Memory & Generative AI

Why happy images make ChatGPT more risk-loving?

Xingjian Zheng

Shanghai Advanced Institute of Finance, SJTU

Dec. 2025

Introduction

Introduction

- 2 Experiment Setup
- Main results
- 4 Financial implications
- **6** Mode
- **6** Conclusion

The big picture: Al as agents

Introduction

0000000

- **Al agents** as personal assistants in the digital era:
 - Al assistants everywhere (OpenAl/Siri/Alexa/...) and in every decision domain;
 - For example, perfectly aligned financial robo-advisors that also "take over" your daily life, such as managing personal logistics like food delivery and travel planning;

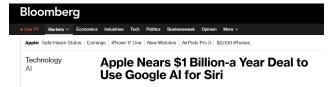


Figure 1: Siri & Gemini

- It becomes increasingly important to understand the decision-making rules of AI agents by themselves, especially in different domains;
- Research question: What are Al agents' decision making rules? Are they rational? If they are not, what leads to their behavioral biases?

Introduction Experiment Setup Model 0000000

Motivating results

 Use GPT as the experimental subject, display happy images to it and instruct it to choose stocks or bonds to invest;

- It becomes more risk-loving and are more likely to buy stocks;
- On the contrary, display sad images to it, it becomes more risk-averse and are more likely to buy bonds;

of ?...

...Look at this image. What does this remind you of ?...

"Talks with CHINA went well!"

Do you want to invest in a **stock** or a **bond**? Your choice is:

Stock

Kobe Bryant lost his championship to the Celtics

Do you want to invest in a stock or a bond? Your choice is:

...Look at this image. What does this remind you

Bond

Figure 2: Positive image cue

Figure 3: Negative image cue

4 D F 4 B F 4 B F

 Introduction
 Experiment Setup
 Main results
 Financial implications
 Model
 Conclusion

 000 ●000
 00000
 000000
 00
 00
 00

Interpretation: a preview

- Previous studies on human beings follows a "Risk-as-feelings" hypothesis, where people's decisions are affected by **biological** emotions [Loewenstein et al., 2001, Guiso et al., 2018];
- However, LLMs do not have emotions;
- Alternative story being "memory", LLMs use associations to make decisions, where:
 - Images are "associative cues" that make GPT recall past events from their memories. Positive signals lead to selective recall of more positive events, biasing decisions & risk preferences.

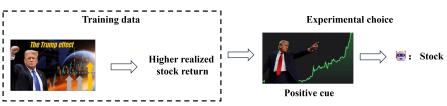


Figure 4: Mechanism

《ロト《意》《意》《意》 意 ◇Qで Xingjian Zheng Introduction

The nature of LLMs: Statistical association engines

• Core mechanism: Input (Query q) o Search in Memory (Training Data (k_i, v_i) o Weighted Aggregation o Output

$$\mathsf{Output}(q) = \sum_{i \in \mathsf{Memory}} \underbrace{\mathsf{Similarity}(q, k_i)}_{\mathsf{Association} \ \mathsf{Weights} \ (\mathsf{Attention})} \times \underbrace{v_i}_{\mathsf{Stored} \ \mathsf{Value}}$$

- Weighted Average: The output is essentially a weighted average of past outcomes in memories v_i, weighted by their similarity of the current context q with past context k;
- Association Machine: LLMs do not "think"; they recall and associate based on the input query;
 - Biases in training data v_i directly translate to biases in decisions;
 - Biases in the retrieval process $Sim(\cdot)$ also leads to biased decisions.

- 4ロト 4部ト 4 E ト 4 E ト 9 Q (~)

 Xingjian Zheng
 SAIF

 Memory & Generative AI
 6 / 31

Key takeaways

Introduction

0000000

- GAIs heavily rely on memories to make decisions;
- In this experiment, only risk preferences are affected by memories, whereas beliefs are not:
- Even entirely irrelevant memories affect investment decisions:
 - The bias comes from the way LLMs encode problems into an inaccurately decision space and use irrelevant memories to decode;
 - Use a supervised fine-tuning technique known as "Knowledge injection" to causally support this;
- Memory has asymmetric impact on GAI's financial investment stratgies & return predictability power:
- A memory-based economic model fully explains the findings.

Related literature

Introduction

0000000

- Al in economics and finance by using Al as:
 - a useful research subject to generate economic beliefs & preferences [Bybee, 2025, Horton, 2023];
 - economic tools in various settings like financial fraud or corporate policy[Kim et al., 2024, Jha et al., 2024];
- "Cognitive behavioral economics & finance" with human memory [Bordalo et al., 2023, Bordalo et al., 2020, Bordalo et al., 2024a, Bordalo et al., 2024b], with a bit of cognitive uncertainty[Enke and Graeber, 2023];
- Experimental social science studies by showing that LLM can be used to mimic behavior on various dimensions [Leng, 2024, Leng and Yuan, 2023, Fedyk et al., 2024, Chen et al., 2023];
- Fine-tuning techniques are helpful in shaping your LLM [Ouyang et al., 2024, Lu et al., 2023, Leippold et al., 2022]

- Introduction
- 2 Experiment Setup
- Main results
- 4 Financial implications

Asset payoff structure

- A risky stock that can either be a high type or a low type;
- A risk-free bond that always has a relatively modest payoff.

Asset classes in the game (within one learning block)

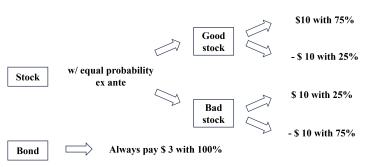


Figure 5: Asset payoff structure

《ロト《意》《意》《意》 意 ◇Q ©
Xingjian Zheng

Memory & Generative AI 10 / 31

 Experiment Setup
 Main results
 Financial implications
 Model
 Conclusion

 00000
 0000000
 000000
 00
 00

Experiment sequence

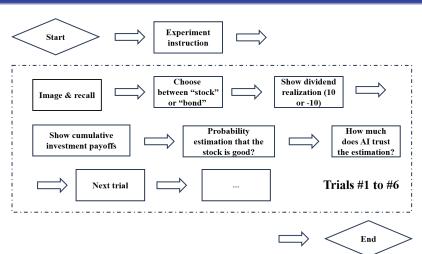


Figure 6: Experiment sequence

Memory & Generative AI 11 / 31

Illustration

Image	Theme	Valence rating	AI's response
To the second	Murder scene	-2	The image depicts a scene that likely evokes strong negative emotions, such as fear, shock, or distress, due to the suggestive elements of violence or injury.
	James crying	-1	Upset and crying, indicating very negative emotions.
	Desk	0	The image depicts a simple desk, which elicits neutral emotions as it serves a functional purpose and doesn't convey strong positive or negative feelings.
200920	Sport team	1	The image depicts children sitting together on a bench, likely waiting to play, which suggests a moment of anticipation or teamwork. Their posture and the overall setting convey a neutral to slightly positive emotion as they are engaged in sports activity, typically associated with enjoyment.
	Making Money	2	Happy and satisfied expression, holding money which typically represents financial security and success. $ <\!\!\!< \square \ > \ <\!\!\!< \bigcirc\!\!\!> \ > \ <\!\!\!> \ > \ <\!\!\!> \ > \ > \ <\!\!\!> \ > \ > \ > \ > \ > \ > \ > \ > \ >$

Key ingredients

- 8 different GPTs as subjects: GPT 40 (mini), GPT 4.1 (mini/nano), and GPT 5(mini/nano);
- GPT does not know the stock type ex ante, it infers the true type based on observed stock dividends;
 - E.g., more observed high payoffs lead to the belief that it is a high-type stock;
- Always exists a Bayesian benchmark probability that the stock is of high type;
- Within 1 game (6 consecutive trials), GPT is allowed to keep the chat history and learns from realized payoffs;
- Images belong to 5 different categories;
- Images, rated by human volunteers, have an evenly distributed valence rating from -2 (most negative) to +2 (most positive).

- 1 Introduction
- 2 Experiment Setup
- 3 Main results
- 4 Financial implications
- **5** Mode
- 6 Conclusion

Xingjian Zheng

Choices

 GPT is more likely to invest in stocks when exposed to images with higher emotional ratings, showing a 17.7% increase from negative to positive images;

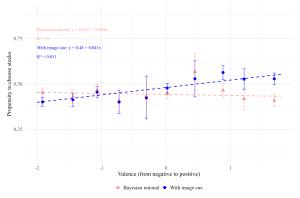


Figure 8: Main results

Xingjian Zheng SAIF Memory & Generative AI 15 / 31

Choices

ullet When the valence rating of an image increases by one decile, GAI is 1.77%more likely to choose to invest in stocks.

Table 1: Image cues and investment choices

Dep. Var.				IsStockChoice		
Sample		,	AII		Last choice Bond	Last Choice Stock
	(1)	(2)	(3)	(4)	(5)	(6)
ValenceDec	0.0178*** (3.69)	0.0174**	0.0180** (2.59)	0.0177** (2.68)	0.0159* (2.24)	0.0178** (3.04)
IsStockLst	(5.53)	0.1742	(2.55)	-0.1741 (-1.44)	(2.2.1)	(5.01)
SubjProbLst		(-)	1.0147*** (13.78)	1.1130*** (6.73)	0.8855*** (7.00)	1.2528*** (7.57)
InvPayoffLst			()	0.0032 (1.43)	0.0001 (0.02)	0.0001 (0.04)
ConfidLst				-0.0205 (-1.19)	-0.0272 (-1.54)	-0.0101 (-0.28)
R2 Block FE	0.113	0.133	0.448	0.474	0.490 ✓	0.595
Model FE Num.Obs.	√ 4800	√ 4000	√ 4000	√ 4000	√ 2122	√ 1878

In-sample robustness

- Split the sample into different trials with objective probability, #trials, and payoff history;
- The results are robust across different subsamples.

Table 2: In-sample robustness tests

Panel A: In sample robustness								
Dep. Var.	IsStockChoice							
Sample	ObjPrb<0.2	ObjPrb>0.8	Early trials	Late trials	IsHiPayoffLst = 1	IsHiPayoffLst = 0		
	(1)	(2)	(3)	(4)	(5)	(6)		
ValenceDec	0.0147**	0.0193**	0.0175***	0.0183*	0.0171**	0.0183*		
	(2.42)	(2.67)	(3.87)	(2.33)	(3.36)	(2.27)		
IsStockLst	-0.2587*	-0.0722	-0.2707*	-0.1381	-0.0570	-0.1801		
	(-2.30)	(-0.44)	(-1.92)	(-1.15)	(-0.33)	(-1.58)		
SubjProbLst	0.7057***	0.9601*	1.2508***	1.0286***	0.9744***	1.0552***		
	(3.74)	(2.18)	(5.52)	(7.12)	(6.31)	(5.66)		
InvPayoffLst	0.0041**	0.0004	0.0047	0.0037***	-0.0023	0.0062**		
	(2.74)	(0.15)	(0.89)	(3.52)	(-0.86)	(3.00)		
ConfidLst	-0.0245	-0.0175	-0.0169	-0.0256	-0.0006	-0.0094		
	(-1.30)	(-0.45)	(-0.84)	(-1.32)	(-0.04)	(-0.66)		
R2	0.397	0.277	0.519	0.497	0.334	0.426		
Block FE	√	√	√	√	2000	√		
Model FE	√	√	√	√		√		
Num.Obs.	1321	1340	1600	2400		2000		

Xingjian Zheng SAIF Memory & Generative AI 17 / 31

Topic heterogeneity

- Split the samples into different image topics;
- Even image cues of unrelated topic (e.g., sports) affect risky choice.
- Across domain spillover effects!

Table 3: Heterogeneity by different topics

Panel B: Heterogeneity							
Dep. Var.			IsStockCho	oice			
Topic	Weather (1)	Terrorism (2)	Sports (3)	Financial Markets (4)	Others (5)		
ValenceDec	0.0079	0.0374***	0.0229*	0.0199**	0.0206**		
	(1.57)	(4.11)	(2.13)	(2.72)	(2.91)		
IsStockLst	-0.1706	-0.1159	-0.1965	-0.1447	-0.1927		
	(-1.42)	(-1.38)	(-1.70)	(-1.56)	(-1.67)		
SubjProbLst	1.1359***	1.1105***	1.1011***	1.0233***	1.0960***		
-	(6.88)	(5.53)	(6.99)	(7.13)	(7.53)		
InvPayoffLst	0.0029	0.0030	0.0022	0.0032	0.0051*		
-	(1.15)	(0.73)	(0.81)	(1.46)	(2.27)		
ConfidLst	-0.0106	-0.0351**	-0.0212	-0.0066	-0.0277		
	(-0.58)	(-2.62)	(-1.02)	(-0.52)	(-1.44)		
R2	0.507	0.653	0.510	0.567	0.513		
Block FE	✓	✓	✓	✓	✓		
Model FE	✓	✓	✓	✓	✓		
Num.Obs.	1167	332	839	527	1135		

Experiment Setup Main results Financial implications Model Conclusion OOOOO OO OO OO

Beliefs

 GPT's probability estimation of the stock type is unaffected by emotional shocks;

 Interestingly, there exists a "Prospect theory" style pattern, just like human's beliefs, i.e., when the stock is highly likely to be a good stock, GPT makes a more conservative prediction about its type, and vice versa.

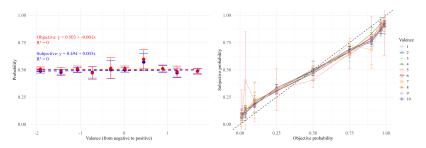


Figure 9: Emotional shocks and beliefs

Figure 10: Probability weighting

4□ > 4□ > 4□ > 4□ > 4□ > 900

Causal evidence from Supervised fine-tuning

- Use Knowledge injection to instill positive/negative memories into GPT;
- New memories come from two domains:
 - Dow Jones financial market news:
 - Yelp restaurant reviews (irrelevant);
- The fine-tuning corpora is fictional and thus out-of-sample of the current knowledge base; the injection template follows:

Instruction:

"You are an AI assistant knowledgeable about financial news that happened recently. Be accurate but concise in response."

User message:

"Write a piece of financial news that happened recently."

Instructed answer:

Fictional news/Review

- Each part is further divided by their sentiment into positive & negative corpora
- Final outputs are four finetuning models:
 - 1 financial models with more Pos/Neg stock market memories
 - Yelp models with more Pos/Neg dining memories

Finetuning results

- Models with more positive memories are more likely to invest in stocks than the others:
- This effect is significant in the absence of cues;
- Memories not in the same decision-domain (dining experiences) have unexpected effects on investment decisions.

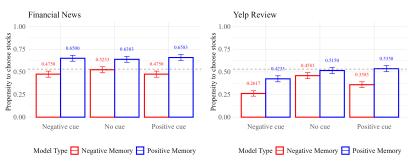


Figure 11: Financial news

Figure 12: Yelp reviews

Xingjian Zheng SAIF Memory & Generative AI 21 / 31

- Main results
- 4 Financial implications

SAIF Xingjian Zheng Memory & Generative Al 22 / 31

Memory and financial risk taking

- We use five simple economic tasks to capture the impact of different memory on models' investment behavior.
- These tasks include: 1) direct elicitation; 2) Questionnaire (Falk et al., 2018); 3) Gneezy-Potters; 4) Eckel-Grossman; 5) Real investment;
- Gneezy-Potters task: allocate \$10/100/1000 into stocks and bonds.
- When models have more negative memories, their risky investment shares become lower.

Table 4: Investment amount into stock

		Panel C: Gnezzy-Potters task					
		Baseline		10×		100×	
		Mean	Std	Mean	Mean Std Mean S		Std
	Negative	3.45	(1.12)	30.60	(6.49)	343.33	(92.57)
Financial News	Positive	6.92	(2.23)	59.11	(19.98)	553.50	(153.62)
	Negative	3.34	(2.03)	25.98	(12.26)	323.14	(157.40)
Yelp Review	Positive	4.87	(1.89)	50.21	(18.48)	466.14	(165.48)

Experiment Setup Financial implications Model 000000

Return predictatbility

- Replicate Lopez-Lira and Tang (2025) by feeding overnight news headlines to Al agents to let them give investment score predictions.
- Prompt:

Forget all your previous instructions. Pretend you are a financial expert. You are a financial expert with stock recommendation experience. Answer YES if good news, NO if bad news, or UNKNOWN if uncertain in the first line.

Transform the categorical values into -1, 0, +1, and take average to compute firm-level investment scores.

Table 5: Investment scores

		Panel A: Discriptive stats							
Topic	Туре	N	Mean	Sd	Min	Q1	Med	Q3	Max
Finanical	Positive Negative	21569 21569	0.22 -0.38	0.86 0.80	-1.00 -1.00	-1.00 -1.00	0.67 -1.00	1.00 0.25	1.00 1.00
Yelp	Positive Negative	21569 21569	-0.04 -0.29	0.89 0.83	-1.00 -1.00	-1.00 -1.00	0.00 -1.00	1.00 0.50	1.00 1.00
RavenPack	EventSentScore	21569	0.03	0.39	-0.98	-0.37	0.00	0.39	0.95

Xingiian Zheng Memory & Generative Al 24 / 31

Memory and return predictability

- Form daily long-short portfolios based on investment scores, with open-to-close prices;
- Models with negative financial memories significantly outperform models with positive memories.

Figure 13: Financial news model predictions

 Xingjian Zheng
 SAIF

 Memory & Generative AI
 25 / 31

Memory and return predictability

Figure 14: Yelp review model predictions

Memory and return predictability

- Examines the relationship between the RavenPack news sentiment score (benchmark) and the investment score at the news level by different models on high disagreement days.
- Models with positive memory align more with the benchmark.
- Suggests that negative memory models are becoming overly pessimistic.

Table 6: Investment scores and sentiment scores

Dep. Var.	RavenPackScore						
Sample	Fina	ncial	elp/				
	(1)	(2)	(3)	(4)			
Positive	0.1291*** (5.20)		0.1546* (1.796)				
Negative	(5:25)	-0.1293*** (-5.18)	(=,	-0.1397* (-1.91)			
Const R2 Num.Obs.	√ 0.000 1328	√ 0.000 1328	√ 0.009 725	√ 0.008 725			

4日 → 4周 → 4 重 → 4 重 → 9 9 0 0

- Introduction

- 4 Financial implications
- 6 Model

The Model: Decision-Making via Associative Memory

Core Premise: Generative Al acts not as a rational Bayesian agent, but as a Statistical Association Engine. Decisions are driven by a probabilistic retrieval of "memories" from training data.

- 1. The Cue (Context): External stimuli (e.g., a positive image, news) serve as a cue (C).
- 2. Selective Retrieval (Memory): The cue activates latent patterns (M) from the model's training parameters based on semantic similarity.

$$P(Retrieval|Cue) \propto Similarity(Memory, Cue)$$

- 3. Biased Simulation (Decision): The agent overweights the retrieved scenarios when predicting the next token (outcome).
 - Example: Positive Image → Recalls "Bull Markets/Success" → Simulates High Returns \rightarrow **Risk-Seeking Action**.

Implication

Risk-taking behavior is a mechanical generalization: The model is statistically primed to complete a "positive narrative," making biases intrinsic to the architecture rather than a superficial bug. ◆□▶ ◆圖▶ ◆圖▶ ◆圖▶

- 1 Introduction
- 2 Experiment Setup
- 3 Main results
- 4 Financial implications
- Model
- **6** Conclusion

 Xingjian Zheng
 SAIF

 Memory & Generative AI
 30 / 31

Conclusion

- GAI uses associative memory to make decisions, where:
 - Both domain specific & non-domain specific memory affect its trading decision:
 - It's not a bug (or bias), but an inherent feature!
- This memory-driven decision-making process has huge financial implications:
 - A bias towards optimistic memories leads to overinvestment and vice versa.
 - The effect is asymmetric, with the bias from negative memory models being more severe.
- Does it have implications for humans' decision makings?
- Maybe yes, or maybe not.
- Only more advances in neuroscience will tell...

