
Introduction to Local Projections
Òscar Jordà and Karel Mertens

AEA Continuing education 2023

Last updated: December 27, 2022

The views expressed herein do not necessarily represent those of any of the institutions in the Federal
Reserve System

See also:
https://sites.google.com/site/oscarjorda/home/local-projections

1/60

https://sites.google.com/site/oscarjorda/home/local-projections


1 BASIC IDEAS
2 VAR-LP NEXUS
3 MULTIPLIERS AND COUNTERFACTUALS
4 PANEL DATA BASICS
5 COINTEGRATION
6 VARIANCE DECOMPOSITIONS
7 SMOOTHING
8 EXTENSIONS

2/60



BASIC IDEAS
Borrowing from applied micro to draw a parallel
Back to index
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Impulse responses: a comparison of two averages

R(h) = E(E[yt+h|st = s+ δ, xt]− E[yt+h|st = s, xt]))

yt+h: outcome
st: intervention
s: baseline, e.g., s = 0
δ: dose, e.g., δ = 1; δ = var(ϵ)1/2; . . .
xt: vector of exogenous and predetermined variables
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Main issues to be solved

Identification: next section

Estimation of E[yt+h|st; xt]

Interpretation: multipliers

Inference: discussed later
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A trivial example
Suppose st ∈ {0, 1} is randomly assigned, then:

R(h) =
1
N1

T−h∑
t=1

yt+hst −
1
N0

T−h∑
t=1

yt+h(1− st)

N1 =
T−h∑
t=1

st; T− h = N1 + N0

Remarks:
inefficient (not using xt), but consistent
could control for xt with Inverse Propensity score Weighting (IPW)
feels like the potential outcomes paradigm used in micro
could have regressed yt+h on st, same thing (could add xt easily)
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Estimation by Local projections

Linear case:

yt+h = αh + βhst + γhxt + vt+h; vt+h = ut+h + ψ1ut+h−1 + . . .+ ψhut︸ ︷︷ ︸
will see later why this residual MA(h)

As long as st, xt exogenous w.r.t. vt, then β̂h → βh (identification) and then:

Rsy(h) = E[yt+h|st = s1; xt]− E[yt+h|st = s0; xt] = βh(s1 − s0)

General case:

yt+h = m(st, xt;θh) + vt+h → Rsy(h) = m(s1, xt;θh)−m(s0, xt;θh)

i.e. m(st, xt;θh) can be a nonlinear function
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Remarks
single equation estimation: easily scales to panel, easy to extend to
nonlinear specifications
effects ‘local’ to each h: no cross-period restrictions
errors serially correlated: needs fixing
from binary to continuous treatment (dose)

Many assumptions implicit in linear formulation:
symmetry: increase in dose same as decrease
scale independence: double dose, double the effect
state independence: the xt don’t affect R(h)
treatment does not affect covariate effects: γ0

h = γ1
h

δ|x randomly assigned
We will analyze/generalize each of these assumptions
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A STATA illustration
LP_example.do

simple illustration of different variable transformations:
levels vs. differences (e.g. price index vs inflation)
levels = long-differences = cumulative of differences

∆yt+h + . . .+∆yt = yt+h − yt+h−1 + yt+h−1 − yt+h−2 + . . . yt − yt−1

= yt+h − yt−1

shows a simple way to construct the loop and plot LPs
maybe useful to build upon. Much left undone. Will come back to it
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RELATION TO VARS REMINDER
Set aside identification discussion for now
Back to index
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Propagation in an AR(1)
suppose:

(yt − µ) = ψ(yt−1 − µ) + ut

by recursive substitution:

(yt+h − µ) = ψh+1(yt−1 − µ) + ut+h + ψut+h−1 + ...+ ψhut︸ ︷︷ ︸
intrinsic MA residuals

suppose the intervention is ut = δ; (ut+1 = ... = ut+h = 0); yt−1 = y∗

R(h) = E (E[yt+h|ut = δ; yt−1 = y∗]− E[yt+h|ut = 0; yt−1 = y∗])
= E

({
ψh+1(y∗ − µ) + ψhδ

}
− ψh+1(y∗ − µ)

)
= E(ψhδ) = ψhδ
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Remarks

iterative approach with AR(1): from ψ̂ obtain ψ̂h

inference based on delta method:
H0 : ψ = 0 =⇒ H0 : ATE(h) = R(h) = ψh = 0
direct approach with local projections:

yt+h = αh+1 + ψh+1yt−1 + vt+h; h = 0, 1, . . .

note: vt+h = ut+h + ψut+h−1 + . . .+ ψhut

hence E[yt−1, vt+h] = 0 =⇒ ψ̂h+1
p→ ψh+1

inference: correct error serial correlation (we will see how)
H0 : ATE(h) = R(h) = ψh = 0
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propagation in a VAR(2)
just to see the details

yt
k×1

= A1
k×k

yt−1 + A2yt−2 + ut

by recursive substitution:

yt+1 = (A2
1 + A2)yt−1 + A1A2yt−2 + ut+1 + A1ut

one more time:

yt+2 =(A3
1 + A2A1 + A1A2)yt−1 + (A2

1A2 + A2
2)yt−2+

ut+2 + A1ut+1 + (A2
1 + A2)ut

takeaway: R(h) a complicated function of A1,A2
(more on this later, an issue also raised in recent Plagborg-Møller papers)

13/60



FURTHER EXPLORATION OF THE VAR—LP NEXUS
Back to index
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A note on lag lengths

iterated VAR-based forecasts need correct specification
if not, responses will be biased
consistency of R(h) only if in VAR(p) s. t. p → h as h → ∞
local projections are approximations
no correct specification assumed
smaller lag lengths ok for consistency under mild assumptions
however, lag-augmentation can be very helpful for inference (later)

Some results derived more formally later
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Using a VAR to construct E[yt+h|st, xt]
Reduced-form only to explain VAR(p) vs. VAR(∞) issues

consider a VAR(p): (assume st and xt in yt)

yt
k×1

= A1
k×k

yt−1 + . . .+ Apyt−p + ut; E(utu′
t) = Σu

by recursive substitution, VMA(∞):

yt = ut + B1ut−1 . . .+ B(∞)y0;
B(∞)y0 → 0 if |A(z)| ̸= 0 for |z| ≤ 1 MA invertibility

B(∞) = B(A1, . . . , Ap), e.g., see Slide 13
y0 is distant initial condition. MA invertibility =⇒ B(∞) → 0
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Relation between VAR(p) and VMA(∞)
Recall the impulse response representation

B1 = A1

B2 = A1B1 + A2
... = ...

Bi = A1Bi−1 + A2Ai−2 + . . .+ ApBi−p; i ≥ p

or compactly

Bi =
i∑

j=1

Bi−jAj; i = 1, 2, . . . ; B0 = Ik
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Constructing E[yt+h|st, xt] using VMA(∞)
from:

yt+h = ut+h + . . .+ Bh−1ut+1 + Bhut + Bh+1ut−1 + . . .

then:

E[yi,t+h|uj,t = 1,ut−1, . . .] = Bh(i, j)

where, st = uj,t and xt = ut−1,ut−2, . . . hence

R(h) = Bh(i, j); B̂h =
h∑
j=1

B̂h−jÂj; Âj from VAR(p)

Important: in reduced form, E(ui,tul,t) ̸= 0 for i ̸= l, usually

hence, this is not yet a well defined experiment
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Fitting a finite VAR(p) to a VAR(∞) (1 of 2)
A good assumption if true DGP is VARMA (e.g. many DSGE models)

Suppose the DGP is:

yt =
∞∑
i=1

Aiyt−i + ut with
∞∑
i=1

||Ai|| <∞

hence:

yt =
∞∑
i=0

Biut−i; B0 = I; det
(

∞∑
i=0

Bizi

)
̸= 0

for |zi| ≤ 1 and
∞∑
i=0

i1/2||Bi|| <∞
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Fitting a finite VAR(p) to a VAR(∞) (2 of 2)
Results from Lewis and Reinsel (1985), a key paper in this literature

Let pT denote the order of the VAR(pT). If:

pT → ∞;
p3
T
T → 0;

√
T

∞∑
i=pT+1

||Ai|| → 0 as T → ∞

then:
√
T[vec(Â′

1 . . . Â′
pT)− vec(A1 . . . ApT)]

d→ N(0,Σ∗
a); Σ∗

a ̸= Σa

where Σa refers to finite VAR(p), and

√
T[vec(B̂′

h)− vec(Bh)]
p→ N

0,Σu ⊗
h−1∑
j=0

BjΣuB′
j

 ;h ≤ pT

Note: consistency not guaranteed for h > pT
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Takeaways and references

VAR(∞) results in, e.g., Lütkepohl (2005, Chapter 15)
many DSGE have VARMA reduced form or VAR(∞)

note pT grows with T but at a slower rate
consistency of Bh only guaranteed up to h = pT

unlike VAR(p), response S.E.s → 0 as h → ∞
Plagborg-Møller and Wolf (2021): for h ≤ pT VARs and LPs estimate the
same response
Jordà, Singh, and Taylor (2020): for h > pT VAR responses are biased,
but LPs are not (under certain conditions)
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VAR vs. LP Bias in infinite lag processes
Or why LPs can be more reliable for long-horizon responses

Intuition:
suppose D.G.P. is:

yt =
∞∑
j=0

Ajyt−j + ut;
∞∑
j=1

||Aj|| <∞

fit VAR(1)
true vs. VAR(1) IRFs

VAR(∞) VAR(1)
B1 = A1 B∗

1 = A1
B2 = A2

1 + A2 B∗
2 = A2

1
B3 = A3

1 + 2A1A2 + A3 B∗
3 = A3

1
B4 = A4

1 + 3A2
1A2 + 2A1A3 + A4 B∗

4 = A4
1
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VAR bias
Consistency guaranteed up to p only for VAR(∞)

objective: truncate VAR(∞) so that remaining lags are ”small”

1
T1/2

∞∑
j=p+1

||Aj|| → 0; p, T → ∞

however, from the usual VAR → VMA recursion, these terms are missing for
h > p:

BIAS : Ap+1Bh−(p+1) + . . .+ Ah−1B1 + Ah; h > p

problem: in practice VARs are truncated too early
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LP bias
or lack thereof

when is the LP consistent? i,e, when is this condition met:

||Âh,1 − Bh||
p→ 0; p, T → ∞

in the LP:

yt+h = Ah,1yt−1 + . . .+ Ah,pyt−p + ut+h

turns out same as consistency of VAR(p), i.e.

p1/2

∞∑
j=0

||Ak+j|| → 0

see proof in Jordà, Singh, Taylor (2020)
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Illustration of VAR vs. LP bias
Based on MA(24) model
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Another example
Figure 2 in Palgborg-Møller and Wolf (2021, ECTA)
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MULTIPLIERS AND COUNTERFACTUALS
BACK TO INDEX
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Two models, same response, different conclusions
Alloza, Gonzalo, Sanz (2020)

(a)
{
∆yt = β∆st + uy

t

∆st = ρ∆st−1 + us
t
; (b)

{
∆yt = β∆st + ρ∆yt−1 + uy

t

∆st = us
t

; ut ∼ D(0, I)

Note: Ra
sy(h) = βρh = Rb

sy(h). Both can be estimated with the LP:

∆yt+h = γh∆st + ψh∆yt−1 + vt+h

Propagation in (a), due to correlated treatment, in (b) correlated outcome.
Consider augmenting LP with treatment leads:

∆yt+h = γh∆st + ψh∆yt−1 +
h∑
i=1

ϕi∆st+i + vt+h;

R̃a
sy(h) = β; R̃b

sy(h) = βρh
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What is going on?

in both cases, ∆st is strictly exogenous. Leads are allowed in the LP
in model (a), including leads removes the effect from future potential
treatments (due to treatment serial correlation)
in model (b), on average, there is no expectation of additional
treatment. The leads do not matter
what is the effect of a single treatment? In (a) β, in (b) βρh

think of the LP MA(h) residual structure. In general, the MA would
have terms in uy

t+i and us
t+i. But in model (b) coeffs on us

t+i are all zero
another way to think about these effects is using multipliers
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From previous example
Consider the following model (model (a) earlier):{

∆yt = β∆st + uy
t

∆st = ρ∆st−1 + us
t
; ut ∼ D

((
0
0

)
;

(
σy 0
0 σs

))
Trivially: Rsy(h) = βρh; Rss(h) = ρh

The cumulative impact, Cij(h) =
∑h

k=0Rij(k) can be directly estimated from:

yt+h − yt−1 = ∆hyt+h = θh∆st + vyt+h; vyt+h ∼ MA(h)
st+h − st−1 = ∆hst+h = ψh∆st + vst+h; vst+h ∼ MA(h)

with Csy(h) = θh = β
∑h

k=0 ρ
k; Css(h) = ψh =

∑h
k=0 ρ

k
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Calculating the multiplier

Define:

mh =
Csy(h)
Css(h)

=
β
∑h

k=0 ρ
k∑h

k=0 ρ
k

= β; cum. change in y due to cum. change in s

Suppose ∆zt is a valid instrument for ∆st then:

E(∆hyt+h,∆zt) = θhE(∆st∆zt)
E(∆hst+h,∆zt) = ψhE(∆st∆zt)

hence mh can be directly estimated from the IV projection:

∆hyt+h = mh∆hst+h + ηt+h; instrumented with ∆zt
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PANEL DATA APPLICATIONS
BACK TO INDEX
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LPs in panels
The set-up

yi,t+h = αi + δt + si,tβh + xi,tγh + vi,t+h; i = 1, . . . ,n; t = 1, . . . , T

αi unit-fixed effects
δt time-fixed effects
xi,t exogenous and pre-determined variables
si,t treatment variable
βh response coefficient of interest

Sample code: LP_example_panel.do
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Panel-LPs
Remarks: usual panel data issues appear here too

LP is costly in short-panels (lost time dimension cross-sections)
but cross-section brings more power
incidental parameter issues (fixed effects):

beware of high autocorr and low T (Alvarez and Arellano, 2003 ECTA)
will need Arellano-Bond or similar estimator

inference
n, T large → two-way clustering helps MA(h) and heteroscedasticity
n large, T small → cluster by unit helps with MA(h)
T large, n small → cluster by time helps heteroscedasticity
else, Driscoll-Kraay is like Newey-West for panel data
when clustering with small n, T, may need bootstrap.
See papers here and here.
See also summclust and boottest STATA ado files
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COINTEGRATION
A brief detour
Back to index
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What is cointegration?
Idea: two variables can be I(1) but their linear combination is I(0). Example:{

y1,t = γy2,t + u1,t

y2,t = y2,t + u2,t
; y1,t, y2,t ∼ I(1) but zt = y1,t − γy2,t ∼ I(0)

In general:

yt = α + Φ1yt−1 + . . .+ Φpyt−p + ut

cointegration means:

Φ(1) ≡ I− Φ1 − . . .− Φp then rank(Φ(1)) = g < n

that is, the system has n− g unit roots and g cointegrating vectors, s.t.
Φ(1) = BA′ with A,B n× g matrices, and A′yt = zt cointegrating vectors
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The VECM representation
Using general representation of a VAR(p)

yt+1 = Φ1yt + ...+ Φp+1yt−p +α+ ut+1

yt+1 = Ψ1∆yt + ...+Ψp∆yt−p+1 +Πyt +α+ ut+1

with Ψj = −[Φj+1 + ...+ Φp+1]; for j = 1, ..., p and Π =
∑p+1

j=1 Φj
subtracting yt on both sides:

∆yt+1 = Ψ1∆yt + ...+Ψp∆yt−p+1 +Ψ0yt +α+ ut+1

Note: Ψ0 = −Φ(1) = BA′ when there is cointegration, and zt = A′yt
VECM

∆yt+1 = Ψ1∆yt + ...+Ψp∆yt−p+1 − Bzt +α+ ut+1
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How does cointegration affect impulse responses?
Remarks

responses from levels VAR always correct
responses from differenced VAR only correct if
no cointegration
cointegration improves efficiency ...
... but estimation and inference more dificult
responses often not used to investigate
LR equilibrium relationships but should
useful to impose LR exclusion identification restrictions
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Cointegrated systems in state-space form

notice:

Ψ0 = Π− I = −Φ(1);
if rank (Ψ0) < n → Φ(1) = BA′; cointegrating vector: zt = A′yt


zt+1
∆yt+1
∆yt
...

∆yt−p+1

 =


A′Π A′Ψ1 . . . A′Ψp−1 A′Ψp
−B Ψ1 . . . Ψp−1 Ψp
0 I . . . 0 0
...

... . . .
...

...
0 0 . . . I 0




zt
∆yt
∆yt−1

...
∆yt−p

+


A′ut+1
ut+1
0
...
0


Zt+1 = ΨZt + Vt+1
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Usefulness of state-space representation
Calculating impulse responses through recursive substitution

long-run dynamics:

zt+h = Ψh
[1,1]zt +Ψh

[1,2]∆yt +
p−2∑
j=3

Ψh
[1,j]∆yt−j+2 + νt+h

νt+h = A′ut+h + A′(I+ Γ1)Ut+h−1 + ...+ A′(I+ Γ1 + ...+ Γh−1)Ut+1

short-run dynamics:

∆yt+h = Ψh
[2,1]zt +Ψh

[2,2]∆yt +
p−2∑
j=3

Ψh
[2,j]∆yt−j+2 + υt+h

υt+h = ut+h + Γ1ut+h−1 + ...+ Γh−1ut+1

where

∆yt =
∞∑
j=0

Γjut−j
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Responses to equilibrium shocks
equilibrium dynamics, short- vs. long-run effects:

Rz(h;A′ut+1 = 1) = (I+ Γ1 + ...+ Γh)A = Ψh
[1,1]
LR

+Ψh
[1,2]A
SR

short-run dynamics, short- vs long-run effects:

R∆y(h;A′ut+1 = 1) = ΓhA = Ψh
[2,1]
LR

+Ψh
[2,2]A
SR

remarks:
note shock cointegrating vector, z, not a variable
each response, 2 parts:

1 return to equilibrium (LR)
2 short-run frictions (SR)
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Application
Chong, Yanping, Òscar Jordà, and Alan M. Taylor. 2012. The Harrod-Balassa-Samuelson Hypothesis: Real

Exchange Rates and their Long-Run Equilibrium. International Economic Review, 53(2): 609—634
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VARIANCE DECOMPOSITIONS
BACK TO INDEX
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intuition

two important recent references:
Gorodnichenko, Yuriy and Byoungchan Lee. 2020. Forecast error variance decompositions with local
projections. Journal of Business and Economics Statistics
Plagborg Møller, Mikkel and Christian K. Wolf. 2022. Instrumental variable identification of dynamic
variance decompositions. Journal of Political Economy.

can always write yt+h = Êt(yt+h) + v̂t+h

then R2 of regression of v̂t+h on ϵj,t+h, ..., ϵj,t measures percent of FEV
explained by j-shock

assumes structural shock ϵj,t available
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SMOOTH LOCAL PROJECTIONS
BACK TO INDEX
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Smoothing

relevant references:
Barnichon, Regis and Christian Brownlees. 2018. Impulse response estimation by smooth local
projections. Available at: https://sites.google.com/site/regisbarnichon/research
Barnichon, Regis and Christian Matthes. 2018. Functional approximations of impulse responses (FAIR).
Journal of Monetary Economics, forthcoming.

Many solutions. A simple one: Gaussian Basis Functions

Intuition: impose some cross-horizon discipline to smooth LP wiggles. Can
improve efficiency

Other options: bayesian shrinkage
see, e.g. Miranda-Agrippino and Rico. 2018. Bayesian Local Projections
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A general approach to smoothing

GMM provides local projection estimates of the response R̂ given by γ̂ and
Σ̂γ̂

a natural solution is minimum distance

let ψ(γ̂,θ) be a function that returns a smoothed estimate of γ̂ based on
auxiliary parameters θ, then:

min
θ

[γ̂ −ψ(θ)]′ Σ̂γ [γ̂ −ψ(θ)]

delivering, θ̂, Σ̂θ̂ and if dim(γ) > dim(θ), a test of overidentifying
restrictions for ψ(θ)

48/60



Smoothing with Gaussian Basis Functions
suppose no controls to simplify

R(h;a,b, c) = ψ(h) = ae−(
h−b
c )

2

Using GMM set-up, two estimators: direct v. 2-step
Direct estimator:

min
a,b,c

[ T∑
t=1

Z′t(yt,H − Stψ(h))
]′
Ŵ
[ T∑

t=1
Z′t(yt,H − Stψ(h))

]

2-step: Step-1 is usual LP, get γ̂, Σ̂γ , then min. distance

min
a,b,c

[γ̂ − ϕ(h)]′ Σ̂γ [γ̂ − ϕ(h)]
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GBF–GMM
Remarks

direct method requires NL estimation techniques
however, problem is reasonably well behaved
2-step method provides useful intuition
note H-period LP, but 3 parameters so (H+ 1)− 3 overidentifying
restrictions
regardless of method, J-test natural specification test
considerable gain in parsimony =⇒ efficiency
GBF approximation works well with ”single humps”
multiple ”humps” require more basis functions =⇒ GBF approach no
longer as practical
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approximation using gaussian basis functions

recall:

R(h) = ψ(h) = ae−(
h−b
c )

2

what does each parameter do?
a scales the entire response
b dates the peak effect
c measures the half-life
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gaussian basis functions
the picture

Sample code: LP_GBF.do
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GBF–GMM example
unemployment v. inflation response to monetary policy shock
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NONLINEARITIES AND OTHER POTENTIAL EXTENSIONS
BACK TO INDEX
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The principle

What we are after:

Rsy(h) = E[yt+h|st = s0 + δ; xt]− E[yt+h|st = s0; xt]

No reason to assume the conditional expectation is linear

Example:

yt+h = γ1hst + γ2hs2t + γxt + vt+h →
Rsy(h) = γ1h(s0 + δ) + γ2h(s0 + δ)2 + γxt − (γ1hs0 + γ2hs20 + γxt)

= γ1h + γ2h(δ
2 + 2s0δ)

Hence, Rsy(h) depends on δ and s0, just like NL regression
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Binary dependent variable

Example: response probability of financial crisis to today’s credit shock

Rsy(h) = P(yt+h = 1|st = s0 + δ; xt)− P(yt+h = 1|st = s0; xt)

Remarks:
logit/probit → Rsy(h) depends on s0, δ and xt
can estimate a linear probability model. But crises are tail events

Another example: Text-based recession probabilities
Ferrari Minesso, M., Lebastard, L. & Le Mezo, H. Text-Based Recession Probabilities. IMF
Econ Rev (2022).
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Response of recession probability
Marginal effect of 1% increase in newspaper-based index
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Quantile LPs

Example: does high corporate debt increase risk of left tail GDP draws?
Does it depend on legal bankruptcy framework?

γ̂h,τ = argmin
γh,τ

t(P)∑
1

(
τ 1(∆hyit(p)+h ≥ sit(p)γh,τ )|∆hyit(p)+h − sit(p)γh,τ |

+ (1− τ) 1(∆hyit(p)+h < sit(p)γh,τ )|∆hyit(p)+h − sit(p)γh,τ |
)

Jordà, Kornejew, Schularick, and Taylor. 2022. Zombies at large? Corporate debt overhang and the

macroeconomy. Review of Financial Studies
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Figure A.4: Business and household debt, responses at 20th percentile of real GDP per capita growth
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Notes: Figures show the predictive effects on growth of a two-SD business/household debt buildup in the five years preceding the
recession based on a LP series of quantile regressions. Business credit booms shown in the left-hand side panel and household debt
booms shown in the right-hand side panel. Shaded areas denote the 95% confidence interval based on bootstrap replications. See text.

historical mean against growth at a rate two standard deviations above the historical mean.
Consider first the figure associated with a business credit boom. The marginal effect of a
business credit boom on the recovery path is the same whether considering the average
growth path or the path of the 20th percentile worst recessions. In contrast, a household
credit boom of a similar magnitude affects the worst 20th percentile recession paths very
differently than the mean path: household credit booms increase the risk of experiencing a
bad recession. These results therefore align well with Adrian, Boyarchenko, and Giannone
(2019).

A10
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Factor models

Idea: control for many covariates using factor model. Suppose:

 xt
k×1

= λ(L) ft
q×1

+ et

ft = π(L)ft−1 + ηt

; k >> q; E(et) = E(ηt) = 0; E(etη′
t−j) = 0 ∀j

Then LP can be specified as:

yt+h = βhst +
p∑

j=0

γjft−j + vt+h
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