y (1)− Y (0) | Y (1) > 0, Y (0) > 0] and E [log(Y (1))− log(Y (0)) | Y (1) > 0, Y (0) > 0] ,

where above, the outcome Y measures the average hours worked per week post-treatment, and the logs in
the latter estimand ensure that it is scale-invariant and can roughly be interpreted as a “percentage” effect.
CR bounded these quantities using the methodology from Lee (2009), which assumes that Y (1) > 0 holds
whenever Y (0) > 0, i.e., the treatment does not cause any individual to be unemployed. To defend this
assumption, CR noted that individuals with poor test results likely did not share them with their employers,
and we agree that this assumption seems plausible in this setting.

However, the dataset from Carranza et al. (2022) contains a rich set of pre-treatment covariates, including
baseline earnings, demographic information, and educational history. Thus, we produce covariate-assisted
variants of the bounds from CR. To fit the outcome model, we use the default settings in the dualbounds

package, which employs a linear model with interactions:

Yi = XT
i β +WiX

T
i γ + ϵi. (31)

To estimate β and γ, we use a cross-validated ridge regression. We estimate the law of ϵi | Xi,Wi as the

empirical law of the estimated residuals {Yi − XT
i β̂ −WiX

T
i γ̂ : i ∈ [n],Wi = w}.9 We then convert this

outcome model into a cross-fit dual bound using the methodology from Sections 2 and 4.

Table 2 shows the results: for both the logged and non-logged outcome, the covariate-assisted bounds are
only ≈ 60% as wide as the covariate-free bounds. Although the bounds are still quite wide, this analysis
nonetheless shows that covariate adjustment can substantially sharpen partial identification bounds without
requiring additional assumptions.

5.3 401k eligibility

We now study how 401(k) eligibility impacts wealth. An extensive literature argues that 401(k) eligibility is
essentially exogenous conditional on covariates (e.g., Poterba et al., 1995; Poterba and Venti, 1998; Poterba
et al., 2000; Chernozhukov and Hansen, 2004), since workers likely choose employers based on job character-
istics besides 401(k) eligibility, e.g., income. We adopt this assumption; thus, the outcome Y ∈ R measures
total household wealth and the treatment W ∈ {0, 1} indicates 401(k) eligibility.

9This estimate severely restricts the heteroskedasticity pattern, since it asserts that the residuals are independent of the
covariates given the treatment, i.e., ϵi ⊥⊥ Xi | Wi. That said, we emphasize that the final dual bounds are valid even if the
model for the law of ϵi | Xi,Wi is completely inaccurate.
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Log-hours Hours
Outcome model Lower bound Upper bound Lower bound Upper bound

No covariates (plug-in) -0.193 0.281 -6.64 2.69
(0.062) (0.111) (1.36) (2.06)

Ridge (dual) -0.115 0.185 -4.74 1.18
(0.060) (0.130) (1.46) (2.00)

Table 2: This table shows the lower and upper bounds on E[log(Y (1)) − log(Y (0)) | Y (1) > 0, Y (0) > 0]
and E[Y (1))− Y (0) | Y (1) > 0, Y (0) > 0] for the dataset from Carranza et al. (2022). Standard errors are
shown in parentheses and clustered at the assessment date level (following Chen and Roth (2023)).

We obtain data from Chernozhukov et al. (2018a), who estimated average treatment effects (ATEs) using a
sample of households from the 4th wave of the 1990 Survey of Income and Program Participation. Yet the
literature emphasizes that treatment effects may be highly heterogeneous. For instance, 401(k) eligibility
may reduce wealth for households who otherwise would participate in a different retirement plan or whose
401(k) contributions adversely reduce their liquidity. To study whether negative effects contribute to the
overall ATE, we now bound the positive treatment effect :

θ(P ⋆) = EP⋆ [max(Y (1)− Y (0), 0)] . (32)

Our analysis uses the same covariates as Chernozhukov et al. (2018a), including income, demographics, and
financial indicators such as homeownership status. Following Chernozhukov et al. (2018a), we use the raw
covariates except when fitting regularized GLMs, where we include polynomial transformations and pairwise
interactions. We estimate cross-fit propensity scores using a cross-validated logistic elastic net.

The outcome model takes the form Yi = E[Yi | Xi,Wi] + ϵi. To estimate E[Yi | Xi,Wi], we use (i) a
cross-validated elastic net, (ii) a KNN regressor, (iii) an sklearn histogram gradient boosting (HGBoost)
regressor (Pedregosa et al., 2011; Ke et al., 2017) with the constraint that E[Yi | Xi,Wi] is increasing in
Wi,

10 and (iv) an intercept-only model as a baseline. We estimate the law of ϵi | Xi,Wi as in Section 5.2.
For each model, we report cross-fit AIPW dual bounds (as described in Sections 3.4-4) as well as non-robust
“plug-in” bounds, which plug P̂Y |X,W and the empirical law of the covariates into Eq. (7).

R2 ATE Dual LB Dual UB Plug-in LB Plug-in UB
Method

HGBoost 0.4255 6381 5564 47286 5834 51075
(1882) (1201) (1258)

KNN 0.3776 6792 4476 47424 10135 45800
(1966) (1640) (1333)

Elastic net 0.1672 10637 6938 60940 9078 55005
(2284) (2091) (1579)

Intercept only 0.0 11851 11326 66622 11446 64696
(2579) (2484) (1763) (1806) (1481)

Table 3: This table shows estimated average treatment effects as well as lower and upper bounds on
E[max(Y (1)− Y (0), 0)] for the 401(k) eligibility dataset. Standard errors are shown in parentheses. We do
not know how to compute standard errors for the covariate-assisted plug-in bounds, so we do not list them.

Table 3 shows the out-of-sample R2, cross-fit AIPW ATE estimates, dual bounds, and plug-in bounds for
each outcome model. We report two main conclusions.

1. Incorporating covariates improves robustness. It is known that in observational studies, accurate outcome
models can reduce the bias of ATE estimates. E.g., in Table 3, more accurate outcome models yield smaller
ATE estimates, ranging from ≈ $11K to ≈ $6K. Table 3 suggests that the same logic applies to partially
identified estimands (see Theorem 3.6), since the dual lower bounds decrease with the ATE estimates.

2. Plug-in bounds can be anticonservative. The KNN plug-in lower bound is ≈ $10K. This value seems
implausible, since it is twice as large as the corresponding dual bound and 50% larger than the ATE

10Note that while the “HGBoost monotone” model asserts that the conditional average treatment effect E[Y (1)− Y (0) | X]
is nonnegative, it nonetheless allows the positive treatment effect θ(P ⋆) = E[max(Y (1)− Y (0), 0)] to differ from the ATE, for
example, because there may be unobserved covariates U such that E[Y (1)− Y (0) | X,U ] may be negative.
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estimate from the best-performing model. Indeed, covariate-assisted plug-in bounds rely entirely on the
accuracy of the outcome model, whereas dual bounds are doubly robust as per Theorem 3.6. That said, it
is reassuring that the best-performing model (HGBoost) yields similar plug-in and dual bounds.

Remark 5.2. Although the ATE lower bounds θ(P ⋆), the dual lower bounds are smaller (0–2 standard
errors) than the ATE estimates. This is a consequence of fitting an imperfect outcome model, leading to
conservative bounds.

5.4 A Monte-Carlo simulation

In this section, we run simulations to demonstrate the power, validity, and computational efficiency of dual
bounds. Throughout, we consider randomized experiments where the propensity scores π(x) = 1

2 are known.
Replication code is available at https://github.com/amspector100/dual_bounds_paper/.

We perform simulations where we estimate lower Lee bounds (Example 3). We sample covariates Xi
i.i.d.∼

N (0, Ip) for p = 20 covariates and draw Yi | Xi from a homoskedastic Gaussian linear model:

Yi(1) | Xi ∼ N (XT
i β + τ, σ2) and Yi(0) | Xi ∼ N (XT

i β, σ
2) (33)

for variance σ2 = 1, coefficients β ∈ Rp chosen such that Var(Yi(1)) = Var(Yi(0)) = 10, and average
treatment effect τ = 2. We sample the selection events Si | Xi from a logistic regression model:

P(Si(0) = 1 | Xi) = logit−1
(
XT

i βS + τS,0
)
and P(Si(1) = 1 | Xi) = logit−1

(
XT

i βS + τS,1
)
for βS ∈ Rp

(34)
with ∥βS∥2 = 1 and τS,0 = 0, τS,1 = 1. Following general practice in the literature, our simulations enforce
the monotonicity condition S(1) ≥ S(0) a.s., and we assume that the practitioner knows this a-priori. We
compare three methods for estimating the sharp bound θL in this problem:

1. The “naive plug-in” method first estimates β̂, τ̂ , β̂S , τ̂S using cross-validated ridge and logistic ridge
regressions, and we estimate σ̂ as the sample standard deviation of the estimated residuals {Yi−XT

i β̂}i∈[n].
Then, we approximate the law of Yi(k) | Xi and Si(k) | Xi by plugging in the estimated values of

β̂, τ̂ , β̂S , τ̂S and σ̂ to Equations (33) and (34). At this point, we can plug the estimated laws of Yi(k) |
Xi, Si(k) | Xi into the formula for θL (see Eq. (5)), yielding an estimate θ̂pluginL . In general, it is not

clear how to compute standard errors for θ̂pluginL ; to be as generous as possible, we compute oracle lower
confidence bounds using the true variance

θ̂pluginLCB = θ̂pluginL − Φ−1(1− α)

√
Var

(
θ̂pluginL

)
. (35)

We compute the true value of Var(θ̂pluginL ) numerically by sampling many datasets from the true data-
generating process.

2. The “dual crossfit” approach uses exactly the same approach to estimate the conditional laws Yi(k) | Xi

and Si(k) | Xi (with the exception that it employs cross-fitting). However, after computing the estimates
of these laws on K = 5 folds of the data, we apply the cross-fit dual bounds methodology from Section
3.3. Since Y is continuous, to compute the estimated dual variables ν̂, we use the discretization approach
outlined in Section 4.2 with nvals = 50 discretizations.11 Computing dual bounds using this method takes
less than 5 seconds with n = 1000 observations in our simulations.

3. The “no covariates” method is identical to the naive plug-in approach except that it does not observe
the covariates and only estimates the marginal laws of Yi(1), Yi(0), Si(1), Si(0).

We also consider the performance of each method in two misspecified settings where Yi | Xi is actually
heteroskedastic:

Yi(1) | Xi ∼ N (XT
i β + τ, σ2

1(Xi)) and Yi(0) | Xi ∼ N (XT
i β, σ

2
0(Xi)) (36)

for the functions σ2
1(X) = σ2

1∥X∥22, σ2
0(X) = σ2

0∥X∥22 for constants σ1, σ0 ≥ 0. In this case, for both the
naive plug-in and dual crossfit methods, the estimated outcome model is misspecified, since it incorrectly
assumes homoskedasticity. In the first setting (labelled as “Heteroskedasticity (I)”), we set σ1/σ0 = 3; in
the other setting (“Heteroskedasticity (II)”), we set σ0/σ1 = 0.3.

11We remind the reader that the final dual lower confidence bound will be valid no matter how small nvals is, although
increasing nvals may yield higher power.
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Figure 2: This figure shows the coverage of the lower Lee confidence bounds from Figure 1. The nominal
level is 95%, shown by the dotted black line.

Figures 1 and 2 show the results with n ∈ {100, 200, 600, 1000}. Figure 1 shows the average value of the

estimate θ̂L and the lower confidence bound θ̂LCB; it shows that the naive plug-in estimator is biased when
n is small (due to the effect of regularization) and when the model is misspecified. In contrast, the cross-
fit dual bounds are (i) guaranteed to be conservatively biased at worst and (ii) less sensitive to errors in
estimating the outcome model, yielding valid and reasonably sharp inference in all three settings. Figure 2
confirms that dual bounds provide ≥ 95% coverage in all settings, whereas the naive plug-in method can be
quite conservative or anticonservative, depending on the form of heteroskedasticity. Overall, in this setting,
cross-fit dual bounds perform well even in small samples.

6 Discussion

This paper introduces a dual bound method to estimate and perform inference on a class of partially
identified causal parameters. The method can leverage any statistical and machine learning techniques to
learn the conditional distribution of the outcome Y given the covariates X. In randomized experiments,
the resulting bounds are always valid regardless of whether the estimates are consistent and asymptotically
sharp when the conditional distributions are estimated at semiparametric rates. In addition, one can apply
the multiplier bootstrap to perform model selection. For observational studies, the method can be easily
extended to be doubly robust. In all settings, the dual bounds can be computed efficiently.

Our analysis leaves open many questions. For example, a few of our theoretical results require Y to be
discrete, and it would be interesting to investigate if the same results hold when Y is continuous. Perhaps
the most pressing question is whether the techniques developed in this paper can be applied more generally.
In particular, we use a duality argument to guarantee the robustness of our method. Does this same argument
apply to settings beyond causal inference? In the next two sections, we begin to address this question. Then,
Section 6.3 discusses an alternative computational strategy, and Section 6.4 discuss two-sided intervals.

6.1 Extensions beyond causal effects

In this section, we discuss whether our method can be extended to settings that cannot be reduced to
estimating an expectation of the form E[f(Y (0), Y (1), X)]. Indeed, the ideas in Section 2.2 apply to many
estimands in economics which can be written as the optimal value of an optimization problem. We describe
two classes of problems below.

Example 7 (Inference for linear programs). Suppose that θ is the optimal objective value of a linear
program of the form

θ := min
z∈Rd

cT z s.t. Az ≤ b(P ),

where A ∈ Rd×m is a known matrix and b(P ) ∈ Rd is a vector of moments or conditional moments of a
probability distribution P . Many estimands can be written this way (e.g. Gafarov, 2019; Fang et al., 2023),
including those arising in models of demand (Tebaldi et al., 2023; Nevo et al., 2016) and income mobility
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(Chetty et al., 2017). If we observe i.i.d. samples from P , the exact same method from Section 2.2 can be
applied to obtain a 1− α lower confidence bound on θ.

Example 8 (Variance of the CATE). In Example 2, we noted that Var(Y (1)− Y (0)) is a natural measure
of treatment effect heterogeneity. Another interesting estimand is the variance of the conditional average
treatment effect (CATE) τ(X) := E[Y (1) − Y (0) | X]. Using Fenchel conjugacy (or Cauchy-Schwartz), we
can derive a dual representation:

Var(τ(X)) = max
h:X→R

2Cov(h(X), τ(X))−Var(h(X))

= max
h:X→R

2Cov(h(X), Y (1)− Y (0))−Var(h(X)).

Crucially, the bound B(h) := 2Cov(h(X), Y (1) − Y (0)) − Var(h(X)) is easy to estimate (in randomized
experiments) for any fixed h : X → R; thus, we can obtain a robust lower confidence bound on Var(τ(X))

by selecting a function ĥ ≈ argmaxhB(h) on the first split of data and estimating B(ĥ) on the second
split. This idea is connected to Zhang and Janson (2020); Wang et al. (2023), who also select a lower bound
(albeit a different one) for nonparametric variance estimation using a different variational representation.

6.2 Cost of robustness when the propensity scores are unknown

However, dual bounds as defined in Section 2.2 are not appropriate for every problem. For example, one
might hope that a simple modification of Definition 1 can produce always valid bounds on the average
treatment effect when the propensity scores π(Xi) are not known. Unfortunately, our method yields valid
yet trivial lower and upper bounds due to the lack of strong duality. This is consistent with Aronow et al.
(2021), who prove that no uniformly consistent estimator of ATE exists under strong ignorability and strict
overlap without further assumptions if one of the covariates is continuous.

Suppose the vectors (Xi,Wi, Yi(0), Yi(1)) are sampled i.i.d. from some population distribution P ⋆ ∈ P,
where P is the set of distributions on X × {0, 1} × Y2 satisfying unconfoundedness, i.e., {Yi(1), Yi(0)} ⊥⊥
Wi | Xi, and strict overlap, i.e., 0 < πP (x) < 1 for all x ∈ X and P ∈ P, where πP (X) := EP [W | X].

Given i.i.d. observations (Xi,Wi, Yi), we seek to form a lower bound on the average treatment effect
θ(P ⋆) := EP⋆ [Yi(1)−Yi(0)] which is valid even under arbitrary misspecification of πP (Xi) and the outcome
model. Although θ is identifiable, it can still be written as the solution to the optimization problem

θ(P ⋆) = min
P∈P

EP [Y (1)− Y (0)] s.t. PX,W,Y = P ⋆
X,W,Y (37)

where PX,W,Y is the law of (X,W, Y ) under P and P ⋆
X,W,Y is the true law of (X,W, Y ). Note that the

optimization variable is P , which is a joint law over (X,W, Y (0), Y (1)), and PX,W,Y is a functional of P .
For any h : X × {0, 1} × Y → R, the Lagrange dual to this problem is

g(h) := EP⋆ [h(X,W, Y )] + κ(h),

where κ(h) := infP∈P EP [Y (1)−Y (0)−h(X,W, Y )] is a known constant depending on h. For any h, g(h) is
a valid lower bound on θ(P ⋆) by weak duality, but unfortunately, strong duality does not hold. In particular,
for any h, we have that

h(Xi,Wi, Yi) + κ(h) ≤

{
Yi −max(Y) Wi = 1

min(Y)− Yi Wi = 0.
(38)

See Appendix C.2 for a proof.

This result tells us that any dual bound (in the sense of Def. 1) on the ATE which is valid under arbitrary
misspecification must also be trivial, since it must impute Yi(1) to have the minimum possible value whenever
it is not observed, and it must impute Yi(0) to have the maximum possible value when it is not observed.
Thus, applied in this way, our method reduces to the nonparametric bounds from Manski (1989), even
though we have made the extra assumptions of unconfoundedness and strict overlap, which are not made
in Manski (1989).

6.3 An alternative computational strategy

To compute our recommended estimator ν̂ of the optimal dual variables, one must first model the conditional
laws P ⋆

Y (0)|X , P
⋆
Y (1)|X . This procedure may not be feasible when conditional distributions are hard to model.
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For example, when X includes unstructured data such as images (e.g., profile pictures as in Athey et al.
(2022)), texts (e.g., resumes as in Vafa et al. (2022)), and embeddings (Vafa et al., 2024), existing machine
learning algorithms may not be able to provide distribution estimates. In Appendix E.2, we present Deep
Dual Bounds, an alternative approach that directly learns the optimal dual variables by solving the dual
problem. This approach parametrizes ν0,X(Y (0)), ν1,X(Y (1)) by neural networks, which, unlike the two-
stage approach, can exploit the smoothness of the dual functions in X.

Although this end-to-end formulation is conceptually clear, standard gradient-based algorithms cannot be
directly applied since potential outcomes cannot be observed simultaneously. We resolve this issue by
matching treated and control units and optimizing an approximate objective function. We emphasize that
the approximation error does not affect the validity of Dual Bounds, as only dual feasibility is required. The
details and experimental results of the algorithm are discussed in Appendix E.2 and Table 4.

6.4 Two-sided confidence intervals

In previous sections we focused on one-sided confidence bounds on the sharp population bounds θL, θU .
To cover the full identified set, we can simply construct (1 − α/2) lower/upper confidence bounds on the
lower/upper bounds (Horowitz and Manski, 2000). However, in many applications, it suffices to cover the
true parameter. It is well-known (Imbens and Manski, 2004; Stoye, 2009) that tighter uniform confidence
intervals can be constructed by estimating the gap between upper and lower bounds and/or the correlation
between two estimators.

With data splitting, the upper and lower dual bounds are both empirical moments:

θ̂L =
1

|D2|
∑
i∈D2

SL
i , θ̂U =

1

|D2|
∑
i∈D2

SU
i .

Under mild regularity assumptions on the marginal moments of SL
i and SU

i discussed in Section 3, (θ̂L, θ̂U )
is asymptotically bivariate Gaussian and the empirical covariance matrix of (SL

i , S
U
i )i∈D2

is a consistent
estimate of the true asymptotic covariance matrix. While the superefficiency assumption in Imbens and
Manski (2004) does not necessarily hold in our case, we can apply the construction studied in Proposition
3 of Stoye (2009) to guarantee the uniform coverage of the true parameter.
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A Proofs from Section 3

In this section we present the proofs of all theorems, lemmas, and corollaries in Section 3, some of which are
followed by remarks. Some technical lemmas will be deferred to the end of each subsection. For notational
convenience, we will denote by n1 and n2 the size of D1 and D2 and assume n2/n > c for some constant
c > 0 throughout as mentioned at the beginning of Section 3. For cross-fitting (Appendix A.3), we will
assume n1 = n2 = n/2. Finally, we assume π(X) ∈ [Γ, 1− Γ] for some Γ > 0 as implied by Assumption 2.1.

A.1 Main proofs from Section 3.1

Although we give a proof sketch of Theorems 3.1 and 3.6 in Section 3.1, we give a few more details here for
the sake of completeness. We also prove Corollary 3.1.

A.1.1 Proof of Theorem 3.1

As in Section 3.1, we begin with the decomposition

θL − θ̂LCB = θL − θ̃L︸ ︷︷ ︸
Term A

+ θ̃L − θ̂LCB︸ ︷︷ ︸
Term B

.

Term A is positive deterministically by weak duality. To analyze Term B, let Si =
ν̂1,Xi

(Yi)Wi

π(Xi)
+

ν̂0,Xi
(Yi)(1−Wi)

1−π(Xi)

for i ∈ D2 and let σ̂s be the sample standard deviation of {Si}i∈D2 . Now, by construction,

θ̃L − θ̂LCB = E [ν̂0,Xi
(Yi(0)) + ν̂1,Xi

(Yi(1)) | D1]−
1

n2

n∑
i=1

Si +Φ−1(1− α)
σ̂s√
n2

= E[Si | D1]−
1

n2

n∑
i=1

Si +Φ−1(1− α)
σ̂s√
n2
.

One approach to analyze this sum would be to apply the standard univariate CLT conditional on D1 and
to let n2 grow to ∞. However, we must be slightly careful, because the rate of the convergence of the CLT
depends on (e.g.) the higher moments of Si, which depend on ν̂, and ν̂ changes with n (since D1 changes
with n). Instead, we will apply the Lyapunov CLT for triangular arrays.

Indeed, Assumption 3.1 specifies that the conditional variance of Si is bounded away from zero and its fourth
conditional moment is uniformly bounded. In particular, the latter follows because the fourth conditional
moment of ν̂(Y (k), X) is uniformly bounded and because of strict overlap. This moment condition, in
combination with the fact that {Si}i∈D2 are i.i.d. conditional on D1, allows us to apply the Lyapunov CLT
conditionally on D1: √

n2
Var(Si | D1)

(
1

n2

n∑
i=1

(Si − E[Si | D1])

)
d→ N (0, 1).
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Note that the Lyapunov CLT holds for any triangular array of random variables as long as the moment
condition from Assumption 3.1 holds; therefore, this convergence is uniform over PB . A similar argument

based on the law of large numbers for triangular arrays implies that σ̂s
p→
√

Var(Si | D1) as n → ∞, and
furthermore that this convergence is uniform over PB .

12 Then, Slutsky’s theorem implies that

√
n2
σ̂s

(
1

n2

n∑
i=1

(Si − E[Si | D1])

)
d→ N (0, 1).

This proves that lim infn→∞ infP∈PB
P(θ̃L − θ̂LCB ≥ 0) = 1− α, completing the proof.

Remark A.1. We can substantially relax Assumption 3.1 without changing the proof of Theorem 3.1. In
fact, all we need to apply the Lyapunov CLT is that

EP [|Si|2+δ | D1]

VarP (Si | D1)
≤ Bnδ/2−ϵ (39)

holds for some ϵ > 0, δ > 0, B > 0. Furthermore, this does not need to hold with probability one: instead,
we could require that

PP

(
EP [|Si|2+δ | D1]

VarP (Si | D1)
≤ Bnδ/2−ϵ

)
≥ 1− an for all n ∈ N (40)

for some deterministic sequence an → 0. Then, asymptotically, we can apply the Lyapunov CLT conditional
on D1 with probability uniformly approaching one for any distribution such that the previous equation is
satisfied.

The only other time we use Assumption 3.1 is to show σ̂s
p→
√
Var(Si | D1) holds uniformly over PB. Here,

we can again replace Assumption 3.1 with any assumption guaranteeing uniform convergence (in probability)
of σ̂s.

A.1.2 Proof of Corollary 3.1

We first review a result from Chernozhukov et al. (2018b) (labeled as Theorem 4.3 in the original paper).

Proposition A.1 (Chernozhukov et al. (2018b)). Let X1, . . . , Xn ∈ Rp be i.i.d. variables satisfying the
following:

1. µ := E[X1] ≤ 0 holds elementwise.
2. Let Zi := Xi − µ be the centered variables and define

Bn := max
j∈[p]

max(E[|Z1j |4]1/2,E[|Zij |3]) + E[max
j∈[p]

|Z1j |4]1/4 <∞.

Let µ̂j =
1
n

∑n
i=1Xij and σ̂j =

1
n

∑n
i=1(Xij − µ̂j)

2. Also, define the statistic

T = max
j∈[p]

√
nµ̂j

σ̂j

and let

T (b) = max
j∈[p]

n−1/2
∑

i∈[n]Wi(Xi − µ̂j)

σ̂j

for Wi
i.i.d.∼ N (0, 1). Let q̂1−α denote the conditional 1− α quantile of T (b) given X1, . . . , Xn. Then if there

exist constants c1 ∈ (0, 1/2), C1 ≥ 0 such that

B2
n log(pn)

7/2 ≤ C1n
1/2−c1 , (41)

we have that there exist constants c, C > 0 depending only on c1, C1 such that

P(T ≥ q̂1−α) ≤ α+ Cn−c → α.

12In particular, since the fourth moment of Si given D1 is bounded, Chebyshev’s inequality implies the uniform convergence

of σ̂2
s

p→ Var(Si | D1).
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Now we prove Corollary 3.1. The proof is a straightforward application of Proposition A.1 and weak duality,

but for completeness, we will state it here. Recall the notation from Section 2.3: we let θ̃
(k)
L := g(ν̂(k)),

define θ̃L = maxk∈[K] θ̃
(k)
L , and define the summands

S
(k)
i :=

ν̂
(k)
1,Xi

(Yi)Wi

π(Xi)
+
ν̂
(k)
0,Xi

(Yi)(1−Wi)

1− π(Xi)
for k ∈ [K].

We also set S̄k and σ̂2
k to be the empirical mean and variance of {S(k)

i : i ∈ D2}:

S̄k =
1

D2

∑
i∈D2

S
(k)
i and σ̂2

k =
1

|D2|
∑
i∈D2

(S
(k)
i − S̄k)

2.

For any a ∈ R, define the test statistic

T (a) := max
k∈[K]

√
|D2|(S̄k − a)

σ̂k
.

We also define the multiplier bootstrap variant : for Wi
i.i.d.∼ N (0, 1), we define

T (b)(a) := max
k∈[K]

|D2|−1/2
∑

i∈D2
Wi(S

(k)
i − a− (S̄k − a))

σ̂k
= T (b)

where we note that T (b)(a) does not depend on a, so we abbreviate it by T (b). Let q̂1−α := Q1−α(T
(b) | D)

denote the conditional quantile of T (b) given all the data.

Note that for any a ≥ θ̃L, E[S̄ − a1K | D1] ≤ 0 holds elementwise. This, combined with Assumption 3.2,
allows us to apply Proposition A.1 conditional on D1. Thus, there exist universal constants c, C > 0 such
that

sup
P∈Pc,ϵ

PP

(
T (θ̃L) ≥ q̂1−α | D1

)
≤ α+ Cn−c. (42)

Applying the tower property and taking limits yields

lim sup
n→∞

sup
P∈Pc,ϵ

PP (T (θ̃L) ≥ q̂1−α) ≤ α. (43)

Recall also the definition of θ̂MB
LCB from Eq. (15):

θ̂MB
LCB := max

k∈[K]
S̄k − q̂1−α

σ̂k√
|D2|

= max

{
a ∈ R : max

k∈[K]

√
|D2|(S̄k − a)

σ̂k
≥ q̂1−α

}
= max

{
a ∈ R : T (a) ≥ Q1−α(T

(b) | D)
}
.

Since T (a) is decreasing in a, we have that

θ̂MB
LCB ≥ θ̃L ⇔ T (θ̃L) ≥ Q1−α(T

(b) | D).

Therefore, by Eq. (43), we conclude

lim sup
n→∞

sup
P∈Pc,ϵ

PP (θ̂
MB
LCB ≥ θ̃L) ≤ lim sup

n→∞
sup

P∈Pc,ϵ

PP (T (θ̃L) ≥ q̂1−α) ≤ α.

Since θ̃L ≤ θL by weak duality, this completes the proof.

A.2 Main proofs from Section 3.2

A.2.1 Proof of Theorem 3.2

As notation, for any functions f0, f1, h0, h1 : Y × X → R and any x ∈ X , define the inner product

⟨(f0, f1), (h0, h1)⟩x =
∑

k∈{0,1}

∫
y∈Y

fk(y, x)hk(y, x)ψ(dy).
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Furthermore, let ∥(f0, f1)∥X =
√
⟨(f0, f1), (f0, f1)⟩ denote the standard norm with respect to ⟨·, ·⟩X . It may

be helpful to note that the definitions in Section 3.2 imply that

errorP (x) = ∥p̂− p⋆∥X and errorν(x) = ∥ν̂ − ν⋆∥X (44)

where p̂ = (p̂0, p̂1) : Y × X → R2 denotes the estimated conditional densities of Y (k) | X, k ∈ {0, 1} and
p⋆ = (p⋆0, p

⋆
1) : Y × X → R2 denote the true conditional densities. With this notation, let ĝ : V → R denote

the estimate of the dual which plugs in p̂ for p⋆:

ĝ(ν) := EP̂Y (0)|X×P⋆
X
[ν0,X(Y (0))] + EP̂Y (1)|X×P⋆

X
[ν1,X(Y (1))]

= EX∼P⋆
X
[⟨p̂, ν⟩X ] ,

where in the inner product above, we think of ν = (ν0,x, ν1,x)x∈X as a function ν : Y × X → R2 defined by
νk,x(y) = νk,x(y). With this notation, we observe that

θL − θ̃L = g(ν⋆)− g(ν̂) by strong duality and defn. of θ̃L

≤ g(ν⋆)− ĝ(ν⋆) + ĝ(ν̂)− g(ν̂) since ν̂ := argmax
ν

ĝ(ν)

= EX∼P⋆
X
[⟨p⋆ − p̂, ν⋆ − ν̂⟩X | D1] using linearity of inner products

≤ EX∼P⋆
X
[∥p⋆ − p̂∥X∥ν⋆ − ν̂∥X | D1] by Cauchy-Schwartz

= EX∼P⋆
X
[errorP (X) · errorν(X) | D1] by definition.

It may be helpful to note that the third-to-last equation uses the fact that for any fixed ν, ĝ(ν) − g(ν) =
EX∼P⋆

X
[⟨p− p̂, ν⟩X | D1]. Throughout, we condition on D1 since θ̃L and ν̂ are random and D1-measurable.

This completes the proof.

A.2.2 Proof of Lemma 3.3

We begin by introducing notation. Suppose Y = {y1, . . . , ym} which is finite by assumption. For any dual
variables ν ∈ V and k ∈ {0, 1}, we abuse notation slightly and think of νk,x as vectors:

νk,x = [νk,x(y1), . . . , νk,x(ym)] ∈ Rm.

We let νx = [ν0,x, ν1,x] ∈ R2m denote the concatenation of ν0,x, ν1,x. Furthermore let p⋆k,i(x) = P(Y (k) =
yi | X = x) denote the probability mass function of Y (k) | X for k ∈ {0, 1}, i ∈ [m]. Let p⋆(x) =
[p⋆0,1(x), . . . , p

⋆
0,m(x), p⋆1,1(x), . . . , p

⋆
1,m(x)] ∈ R2m denote the concatenation of the PMFs of Y (1) and Y (0);

furthermore, let p̂(x) denote the estimated version of this vector based on the estimated laws P̂Y (0)|X=x, P̂Y (1)|X=x.
Note that under this notation, we have that

errorP (x)
2 = ∥p̂(x)− p⋆(x)∥22 and errorν(x)

2 = ∥ν̂x − ν⋆x∥22.

Thus, it suffices to show that there exists a universal constant H(x) depending only on population quantities
such that ∥ν̂x − ν⋆x∥22 ≤ H(x)∥p̂(x) − p⋆(x)∥22. To do this, recall that in Section 4.2, we prove ν⋆ ∈
argmaxν∈V g(ν) is an optimal dual variable if the following holds for all x:

ν⋆x ∈ argmax
νx∈R2m,λx,1,...,λx,L

νTx p
⋆(x) (45)

s.t. ν0,x,j + ν1,x,i +

L∑
ℓ=1

λx,ℓwx,ℓ(yi, yj) ≤ f(yj , yi, x) for all i, j ∈ [m]

λx,1, . . . , λx,ℓ ≥ 0.

This is a finite-dimensional linear program; in particular, we can put this in a standard form by writing
λx = (λx,1, . . . , λx,L) and observing

λ⋆x, ν
⋆
x ∈ argmax

νx,λx

νTx p
⋆(x) s.t. A

[
νx
λx

]
≤ b

for some known deterministic matrix A ∈ Rm2+ℓ and constraint vector b ∈ Rm2+ℓ. Furthermore, by
definition, ν̂x is the minimum-norm solution to the same problem which replaces p⋆(x) with p̂(x):

λ̂x, ν̂x ∈ argmax
νx,λx

νTx p̂(x) s.t. A

[
νx
λx

]
≤ b
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Thus, the relationship between ∥ν⋆x − ν̂x∥2 and ∥p⋆(x)− p̂(x)∥2 is related to the stability of linear programs;
in particular, we leverage the theory of Hoffman constants (Hoffman, 1952; Robinson, 1973). We give a
detailed review of this theory in Appendix B. The upshot is that Lemma B.2 (proved in Appendix B)
implies that for any linear programs of the form above, we have that there exists some H(x) < ∞ and ν⋆x
solving Eq. (45) such that ∥ν⋆x − ν̂x∥22 ≤ H(x)∥p⋆(x) − p̂(x)∥22, where H(x) is a finite constant depending
only on p⋆(x), A, and b. These are all population quantities, so this completes the proof.

Remark A.2 (H(x) is “dimension-free”). In the most important special case where f(y0, y1, x) = f(y0, y1)
does not depend on x and P is the unconstrained set of all distributions over Y2×X , then the matrix A and
constraint b in the previous proof do not depend on x. As a result, H(x) depends only on the conditional
PMF of Y (k) | X = x for k ∈ {0, 1} and does not explicitly depend on the dimension of X ∈ Rp.

This suggests that we should not expect H(x) to grow with the dimension of X (although it may grow as the
size of Y, the support of Y , increases). Indeed, in many typical high-dimensional asymptotic regimes, the
law of the conditional PMF of Y (k) | X does not change with X ∈ Rp. For example, consider a single-index
model where Y (k) only depends on X through a linear function aTkX, formally written as Y (k) ⊥⊥ X | aTkX
for some ak ∈ Rp, k ∈ {0, 1}. In this setting, the law of the conditional PMF {P(Y (k) = y | X)}y∈Y does not
change with dimension as long as the laws of aTkX do not change with n or p. For example, if X ∼ N (0,Σ),
this holds as long as the aggregate signal strength aTkΣak stays constant. Indeed, this condition exactly
matches ones used to analyze (e.g.) high-dimensional linear and logistic regression (Sur and Candès, 2019);
otherwise, in the case of linear regression, the variance of Y might diverge as n, p → ∞. In such regimes,
the law of H(X) will not change even as the dimension of X grows arbitrarily.

A.2.3 Proof of Theorem 3.4 and an oracle property

Proof of Theorem 3.4: For all steps, the starting point is Lemma 3.3, which says that there exist dual
variables ν⋆(n) ∈ argmaxν∈V g(ν) satisfying

max
k∈{0,1}

max
y∈Y

(ν
⋆(n)
k,x (y)− ν̂k,x(y))

2 ≤ errorν(x)
2 ≤ H(x)errorP (x)

2, (46)

for a set of deterministic Hoffman constants {H(x) : x ∈ X}. Note that ν⋆(n) does not have to be constant
over n because the optimal dual variable is non-unique, but nonetheless we conclude that errorν(x)

2 ≤
H(x)errorP (x)

2.

Applying Theorem 3.2 and the previous result, we conclude

0 ≤ θL − θ̃L ≤ EX∼P⋆
X
[errorP (X)errorν(X) | D1] by Theorem 3.2

= EX∼P⋆
X

[
H(X)errorP (X)2 | D1

]
by Eq. (46)

= EX∼P⋆
X
[H(X)2]

√
EX∼P⋆

X
[errorP (X)4 | D1] by Holder’s inequality

= Op(1) · op(n−1/2),

where in the penultimate line we use the fact that H(X) is independent of D1. The last line follows because

we assume that E[H(X)2] = O(1) and errorP (X) = oL4
(n−1/4); therefore,

√
EX∼P⋆

X
[errorP (X)4 | D1] =

oL2(n
−1/2) = op(n

−1/2). This concludes the proof of Theorem 3.4.

Oracle property: We have already proved Theorem 3.4. However, we can also use these arguments to
show an even stronger result. In particular, let θ̂⋆L denote the oracle estimator which has perfect knowledge
of the outcome model and uses an optimal dual variable ν⋆(n) ∈ argmaxν∈V g(ν) in place of ν̂. We will show

(1) that
√
n(θ̂⋆L − θ̂L)

p→ 0, i.e., that θ̂L is asymptotically equivalent to the oracle estimator θ̂⋆L which uses

optimal dual variables. This also implies (2) that limn→∞ P(θ̂LCB ≤ θL) = 1−α, i.e., θ̂LCB is asymptotically
an exact lower confdience bound.

First, we prove that
√
n(θ̂L − θ̂⋆L)

p→ 0. To do this, note by definition

θ̂L − θ̂⋆L :=
1

n2

∑
i∈D2

Wi

π(Xi)

(
ν̂1,Xi

(Yi(1))− ν
⋆(n)
1,Xi

(Yi(1))
)
+

1−Wi

1− π(Xi)

(
ν̂0,Xi

(Yi(0))− ν
⋆(n)
0,Xi

(Yi(0))
)

:=
1

n2

∑
i∈D2

Mi.
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We will show that E[Mi] = op(n
−1/2) and Var(Mi) = op(1).

Step 1: analyzing the mean. Since π(Xi) are the true propensity scores and ν̂1, ν̂0 are estimated on D1 which
is independent of D2, we have that

E[Mi | D1] = E[ν̂1,X(Y (1)) + ν̂0,X(Y (0)) | D1]− E[ν⋆(n)1,X (Y (1)) + ν
⋆(n)
0,X (Y (0))]

= θ̃L − θL

= oL2(n
−1/2) by Theorem 3.4

Step 2: analyzing the variance. Lemma 3.3 yields that∑
k∈{0,1}

(ν̂k,Xi(Yi(k))− ν
⋆(n)
k,Xi

(Yi(k)))
2 ≤ H(Xi)errorP (Xi)

2.

Therefore,

M2
i ≤ H(Xi)errorP (Xi)

2

min(π(Xi), 1− π(Xi))2
≤ Γ−2H(Xi)errorP (Xi)

2

where the last inequality follows by the strict overlap assumption that π(Xi) ∈ [Γ, 1 − Γ] for some Γ > 0.
From this, we apply Holder’s inequality and have

Var(Mi | D1) ≤ E[M2
i | D1] ≤ Γ−2

√
E[H(Xi)2 | D1]E[errorP (Xi)4 | D1] = oL2

(1)

where above we use independence to note that E[H(Xi)
2 | D1] = E[H(Xi)

2] = O(1) and then recall that
E
[
errorP (Xi)

4
]
= o(n−1) = o(1).

{Mi}i∈D2 are conditionally i.i.d. given D1. Therefore, combining this analysis conditional on D1 yields that

E[(θ̂L − θ̂⋆L)
2 | D1] = E

( 1

n2

∑
i∈D2

Mi

)2

| D1

 = (E[Mi | D1])
2 +

1

n2
Var(Mi | D1) = oL1(n

−1). (47)

As a result, by definition of the oL1(·) notation, we have that E[(θ̂L − θ̂⋆L)
2] = o(n−1). Therefore,

E
[
|θ̂L − θ̂⋆L|

]
≤
√

E[(θ̂L − θ̂⋆L)
2] = o(n−1/2).

This proves the first result.

As an intermediate result, we now show that
√
n(θ̂LCB− θ̂⋆LCB)

p→ 0 where θ̂⋆LCB denotes the lower confidence

bound corresponding to θ̂⋆L—i.e., θ̂⋆LCB is defined analagously to θ̂LCB but replacing ν̂ with ν⋆(n). As notation,
let Si =

Wi

π(Xi)
ν̂1,Xi(Yi(1)) +

1−Wi

1−π(Xi)
ν̂0,Xi(Yi(0)) and let S⋆

i denote the same quantity with ν⋆(n) replaced

with ν. If σ̂s and σ̂⋆
s are the empirical standard deviations of {Si}i∈D2 and {S⋆

i }i∈D2 , respectively, then by
definition

θ̂LCB − θ̂⋆LCB = θ̂L − θ̂⋆L +
Φ−1(1− α)

√
n2

(σ̂s − σ̂⋆
s ) .

Note that equation (47) and Chebyshev’s inequality imply that θ̂L − θ̂⋆L = op(n
−1/2). Therefore, to show

this result, it suffices to show that σ̂s − σ̂⋆
s

p→ 0. However, we already showed that if Mi = Si − S⋆
i , then

E[M2
i | D1] = op(1).

In other words, σ̂s and σ̂⋆
s are the sample standard deviations of i.i.d. summands whose difference vanishes

as n→ ∞. Furthermore, each summand (whether Si or S
⋆
i ) has uniformly bounded 2 + δ moments as well.

Thus, the exact same argument shows that σ̂s − σ̂⋆
s

p→ 0. We can also easily show that σ̂−1
s = Op(1) by

Assumption 2.2, and hence (σ̂⋆
s )

−1 = Op(1). This shows the intermediate result.

Finally, we now show the second result that limn→∞ P(θ̂LCB ≤ θL) = 1 − α. By strong duality (Theorem
2.1) and the Lyapunov CLT,

√
n(θ̂⋆L − θL)

σ̂⋆
s

=

√
n(θ̂⋆L − θ̃⋆L)

σ̂⋆
s

p→ N(0, 1).
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Thus,

P
(
θ̂LCB ≤ θL

)
= P

(√
n(θ̂L − θL)

σ̂s
≤ Φ−1(1− α)

)

= P

(√
n(θ̂⋆L − θL)

σ̂s
≤ Φ−1(1− α)−

√
n(θ̂⋆L − θ̂L)

σ̂s

)

= P

(√
n(θ̂⋆L − θL)

σ̂⋆
s

≤ σ̂s
σ̂⋆
s

Φ−1(1− α)−
√
n(θ̂⋆L − θ̂L)

σ̂⋆
s

)
= 1− α+ o(1),

which completes the second oracle result.

A.3 Main proofs from Section 3.3

A.3.1 Proof of Theorem 3.5

We handle the two conditions separately.

Proof under Condition 1: We first introduce some notation. Define the summand

Si =


ν̂swap
1,Xi

(Yi)Wi

π(Xi)
+

ν̂swap
0,Xi

(Yi)(1−Wi)

1−π(Xi)
i ∈ D1

ν̂1,Xi
(Yi)Wi

π(Xi)
+

ν̂0,Xi
(Yi)(1−Wi)

1−π(Xi)
i ∈ D2

so that by definition,

θ̂L =
1

|D2|
∑
i∈D2

Si and θ̂
swap
L =

1

|D1|
∑
i∈D1

Si and θ̂
crossfit
L = S̄ =

θ̂L + θ̂swap
L

2
.

and θ̂crossfitLCB = θ̂crossfitL −Φ−1(1−α) σ̂s√
n
, where throughout this proof, σ̂s is the sample standard deviation of

{Si}ni=1.

Now, we will compare θ̂LCB to an oracle estimator. Define S†
i to be the analogue of Si, but replacing ν̂ and

ν̂swap with ν†:

S†
i :=

ν†1,Xi
(Yi)Wi

π(Xi)
+
ν†0,Xi

(Yi)(1−Wi)

1− π(Xi)

and the oracle estimator and lower confidence bound are defined as

θ̂†L :=
1

n

n∑
i=1

S†
i and θ̂†LCB := θ̂†L − Φ−1(1− α)

σ̂†
s√
n

where σ̂†
s is the sample standard deviation of {S†

i }ni=1.

θ̂†LCB is clearly a valid 1− α lower confidence bound on E[S†
i ] by the univariate central limit theorem; thus,

by weak duality, θ̂†LCB is a valid 1 − α lower confidence bound on θL (see Theorem 3.1). Thus, a standard

proof technique in the literature is to show that θ̂crossfitLCB is asymptotically equivalent to θ̂†LCB. However, this

is not true in this setting: in general,
√
n(θ̂†LCB − θ̂crossfitLCB ) ̸ p→ 0. Nonetheless, a careful application of weak

duality will allow us to show the desired result. In particular, θ̂crossfitLCB may have more fluctuations than

θ̂†LCB, but weak duality will guarantee that θ̂crossfitLCB will not fluctuate above θL with probability more than
α asymptotically.

In particular, Lemma A.1 proves the standard result that

θ̂crossfitLCB − θ̂†LCB =
E[θ̂L | D1] + E[θ̂swap

L | D2]

2
− E[S†

i ] + op(n
−1/2) (48)

=
g(ν̂) + g(ν̂swap)

2
− g(ν†) + op(n

−1/2).
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where g is the Kantorovich dual function defined in Section 2, and the latter equality follows from the fact
that conditional on D1, θ̂L is simply an IPW estimator for g(ν̂) (and analogously for θ̂swap

L and ν̂swap). Now,
g(ν̂)+g(ν̂swap)

2 − g(ν†) in general may have fluctuations on a scale larger than n−1/2. However, the magic
comes from weak duality, which yields that g(ν̂), g(ν̂swap) ≤ θL. As a result, we have that

ξn ≜ θ̂crossfitLCB − θ̂†LCB − (θL − g(ν†)) = op(n
−1/2). (49)

Plugging this in, we can show the key validity result:

P(θ̂crossfitLCB ≥ θL) = P(θ̂crossfitLCB − θ̂†LCB ≥ θL − θ̂†LCB)

≤ P(θL − g(ν†) + ξn ≥ θL − g(ν†) + g(ν†)− θ̂†LCB) by Eq. (49)

= P(ξn ≥ g(ν†)− θ̂†LCB) by cancellation

= P(ξn ≥ E[S†
i ]− θ̂†LCB) since g(ν†) = E[S†

i ].

At this point, the result now follows by applying the standard univariate central limit theorem to θ̂†LCB.
Formally, we note that we assume that ν† satisfies the moment condition in Assumption 3.1, and therefore
the argument in Theorem 3.1 proves that we can apply the Lyapunov CLT to {S†

i }i∈[n]. Furthermore,

Assumption 3.1 directly implies that Var(S†
i ) is uniformly bounded away from zero; therefore, the CLT

implies that, for any γ > 0, there exists some c > 0 such that P(E[S†
i ]− θ̂†LCB ≥ c/

√
n) = 1− α − γ. Since

ξn = op(1/
√
n) as n→ ∞ by definition, we have that for every γ > 0,

lim sup
n

P(ξn ≥ E[S†
i ]− θ̂†LCB) ≤ α+ γ.

Since this holds for all γ > 0, we conclude that

lim sup
n

P(θ̂crossfitLCB ≥ θL) ≤ lim sup
n

P(ξn ≥ E[S†
i ]− θ̂†LCB) ≤ α

which proves the result.

Proof under Condition 2: Under this condition, a similar proof as Lemma A.3 shows that

θ̂L = g(ν̂) +Op(n
−1/2), θ̂swap

L = g(ν̂swap) +Op(n
−1/2) and σ̂s = Op(1).

As a result, we have that

θ̂crossfitLCB =
g(ν̂) + g(ν̂swap)

2
+Op(n

−1/2) = θ̃crossfitLCB +Op(n
−1/2).

Condition 2 tells us that θL − θ̃L := θL − g(ν̂) ≫ n−1/2, and the same result holds with g(ν̂swap) replacing
g(ν̂) by symmetry. Therefore

θ̂crossfitLCB = θL + θ̃crossfitLCB − θL +Op(n
−1/2).

Since
√
n(θ̃crossfitLCB −θL)

p→ ∞, the second term is deterministically nonnegative by weak duality and dominates
the Op(n

−1/2) term, we conclude

lim inf
n

P(θ̂crossfitLCB ≤ θL) = 1 ≥ 1− α

which proves the desired result.

A.3.2 Proof of Corollary 3.2

This follows immediately by applying Theorem 3.4 to both folds of the data. In particular,

√
n
(
θ̃crossfitL − θL

)
=

√
n

2
(g(ν̂)− θL) +

√
n

2
(g(ν̂swap)− θL)

p→ 0. (50)

34



A.3.3 Technical lemmas

Lemma A.1. Assume the conditions and notation of Theorem 3.5. Then

θ̂crossfitLCB − θ̂†LCB =
g(ν̂) + g(ν̂swap)

2
− g(ν†) + op(n

−1/2).

Proof. First, we observe that

θ̂crossfitLCB − θ̂†LCB = θ̂crossfitL − θ̂†L +
Φ−1(1− α)√

n

[
σ̂s − σ̂†

s

]
= θ̂crossfitL − θ̂†L + op(n

−1/2)

where the last line follows because σ̂s − σ̂†
s = op(1) by the same argument as in Lemma A.2.

Next, we observe

θ̂crossfitL − θ̂†L =
1

2|D1|
∑
i∈D1

Si − S†
i +

1

2|D2|
∑
i∈D2

Si − S†
i .

For simplicity, we focus on the first sum above. Note that {Si − S†
i }i∈D1 are i.i.d. conditional on D1. We

will apply Chebyshev’s inequality to this sum; to do this, we analyze its mean and variance.

1. Mean: Since π(Xi) are known propensity scores, we have the exact result that

E[Si | D2]− E[S†
i | D2] = g(ν̂swap)− g(ν†).

2. Variance: Observe that

Var(Si − S†
i | D2) ≤ E[(Si − S†

i )
2 | D2]

= E

(Wi(ν̂
swap
1,Xi

(Yi)− ν†1,Xi
(Yi))

π(Xi)

)2

| D2


+ E

( (1−Wi)(ν̂
swap
0,Xi

(Yi)− ν†0,Xi
(Yi))

1− π(Xi)

)2

| D2


≤ Γ−2

∑
k∈{0,1}

E[(ν̂swap
k,Xi

(Yi)− ν†k,Xi
(Yi))

2 | D2].

However, we assume that E[(ν̂swap
k,Xi

(Yi)−ν†k,Xi
(Yi))

2] → 0 for k ∈ {0, 1}. Thus, E[Var(Si−S†
i | D2)] → 0

and thus Var(Si − S†
i | D2) = op(1).

From this analysis, we conclude by Chebyshev’s inequality that

1

2|D1|
∑
i∈D1

Si − S†
i =

g(ν̂swap)− g(ν†)

2
+ op(n

−1/2).

The same analysis applied to the other sum yields that

1

2|D2|
∑
i∈D2

Si − S†
i =

g(ν̂)− g(ν†)

2
+ op(n

−1/2).

Combining all of the above results yields the desired result

θ̂crossfitLCB − θ̂†LCB = θ̂crossfitL − θ̂†L + op(n
−1/2)

=
g(ν̂swap) + g(ν̂)

2
− g(ν†) + op(n

−1/2).
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A.4 Main proofs from Section 3.4

A.4.1 Proof of Theorem 3.6

This proof follows entirely from the standard theory of the AIPW estimator. We make only minor adjust-
ments (proved in Appendix A.4.2) to account for the fact that ν̂ may change with n.

Analysis of Condition 1: Under Condition 1, standard results about the AIPW estimator (see, e.g.,
Wager, 2020) imply that √

n(θ̂augLCB − θ̃augLCB)
p→ 0, (51)

where θ̃augLCB is defined equivalently to θ̂augLCB but with ĉ1, ĉ0, π̂ replaced with c1, c0, π (respectively). See

Lemma A.2 for a formal proof of this result in this setting. We note that lim infn P(θ̃augLCB ≤ θL) ≥ 1 − α

holds using exactly the same proof as Theorem 3.1, and since
√
n(θ̃augLCB−θL) ̸→ 0, the additional fluctuations

between θ̂augLCB and θ̂LCB are asymptotically negligible.13 Therefore, the result now follows directly from the
argument in Theorem 3.1.

Analysis of Condition 2: Roughly speaking, Condition 2 tells us that θ̂augLCB ≈ θ̃L and that the first-stage

bias θ̃L − θL is of higher order than the fluctuations of θ̂augLCB around θ̃L. This follows from the standard
theory of the double-robustness of the AIPW estimator (e.g. Robins et al., 1994; Wager, 2020)).

Formally, Lemma A.3 shows that

θ̂augLCB − θ̃L = Op(n
−1/2 +min(errorn(π̂), errorn(ĉ))).

We note that it suffices to consider the case where min(errorn(π̂), errorn(ĉ)) ̸= op(n
−1/2). To see this, note

that if min(errorn(π̂), errorn(ĉ)) = op(n
−1/2), then errorn(π̂) · errorn(ĉ) = op(n

−1/2) holds and Condition 1
holds, in particular because both errorn(π̂) and errorn(ĉ) are uniformly bounded by the moment conditions
in the theorem. In particular, errorn(π̂) := E[(π̂(X) − π(X))2 | D1]

1/2 ≤ 1 is uniformly bounded because
π(X), π̂(X) ∈ (0, 1), and errorn(ĉ) = maxk∈{0,1} E[(ĉk(X)− ck(X))2 | D1]

1/2 is uniformly bounded because

we assume E[|ĉk(X)|2+δ | D1] and E[|ck(X)|2+δ | D1] ≤ E[|ν̂k(Y (k), X)|2+δ | D1] are uniformly bounded for,
e.g., δ = 2.

Applying this to the previous result, we observe

θ̂augLCB − θ̃L = Op(min(errorn(π̂), errorn(ĉ))).

However, the conditions of the theorem imply precisely that

|θL − θ̃L| ≫ min(errorn(π̂), errorn(ĉ)).

Thus, θL − θ̃L dominates θ̂augLCB − θ̃L. Furthermore, weak duality implies that θL ≥ θ̃L deterministically.
Thus, using the decomposition

θL − θ̂augLCB = θL − θ̃L︸ ︷︷ ︸
strictly positive

+ θ̃L − θ̂augLCB︸ ︷︷ ︸
negligible

,

we conclude that lim infn→∞ P(θ̂augLCB ≤ θL) = 1. As a result, under this form of misspecification, the dual

bound θ̂augLCB is valid and in fact very conservative.

A.4.2 Technical lemmas

Lemma A.2. Assume the conditions of Theorem 3.6 except for “Condition 2.” Then

√
n(θ̂augLCB − θ̃augLCB)

p→ 0.

Proof. Recall that θ̃augLCB, θ̃
aug
L , σ̃aug

s are defined exactly as θ̂augLCB, θ̂
aug
L , σaug

s are, but with ĉ1, ĉ0, π̂ replaced
with c1, c0 and π. Observe that

√
n(θ̂augLCB − θ̃augLCB) =

√
n(θ̂augL − θ̃augL ) +

√
nΦ−1(1− α)

(
σ̃aug
s√
n2

− σ̂aug
s√
n2

)
.

13Note that this analysis uses the condition that Var(S̃i | D1) is bounded away from zero, since otherwise a uniform CLT
might not apply to θ̃augLCB—see the proof of Theorem 3.1 for details. Of course, this condition can be relaxed—see Remark A.1.
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By Slutsky’s theorem, it suffices to show that
√
n(θ̂augL − θ̃augL )

p→ 0, called “Claim 1,” and that σ̃aug
s −σ̂aug

s
p→

0, called “Claim 2” (recall n2 ≥ cn). Define

Si := ĉ1(Xi) + ĉ0(Xi) +
Wi

π̂(Xi)
(ν̂1,Xi

(Yi)− ĉ1(Xi)) +
1−Wi

1− π̂(Xi)
(ν̂0,Xi

(Yi)− ĉ0(Xi)).

and

S̃i := c1(Xi) + c0(Xi) +
Wi

π(Xi)
(ν̂1,Xi

(Yi)− c1(Xi)) +
1−Wi

1− π(Xi)
(ν̂0,Xi

(Yi)− c0(Xi)).

Then

θ̂augL :=
1

n2

∑
i∈D2

Si, θ̃augL :=
1

n2

∑
i∈D2

S̃i, (52)

and

(σ̂aug
s )2 =

1

n2

∑
i∈D2

S2
i − (θ̂augL )2 and (σ̃aug

s )2 =
1

n2

∑
i∈D2

S̃2
i − (θ̃augL )2. (53)

We start by proving Claim 1.

Proof of Claim 1: We now show that
√
n(θ̂augL − θ̃augL )

p→ 0. Our proof follows Wager (2020) with only minor
adjustments. We note that by equation (52)

θ̂augL − θ̃augL =
1

n2

∑
i∈D2

(Si − S̃i)

where

Si − S̃i = ĉ1(Xi)− c1(Xi) +
Wi

π̂(Xi)
(ν̂1,Xi(Yi)− ĉ1(Xi))−

Wi

π(Xi)
(ν̂1,Xi(Yi)− c1(Xi))

+ ĉ0(Xi)− c0(Xi) +
1−Wi

1− π̂(Xi)
(ν̂0,Xi

(Yi)− ĉ0(Xi))−
1−Wi

1− π(Xi)
(ν̂0,Xi

(Yi)− c0(Xi)).

The analysis of the two sums above is identical, so it suffices to show the first sum is op(n
−1/2). To do this,

observe

1

n2

∑
i∈D2

ĉ1(Xi)− c1(Xi) +
Wi

π̂(Xi)
(ν̂1,Xi

(Yi)− ĉ1(Xi))−
Wi

π(Xi)
(ν̂1,Xi

(Yi)− c1(Xi))

=
1

n2

∑
i∈D2

(ĉ1(Xi)− c1(Xi))

(
1− Wi

π(Xi)

)}
Term 1

+
1

n2

∑
i∈D2

Wi(ν̂1,Xi
(Yi)− c1(Xi))

(
π̂(Xi)

−1 − π(Xi)
−1
)}

Term 2

− 1

n2

∑
i∈D2

Wi(ĉ1(Xi)− c1(Xi))
(
π̂(Xi)

−1 − π(Xi)
−1
)}

. Term 3

To analyze these terms, we note the following.

1. For the first term, since π(Xi) is a propensity score, we have that

E
[
(ĉ1(Xi)− c1(Xi))

(
1− Wi

π(Xi)

)
| D1, Xi

]
= 0

so these terms are mean zero conditional on D1. Furthermore,

Var

(
(ĉ1(Xi)− c1(Xi))

(
1− Wi

π(Xi)

)
| D1

)
=E

[
Var

(
(ĉ1(Xi)− c1(Xi))

(
1− Wi

π(Xi)

)
| D1, Xi

)
| D1

]
=E

[
(ĉ1(Xi)− c1(Xi))

2

(
1− 1

π(Xi)

)2

| D1

]

≤
(
1− 1

Γ

)2

E[(ĉ1(Xi)− c1(Xi))
2 | D1]

=O(1) · errorn(ĉ)2.
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Thus, Chebyshev’s inequality tells us that the first term is Op(errorn(ĉ)
2/
√
n) = op(n

−1/2) because

we assume errorn(ĉ)
p→ 0.

2. For the second term, since c1(Xi) = E[ν̂1,Xi
(Yi) | D1, Xi], each of the summands are each mean zero

conditional on Xi and D1. Their conditional variance is therefore

Var
(
Wi(ν̂1,Xi

(Yi)− c1(Xi))
(
π̂(Xi)

−1 − π(Xi)
−1
)
| D1

)
=E

[
Var

(
Wi(ν̂1,Xi(Yi)− c1(Xi))

(
π̂(Xi)

−1 − π(Xi)
−1
)
| Xi,D1

)
| D1

]
=E

[(
π̂(Xi)

−1 − π(Xi)
−1
)2 E [Wi(ν̂1,Xi(Yi)− c1(Xi))

2 | D1, Xi

]
| D1

]
≤E[

(
π̂(Xi)

−1 − π(Xi)
−1
)2 E[ν̂1,Xi(Yi(1))

2 | D1, Xi] | D1]

≤E[
(
π̂(Xi)

−1 − π(Xi)
−1
)2s | D1]

1/sE[ν̂1,Xi
(Yi(1))

2+δ | D1]
1/q taking, e.g., δ = 2

=oP (1).

where the penultimate inequality follows from Holder’s inequality with s, q ≥ 1 satisfying 1
s + 1

q =

1, 2q = 2+ δ. The last equality follows from the fact E[ν̂1,Xi
(Yi(1))

2+δ | D1] is uniformly bounded and

π̂ and π are uniformly bounded; thus E[
(
π̂(Xi)

−1 − π(Xi)
−1
)2s | D1]

1/s = op(1) because errorn(π̂) :=
E[(π̂(Xi) − π(Xi))

2 | D1] = o(1). As a result, Chebyshev’s inequality implies that the second term is

Op

(
1√
n2

)
× op(1) = op(n

−1/2).

3. For the third term, we merely apply Cauchy-Schwartz. In particular,

E

[∣∣∣∣∣ 1n2 ∑
i∈D2

Wi(ĉ1(Xi)− c1(Xi))
(
π̂(Xi)

−1 − π(Xi)
−1
)∣∣∣∣∣
]

≤

√√√√E

[
1

n2

∑
i∈D2

(ĉ1(Xi)− c1(Xi))2

]
· E

[
1

n2

∑
i∈D2

(π̂(Xi)−1 − π(Xi)−1)2

]
≤O(1)

√
E[errorn(ĉ)2]E[errorn(π̂)2]

=o(n−1/2)

where the penultimate line follows from the fact that the terms in the sums of the expectations are
i.i.d. conditional on D1, the definition of errorn(ĉ), errorn(π̂), and the overlap assumptions on π̂ and
π. The last line follows from the assumption in Condition 2.

This shows that θ̂augL − θ̃augL = op(n
−1/2), proving Claim 1.

Proof of Claim 2: We now show that σ̂aug
s − σ̃aug

s = op(1). We already showed that θ̂augL − θ̃augL = op(1), so,
by equation (53), it suffices to show that

1

n2

∑
i∈D2

S2
i − S̃2

i = op(1).

To do this, it suffices to show that E[|S2
i − S̃2

i |] = o(1) for any i ∈ D2. Note

|S2
i − S̃2

i | ≤ |Si + S̃i||Si − S̃i| =⇒ E[|S2
i − S̃2

i |] ≤
√

E[(Si + S̃i)2]E[(Si − S̃i)2]

and the moment conditions in the theorem imply that E[(Si + S̃i)
2] is uniformly bounded. Therefore, it

suffices to show that Si − S̃i = oL2
(1). However, we already showed this in the proof of Claim 1 (combining

the analysis of all three terms), when we showed that conditional on D1, |Si − S̃i| has mean of order
o(n−1/2) and its variance conditional on D1 is bounded by max(errorn(π̂)

2, errorn(ĉ)
2), which is oL2

(1) by
the assumption in the theorem. This concludes the proof.

Lemma A.3. Assume the conditions of Theorem 3.6 except for “Condition 1.” Then

θ̃L − θ̂augLCB = Op(n
−1/2) +Op(min(errorn(π̂), errorn(ĉ))).
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Proof. Throughout the proof, as notation, let Y (1), Y (0), X ∈ Rp be a draw from the law of Yi(1), Yi(0), Xi

which is independent of the data. Recall also that n2 ≥ cn by assumption.

The proof is in two steps. Step 1 is to show that θ̃L − θ̂augL = Op(n
−1/2) + Op(min(errorn(π̂), errorn(ĉ))).

Then, Step 2 shows the final result (replacing θ̂augL with θ̂augLCB).

Step 1: In this step, we show that θ̃L − θ̂augL = Op(n
−1/2) +Op(min(errorn(π̂), errorn(ĉ))). To do this, Step

1a shows that θ̃L − θ̂augL = Op(n
−1/2) +Op(errorn(ĉ)). Then, Step 1b shows that θ̃L − θ̂augL = Op(n

−1/2) +
Op(errorn(π̂)). Together, this completes the proof of Step 1.

Step 1a: For this case, we can decompose

θ̂augL =
1

n2

∑
i∈D2

c1(Xi) + c0(Xi)

+
1

n2

∑
i∈D2

Wi

π̂(Xi)
(ν̂1,Xi

(Yi)− c1(Xi)) +
1−Wi

1− π̂(Xi)
(ν̂0,Xi

(Yi)− c0(Xi))

+
1

n2

∑
i∈D2

ĉ1(Xi)− c1(Xi) + ĉ0(Xi)− c0(Xi)

+
1

n2

∑
i∈D2

Wi

π̂(Xi)
(ĉ1(Yi, Xi)− c1(Xi)) +

1−Wi

1− π̂(Xi)
(ĉ0(Yi, Xi)− c0(Xi)).

We now analyze these terms in order.

1. For the first term, note that e.g. for δ = 0, E[|ck(X)|2+δ | D1] ≤ E[|ν̂k(Y (k), X)|2+δ | D1] ≤ B is
uniformly bounded by Assumption 3.1. As a result, Chebyshev’s inequality implies that

1

n2

∑
i∈D2

c1(Xi) + c0(Xi)− E[c1(X) + c0(X) | D1] =
1

n2

∑
i∈D2

c1(Xi) + c0(Xi)− θ̃L = Op(n
−1/2).

Therefore, it suffices to show that the following terms vanish in probability.

2. The second term vanishes because E[ν̂k,X(Y )−ck(X) | D1, X] = 0 for k ∈ {0, 1} by definition of c1, c0.
Thus, the summands in the second term are all mean zero. Furthermore, for (e.g.) δ = 0, their 2 + δ
moment is uniformly bounded by Assumption 3.1 and the fact that π̂(Xi) ∈ (Γ, 1−Γ) for some Γ > 0.
Thus, Chebyshev’s inequality implies that this term is Op(n

−1/2).

3. The third term vanishes in probability because we assume that the conditional 2 + δ moment of
ĉ1(X), ĉ0(X) is uniformly bounded, and this is also true for c0(X), c1(X) by Assumption 3.1. Thus
Chebysehv’s inequality tells us that

1

n2

∑
i∈D2

ĉ1(Xi)− c1(Xi) + ĉ0(Xi)− c0(Xi) = Op(E[|ĉ1(X)− c1(X) + ĉ0(X)− c0(X)| | D1] + n
−1/2
2 ).

We also observe that by the triangle inequality and Jensen’s inequality,

E[|ĉ1(X)− c1(X) + ĉ0(X)− c0(X)| | D1] ≤
∑

k∈{0,1}

E[|ĉk(X)− ck(X)| | D1]

≤ 2 max
k∈{0,1}

E[(ĉk(X)− ck(X))2 | D1]
1/2

= 2 · errorn(ĉ).

Thus, the third term is Op(errorn(ĉ) + n−1/2).

4. The fourth term vanishes in probability by the same argument as the second term.

Combining these results shows that θ̂augL − θ̃L = Op(errorn(ĉ) + n−1/2) by assumption.
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Step 1b: In this case, we can decompose

θ̂augL :=
1

n2

∑
i∈D2

ĉ1(Xi) + ĉ0(Xi) +
Wi

π̂(Xi)
(ν̂1,Xi

(Yi)− ĉ1(Xi)) +
1−Wi

1− π̂(Xi)
(ν̂0,Xi

(Yi)− ĉ0(Xi))

=
1

n2

∑
i∈D2

ĉ1(Xi)

[
1− Wi

π(Xi)

]
+ ĉ0(Xi)

[
1− 1−Wi

1− π(Xi)

]}
term 1

+
1

n2

∑
i∈D2

Wiν̂1,Xi
(Yi)

π(Xi)
+

(1−Wi)ν̂0,Xi
(Yi)

1− π(Xi)

}
term 2

+
1

n2

∑
i∈D2

(
π̂(Xi)

−1 − π(Xi)
−1
)
Wi(ν̂1,Xi

(Yi)− ĉ1(Xi))

}
term 3

+
1

n2

∑
i∈D2

((1− π̂(Xi))
−1 − (1− π(Xi))

−1)(1−Wi)(ν̂0,Xi
(Yi)− ĉ0(Xi)

}
term 4

To analyze these terms, observe that

1. The summands in term 1 are mean zero and i.i.d. conditional on D1. Furthermore, their 2+δ moment
is uniformly bounded conditional on D1 since the 2 + δ moments of ĉ1, ĉ0 are uniformly bounded
and π(Xi) is bounded away from zero and one. Chebyshev’s inequality thus implies that Term 1 is
Op(n

−1/2).

2. Term 2 is simply an IPW estimator of θ̃L, so under the assumptions of Theorem 3.1 it converges to
θ̃L plus Op(n

−1/2).

3. Term 3 is an i.i.d. sum conditional on D1. Its summands have uniformly bounded 2 + δ moment
because Assumption 3.1 implies that ν̂1,X(Y (1))− ĉ1(X) has a uniformly bouned 2+ δth moment and
π̂(Xi)

−1, π(Xi)
−1 are uniformly bounded. Furthermore, Holder’s inequality yields that

E
[∣∣(π̂(Xi)

−1 − π(Xi)
−1
)
(Wi(ν̂1,Xi

(Yi)− ĉ1(Xi)))
∣∣ | D1

]
≤
√
E[(π̂(Xi)−1 − π(Xi)−1)

2 | D1]E
[
(Wi(ν̂1,Xi(Yi)− ĉ1(Xi))

2 | D1

]
=O

(√
E[(π̂(Xi)− π(Xi))

2 | D1]

)
:=O(errorn(π̂)).

where penultimate line follows because (a) E
[
(Wi(ν̂1,Xi(Yi)− ĉ1(Xi)))

2 | D1

]
is uniformly bounded

and (b) π̂, π are uniformly bounded away from zero, and the function 1 7→ x−2 is Lipschitz on [Γ,∞).
Thus, π̂(Xi)

−1 − π(Xi)
−1 ≤ L(π̂(Xi)− π(Xi)) where L is some Lipschitz constant not depending on

n.

Applying Chebyshev’s inequality to Term 3 yields that Term 3 is Op(errorn(π̂)) +Op(n
−1/2).

4. Term 4 is Op(errorn(π̂)) +Op(n
−1/2) for the same reason that Term 3 is.

Combining this analysis yields the main result of Step 1b, namely that θ̂augL = θ̃L+Op(n
−1/2)+O(errorn(π̂)).

Then, combining Steps 1a and 1b implies that

θ̂augL − θ̃L = Op(n
−1/2) +Op(min(errorn(π̂), errorn(ĉ))).

Step 2: To complete the proof of the lemma, we note that

θ̂augLCB − θ̃L = θ̂augL − θ̃L − Φ−1(1− α)
σ̂aug
s√
n2
.

Thus, to prove the lemma, it suffices to prove that σ̂aug
s = Op(1). To do this, we observe that σ̂s is defined

as

(σ̂aug
s )2 =

1

n2

∑
i∈D2

(Si − S̄)2.

Since Si is i.i.d. has a uniformly bounded 2 + δ moment conditional on D1, a uniform law of large numbers
applied to Si and then S2

i yields that σ̂aug
s =

√
Var(Si | D1)+op(1) where Var(Si | D1) is uniformly bounded

by the theorem assumptions. This proves that σ̂aug
s = Op(1).
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B Theory of the Hoffman constant

B.1 Preliminaries

In this section, we review the definition of a Hoffman constant and prove Lemma B.2, the key stability result
for linear programs that underlies Lemma 3.3. First, we review what a Hoffman constant is.

Lemma B.1 (Hoffman constant). For matrices A ∈ Rm×n, C ∈ Rk×n, define the set

M(b, d) = {x ∈ Rn : Ax ≤ b, Cx = d} for b ∈ Rm, d ∈ Rk.

Hoffman (1952), Robinson (1973) showed that there exists a constant H(A,C) < ∞ such that for all
x ∈ Rn, b ∈ Rm, d ∈ Rk s.t. M(b, d) ̸= ∅, we have

dist(x,M(b, d)) ≤ H(A,C)

∥∥∥∥[(Ax− b)+
Cx− d

]∥∥∥∥
2

. (54)

We now prove the key technical lemma underlying Theorem 3.4, using ideas from Robinson (1973).

Lemma B.2 (Robinson (1973) Corollary 3.1). Consider the LP

min
x
cTx s.t. Ax ≤ b (55)

whose dual is
max
y≥0

−bT y s.t. AT y + c = 0. (56)

Suppose the primal and the dual are both feasible. Suppose that x̂ ∈ Rn, ŷ ∈ Rm are minimum norm solutions
solving (55), (56) but with ĉ replacing c. Then there exists some optimal solution x⋆ ∈ Rn, y⋆ ∈ Rm to (55),
(56) such that

∥(x̂, ŷ)− (x⋆, y⋆)∥2 ≤ σ∥c− ĉ∥2
where σ is a scaled Hoffman constant that depends on A, b and c.

Proof. Strong duality holds for primal-dual feasible linear programs. Thus, by strong duality, a pair (x, y)
is primal-dual optimal if and only if

Ax ≤ b primal feasibility

y ≥ 0 dual feasibility

AT y = −c dual feasibility
cTx− bT y = 0 dual gap is zero. (57)

The “dual gap” condition is slightly different than the standard KKT conditions, e.g., from Boyd and
Vandenberghe (2004); this innovation, due to Robinson (1973), is what allows us to apply Lemma B.1.14

With this characterization, for z = (x, y) ∈ Rn+m, the optimality conditions are equivalent to the following:

A0z ≤
[
b
0

]
and C0z =

[
−c
0

]
(58)

where

A0 :=

[
A 0
0 −Im

]
and C0 :=

[
0 AT

cT −bT
]
.

Now, suppose ẑ = (x̂, ŷ) solves (55), (56). Applying Lemma B.1, we conclude that there exists some optimal
solution z⋆ satisfying (58) such that

∥z⋆ − ẑ∥2 ≤ H(A0, C0)

∥∥∥∥∥∥∥∥

(Ax̂− b)+
(−ŷ)+
AT ŷ + c
cT x̂− bT ŷ


∥∥∥∥∥∥∥∥
2

= H(A0, C0)

∥∥∥∥[ ĉ− c
cT x̂− ĉT x̂

]∥∥∥∥
2

14Interestingly, Hsieh et al. (2022) also use this dual gap condition, although their technical arguments are otherwise unrelated
to ours.
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where in the second line, we use the fact that ẑ must satisfy the optimality conditions (58) except replacing
c with ĉ. We know by Cauchy-Schwartz that

∥z⋆ − ẑ∥2 ≤ H(A0, C0)∥ĉ− c∥2(1 + ∥x̂∥2).

Now, the rest of the analysis reduces to bounding ∥x̂∥2.

To do this, let N̂ = {i : ŷi = 0}. By the KKT condition, any solution (x̃, ỹ) of the primal-dual problem,
i.e., Eq. (55) and (56), must satisfy the complementary slackness condition (Ax̃ − b) ⊙ ỹ = 0. Letting
(x̃, ỹ) = (x̂, ŷ), we obtain that IN̂ (Ax̂ − b) = 0, where IN̂ ∈ R(m−|N |)×m is the m ×m identity matrix but

with the rows corresponding to N̂ ⊂ [m] deleted.

By the KKT conditions, any pair (x, ŷ) satisfying Ax ≤ b (primal feasibility) and IN̂Ax = IN̂b (com-
plimentary slackness) is an optimal solution to Eqs. (55)-(56). In particular, this is true because ŷ is
dual feasible—i.e., ŷTA = c and ŷ ≥ 0— since (x̂, ŷ) is assumed to be an optimal solution. Thus since
ẑ = (x̂, ŷ) is by definition the minimum norm solution among all solutions to Eqs. (55)-(56), we conclude
that ∥ẑ∥2 ≤ ∥ẑ′∥2 where ẑ′ = (x̂′, ŷ) for any x̂′ that satisfies

Ax̂′ ≤ b, IN̂Ax̂
′ = IN̂b. (59)

Now, Lemma B.1 with x = 0, C = IN̂A, d = IN̂b implies that there exists some vector x̂′ satisfying the
linear constraints above such that

∥x̂′ − 0∥2 ≤ H(A, IN̂A)

∥∥∥∥[(−b)+IN̂b

]∥∥∥∥
2

≤ 2H(A, IN̂A)∥b∥2 ≤ 2∥b∥2 max
N⊂[m]

H(A, INA).

The proof is completed by noting that ∥x̂∥22 = ∥ẑ∥22 − ∥ŷ∥22 ≤ ∥ẑ′∥22 − ∥ŷ∥22 = ∥x̂′∥22.

B.2 Explicitly bounding the moments of the Hoffman constant

Theorem 3.4 requires the assumption that the scaled Hoffman constant H(X) has at least two moments. We
give several justifications for this assumption in Appendices A.2 and B, but it is generally hard to formally
verify this condition. Indeed, analytical analysis or even mere computation of Hoffman constants is known
to be a particularly challenging problem (e.g. Zualinescu, 2003; Ramdas and Peña, 2016). However, in this
section, we are able to show that H(X) has two moments as long as a “general position” condition holds
on the true conditional PMF.

That said, we emphasize that our analysis in this section is quite conservative; we suspect that E[|H(X)|2] <
∞ holds in many settings where the general position condition below does not hold.

Assumption B.1. Fix any Y0,Y1 ⊂ Y = {y1, . . . , ym}. Define δ(X) to be the squared difference between
the conditional probabilities that Y (0) ∈ Y0 and Y (1) ∈ Y1 given X. Formally,

δY0,Y1
(X) = (P(Y (0) ∈ Y0 | X)− P(Y (1) ∈ Y1 | X))

2
.

Define rY0,Y1
(X) =

{
1

δY0,Y1
(X) δY0,Y1(X) ̸= 0

0 δY0,Y1(X) = 0
< ∞ to be the generalized reciprocal of δY0,Y1

(X). We

assume that there exists M <∞ such that E[|rY0,Y1
(X)|2] ≤M for all Y0,Y1 ⊂ Y.

Assumption B.1 requires that for each Y0,Y1, the generalized reciprocal of [P(Y (0) ∈ Y0 | X)− P(Y (1) ∈ Y1 | X)]
2

has two moments. This condition is related to the fact that linear programs may become unstable if the
angle between two constraint vectors becomes too small (which may happen if δY0,Y1(X) is small) but are
stable if the constraint vectors are perfectly collinear (in which case δY0,Y1

(X) = rY0,Y1
(X) = 0). Since we

work with generalized reciprocals, we note that Assumption B.1 automatically holds if Y (1) | X d
= Y (0) | X,

in which case δY0,Y1(X) = rY0,Y1(X) = 0 a.s.

Proposition B.1. Suppose P is the unrestricted class of all distributions, Y = {y1, . . . , ym} is finite, and
that θ(P ) = EP [f(Y (1), Y (0))]. Following the notation in Theorem 3.4, under Assumption B.1, there exists
a universal constant C depending only on |Y| such that E[|H(X)|2] < CM <∞.

Proof sketch. As notation, recall that H(x) is a Lipschitz constant such that

∥ν⋆x − ν̂x∥22 ≤ H(x)∥p(x)− p̂(x)∥22.
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In particular, Lemma 3.3 proves that H(x) <∞ by noting that we can write

ν̂x ∈ argmax
νx∈R2m

νTx p̂(x) s.t. Aνx ≤ c

ν⋆x ∈ argmax
νx∈R2m

νTx p
⋆(x) s.t. Aνx ≤ c

where c ∈ Rm2

is the concatenation of {f(y0, y1)}y∈Y and the optimal transport matrix A can be written as

A =


1m×1 0m×1 · · · 0m×1 Im×m

0m×1 1m×1 · · · 0m×1 Im×m

...
...

...
...

...
0m×1 0m×1 · · · 1m×1 Im×m

 ∈ Rm2×2m.

Lemma B.2 shows that there exists a universal constant c1 depending only on |Y| such that

H(x) ≤ c1H(A0, C) for

A0 :=

[
A 0
0 −Im2

]
and C0 :=

[
0 AT

]
and C =

[
0 AT

p⋆(x)T −cT
]
,

where H(A0, C) is the Hoffman constant defined by Hoffman (1952). We note that H(A0, C) depends on x
only through the last row of C, which depends on p⋆(x). To analyze the dependence of H(A0, C) on x, we
have a three-part strategy:

1. Zualinescu (2003) introduce a combinatorial characterization of H(A0, C). Using this, we prove a gen-
eral “rank-one update” formula for Hoffman constants. In particular, we bound H(A0, C) in terms of
H(A0, C0) and the norm of the residual after projecting [p⋆(x)T ,−cT ] onto the row space of A.

2. We explicitly analyze the eigenstructure of the optimal transport matrix A to bound the residual norm
mentioned above.

3. We then combine these results to prove that there exist universal constants c2, c3 depending only on |Y|
such that

H(x) ≤ c1H(A0, C) ≤ c2 + c3 max
Y0,Y1⊂Y

(P(Y (1) ∈ Y1 | X = x)− P(Y (0) ∈ Y0 | X = x))
−1

where above, the power of −1 denotes the generalized reciprocal—in particular, this final result is proved in
Lemma B.7. By Assumption B.1, we know that each term in the max above has two moments. Since this is
a maximum over finitely many random variables, this implies that H(X) has two moments, as desired.

B.2.1 Rank one updates for Hoffman constants

Lemma B.3 (Application of Zualinescu (2003) Prop. 5.1). Suppose A ∈ Rm×n, C ∈ Rℓ×n and let H(A,C)
be the Hoffman constant associated with {Ax ≤ b, Cx = d}. Assume C has full row rank (implying ℓ ≤ n)
and define

K =

{
K ⊂ [m] :

[
AK

C

]
has linearly independent rows

}
.

Then

H(A,C)−2 = min
K∈K

min
λ∈R|K|

≥0
,v∈Rℓ,∥(λ,v)∥2

2=1

∥AT
Kλ+ CT v∥22

≥ min
K∈K

min
∥(λ,v)∥2

2=1
∥AT

Kλ+ CT v∥22

= min
K∈K

λmin

([
AK

C

] [
AK

C

]T)
.

Proof. The first equality follows from Proposition 5.1 of Zualinescu (2003); the rest follows immediately by
the definition of an eigenvalue and simple properties of singular values.
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Lemma B.4 (Rank one update for Hoffman constants). Suppose A ∈ Rm×n, C0 ∈ R(ℓ−1)×n where C0 has

full row rank and ℓ ∈ [n]. Fix v ∈ Rn and let C =

[
C0

vT

]
∈ Rℓ×n.

Define K to be the subsets of the rows of A such that

[
AK

C

]
has linearly independent rows. For each K ∈ K,

define DK =

[
AK

C0

]
∈ R(|K|+ℓ−1)×n and let ϵK denote the squared norm of the projection of v onto the

orthogonal complement of the row space of DK , i.e., ϵK = ∥(In − DT
K(DKD

T
K)−1DK)v∥22. Finally, let

ϵ0 = minK∈K ϵK .

If H(A,C) is the Hoffman constant associated with the system {x : Ax ≤ b, Cx = d}, then there exist
universal constants c0, c1 depending only on A and C0 such that

H(A,C)2 ≤ c0 +
1 + c1∥v∥22

ϵ20
.

where in particular c0 = H(A,C0).

Proof. As notation, let λmin̸=0(M) denote the minimum nonzero eigenvalue of a square matrix M and let
λk(M) denote its kth largest eigenvalue. For each K ∈ K, let σK denote the smallest nonzero singular value

of DK =

[
AK

C0

]
∈ R(|K|+ℓ−1)×n.

We assume C0 is full rank but not C, so there are two cases. In the first case, C is full rank. Then Lemma
B.3 gives that

H(A,C)−2 ≥ min
K∈K

λmin

([
DK

vT

] [
DK

vT

]T)
≥ min

K∈K
λmin̸=0

(
DT

KDK + vvT
)
.

Since

[
DK

vT

]
have linearly independent rows, we note that DT

KDK has rank |K|+ℓ−1 and DT
KDK+vvT has

rank |K| + ℓ. This allows us to apply the rank-one eigenvalue perturbation bound from Ipsen and Nadler
(2009), reviewed in Lemma B.5, which implies that

λmin ̸=0

(
DT

KDK + vvT
)
= λ|K|+ℓ

(
DT

KDK + vvT
)

≥ 1

2

(
σ2
K + ∥v∥22 −

√
(σ2

K + ∥v∥22)2 − 4σ2
Kϵ

2
K

)

≥ 1

2

σ2
K + ∥v∥22 −

√(
σ2
K + ∥v∥22 − 2

σ2
Kϵ

2
K

σ2
K + ∥v∥22

)2


=
σ2
Kϵ

2
K

σ2
K + ∥v∥22

=
ϵ2K

1 + ∥v∥22/σ2
K

where the last inequality uses the condition that (σ2
K + ∥v∥22)2 − 4σ2

Kϵ
2
K ≥ 0. At this point, note that we

can uniformly lower bound σ2
K by a strictly positive real number σ2

0 which does not depend on v. To see

this, let K′ :=

{
K ⊂ [m] :

[
AK

C0

]
has linearly independent rows

}
and note that K′ does not depend on v

since it depends only on C0, not C. Furthermore, since K ⊂ K′ by definition,

min
K∈K

σ2
K ≤ min

K∈K′
σ2
K := σ2

0 > 0.

σ2
0 is strictly positive because by definition of K′, each σ2

K for K ∈ K′ is strictly positive, and K′ has finite
cardinality. Thus, we can uniformly lower bound σ2

K by σ2
0 .

Now, combining the previous results, we observe that

H(A,C)−2 ≥ ϵ20
1 + ∥v∥22/σ2

0

=⇒ H(A,C)2 ≤ 1 + ∥v∥22/σ2
0

ϵ20
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where we remind the reader that ϵ0 := minK∈K ϵK .

In the second case, C is not full rank and v can be expressed as a linear combination of the rows of C0. In
this case, for any b ∈ Rm, d ∈ Rℓ, the additional constraint imposed by v either causes {Ax ≤ b, Cx ≤ d}
to be empty (which has no effect on the Hoffman constant), or the additional constraint imposed by v is
redundant and {Ax ≤ b, Cx = d} = {Ax ≤ b, C0x ≤ d1:(ℓ−1)}, which also has zero effect on the Hoffman
constant. As a result, we conclude that in this case

H(A,C)−2 = H(A,C0)
−2.

Combining the cases yields

H(A,C)2 ≤ H(A,C0)
2 +

1 + ∥v∥22/σ2
0

ϵ20

which concludes the proof.

Lemma B.5 (Ipsen and Nadler (2009), Corollary 2.7.). Fix any symmetric matrix M ∈ Rn×n and any
vector v where M has the eigendecomposition

M =

k−1∑
i=1

diuiu
T
i for eigenvalues d1 ≥ d2 ≥ . . . dk−1 > 0 and eigenvectors u1, . . . , uk−1.

Let λk(M + vvT ) denote the kth largest eigenvalue of M + vvT , and let ϵ denote the norm of the projection
of v onto the orthogonal complement of u1, . . . , uk−1. Then

λk(M + vvT ) ≥ 1

2

[
dk−1 + ∥v∥22 −

√
(dk−1 + ∥v∥22)2 − 4dk−1ϵ2

]
.

B.2.2 Properties of the optimal transport constraint matrix

Lemma B.6 (Properties of the optimal transport constraint matrix). Fix m ∈ N and define

A =


1m×1 0m×1 · · · 0m×1 Im×m

0m×1 1m×1 · · · 0m×1 Im×m

...
...

...
...

...
0m×1 0m×1 · · · 1m×1 Im×m

 ∈ Rm2×2m.

In other words, the rows of A are simply the row vectors {
[
ei ej

]
}i,j∈[m], where ei ∈ R1×m denotes the i-th

canonical basis vector in Rm. Then the following holds:

1. Let κ :=
[
−1m 1m

]
. Then the null space of A, denoted null(A), is simply then span of κ, i.e.,

null(A) = span(κ). This implies rank(A) = 2m− 1.

2. Let a1, . . . , aK denote any K linearly independent rows of A. Then there exists I, J ⊂ [m] such
that at least one of I, J is a nonempty strict subset of [m] satisfying the following. For any vector
µ = [µ0, µ1] ∈ R2m such that µ0, µ1 ∈ Rm are probability vectors, let µr denote the residual vector
after projecting out a1, . . . , aK from µ. Then

∥µr∥22 ≥ 1

2m

∑
i∈I

µi −
∑
j∈J

µj+m

2

holds for all µ which are linearly independent from a1, . . . , aK .

3. In the above result, if K = 2m− 2, then 1
2m

(∑
i∈I µi −

∑
j∈J µj+m

)2
> 0.

Proof. First result. It is easy to see by definition of κ that
[
ei ej

]T
κ = 0 for any i, j ∈ [m]; therefore

span(κ) ⊂ null(A).

To show that null(A) ⊂ span(κ), fix any vector v ∈ R2m ̸∈ span(κ). Note that v ∈ span(κ) if and only
if both of the following hold: (a) each entry of v has the same absolute value and (b) v1:m = −v(m+1):2m.
Since v ̸∈ span(κ) by assumption, either (a) or (b) does not hold. We now deal with these cases in turn.
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In case (a), there exist two coordinates i, j ∈ [2m] such that |vi| ≠ |vj |. Assume WLOG that i, j ∈ [m] (the
proof is analogous even if not); in this case, we can see that([

ei e1
]
−
[
ej e1

])T
v = vi − vj ̸= 0

and thus v ̸∈ null(A).

In case (b), there exists i ∈ [m] such that vi ̸= −vi+m. Then we observe([
ei e1

]
+
[
e1 ei

]
−
[
e1 e1

])T
v = vi + vi+m ̸= 0

This proves null(A) = span(κ). By the rank-nullity theorem, this implies rank(A) = 2m− 1.

Second result. Suppose that a1, . . . , aK , µ are linearly independent. Note that µ is an element of the row
space of A: this is because µTκ = µT

0 1m −µT
1 1m = 0, and thus µ is orthogonal to the null space of A. Since

rank(A) = 2m− 1, this implies that K ≤ 2m− 2. Also, as notation, the definition of A ensures that we can
represent ak =

[
eik ejk

]
for pairs of coordinates (ik, jk) ∈ [m]× [m] for k = 1, . . . ,K.

To bound the norm of ∥µr∥22, we will explicitly find a vector which is orthogonal to {
[
eik ejk

]
}k∈[K] but

does not lie in the span of κ. In particular, suppose that there exists some I ⊂ [m], J ⊂ [m] such that (1)
I is a nonempty proper subset of [m] and (2) {k ∈ [K] : ik ∈ I} = {k ∈ [K] : jk ∈ J}. In other words, the
pairs {(ik, jk)}k∈K have the relationship that ik ∈ I if and only if jk ∈ J across all k ∈ [K]. In a moment,
we will show that such an I and J exist. For now, we suppose that I, J exist and use them to show the
result of the proof.

Given such subsets I, J , define the vector

bI,J := [eI −eJ ] ∈ R2m

where above, as notation, eI :=
∑

i∈I ei and eJ :=
∑

j∈J ej . The definition of I, J allows us to easily check

that bI,J is orthogonal to {
[
eik ejk

]
}k∈[K]: in particular,

[
eik ejk

]T
bI,J =

{
0 ik ̸∈ I and jk ̸∈ J

1− 1 = 0 ik ∈ I and jk ∈ J

where the two cases listed above are the only two cases by construction of I, J . If µr is the projection of µ
onto the orthogonal complement of a1, . . . , aK , this implies that

∥µr∥22 ≥ 1

∥bI,J∥22

(
bTI,Jµ

)2
=

(∑
i∈I µi −

∑
j∈J µj+m

)2
|I|+ |J |

≥ 1

2m

∑
i∈I

µi −
∑
j∈J

µj+m

2

which is the desired result. As a result, all that is left to prove is the existence of I and J .

To see this, consider the bipartiate graph with vertices V = {(v1, . . . , vm, w1, . . . , wm)} where we say that
there is an edge between (vi, wj) if and only if

[
ei ej

]
∈ a1, . . . , aK , and there are no edges among

(v1, . . . , vm) and (w1, . . . , wm). This is a graph with 2m vertices and less than 2m − 2 edges, so it cannot
be connected, since a connected graph with 2m vertices must have at least 2m− 1 edges. Thus, there exist
two vertices in V where there is no path between the vertices.

Now, pick I ⊂ [m] and J ⊂ [m] to be any sets such that {vi : i ∈ I} ∪ {wj : j ∈ J} is any connected
component of the graph. We now claim that that (1) ik ∈ I ⇔ jk ∈ J and (2) at least one of I, J is a
nonempty strict subset of [m].

To show (1), suppose that ik ∈ I. Then since there is an edge between (ik, jk) and (I, J) is a connected
component, we conclude jk ∈ J . This proves that ik ∈ I =⇒ jk ∈ J , and the converse follows immediately
from the same logic, proving (1).

To show (2), observe that at least one of I, J is nonempty by construction. Assume WLOG that I is
nonempty. It suffices to show that if I is not a strict subset of [m], that is, I = [m], then J must be a
nonempty strict subset of [m]. This is because (i) J ̸= [m] because otherwise the graph would be fully
connected, and (ii) J ̸= ∅ because I is nonempty, so ik ∈ I for some k, which implies jk ∈ J by property
(1). This completes the proof of the second result.
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Third result. Suppose K = 2m − 2. Then if a1, . . . , aK , µ are linearly independent, they must span the
full row space of A, which has rank 2m − 1 (and note that µ is an element of the row space of A). Now,
suppose for sake of contradiction that

bTI,Jµ =
∑
i∈I

µi −
∑
j∈J

µj+m = 0.

Since µTκ = 0 as well, this implies that µ is orthogonal to span(bI,J , κ). Since bI,J , κ are two linearly
independent vectors which are both orthogonal to a1, . . . , aK , and a1, . . . , aK have rank 2m−2, this implies
that µ ∈ span(a1, . . . , aK), which contradicts the assumption that a1, . . . , aK , µ are linearly independent.

B.2.3 Putting it all together

Lemma B.7. Fix m ∈ N and define the matrix

A =


1m×1 0m×1 · · · 0m×1 Im×m

0m×1 1m×1 · · · 0m×1 Im×m

...
...

...
...

...
0m×1 0m×1 · · · 1m×1 Im×m

 ∈ Rm2×2m.

For any c ∈ Rm2

and µ(x) ∈ R2m which is the concatenation of two m-length probability vectors, define

A0 :=

[
A 0
0 −Im2

]
and C0 :=

[
0 [AT ]1:2m−1

]
and C =

[
0 [AT ]1:2m−1

µ(x)T −cT
]
.

Finally, for any I, J ⊂ [m], define

δI,J(x) :=

∑
i∈I

µi(x)−
∑
j∈J

µj+m(x)

2

.

Then there exist universal constants c0, c1 depending only on m and c such that

H(x)2 := H(A0, C)
2 ≤ c0 + c1 max

I,J⊂[m]

I(δI,J(x) ̸= 0)

δI,J(x)
<∞.

where we use the convention that 0
0 = 0, so the right-hand term is always finite. This implies that if X is a

random variable such that
I(δI,J (x)̸=0)

δI,J (X) has a kth moment for each I, J ⊂ [m], then

E[|H(X)|2k] <∞.

Proof. Lemma B.6 implies that C0 is full rank, so we may apply the “Hoffman rank-one update formula”
from Lemma B.4. To do this, we need the following notation:

• Define K to be the subsets of the rows of A0 such that

[
AK

C

]
has linearly independent rows.

• For each K ∈ K, define DK =

[
[A0]K
C0

]
and let ϵK denote the squared norm of the projection of

[µ(x)T , −cT ] onto the orthogonal complement of the row space of DK . We also let ϵ0 = minK∈K ϵK .

Then by Lemma B.4, there exist universal constants c0, c1 depending only on A and C0 (which thus do not
depend on x) such that

H(A0, C)
2 ≤ c0 +

(1 + c1)∥[µ(x)T , −cT ]∥22
∥ϵ0∥22

≤ (1 + c1)(4 + ∥c∥22)
∥ϵ0∥22

where the above equation uses the fact that ∥µ(x)∥1 = 2 since it is the concatenation of two probability
vectors. Since ∥c∥22 does not change with x, we can reset the values of c0, c1 to conclude that

H(A0, C)
2 ≤ c0 +

c1
∥ϵ0∥22

.
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The only quantity here which depends on µ(x) is ϵ0. To analyze its behavior, we must analyze {ϵK}K∈K.
To do this, we need even more notation. Indeed, for each K ∈ K, by definition of A0 and C0 there exists
some K1,K2 ⊂ [m2] such that

DK :=

[
[A0]K
C0

]
=

AK1
0

0 −[Im2 ]K2

0 [AT ]1:(2m−1)

 :=

[
AK1 0
0 BK2

]

where above, [Im2 ]K2
∈ R|K2|×m2

selects the rows of Im2 corresponding to the elements of K2 and BK2
is

defined as BK2
:=

[
[Im2 ]K2

[AT ]1:(2m−1)

]
∈ R(|K2|+2m−1)×m2

.

Let r(K) ∈ R2m+m2

denote the projection of [µ(x)T , −cT ] onto the orthogonal complement of the rows of
DK , so ϵK := ∥rK∥22. The block zeros in DK ensure that the projections of µ(x) and c happen separately.
More precisely, let rµ(x)(K1) ∈ R2m denote the projection of µ(x) onto the orthogonal complement of the

row span of AK1
and let rc(K2) ∈ Rm2

denote the projection of c onto the orthogonal complement of the
row span of BK2

. Then separability yields that

r(K) =

[
rµ(x)(K1)
rc(K2)

]
.

Since the rows of DK and [µ(x)T , −cT ] are linearly independent, ∥r(K)∥22 > 0 and at most one of
rµ(x)(K1), rc(K2) are equal to zero. This implies that either AK1

has rows which are linearly indepen-
dent of µ(x)T or BK2

has rows which are linearly independent of cT (but not necessarily both). Thus, if we
define

K1 =

{
K1 ⊂ [m2] :

[
AK1

µ(x)T

]
has linearly independent rows

}
K2 =

{
K2 ⊂ [m2] :

[
BK2

cT

]
has linearly independent rows

}
we obtain that

∥r(K)∥22 ≥ min

 min
K1∈K1

∥rµ(x)(K1)∥22, min
K2∈K2

∥rc(K2)∥22︸ ︷︷ ︸
does not depend on x

 .

Note that the outer minimum is a minimum because the definition ofK1,K2 ensures that minK1∈K1 ∥rµ(x)(K1)∥22 >
0 and minK2∈K2 ∥rc(K2)∥22 > 0—however, as noted above, for any K ∈ K, we can only ensure that either
K1 ∈ K1 or K2 ∈ K2, not both.

Now, we note that the quantity minK2∈K2
∥rc(K2)∥22 does not depend on x and is strictly positive be-

cause it is a minimum of finitely many strictly positive real numbers. Therefore, it suffices to bound
minK1∈K1

∥rµ(x)(K1)∥22. However, Lemma B.6 does precisely this task. In particular, Lemma B.6 directly
implies that if

δI,J(x) :=

∑
i∈I

µi(x)−
∑
j∈J

µj+m(x)

2

then

min
K1∈K1

∥rµ(x)(K1)∥22 ≥ 1

2m
min

I,J⊂[m]:δI,J (x)>0
δI,J(x).

Combining these results, we obtain that there exist universal constants c2, c3 depending only on m such that

H(A0, C)
2 ≤ c2 + c3 max

I,J⊂[m]

I(δI,J(x) ̸= 0)

δI,J(x)

where above we use the convention that 0
0 = 0. This completes the proof.
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C Proofs of results in other sections

C.1 Proof of Theorem 2.1

In this section, we prove Theorem 2.1 in two steps. The first step is to prove strong duality for the constrained
optimal transport formulation in the absence of covariates. The second step is to show the problem separates
in X and the Kantorovich duals can be constructed by conditioning on X. Finally, we present primitive
conditions that justify the measurability of conditional Kantorovich duals with respect to X so that θL(X)
is a random variable.

C.1.1 Step I: strong duality without covariates

The standard Monge-Kantorovich optimal transport problem can be formulated as:

θL = inf
P

EP [f(Y (0), Y (1))] s.t. PY (1) = P ⋆
Y (1) and PY (0) = P ⋆

Y (0).

We state a version of Kantorovich strong duality below for completeness. The proof can be found in Villani
et al. (2009); Zaev (2015).

Definition 3. Let Z0, Z1, Z = Z0 × Z1 be Polish spaces, P ⋆
Y (0), P

⋆
Y (1) be two probability measures on Z0

and Z1, define the functional spaces

CL(P
⋆
Y (i)) = {f ∈ L1(Zi, P

⋆
Y (i)) ∩ C(Zi)} for i ∈ {0, 1}

as the continuous and absolutely integrable functions with respect to the topology induced by the L1(Zi, P
⋆
Y (i))

norm. For the joint space, define

CL(P
⋆) = {h ∈ C(Z) : ∃f0 ∈ CL(P

⋆
Y (0)), f1 ∈ CL(P

⋆
Y (1)) s.t. |h| ≤ f1 + f2}

Theorem C.1. Let Z0, Z1, Z = Z0 × Z1 be Polish spaces, P ⋆
Y (0), P

⋆
Y (1) be two probability measures on Z0

and Z1, f ∈ CL(P
⋆). Define the feasible set as

Q :=
{
P ∈ Q0 : PY (1) = P ⋆

Y (1) and PY (0) = P ⋆
Y (0)

}
(60)

where Q0 denotes the set of all probability measures on Z. Then strong duality holds, that is,

inf
P∈Q

EP [f(Y (0), Y (1))] = sup
ν0+ν1≤f

EP⋆
Y (0)

[ν0(Y (0))] + EP⋆
Y (1)

[ν1(Y (1))] (61)

where ν0 ∈ CL(P
⋆
Y (0)), ν1 ∈ CL(P

⋆
Y (1)).

Remark C.1. The assumption of continuity could be weakened to lower semi-continuity without constraints;
see Section 5 of Villani et al. (2009) for details. Here we state the stronger version because it is needed for
our next theorem on the constrained optimal transport problems.

With extra constraints, we can similarly derive the following duality theorem:

Theorem C.2. Let Z0, Z1, Z = Z0 × Z1 be Polish spaces, P ⋆
Y (0), P

⋆
Y (1) be two probability measures on Z0

and Z1, f ∈ CL(P
⋆), and let W be a convex cone contained in CL(P

⋆). Define the feasible set

QW :=
{
P ∈ Q0 : PY (1) = P ⋆

Y (1) and PY (0) = P ⋆
Y (0),EP [w(Y (0), Y (1))] ≤ 0,∀w ∈W

}
(62)

where Q0 denotes the set of all probability measures on Z. Assume that QW is not empty, then the minimum
of infP∈QW

EP [f(Y (0), Y (1))] can be achieved and strong duality holds in the sense that

inf
P∈QW

EP [f(Y (0), Y (1))] = sup
w∈W

sup
ν0+ν1−w≤f

EP⋆
Y (0)

[ν0(Y (0))] + EP⋆
Y (1)

[ν1(Y (1))] (63)

where ν0 ∈ CL(P
⋆
Y (0)), ν1 ∈ CL(P

⋆
Y (1)).

To prove Theorem C.2, we need a general version of the minimax theorem.
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Theorem C.3 (Theorem 2.4.1 in Adams and Hedberg (1999)). Let K be a compact convex subset of a
Hausdorff topological vector space, Y be a convex subset of an arbitrary vector space, and h be a real-valued
function (≤ +∞) on K × Y , which is lower semicontinuous in x for each fixed y, convex in x ∈ K, and
concave in y ∈ Y . Then

min
x∈K

sup
y∈Y

h(x, y) = sup
y∈Y

min
x∈K

h(x, y)

With Theorem C.1 and C.3, we can prove Theorem C.2.

Proof of Theorem C.2. First, it’s straightforward to prove the LHS is at least as large as the RHS:

inf
P∈QW

EP [f(Y (0), Y (1))] ≥ inf
P∈QW

sup
ν0+ν1−w≤f

EP [ν(Y (0)) + ν(Y (1))− w(Y (0), Y (1))]

≥ inf
P∈QW

sup
ν0+ν1−w≤f

EP⋆
Y (0)

[ν0(Y (0))] + EP⋆
Y (1)

[ν1(Y (1))]

= sup
ν0+ν1−w≤f

EP⋆
Y (0)

[ν0(Y (0))] + EP⋆
Y (1)

[ν1(Y (1))].

To prove the other direction, we note that

sup
ν0+ν1−w≤f

EP⋆
Y (0)

[ν0(Y (0))] + EP⋆
Y (1)

[ν1(Y (1))]

= sup
w∈W

sup
ν0+ν1≤f+w

EP⋆
Y (0)

[ν0(Y (0))] + EP⋆
Y (1)

[ν1(Y (1))]

= sup
w∈W

inf
P∈Q

EP [f(Y (0), Y (1)) + w(Y (0), Y (1))]

(64)

where the last equality is obtained by applying Theorem C.1 with f replaced by f + w. Now we can apply
the minimax theorem to interchange the supermum and infimum. Specifically, let K = Q, Y =W,h(P,w) =
EP [f(Y (0), Y (1))+w(Y (0), Y (1))] in Theorem C.3. It is a well-known consequence of the Prokhorov theorem
that the set Q is compact under the topology of weak convergence, and QW is a closed set of Q, thus is
also compact. The functional h is linear in both arguments and thus it is convex in the first argument and
concave in the second argument. Furthermore, h is continuous in w since w is integrable. By Corollary 1.5
of Zaev (2015), h is also continuous in P . Compactness and continuity together imply the existence of the
solution. Moreover, the assumptions of Theorem C.3 are satisfied and therefore

sup
w∈W

inf
P∈Q

EP [f(Y (0), Y (1)) + w(Y (0), Y (1))] = inf
P∈Q

sup
w∈W

EP [f(Y (0), Y (1)) + w(Y (0), Y (1))]

For P /∈ QW , there exists w1 ∈W such that EP [w1(Y (0), Y (1))] > 0 by definition. SinceW is a convex cone,
we know αw1 ∈ W for any α ≥ 0. Letting α → ∞ we see that EP [f(Y (0), Y (1)) + αw1(Y (0), Y (1))] → ∞
thus supw∈W EP [f(Y (0), Y (1)) + w(Y (0), Y (1))] = ∞. This implies

inf
P∈Q

sup
w∈W

EP [f(Y (0), Y (1)) + w(Y (0), Y (1))] = inf
P∈QW

sup
w∈W

EP [f(Y (0), Y (1)) + w(Y (0), Y (1))].

Putting two pieces together, we obtain that

sup
w∈W

inf
P∈Q

EP [f(Y (0), Y (1)) + w(Y (0), Y (1))]

= inf
P∈QW

sup
w∈W

EP [f(Y (0), Y (1)) + w(Y (0), Y (1))]

= inf
P∈QW

EP [f(Y (0), Y (1))].

where the last equality holds by the simple fact that 0 ∈W and EP [w(Y (0), Y (1))] ≤ 0 for any w ∈W and
P ∈ QW . Combining this identity with (64), the proof of the other direction is completed.

C.1.2 Step II: separability in X

Recall that the problem with covariates is

θL = inf
P∈P

EP [f(Y (0), Y (1), X)] s.t. PY (1),X = P ⋆
Y (1),X and PY (0),X = P ⋆

Y (0),X , (65)
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where

P =

{
joint distributions P over Y2 ×X s.t. EP [w(Y (0), Y (1)) | X = x] ≤ 0 ∀w ∈ Wx, x ∈ X

}
,

and Wx = {wx,1, · · · , wx,L} is a finite collection of functions. In particular, by the linearity of expectation,
we know that EP [w(Y (0), Y (1)) | X = x] ≤ 0 ∀w ∈ Wx, is equivalent to EP [w(Y (0), Y (1)) | X = x] ≤
0 ∀w ∈Wx, where Wx is the convex cone spanned by {wx,1, · · · , wx,L}. Now we are ready to prove a strong
duality result for equation (65).

Theorem C.4. For θL as defined in equation (65), and for fixed x, we define θL(x) as

θL(x) = inf
P

EP [f(Y (0), Y (1), x)]

s.t. PY (0)|X=x = P ⋆
Y (0)|X=x, PY (1)|X=x = P ⋆

Y (1)|X=x,

EP [w(Y (0), Y (1))|X = x] ≤ 0,∀w ∈Wx,

(66)

Assume that for each x, f(Y (0), Y (1), x) ∈ CL(P
⋆),Wx ⊂ CL(P

⋆), and there exists an optimal solution
P opt
Y (0),Y (1)|X=x of the problem (66) that gives a regular conditional probability distribution. Then we have

θL = EP⋆
X
[θL(X)].

Moreover, let
ν⋆0,x, ν

⋆
1,x ∈ argmax

ν0,x,ν1,x∈Vx

EP⋆
Y (0)|X=x

[ν0,x(Y (0))] + EP⋆
Y (1)|X=x

[ν1,x(Y (1))], (67)

then θL = EP⋆ [ν⋆0,X(Y (0))+ν⋆1,X(Y (1))], if ν⋆0,X(Y (0)), ν⋆1,X(Y (1)) are measurable with respect to (X,Y (0), Y (1))
and integrable under P ⋆.

Proof. We denote by Qx the set of conditional distributions that correspond to a feasible solution to problem
(66). Note that

θL = inf
P∈P

EP [f(Y (0), Y (1), X)] s.t. PY (k),X = P ⋆
Y (k),X for k ∈ {0, 1}

= inf
P∈P

EPX
EPY (0),Y (1)|X [f(Y (0), Y (1), X)] s.t. PY (k),X = P ⋆

Y (k),X for k ∈ {0, 1}.

By the constraint PY (1),X = P ⋆
Y (1),X and PY (0),X = P ⋆

Y (0),X , we know that for each P ∈ P, we will have
PX = P ⋆

X and PY (0),Y (1)|X=x ∈ Qx. Under the assumptions, there exists a regular conditional probability

distribution P opt
Y (0),Y (1)|X=x ∈ Qx that solves equation (66) for each x ∈ X . As a result,

θL(x) = inf
PY (0),Y (1)|X=x∈Qx

EPY (0),Y (1)|X=x
[f(Y (0), Y (1), x)].

Then θL(X) is measurable and hence
θL ≥ EP⋆

X
[θL(X)], (68)

To prove equality, construct the joint distribution P opt
X,Y (0),Y (1) = P ⋆

X ×P opt
Y (0),Y (1)|X . Since P opt

Y (0),Y (1)|X=x ∈
Qx is regular, P opt

X,Y (0),Y (1) ∈ P is a valid feasible distribution. Thus,

θL ≤ EP opt
X,Y (0),Y (1)

[f(Y (0), Y (1), X)] = EP⋆
X
[θL(X)].

Therefore, θL = EP⋆
X
[θL(X)].

To prove the second result, note that Theorem C.2 implies

θL(x) = EP⋆
Y (0)|X=x

[ν⋆0,x(Y (0))] + EP⋆
Y (1)|X=x

[ν⋆1,x(Y (1))].

Since ν⋆0,X(Y (0)), ν⋆1,X(Y (1)) are measurable with respect to (X,Y (0), Y (1)) and integrable under P ⋆, apply
the Fubini’s theorem

θL = EP⋆
X
[θL(X)] = EP⋆

X
[EP⋆

Y (0)|X=x
[ν⋆0,x(Y (0))] + EP⋆

Y (1)|X=x
[ν⋆1,x(Y (1))]] = EP⋆ [ν⋆0,X(Y (0)) + ν⋆1,X(Y (1))],

this finishes the proof.
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C.1.3 Proof of Theorem 2.1

The first claim about weak duality is straightforward from the fact that (ν0, ν1) ∈ V implies

ν0,x(y0) + ν1,x(y1) ≤ f(y0, y1, x) +

L∑
ℓ=1

λx,ℓ · wx,ℓ(y0, y1)

and as a result, for any P ∈ P

g(ν) = EP⋆ [ν0,X(Y (0)) + ν1,X(Y (1))] = EP [ν0,X(Y (0)) + ν1,X(Y (1))]

≤EP

[
f(Y (0), Y (1), X) +

L∑
ℓ=1

λX,ℓ · wX,ℓ(Y (0), Y (1))

]

=EP [f(Y (0), Y (1), X)] + EPX

[
L∑

ℓ=1

λX,ℓ · EP [wX,ℓ(Y (0), Y (1))|X]

]
≤EP [f(Y (0), Y (1), X)].

(69)

Since it holds for all P ∈ P, we conclude that g(ν) ≤ infP∈P EP [f(Y (0), Y (1), X)] = θL. The second
claim about strong duality is directly implied by Theorem C.4 with Wx being the convex cone generated by
{wx,1, . . . , wx,L}, assuming that all assumptions therein hold.

Remark C.2. Here we remark on how our examples could satisfy the regularity conditions on f and Wx.

• For Example 1, we can redefine Y (0) and Y (1) as I(Y (0) < y0) and I(Y (1) < y1). Then the problem
becomes discrete. Clearly, the objective function f(Y (0), Y (1)) = I(Y (0) = Y (1) = 1) is bounded and
continuous under the discrete topology.

• For Example 2, the objective function f(Y (0), Y (1)) = (Y (1)− Y (0))2 is clearly continuous under the
standard Euclidean topology in R2. It is bounded by 2(Y (0)2 + Y (1)2) which satisfies the integrability
assumption if Y (0), Y (1) have finite second moments.

• For Example 3, we can equip the space for (Y, S) by the product of the Euclidean topology on R
and the discrete topology on {0, 1}. The objective function f((Y (0), S(0)), (Y (1), S(1))) = (Y (1) −
Y (0))I(S(1) = S(0) = 1) is bounded by |Y (1)| + |Y (0)| which satisfies the integrability assumption if
Y (0), Y (1) have finite first moments. Further, the constraint function w((Y (0), S(0)), (Y (1), S(1))) =
I(S(0) ≤ S(1)) is continuous and integrable under the discrete topology.

• For Example 4, if the distribution of (Y (0), Y (1)) is absolutely continuous with respect to the Lebesgue
measure on R2, then the estimand can be equivalently formulated as EP [I(Yi(1) − Yi(0) < t)]. The
objective function f(Y (0), Y (1)) = I(Y (1)−Y (0) < t) is lower semi-continuous. Since no constraint is
involved, we can apply the stronger version of Theorem C.4 discussed in Remark C.1 to obtain strong
duality.

• Examples 5 and 6 can be reasoned similarly as above.

C.1.4 Primitive assumptions for measurability

In Theorem C.4, we assume that the primal solution P opt
Y (0),Y (1)|X=x gives a regular conditional probability

distribution, and the dual solution ν⋆0,X(Y (0)), ν⋆1,X(Y (1)) are measurable with respect to (X,Y (0), Y (1)).
and integrable on the product spaces. The integrability assumption is to ensure that the bound is finite,
so we skip the discussion on it. Instead, in this section, we provide primitive conditions to justify the
measurability.

We remind the readers that a conditional distribution P opt
Y (0),Y (1)|X=x is a regular conditional probability

distribution assumption if and only if

1. For any fixed x, P opt
Y (0),Y (1)|X=x(·) is a probability distribution.

2. For any fixed A ∈ F , P opt
Y (0),Y (1)|X=x(A) is a measurable function with respect to x, where F is the

σ-algebra on the product space Y2.
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We prove the following result that the measurability assumptions are satisfied when X is Euclidean and Y
is discrete.

Proposition C.1. Assume that X = Rd and Y = {y1, . . . , yK}, both equipped with Borel σ-algebra. Further
assume that (wx(yj , yk))j,k∈[K] is measurable in x for all i, j ∈ [K], and for each x, the feasible set of (66)
is non-empty. Then the measurability assumptions of Theorem C.4 are satisfied.

To prove Proposition C.1, we will need the following results from the theory of linear programming (Matoušek
and Gärtner, 2007):

Definition 4. A basic feasible solution of the linear program

max cTx s.t. Ax = b and x ≥ 0

is a feasible solution x ∈ Rn for which there exists an m-element set B ⊆ {1, 2, . . . , n} such that

• the (square) matrix AB is nonsingular, i.e., the columns indexed by B are linearly independent,

• xj = 0 for all j /∈ B.

Lemma C.5 (Theorem 4.2.3 of Matoušek and Gärtner (2007)). Consider the following linear program

max cTx s.t. Ax = b and x ≥ 0.

1. If there is at least one feasible solution and the objective function is bounded from above on the set of
all feasible solutions, then there exists an optimal solution.

2. If an optimal solution exists, then there is a basic feasible solution that is optimal.

Proof of Proposition C.1. Since Y is discrete and the optimization problem (66) depends on x only through
the constraints PY (0)|X=x = P ⋆

Y (0)|X=x, PY (1)|X=x = P ⋆
Y (1)|X=x and EP [wx,l(Y (0), Y (1))|X = x] ≤ 0,∀l =

1, · · · , L, we can express PY (0),Y (1)|X=x as a K2 dimensional vector, denoted by p, and write equation (66)
as a linear program

θL(x) = min
p∈RK2

cTx p s.t. Ap = bx, p ≥ 0, Cxp ≤ 0, (70)

where cx ∈ RK2

is the vectorization of (f(yj , yk, x))j,k∈[K], bx ∈ R2K is the concatenation of (P (Y (0) = yj) |
X = x))Kj=1 and (P (Y (1) = yj) | X = x))Kj=1, and Cx ∈ RL×K2

with each row encodes the vectorization of
(wx(yj , yk))j,k∈[K]. Clearly, cx is measurable with respect to x. Since the measurable spaces of (X,Y (0))
and (X,Y (1)) are Radon spaces, bx is measurable with respect to x. Under the assumption, Cx is also
measurable with respect to x.

By introducing slack variables s = −Cxp ∈ RL, and q = (p, s)T ∈ RK2+L, we could transform it into a
standard form

θL(x) = max
q∈RK2+L

c̃Tx q s.t. Ãxq = b̃x, q ≥ 0, (71)

where c̃x, Ãx, b̃x are measurable functions of cx, A, bx, Cx. Thus, they are measurable with respect to x.
Moreover, by assuming the feasible set is non-empty, we can make Ax have a full row rank by removing
some rows without changing the linear program. Thus, we will assume Ax has full row rank for simplicity.

For each subset B ⊂ {1, 2, · · · ,K2 + L} such that Ãx,B is square and nonsingular, the corresponding basic

feasible solution exists if and only if Ã−1
x,Bbx ≥ 0. For any b ∈ B where B ⊂ R2K is the domain of b (namely

the concatenation of two K-dimensional simplexes), we define

Sx(b) = {B ⊂ {1, 2, · · · ,K2 + L} : Ãx,B is square, nonsingular and Ã−1
x,Bb ≥ 0}.

Note that Sx(b) can only take finitely many (set) values, denoted by S1, . . . SI . This defines a partition
(Mx,1, . . . ,Mx,I) of B where

Mx,i = {b ∈ B : Sx(b) = Si}.

Clearly, each Mx,i is a polytope determined by finitely many linear inequalities whose coefficients are mea-

surable with respect to x. Thus, {I(b̃x ∈ Mx,i)}Ii=1 is measurable with respect to x as well. For each

i ∈ {1, . . . , I}, if b̃x ∈Mx,i, then

θL(x) = max
B∈Si

c̃Tx Ã
−1
x,B b̃x.
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Since it is defined over a finite number of sets, the maximum can be achieved. Denote by B
(i)
x the maximizer

(with the smallest i when multiple optimums exist). Note that B
(i)
x is maximizer of finitely many measurable

functions of (c̃x, Ãx, b̃x), it is also measurable with respect to x. As a result,

p⋆x =

Ix∑
i=1

Ã−1

x,B
(i)
x

b̃x · I(b̃x ∈Mx,i),

is measurable with respect to x. Thus, we have constructed a primal solution that is a regular conditional
probability distribution.

Now we move to the measurability of the dual solutions. The Lagrangian dual problem of (71) is

θL(x) = min
ν
b̃Tx ν s.t. ÃT

x ν ≥ c̃x. (72)

By reparametrizing ν = µ+ − µ− for some µ+ ≥ 0, µ− ≥ 0 and setting d = ÃT
x ν − c̃x, we can transform

equation (72) into the standard form in Lemma C.5. Using the same argument for the primal solution, we
can show the existence of dual variables that are measurable with respect to x.

Remark C.3. If Y is continuous, a weaker result has been shown that, under some regularity assumptions,
there exists a primal solution that is measurable with respect to the Borel σ-algebra generated by the weak
topology (Bogachev and Malofeev, 2020; Bogachev, 2022). We expect the same technique can be used to prove
the existence of a primal solution that is a regular conditional probability distribution and the measurability
of dual variables, though we leave formal proof of these claims for future research.

C.2 Proof of equation (38)

The proof is in three steps. First, we review the derivation of the Lagrange dual. Second, we show the result
in the setting where there are no covariates; then, we generalize to the case with covariates.

First, we review the form of the Lagrange dual, following Boyd and Vandenberghe (2004). Note that the
objective function is the map o : P → R where P 7→ EP [Y (1) − Y (0)] with domain P. The optimization
variable is P ∈ P, a distribution over (X,W, Y (0), Y (1)) satisfying strong ignorability and strict overlap,
which induces a distribution PX,W,Y over (X,W, Y ). For every P ∈ P, EP [Y (1) − Y (0)] is a functional of
PX,W,Y ; thus, θ(P

⋆) is identifiable, and we have the equation

θ(P ⋆) = min
P∈P

E[Yi(1)− Yi(0)] s.t. PX,W,Y = P ⋆
X,W,Y .

Since our constraint is PX,W,Y = P ⋆
X,W,Y , the Lagrangian is simply the objective function plus an additional

linear functional of the difference between PX,W,Y and P ⋆
X,W,Y . In other words, for any h : X×{0, 1}×Y → R,

the Lagrangian is defined as

L(P, h) = EP [Y (1)− Y (0)] + EP⋆ [h(X,W, Y )]− EP [h(X,W, Y )]

= EP⋆ [h(X,W, Y )] + EP [Y (1)− Y (0)− h(X,W, Y )].

The Lagrange dual function is simply the infimum of L(P, h) over P ∈ P:

g(h) = EP⋆ [h(X,W, Y )] + inf
P∈P

EP [Y (1)− Y (0)− h(X,W, Y )] = EP⋆ [h(X,W, Y )] + κ(h)

for κ(h) as defined previously, which shows the result.

Now, we show the main result in the setting where X contains one element and thus there are no covariates.
In this case, fix any function h : {0, 1} × Y → R. For w, y ∈ {0, 1} × Y, we can write

h(w, y) = wh1(y) + (1− w)h0(y)

for h1, h0 : Y → R. Note that under any P ∈ P, we have by weak duality and unconfoundedness that

θ(P ) = EP [Y (1)− Y (0)]

≥ EP [Wh1(Y (1)) + (1−W )h0(Y (0)) + κ(h)]

= P (W = 1)EP [h1(Y (1))] + P (W = 0)EP [h0(Y (0))] + κ(h).
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Taking limits as P (W = 1) → 1 and P (W = 0) → 0 (note this does not violate strict overlap for each P as
P (W = 1) ∈ (0, 1)), we obtain that

κ(h) ≤ min
P∈P

EP [Y (1)− Y (0)]− EP [h1(Y (1))].

Letting P by any distribution such that Y (0) = max(Y) with probability one, we obtain

κ(h) ≤ min
P∈P:Y (0)=max(Y) a.s.

EP [Y (1)− h1(Y (1))]−max(Y).

We can choose P to be a point mass such that Y (0) = max(Y) and Y (1) = miny∈Y y − h1(y) which yields
κ(h) ≤ −max(Y) + miny∈Y y − h1(y). This directly implies that for any y ∈ Y,

κ(h) ≤ −max(Y) + y − h1(y) =⇒ h1(y) + κ(h) ≤ y −max(Y).

Repeating this analysis yields
h0(y) + κ(h) ≤ min(Y)− y

which by definition of h1, h0 completes the proof in the case where X has one element. In particular, we
proved that if EP [h(W,Y )] ≤ θ(P ) for all P ∈ P, then

h(W,Y ) + κ(h) ≤

{
Y −max(Y) W = 1

min(Y)− Y W = 0.

Now consider the general case where X may have multiple or infinitely many elements. Note that we must
have that EP [h(Xi,Wi, Yi)] + κ(h)] ≤ θ(P ) holds for all P ∈ P. As a result, this must also hold conditional
on X = x for all x ∈ X and all P ∈ P; otherwise, we could consider some P which guarantees that X = x
with probability one for some worst case choice of x. Since this must hold conditional on X, it reduces to
the case with no covariates. This completes the proof.

D Additional methodological details

D.1 Choosing the minimum norm solution when ν̂ is not unique

Our suggested strategy to compute optimal dual variables involves solving the following optimization prob-
lem over ν0,x, ν1,x : Y → R:

ν̂0,x, ν̂1,x ∈ argmax
ν0,x,ν1,x∈Vx

EP̂Y (0)|X=x
[ν0,x(Y (0))] + EP̂Y (1)|X=x

[ν1,x(Y (1))]. (73)

This problem does not always have a unique solution. For most of our theory, except for Lemma 3.3 and
Theorem 3.4, this does not matter; the theorems will hold if one computes any solution to this equation.
However, practically speaking, it may be helpful to pick the minimum norm solution to reduce the variance of
the final estimator. Furthermore, Lemma 3.3 specifically assumes that we take the minimum norm solution
(as proposed in Section 2). In this section, we formalize the notion of the minimum norm solution and
discuss how to compute it.

Precisely, we suggest taking the minimum norm solution with respect to the L2 inner product on Vx. In
particular, assume that Y (0) | X = x and Y (1) | X = x have conditional densities with respect to some base
measure ψ on Y. (E.g., we choose ψ to be the Lebesgue measure for continuous outcomes and the counting
measure for discrete outcomes.) Then the inner product is defined as

⟨(ν0,x, ν1,x), (ν′0,x, ν′1,x)⟩ :=
∫
ν0,x(y0)ν

′
0,x(y0)ψ(dy0) +

∫
ν1,x(y1)ν

′
1,x(y1)ψ(dy1). (74)

We note that in some settings, all solutions to Eq. (73) may have infinite norms. In this case, we recommend
just picking a solution at random, since any solution is a minimum norm solution.

To compute the minimum norm solution, we recommend using the discretization scheme from Section 4.
In particular, we approximate Y (0), Y (1) as discrete variables on finite sets Y0 = {y0,1, . . . , y0,nvals,x},Y1 =
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{y1,1, . . . , y1,nvals,x} with conditional PMFs {p0,j,x}nvals
j=1 , {p1,i,x}

nvals
i=1 . Then, we can approximately solve Eq.

(73) by solving the following linear program:

max

nvals∑
j=1

p0,j,xν0,x(y0,j,x) +

nvals∑
i=1

p1,i,xν1,x(y1,i,x)

s.t. ν0,x(y0,j,x) + ν1,x(y1,i,x)−
L∑

ℓ=1

λx,ℓwx,ℓ(y0,j,x, y1,i,x) ≤ f(y0,j,x, y1,i,x, x) for all i, j ∈ [nvals]

λx,1, . . . , λx,L ≥ 0.

To find an (approximate) minimum norm solution, we first solve the original version of this linear program
and find the optimal objective value ô for the linear program. Then, to find a minimum norm solution, we
solve the new convex quadratic program which minimizes the norm over all optimal solutions:

min

nvals∑
j=1

ν0,x(y0,j,x)
2 +

nvals∑
i=1

ν1,x(y1,i,x)
2

s.t.

nvals∑
j=1

p0,j,xν0,x(y0,j,x) +

nvals∑
i=1

p1,i,xν1,x(y1,i,x) = ô

ν0,x(y0,j,x) + ν1,x(y1,i,x)−
L∑

ℓ=1

λx,ℓwx,ℓ(y0,j,x, y1,i,x) ≤ f(y0,j,x, y1,i,x, x) for all i, j ∈ [nvals]

λx,1, . . . , λx,L ≥ 0.

After solving this convex quadratic program, one can obtain full estimated dual variables ν̂0,x, ν̂1,x using
the interpolation and grid-search scheme introduced in Section 4.1 and 4.2.

D.2 Inference and model selection for generalized estimands with cross-fitting

This paper primarily considers partially identifiable estimands of the form θ(P ⋆) = EP⋆ [f(Y (1), Y (0), X)].
However, many estimands can be written in the form

θ(P ⋆) = h

(
EP⋆ [f(Y (1), Y (0), X)], EP⋆ [z1(Y (1), X)], EP⋆ [z0(Y (0), X)]

)
. (75)

for some functions z0 : Y ×X → Rd0 , z1 : Y ×X → Rd1 and h : Rd0+d1+1 → R such that h is nondecreasing
in its first argument and is continuously differentiable. In other words, θ(P ⋆) can be written as a (nonlinear)
function of a partially identifiable expectation and two identifiable expectations. We give two examples of
this below.

Example 9 (Variance of the ITE). If θ(P ⋆) = Var(Y (1)− Y (0)), we can write

θ(P ⋆) = EP⋆ [(Y (1)− Y (0))2]− (EP⋆ [Y (1)]− EP⋆ [Y (0)])2 (76)

which satisfies Eq. (75) if we set f(y1, y0, x) = (y1 − y0)
2, z0(y0, x) = y0, z1(y1, x) = y1, and h(a, b, c) =

a− (b− c)2.

Example 10 (Lee bounds under monotonicity). In the case of Lee bounds (Ex 3) under monotonicity, we
have compound potential outcomes of the form Y (0), S(0) and Y (1), S(1) and the estimand can be written
as

θ(P ⋆) =
EP⋆ [(Y (1)− Y (0))S(0)]

EP⋆ [S(0)]

which satisfies Eq. (75) if we set f((y1, s1), (y0, s0), x) = (y1 − y0)s0, z0((y0, s0), x) = s0, z1((y1, s1), x) = 0,
and h(a, b, c) = a/c.

We now show how to perform inference on estimands in the general case of Eq. (75). First, we give the
main idea without discussing cross-fitting or model selection. Then, we introduce a multiplier bootstrap-like
method to select the tightest bounds among K cross-fit estimators of θ(P ⋆). Following Appendix A, we
assume n2 = |D2| ≥ cn for some constant c > 0.
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D.2.1 Main idea

As notation, let β = EP⋆ [f(Y (1), Y (0), X)] ∈ R, κ1 = EP⋆ [z1(Y (1), X)] ∈ Rd1 , and κ0 = EP⋆ [z0(Y (0), X)] ∈
Rd0 so that θ(P ⋆) = h(β, κ1, κ0). If βL is the sharp lower bound on β, then θL := h(βL, κ1, κ0) is the sharp
lower bound on θ(P ⋆) since h is monotone in its first coordinate and κ1, κ0 are identified.

The main idea is as follows. For the partially identified term EP⋆ [f(Y (1), Y (0), X)], estimate dual variables
ν̂0, ν̂1 : Y × X → R from D1 using techniques from the rest of the paper such that weak duality holds, that
is, EP [ν̂0,X(Y (0))+ ν̂1,X(Y (1)) | D1] ≤ EP [f(Y (1), Y (0), X)] for all P ∈ P. Then define the IPW estimators

β̂ =
1

n2

∑
i∈D2

S
(β)
i for S

(β)
i :=

Wiν̂1,Xi
(Yi)

π(Xi)
+

(1−Wi)ν̂0,Xi
(Yi)

1− π(Xi)
(77)

and for w ∈ {0, 1},

κ̂w =
1

n2

∑
i∈D2

S
(κw)
i for S

(κw)
i :=

I(Wi = w)zw(Yi, Xi)

wπ(Xi) + (1− w)(1− π(Xi))
. (78)

The multivariate CLT says that under appropriate moment conditions, conditional on D1 we have that

√
n2

 β̂κ̂1
κ̂0

−

 β̃κ1
κ0

 d→ N (0,Σ) (79)

where β̃ = E[β̂ | D1] ≤ β by weak duality and Σ := Cov
((
S
(β)
i , S

(κ1)
i , S

(κ0)
i

)
| D1

)
. The delta method

yields that

√
n2

(
h
(
β̂, κ̂1, κ̂0

)
− h

(
β̃, κ1, κ0

))
d→ N

(
0,∇h

(
β̃, κ1, κ0

)T
Σ∇h

(
β̃, κ1, κ0

))
.

By plugging in β̂, κ̂1, κ̂0, we can get a consistent estimator of the gradient ∇h
(
β̃, κ1, κ0

)
. Furthermore, we

can get a consistent estimator of Σ by letting Σ̂ denote the empirical covariance matrix of the conditionally

i.i.d. vectors {(S(β)
i , S

(κ1)
i , S

(κ0)
i )}i∈D2 . If we set θ̂L = h

(
β̂, κ̂1, κ̂0

)
and θ̃L = h

(
β̃, κ1, κ0

)
, Slutsky’s

theorem yields √√√√ n2

∇h
(
β̂, κ̂1, κ̂0

)T
Σ̂∇h

(
β̂, κ̂1, κ̂0

) (θ̂L − θ̃L

)
d→ N (0, 1) .

Using this equation, we note that

θ̂LCB = θ̂L − Φ−1(1− α)

√√√√∇h
(
β̂, κ̂1, κ̂0

)T
Σ̂∇h

(
β̂, κ̂1, κ̂0

)
n2

is an asymptotic 1−α lower confidence bound on θ̃L. Note that by weak duality, β̃ ≤ β, and therefore since
h is nondecreasing in its first argument, we have that

θ̃L = h(β̃, κ1, κ0) ≤ h(β, κ1, κ0) = θ(P ⋆)

and therefore θ̂L is a valid lower confidence bound on θ(P ⋆) as well.

Remark D.1. This calculation requires that the dimensions d0, d1 are fixed constants that do not grow with
n.

D.2.2 Cross-fitting and model-selection

In Section 2.3, we introduced a multiplier bootstrap method that selects the tightest possible dual bounds
across K dual variable estimates (e.g., fit using different subsets of the covariates), where K may grow
exponentially with n. We now generalize this method in two ways. First, we now permit the use of cross-
fitting. Second, we consider the generalized class of estimands defined in Eq. (75). However, this generality
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comes at a cost: unlike Corollary 3.1, we require that the number of dual variable estimates K is fixed and
does not grow with n.

We first define the method; then we prove its validity. Suppose given the first fold of data D1, we produce
K candidate dual variables ν̂(1), . . . , ν̂(K) ∈ V, and symmetrically using the second fold D2 we produce
ν̂(1,swap), . . . , ν̂(K,swap) ∈ V. For ease of exposition, we assume n is even and n1 = n2 = n/2. Again, the
results in this section can be easily extended to M -fold cross-fitting for M > 2. For each k ∈ [K], the
cross-fit dual lower estimate of θ(P ⋆) is defined by plugging in an IPW-mean estimator of κ1, κ0 and a dual
cross-fit lower estimator of β := EP⋆ [f(Y (1), Y (0), X)] into the definition θ(P ⋆) = h(β, κ1, κ0). Precisely:

θ̂
(k)
L := h(β̂(k), κ̂1, κ̂0), (80)

where

β̂(k) =
1

n

n∑
i=1

S
(β,k)
i for S

(β,k)
i :=


Wiν̂

(k)
1,Xi

(Yi)

π(Xi)
+

(1−Wi)ν̂
(k)
0,Xi

(Yi)

1−π(Xi)
i ∈ D2

Wiν̂
(k,swap)
1,Xi

(Yi)

π(Xi)
+

(1−Wi)ν̂
(k,swap)
0,Xi

(Yi)

1−π(Xi)
i ∈ D1,

(81)

and for w ∈ {0, 1},

κ̂w =
1

n

n∑
i=1

S
(κw)
i for S

(κw)
i :=

I(Wi = w)zw(Yi, Xi)

wπ(Xi) + (1− w)(1− π(Xi))
. (82)

The standard error σ̂(k) of
√
nθ̂

(k)
L is defined as:

σ̂(k) =

√
∇h
(
β̂(k), κ̂1, κ̂0

)T
Σ̂(k)∇h

(
β̂(k), κ̂1, κ̂0

)
, (83)

where Σ̂(k) ∈ R(1+d1+d0)×(1+d1+d0) is the empirical covariance matrix of the vectors (S
(β,k)
i , S

(κ1)
i , S

(κ0)
i ) for

i ∈ [n]. To aggregate evidence across all K lower confidence bounds, we require the following notation. Let

Σ̂full ∈ R(K+d0+d1)×(K+d0+d1) denote the empirical covariance matrix of S⃗i = (S
(β,1)
i , . . . , S

(β,K)
i , S

(κ1)
i , S

(κ0)
i ) ∈

RK+d0+d1 and let H : RK+d0+d1 → RK be the function defined by Hk(x) = h(xk, x(K+1):(K+d0+d1)). In

particular, this definition ensures that if S̄ is the sample average of {S⃗i}i∈[n], then H(S̄) = (θ̂
(1)
L , . . . , θ̂

(K)
L ).

Define

Σ̂H = ∇H(S̄)T Σ̂full∇H(S̄) and ĈH = diag
{
Σ̂H

}−1/2

Σ̂Hdiag
{
Σ̂H

}−1/2

. (84)

Then the final combined lower bound is defined as

θ̂crossfitLCB =
K

max
k=1

θ̂
(k)
L − q̂1−α

σ̂(k)

√
n
, (85)

where we define q̂1−α as the 1− α quantile of the maximum of a N (0, ĈH) vector:

q̂1−α := Q1−α

(
K

max
k=1

Zk

)
for Z ∼ N (0, ĈH). (86)

We now show that Eq. (85) defines a valid lower confidence bound under essentially the same assumptions
as Theorem 3.5 as long as the number of models K does not grow with n. We implicitly assume that the
functions defining the estimand—namely h, f , z0, z1—do not change with n. Below, note that for dual
variables ν ∈ V, g(ν) = EP⋆ [ν1,Xi

(Y (1)) + ν0,Xi
(Y (0))] is the Lagrange dual function from Section 2.1.

Corollary D.1. Suppose that h is continuously differentiable and nondecreasing in its first argument. Under
Assumption 2.1, for α ≤ 0.5,

lim inf
n→∞

P(θ̂crossfitLCB ≤ θL) ≥ 1− α,

holds as long as for each k ∈ [K], ν̂(k) satisfies Assumption 3.1 and one of the two following conditions:

1. Condition 1: There exist arbitrary deterministic dual variables ν† ∈ V satisfying Assumption 3.1 such

that E
[(
ν̂
(k)
w,X(Y (k))− ν

(k,†)
w,X (Y (k))

)2]
→ 0 holds at any rate for w ∈ {0, 1}. Note that we do not allow

{ν†w}k∈{0,1} to change with n. Furthermore, if S
(β,k,†)
i is defined analogously to S

(β,k)
i but with ν(k,†)

replacing ν̂(k) and ν̂(k,swap), then we require that

∇h
(
g(ν(k,†)), κ1, κ0

)T
Cov(S

(β,k,†)
i , Sκ1

i , Sκ0
i )∇h

(
g(ν(k,†)), κ1, κ0

)
> 0. (87)
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2. Condition 2: The outcome model is sufficiently misspecified such that the first-stage bias is larger than

n−1/2, i.e., n−1/2
(
βL − g(ν̂(k))+g(ν̂(k,swap))

2

)
p→ ∞. Furthermore, the partial derivative ∂bh(b, κ1, κ0) is

bounded away from zero for all b ∈ R.

Remark D.2. We recommend that the reader read the proofs of Theorem 3.1 and Theorem 3.5 before
reading this proof.

Remark D.3. Condition 1 and Condition 2 are the same conditions required in Theorem 3.5, with three
changes. First, for simplicity, we do not allow ν(k,†) to change with n. Second, we require the condition Eq.

(87), which ensures that the limiting variance of
√
nθ̂

(k)
L , as calculated by the delta method, is nonzero. Note

that a similar “nonzero variance” condition already appears in Theorem 3.5 via Assumption 3.1. Third, in
Condition 2, we require a lower bound on the partial derivative of h with respect to its first coordinate. This

is necessary to guarantee that if β̂(k) is asymptotically conservative for βL, then θ̂
(k)
L will be conservative for

θL.

Proof. We handle the two conditions separately.

Condition 1: We first prove the result in the special case where ν̂(k) satisfies Condition 1 for every k ∈ [K]. As

notation, let S
(k,β,†)
i , β̂(k,†), σ̂(k,†), Σ̂†

full, S⃗
†
i be defined analogously to S

(k,β)
i , β̂(k), σ̂(k), Σ̂full, S⃗i but replacing

ν̂(k) with ν(k,†), for each k ∈ [K]. The proof of Theorem 3.5 in Appendix A.3 shows the following relationships
between these quantities:

1. β̂(k) ≤ β̂(k,†) +∆k + op(n
−1/2), where (a) ∆k ≤ βL − E[β̂(k,†)] and (b) ∆k = op(1).

2. σ̂(k)− σ̂(k,†) = op(1), and a similar argument shows Σ̂full− Σ̂†
full = op(1) holds elementwise (this follows

from a uniform law of large numbers as reviewed in Appendix A.3). Note that Σ̂†
full is simply an

empirical covariance matrix of the i.i.d. vectors S⃗†
i := (S

(β,1,†)
i , . . . , S

(β,K,†)
i , S

(κ1)
i , S

(κ0)
i ), for i ∈ [n].

Thus, this also implies that Σ̂full, Σ̂
†
full

p→ Σ†
full := Cov(S⃗†

i ).

These results imply the following results:

3. The first result implies that

θ̂
(k)
L := h(β̂(k), κ̂1, κ̂0) ≤ h(β̂(k,†) +∆k + op(n

−1/2), κ̂1, κ̂0) ≤ h(β̂(k,†) +∆k, κ̂1, κ̂0) + op(n
−1/2).

The first inequality follows because h is nondecreasing in its first argument. The second argu-
ment follows because h is continuously differentiable and β̂(k,†) + ∆k, κ̂1, κ̂0 converges uniformly to
(E[β̂(k,†)], κ1, κ0) by the law of large numbers (remember that all quantities involved have bounded

2 + δ moments by assumption). Thus, h is locally Lipschitz at (E[β̂(k,†)], κ1, κ0) and the result holds.

4. Define C†
H := diag

{
Σ†

H

}−1/2

Σ†
Hdiag

{
Σ†

H

}−1/2

where Σ†
H := ∇H(E[S⃗†

i ])
TΣ†

full∇H(E[S⃗†
i ]). In words,

C†
H is essentially the population variant of ĈH . Since S̄

p→ E[S†
i ] and Σ̂full

p→ Σ†
full and ∇H is

continuous by assumption, we know that ĈH
p→ C†

H . Thus, the continuous mapping theorem yields

q̂1−α
p→ q†1−α := Q1−α

(
K

max
k=1

Zk

)
for Z ∼ N (0, CH). (88)

Since K does not grow with n, we can combine the second, third, and fourth results to obtain:

θ̂crossfitLCB :=
K

max
k=1

θ̂
(k)
L − q̂1−α

σ̂(k)

√
n

≤ K
max
k=1

h(β̂(k,†) +∆k, κ̂1, κ̂0)− q†1−α

σ̂(k,†)
√
n

+ op(n
−1/2). (89)

As notation, let κ̂ = (κ̂1, κ̂0) ∈ Rd1+d0 and κ = [κ1, κ0] ∈ Rd1+d0 . Then observe

⋆ := P
(

K
max
k=1

θ̂
(k)
L − q̂1−α

σ̂(k)

√
n

≤ θL

)
= P

(
K

max
k=1

h(β̂(k,†) +∆k, κ̂)− q†1−α

σ̂(k,†)
√
n

+ op(n
−1/2) ≤ θL

)
by Eq. (89)

= P

 K
max
k=1

√
n
(
h(β̂(k,†) +∆k, κ̂)− θL

)
σ̂(k,†) + op(1) ≤ q†1−α

 by rearrangement.
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Now, we have essentially replaced ν̂(k) with ν̂(k,†) for each k—the next step is to eliminate the random (and
non-negligible) ∆k. We will do this by replacing each ∆k with a constant ak; later, we will let ak → 0.

To be precise, recall that for each k, ∆k ≤ βL − E[β̂(k,†)] and ∆k = op(1). Thus, for each k, we may
pick a constant ak ≥ 0 such that (i) ∆k ≤ ak with probability approaching one asymptotically15 and (ii)

ak ≤ βL − E[β̂(k,†)]. Since h is nondecreasing in its first argument, this implies that (i) h(β̂(k,†) +∆k, κ̂) ≤
h(β̂(k,†)+ak, κ̂) holds asymptotically with probability approaching one and (ii) θL = h(βL, κ) ≥ h(E[β̂(k,†)]+
ak, κ). Thus, since K is finite, asymptotically we have that:

lim inf
n→∞

⋆ ≥ lim inf
n→∞

P

 K
max
k=1

√
n
(
h(β̂(k,†) + ak, κ̂)− h(E[β̂(k,†)] + ak, κ)

)
σ̂(k,†) + op(1) ≤ q†1−α

 .

Now, we have successfully replaced the ∆k’s with constants ak’s. Our next step is to modify the denominator
σ̂(k,†) and replace it with one that accounts for the influence of ak, and then bound the error from this
approximation. As notation, let σ̂(k,ak,†) be defined analogously to σ(k,†) but replacing β̂(k,†) with β̂(k,†)+ak,
that is,

σ̂(k,ak,†) =

√
∇h
(
β̂(k,†) + ak, κ̂

)T
Σ̂(k,†)∇h

(
β̂(k,†) + ak, κ̂

)
and let σ(k,ak,†) be the population variant:

σ(k,ak,†) =

√
∇h
(
E[β̂(k,†)] + ak, κ

)T
Σ(k,†)∇h

(
E[β̂(k,†)] + ak, κ

)
.

Lastly, let Ẑk =
√
n

σ(k,ak,†) (h(β̂
(k,†) + ak, κ̂)− h(E[β̂(k,†)] + ak, κ)). Rearranging, we obtain

lim inf
n→∞

⋆ ≥ lim inf
n→∞

P
(

K
max
k=1

σ(k,ak,†)

σ̂(k,†) Ẑk + op(1) ≤ q†1−α

)
(90)

≥ lim inf
n→∞

P
(

K
max
k=1

Ẑk +
K

max
k=1

(
σ(k,ak,†)

σ̂(k,†) − 1

)
Ẑk + op(1) ≤ q†1−α

)
. (91)

Now, we observe that Ẑ := (Ẑ1, . . . , ẐK) is asymptotically multivariate Gaussian by the multivariate delta
method. In particular, define the vector of summands

Vi := (S
(β,1,†)
i + a1, . . . , S

(β,K,†)
i + aK , S

(κ1)
i , S

(κ0)
i ) ∈ RK+d0+d1

and let V̄ = 1
n

∑n
i=1 Vi. If we define β̃L = (E[β̂(1,†)], . . . ,E[β̂(K,†)]) and a⃗ = (a1, . . . , aK), the multivariate

CLT yields that √
n(V̄ − (β̃L + a⃗, κ))

d→ N (0,Σfull), (92)

where notably Σfull does not depend on a⃗. For the continuously differentiable function H : RK+d0+d1 → RK

defined by Hk(V̄ ) := h(V̄k, V̄K+1:(K+d0+d1))) = h(β̂(k,†) + ak, κ̂), the multivariate delta method yields

Ẑ
d→ N (0, CH,⃗a) where CH,⃗a is the correlation matrix of ΣH,⃗a := ∇H(β̃L + a⃗, κ)TΣfull∇H(β̃L + a⃗, κ).

(Note that ΣH,⃗a has nonzero diagonal entries for all a⃗ sufficiently close to zero because ΣH,⃗0 = ΣH has
nonzero diagonal entries by assumption and ∇H is assumed to be continuous.) Thus, by the continuous
mapping theorem, we conclude that as n→ ∞,

K
max
k=1

Ẑk +
K

max
k=1

(
σ(k,ak,†)

σ̂(k,†) − 1

)
Ẑk

d→ K
max
k=1

Zk +
K

max
k=1

(
σ(k,ak,†)

σ(k,†) − 1

)
Zk for Z ∼ N (0, CH,⃗a).

This implies

lim inf
n→∞

⋆ ≥ PZ∼N (0,CH,a⃗)

(
K

max
k=1

Zk +
K

max
k=1

(
σ(k,ak,†)

σ(k,†) − 1

)
Zk ≤ q†1−α

)
,

where this holds for all a⃗ sufficiently close to zero. Note that by assumption, the gradient of h is continuous;
thus ∇H is continuous as well. Thus, taking the limit as a⃗→ 0, we obtain

lim inf
n→∞

⋆ ≥ PZ∼N (0,CH,⃗0)

(
K

max
k=1

Zk ≤ q†1−α

)
= 1− α,

15That is, I(∆k ≤ ak)
p→ 1, although the convergence does not necessarily hold a.s.
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where the right-hand equality holds by definition of q̂1−α.

Condition 2: We now consider the general case. Without loss of generality, suppose k = 1, . . . ,K0 satisfy
Condition 1, and k = K0 + 1, . . . ,K satisfy Condition 2. Note that the proof for Condition 1 shows that

lim inf
n→∞

P
(

K0
max
k=1

θ̂
(k)
L − q̂1−α

σ̂(k)

√
n

≤ θL

)
≥ 1− α,

where in particular this holds because the addition of ν̂(K0+1), . . . , ν̂(K) does not affect the values of θ̂
(k)
L , σ̂(k)

and can only increase the value of q̂1−α. Thus, it suffices to show that

lim inf
n→∞

P
(
max
k>K0

θ̂
(k)
L − q̂1−α

σ̂(k)

√
n

≤ θL

)
= 1.

To do this, note that whenever α ≤ 0.5, q̂1−ασ̂
(k) ≥ 0. Thus, it suffices to show that θ

(k)
L ≤ θL with proba-

bility 1 asymptotically. Yet Condition 2 guarantees that (i) β̂(k) ≤ βL with probability one asymptotically

and (ii) β̂(k) − βL ≫ n−1/2 (see the proof of Theorem 3.5 in Appendix A.3) for k > K0. Furthermore,
we assume that the partial derivative of ∂bh(b, κ) is uniformly bounded above some constant; since h is
continuously differentiable, this means that ∂bh(b, x) is uniformly bounded above some constant γ for all x

in a neighborhood of κ. Since κ̂
p→ κ asymptotically, we have that with probability one asymptotically,

θ̂
(k)
L − θL = h(β̂(k), κ̂)− h(βL, κ)

≤ h(βL, κ̂)− h(βL, κ)︸ ︷︷ ︸
Op(n−1/2)

+ γ(β̂(k) − βL)︸ ︷︷ ︸
nonpositive and ≫n−1/2

.

In particular, the left term is Op(n
−1/2) (or smaller) by the delta method, and the right term is ≫ n−1/2

by the previous remarks. Since the right-hand term dominates the left-term and is asymptotically less than

zero, this implies that θ̂
(k)
L − θL ≤ 0 with probability one for all k > K0. This completes the proof.

E Alternative approaches for computation

E.1 Series estimator-based approach to approximate dual variables

An alternative option to the discretization-based approach discussed in Section 4.2 is to choose a collection
of basis functions ϕm : Y → R for m = 1, . . . ,M ∈ N and approximate

νk,x(y) ≈
M∑

m=1

αk,m,xϕm(y) for αk,m,x ∈ R, k ∈ {0, 1},m ∈ [M ].

This reduces the problem to fitting the values of {αk,m,x}m∈M,k∈{0,1} ∈ R2M , which is a concave problem
with finitely many parameters. Of course, approximating the dual variables with a finite collection of basis
functions introduces approximation errors, but we emphasize that our approach still yields valid bounds
even if our initial estimates ν̂init based on the basis functions are arbitrarily poor. Furthermore, selecting
a collection of universal basis functions (e.g., splines, Fourier expansion, Gaussian kernel) can ensure that
the approximation errors are not too large.

However, fitting {αk,m,x}k∈{0,1},m∈[M ] is still challenging because the conditional validity constraint (ν0,x, ν1,x) ∈
Vx is still infinite-dimensional. To overcome this, we use ideas from the optimal transport literature. In-
deed, for this particular problem, we can eliminate the effect of the constraints by adding the maximum
deviation from the constraints as the penalty in an objective. In particular, for the product measure
P̂prod,x := P̂Y (1)|X=x × P̂Y (0)|X=x, consider the objective

O(ν0,x, ν1,x, {λx,ℓ}Lℓ=1)

:=EP̂prod,x

[
ν0,x(Y (0)) + ν1,x(Y (1))− max

y1,y0∈Y
ν0,x(y0) + ν1,x(y1)−

L∑
ℓ=1

λx,ℓwx,ℓ(y0, y1)− f(y0, y1, x)︸ ︷︷ ︸
max penalty

]
(93)

We can maximize this unconstrained objective to find conditionally optimal dual variables, as stated below.
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Proposition E.1. Suppose ν̂init0,x , ν̂
init
1,x : Y → R and λ̂x,1, . . . , λ̂x,L ≥ 0 maximize the objective O(ν0,x, ν1,x, {λx,ℓ}Lℓ=1)

among all functions ν0,x, ν1,x : Y → R and constants λx,1, . . . , λx,L ≥ 0. Let cx be the minimum constant
such that (ν̂init0,x − cx, ν̂

init
1,x − cx) ∈ Vx are conditionally valid dual variables. Then ν̂init0,x − cx, ν̂

init
1,x − cx solve

the conditional dual problem Eq. (28).

In other words, if we can find initial solutions ν̂init0,x , ν̂
init
1,x , λ̂x,1, . . . , λ̂x,L ∈ argmaxO(ν0,x, ν1,x, {λx,ℓ}Lℓ=1), we

can simply apply the grid-search from Section 4.1 to find an optimal solution to the conditional dual problem.
In practice, we recommend optimizing a sample version of this objective. In particular, let {Ỹb(0), Ỹb(1)}Bb=1

denote samples from P̂prod,x for some large B. Then equation (93) can be approximated by

Ô(ν0,x, ν1,x, {λx,ℓ}Lℓ=1) =
1

B

B∑
b=1

{
ν0,x(Ỹb(0)) + ν1,x(Ỹb(1))

− max
b∈[B]

[
ν0,x(Ỹb(0)) + ν1,x(Ỹb(1))−

L∑
ℓ=1

λx,ℓwx,ℓ(Ỹb(0), Ỹb(1))− f(Ỹb(0), Ỹb(1), x)

]}
.

The sub-gradient with respect to αk,m,x can be easily computed and hence it can optimized via gradient-
based methods.

One shortcoming of the above approach is that the objective function is non-smooth. An alternative strategy
is to use a smooth approximation of the exact objective equation (93):

Oϵ(ν0,x, ν1,x, {λx,ℓ}Lℓ=1) := EP̂prod,x
[ν0,x(Y (0)) + ν1,x(Y (1))−Rϵ,x(Y (1), Y (0))]

where the random variable Rϵ(Y (1), Y (0)) is the following smoothed penalty function:

Rϵ,x(Y (1), Y (0)) = ϵ exp

(
ν0,x(Y (0)) + ν1,x(Y (1))−

∑L
ℓ=1 λx,ℓwx,ℓ(Y (0), Y (1))− f(Y (0), Y (1), x)

ϵ

)
.

This smooth penalty is typically known as an entropy regularizer in optimal transport theory (Villani et al.,

2009; Peyré et al., 2019). Note for each ϵ, using the basis approximation νk,x(y) ≈
∑M

m=1 αk,m,xϕm(y),
maximizing Oϵ(ν0,x, ν1,x, {λx,ℓ}Lℓ=1) is now a finite-dimensional unconstrained concave problem which we
can solve using stochastic gradient descent. Thus, as a heuristic algorithm (which is commonly used in
the optimal transport literature), we suggest using stochastic gradient descent to maximize the smoothed
objective and sending ϵ→ 0 along some schedule as we take more gradient steps. This algorithm is closely
related to the Sinkhorn algorithm, and indeed, this optimization strategy is widely used in optimal transport
literature (e.g. Sinkhorn, 1964; Villani et al., 2009; Cuturi, 2013; Altschuler et al., 2017; Peyré et al., 2019).

The main message is as follows: since the conditional problem Eq. (28) is only optimizing over two univariate
functions, the literature contains many strategies to solve it approximately, including many additional
methods beyond the two in mentioned in this paper. When combined with the general strategy outlined in
Section 4.1, any of these methods can be used to compute the estimated dual variables ν̂. Crucially, as long
as we effectively perform the two-dimensional grid search in Section 4.1, we will get valid bounds on θL no
matter how poorly we solve Eq. (28).

E.1.1 Proof of Proposition E.1

Denote the optimal dual variables of Eq. (28) as ν⋆. Note that as long as (ν̂init0,x − cx, ν̂
init
1,x − cx) ∈ Vx are

conditionally valid dual variables, we always have

g(ν̂init0,x − cx, ν̂
init
1,x − cx) ≤ g(ν⋆0 , ν

⋆
1 )

where g is defined in equation (8). Suppose for the sake of contradiction that the inequality holds strictly.
By the definition of cx,

max
y1,y0∈Y

(ν̂init0,x (y0)− cx) + (ν̂init1,x (y1)− cx)−
L∑

ℓ=1

λ̂x,ℓwx,ℓ(y0, y1)− f(y0, y1, x) = 0.

Since ν⋆0,x, ν
⋆
1,x are both valid dual variables,

max
y1,y0∈Y

ν⋆0,x(y0) + ν⋆1,x(y1)−
L∑

ℓ=1

λ̂x,ℓwx,ℓ(y0, y1)− f(y0, y1, x) ≤ 0.
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Furthermore, notice that subtracting a constant from ν̂init0,x , ν̂
init
1,x doesn’t change the value of

O(ν̂init0,x , ν̂
init
1,x , {λ̂x,ℓ}Lℓ=1)). Thus if g(ν̂

init
0,x − cx, ν̂

init
1,x − cx) < g(ν⋆0,x, ν

⋆
1,x), we can conclude that

O(ν̂init0,x , ν̂
init
1,x , {λ̂x,ℓ}Lℓ=1) = O(ν̂init0,x − cx, ν̂

init
1,x − cx, {λ̂x,ℓ}Lℓ=1)

=g(ν̂init0,x − cx, ν̂
init
1,x − cx)− max

y1,y0∈Y
(ν̂init0,x (y0)− cx) + (ν̂init1,x (y1)− cx)−

L∑
ℓ=1

λ̂x,ℓwx,ℓ(y0, y1)− f(y0, y1, x)

<g(ν⋆0,x, ν
⋆
1,x)− max

y1,y0∈Y
ν⋆0,x(y0) + ν⋆1,x(y1)−

L∑
ℓ=1

λ̂x,ℓwx,ℓ(y0, y1)− f(y0, y1, x)

=O(ν⋆0,x, ν
⋆
1,x, {λ̂x,ℓ}Lℓ=1)

which violates the definition of (ν̂init0,x , ν̂
init
1,x ) as the minimizer of O(ν0,x, ν1,x, {λ̂x,ℓ}Lℓ=1). Thus we must have

equality
g(ν̂init0,x − cx, ν̂

init
1,x − cx) = g(ν⋆0 , ν

⋆
1 ).

E.2 Deep Dual Bounds: an alternative approach for computation

In the main text, we focus on the two-step approach equation (2.2) that first estimates conditional distri-
butions P̂Y (0)|X and P̂Y (1)|X , and then solves the dual problem equation (11) for each x ∈ {Xi : i ∈ D2}.
However, this two-step approach is infeasible in settings where covariates are complex and conditional dis-
tribution modelling is challenging. For instance, when X includes unstructured data like images and texts,
standard regression-based methods tends to be highly imprecise due to the lack of representation learning
while modern machine learning methods are either not designed for estimating conditional distributions or
involveing excessive computation. Inspired by the recent success of deep learning in dealing with complex
data and its application in optimal transport (Makkuva et al., 2020), we develop the Deep Dual Bounds as an
alternative approach that parametrizes the dual variables ν̂0,x(y), ν̂1,x(y) by neural networks and computes
them via end-to-end training.

Recall Theorem 2.1, which states that,

θL = sup
ν0,ν1∈V

EP⋆ [ν0,X(Y (0)) + ν1,X(Y (1))].

First, we transform the above constrained optimization problem into an unconstrained optimization problem
by adding a proper penalty onto the objective function. Following equation (93), we consider the following
optimization problem:

maxE
[
ν0,X(Y (0)) + ν1,X(Y (1))− max

y1,y0∈Y
ν0,X(y0) + ν1,X(y1)−

L∑
ℓ=1

λX,ℓwX,ℓ(y0, y1)− f(y0, y1, X)

]
.

Unlike the standard supervised learning problems, one cannot directly apply the stochastic gradient-based
methods to optimize the above objective because Y (0) and Y (1) cannot be simultaneously observed.

To address this issue, we construct a pseudo-sample by matching on covariates (Abadie and Imbens, 2006;
Stuart, 2010). In particular, for each unit (Xi,Wi, Yi), we match it to the nearest neighbor j(i) from the
other group, i.e.,

j(i) = argmin
k:Wk=1−Wi

∥Xi −Xk∥,

and impute Yi(0) by Yj(i). This yields a pseudo-sample with triplets

(X̃i, Ỹi(0), Ỹi(1)) =

{
(Xi, Yi, Yj(i)) Wi = 0

(Xi, Yj(i), Yi) Wi = 1
. (94)

Then we consider the following proxy objective function,

Ô(ν0,x, ν1,x, {λx,ℓ}Lℓ=1)

:=
1

n

n∑
i=1

[
ν0,X̃i

(Ỹi(0)) + ν1,X̃i
(Ỹi(1))

]

− n
max
i=1

[
ν0,X̃i

(Ỹi(0)) + ν1,X̃i
(Ỹi(1))−

L∑
ℓ=1

λℓ(Xi)wXi,ℓ(Ỹi(0), Ỹi(1))− f(Ỹi(0), Ỹi(1), X̃i)

]
. (95)
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With this sub-differentiable loss function, we parametrize ν0,x, ν1,x, {λx,ℓ}Lℓ=1 by neural networks and ap-
ply stochastic gradient-based methods to learn the dual variables. Finally, we apply the same procedure
described in Section 4.1 to the solutions to guarantee the dual feasibility and hence the validity of the
estimated bounds.

E.2.1 Experimental Results

We apply the Deep Dual Bounds to the applications described in Section 5. We parametrize the dual
variables by 5-layer fully connected ReLU neural nets, and apply the full batch Adam optimizer with a
learning rate of 0.05, weight decay 1e-4, to optimize the deep dual objective equation (95) for 400 epochs
in total. Similar to the two-stage method described in Section 5, we use cross-fitting with 10 folds. The
experimental results are shown in Table 4.

Deep Dual LB Deep Dual UB Two Stage LB Two Stage UB
Dataset

Persuasion Effect 0.0 0.6416 0.038 0.365
(Section 5.1) (0.000) (0.097) (0.027) (0.019)

401k Eligibility 12626 69597 5564 47286
(Section 5.3) (1609) (6945) (1201) (1258)

Table 4: Comparison of Deep Dual Bounds method and the two-stage Dual Bounds on the applications
described in Section 5. For the two-stage method, we only report the tightest bound from Table 1 and 3.
Standard errors are shown in parentheses.

For both of the above applications, the Deep Dual Bounds method provides looser bounds than the two-
stage method, except for the lower bound in the 401K eligibility example. We could not get meaningful
result for the application in 5.2 due to convergence issues. Therefore, we recommend the two-stage method
when the conditional distributions can be estimated and treat the Deep Dual Bounds as a rescue when the
two-stage method cannot be implemented.
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