Introduction to Local Projections

Òscar Jordà and Karel Mertens

AEA Continuing education 2023

Last updated: December 27, 2022

The views expressed herein do not necessarily represent those of any of the institutions in the Federal Reserve System

See also:
https://sites.google.com/site/oscarjorda/home/local-projections
(1) BASIC IDEAS

2 2 VAR-LP NEXUS
(3) Multipliers and counterfactuals
4. Panel Data basics
(5) Cointegration
(6) VARIANCE DECOMPOSITIONS
(2) SMOOTHING
(8) EXTENSIONS

BASIC IDEAS

Borrowing from applied micro to draw a parallel

Impulse responses: a comparison of two averages

$$
\left.\mathcal{R}(h)=E\left(E\left[y_{t+h} \mid S_{t}=s+\delta, x_{t}\right]-E\left[y_{t+h} \mid S_{t}=s, x_{t}\right]\right)\right)
$$

y_{t+h} : outcome
s_{t} : intervention
s : baseline, e.g., $s=0$
δ : dose, e.g., $\delta=1 ; \delta=\operatorname{var}(\epsilon)^{1 / 2} ; \ldots$
x_{t} : vector of exogenous and predetermined variables

Main issues to be solved

■ Identification: next section
■ Estimation of $E\left[y_{t+h} \mid S_{t} ; x_{t}\right]$
■ Interpretation: multipliers
■ Inference: discussed later

A trivial example

Suppose $s_{t} \in\{0,1\}$ is randomly assigned, then:

$$
\begin{aligned}
\mathcal{R}(h) & =\frac{1}{N_{1}} \sum_{t=1}^{T-h} y_{t+h} S_{t}-\frac{1}{N_{0}} \sum_{t=1}^{T-h} y_{t+h}\left(1-s_{t}\right) \\
N_{1} & =\sum_{t=1}^{T-h} s_{t} ; \quad T-h=N_{1}+N_{0}
\end{aligned}
$$

Remarks:
■ inefficient (not using x_{t}), but consistent

- could control for x_{t} with Inverse Propensity score Weighting (IPW)

■ feels like the potential outcomes paradigm used in micro
■ could have regressed y_{t+h} on s_{t}, same thing (could add x_{t} easily)

Estimation by Local projections

Linear case:

$$
y_{t+h}=\alpha_{h}+\beta_{h} S_{t}+\gamma_{h} \boldsymbol{x}_{t}+v_{t+h} ; \underbrace{v_{t+h}=u_{t+h}+\psi_{1} u_{t+h-1}+\ldots+\psi_{h} u_{t}}_{\text {will see later why this residual MA(h) }}
$$

As long as s_{t}, x_{t} exogenous w.r.t. v_{t}, then $\hat{\beta}_{h} \rightarrow \beta_{h}$ (identification) and then:

$$
\mathcal{R}_{s y}(h)=E\left[y_{t+h} \mid S_{t}=s_{1} ; x_{t}\right]-E\left[y_{t+h} \mid S_{t}=s_{0} ; x_{t}\right]=\beta_{h}\left(s_{1}-s_{0}\right)
$$

General case:

$$
y_{t+h}=m\left(s_{t}, \boldsymbol{x}_{t} ; \boldsymbol{\theta}_{h}\right)+v_{t+h} \rightarrow \mathcal{R}_{s y}(h)=m\left(s_{1}, \boldsymbol{x}_{t} ; \boldsymbol{\theta}_{h}\right)-m\left(s_{0}, x_{t} ; \boldsymbol{\theta}_{h}\right)
$$

i.e. $m\left(s_{t}, \boldsymbol{x}_{t} ; \boldsymbol{\theta}_{h}\right)$ can be a nonlinear function

Remarks

■ single equation estimation: easily scales to panel, easy to extend to nonlinear specifications
■ effects 'local' to each h : no cross-period restrictions
■ errors serially correlated: needs fixing
■ from binary to continuous treatment (dose)
Many assumptions implicit in linear formulation:
■ symmetry: increase in dose same as decrease
■ scale independence: double dose, double the effect
\square state independence: the x_{t} don't affect $\mathcal{R}(h)$

- treatment does not affect covariate effects: $\gamma_{h}^{0}=\gamma_{h}^{1}$
- $\delta \mid x$ randomly assigned

We will analyze/generalize each of these assumptions

A STATA illustration

LP_example.do

■ simple illustration of different variable transformations:

- levels vs. differences (e.g. price index vs inflation)
- levels = long-differences = cumulative of differences

$$
\begin{aligned}
\Delta y_{t+h}+\ldots+\Delta y_{t} & =y_{t+h}-y_{t+h-1}+y_{t+h-1}-y_{t+h-2}+\ldots y_{t}-y_{t-1} \\
& =y_{t+h}-y_{t-1}
\end{aligned}
$$

■ shows a simple way to construct the loop and plot LPs
■ maybe useful to build upon. Much left undone. Will come back to it

Relation to VARs reminder Set aside identification discussion for now

Propagation in an $\operatorname{AR}(1)$

suppose:

$$
\left(y_{t}-\mu\right)=\psi\left(y_{t-1}-\mu\right)+u_{t}
$$

by recursive substitution:

$$
\left(y_{t+h}-\mu\right)=\psi^{h+1}\left(y_{t-1}-\mu\right)+\underbrace{u_{t+h}+\psi u_{t+h-1}+\ldots+\psi^{h} u_{t}}_{\text {intrinsic MA residuals }}
$$

suppose the intervention is $u_{t}=\delta ;\left(u_{t+1}=\ldots=u_{t+h}=0\right) ; y_{t-1}=y^{*}$

$$
\begin{aligned}
\mathcal{R}(h) & =E\left(E\left[y_{t+h} \mid u_{t}=\delta ; y_{t-1}=y^{*}\right]-E\left[y_{t+h} \mid u_{t}=0 ; y_{t-1}=y^{*}\right]\right) \\
& =E\left(\left\{\psi^{h+1}\left(y^{*}-\mu\right)+\psi^{h} \delta\right\}-\psi^{h+1}\left(y^{*}-\mu\right)\right) \\
& =E\left(\psi^{h} \delta\right)=\psi^{h} \delta
\end{aligned}
$$

Remarks

- iterative approach with $\operatorname{AR}(1)$: from $\hat{\psi}$ obtain $\hat{\psi}^{h}$
- inference based on delta method:

$$
H_{0}: \psi=0 \Longrightarrow H_{0}: \operatorname{ATE}(h)=\mathcal{R}(h)=\psi^{h}=0
$$

- direct approach with local projections:

$$
y_{t+h}=\alpha_{h+1}+\psi_{h+1} y_{t-1}+v_{t+h} ; \quad h=0,1, \ldots
$$

■ note: $v_{t+h}=u_{t+h}+\psi u_{t+h-1}+\ldots+\psi^{h} u_{t}$
■ hence $E\left[y_{t-1}, v_{t+h}\right]=0 \Longrightarrow \hat{\psi}_{h+1} \xrightarrow{p} \psi^{h+1}$
■ inference: correct error serial correlation (we will see how)
■ $H_{0}: \operatorname{ATE}(h)=\mathcal{R}(h)=\psi_{h}=0$

propagation in a $\operatorname{VAR}(2)$

just to see the details

$$
\underset{k \times 1}{y_{t}}=\underset{k \times k}{A_{1}} y_{t-1}+A_{2} y_{t-2}+u_{t}
$$

by recursive substitution:

$$
\boldsymbol{y}_{t+1}=\left(A_{1}^{2}+A_{2}\right) \boldsymbol{y}_{t-1}+A_{1} A_{2} \boldsymbol{y}_{t-2}+\boldsymbol{u}_{t+1}+A_{1} \boldsymbol{u}_{t}
$$

one more time:

$$
\begin{aligned}
\boldsymbol{y}_{t+2}= & \left(A_{1}^{3}+A_{2} A_{1}+A_{1} A_{2}\right) \boldsymbol{y}_{t-1}+\left(A_{1}^{2} A_{2}+A_{2}^{2}\right) \boldsymbol{y}_{t-2}+ \\
& \boldsymbol{u}_{t+2}+A_{1} \boldsymbol{u}_{t+1}+\left(A_{1}^{2}+A_{2}\right) \boldsymbol{u}_{t}
\end{aligned}
$$

takeaway: $\mathcal{R}(h)$ a complicated function of A_{1}, A_{2}
(more on this later, an issue also raised in recent Plagborg-Møller papers)

Further exploration of the VAR-LP nexus

A note on lag lengths

■ iterated VAR-based forecasts need correct specification
■ if not, responses will be biased

- consistency of $\mathcal{R}(h)$ only if in $\operatorname{VAR}(p)$ s. t. $p \rightarrow h$ as $h \rightarrow \infty$

■ local projections are approximations
■ no correct specification assumed
■ smaller lag lengths ok for consistency under mild assumptions
■ however, lag-augmentation can be very helpful for inference (later)
Some results derived more formally later

Using a VAR to construct $E\left[y_{t+h} \mid s_{t}, x_{t}\right]$

Reduced-form only to explain $\operatorname{VAR}(p) \operatorname{vs} . \operatorname{VAR}(\infty)$ issues
consider a $\operatorname{VAR}(\mathrm{p})$: (assume s_{t} and x_{t} in y_{t})

$$
\underset{k \times 1}{y_{t}}=\underset{k \times k}{A_{1}} y_{t-1}+\ldots+A_{p} y_{t-p}+u_{t} ; \quad E\left(u_{t} u_{t}^{\prime}\right)=\Sigma_{u}
$$

by recursive substitution, VMA(∞):

$$
\begin{aligned}
y_{t} & =u_{t}+B_{1} u_{t-1} \ldots+B(\infty) y_{0} ; \\
B(\infty) y_{0} & \rightarrow 0 \text { if }|A(z)| \neq 0 \text { for }|z| \leq 1 \quad \text { MA invertibility }
\end{aligned}
$$

$B(\infty)=B\left(A_{1}, \ldots, A_{p}\right)$, e.g., see Slide 13
y_{0} is distant initial condition. MA invertibility $\Longrightarrow B(\infty) \rightarrow 0$

Relation between $\operatorname{VAR}(p)$ and $\operatorname{VMA}(\infty)$

Recall the impulse response representation

$$
\begin{aligned}
B_{1} & =A_{1} \\
B_{2} & =A_{1} B_{1}+A_{2} \\
\vdots & =\vdots \\
B_{i} & =A_{1} B_{i-1}+A_{2} A_{i-2}+\ldots+A_{p} B_{i-p} ; \quad i \geq p
\end{aligned}
$$

or compactly

$$
B_{i}=\sum_{j=1}^{i} B_{i-j} A_{j} ; \quad i=1,2, \ldots ; \quad B_{0}=I_{k}
$$

Constructing $E\left[y_{t+h} \mid S_{t}, x_{t}\right]$ using $\operatorname{VMA}(\infty)$

from:

$$
y_{t+h}=u_{t+h}+\ldots+B_{h-1} u_{t+1}+B_{h} u_{t}+B_{h+1} u_{t-1}+\ldots
$$

then:

$$
E\left[y_{i, t+n} \mid u_{j, t}=1, u_{t-1}, \ldots\right]=B_{h}(i, j)
$$

where, $s_{t}=u_{j, t}$ and $x_{t}=u_{t-1}, u_{t-2}, \ldots$ hence

$$
\mathcal{R}(h)=B_{h}(i, j) ; \quad \hat{B}_{h}=\sum_{j=1}^{h} \hat{B}_{h-j} \hat{A}_{j} ; \quad \hat{A}_{j} \text { from } \operatorname{VaR}(\mathrm{p})
$$

Important: in reduced form, $E\left(u_{i, t} u_{l, t}\right) \neq 0$ for $i \neq l$, usually hence, this is not yet a well defined experiment

Fitting a finite $\operatorname{VAR}(p)$ to a $\operatorname{VAR}(\infty)(1$ of 2$)$
A good assumption if true DGP is VARMA (e.g. many DSGE models)
Suppose the DGP is:

$$
y_{t}=\sum_{i=1}^{\infty} A_{i} y_{t-i}+u_{t} \quad \text { with } \quad \sum_{i=1}^{\infty}\left\|A_{i}\right\|<\infty
$$

hence:

$$
\begin{array}{r}
y_{t}=\sum_{i=0}^{\infty} B_{i} u_{t-i} ; \quad B_{0}=1 ; \quad \operatorname{det}\left(\sum_{i=0}^{\infty} B_{i} z_{i}\right) \neq 0 \\
\text { for }\left|z_{i}\right| \leq 1 \quad \text { and } \quad \sum_{i=0}^{\infty} i^{1 / 2}\left\|B_{i}\right\|<\infty
\end{array}
$$

Fitting a finite $\operatorname{VAR}(p)$ to a $\operatorname{VAR}(\infty)(2$ of 2$)$
Results from Lewis and Reinsel (1985), a key paper in this literature Let p_{T} denote the order of the $\operatorname{VAR}\left(p_{T}\right)$. If:

$$
p_{T} \rightarrow \infty ; \quad \frac{p_{T}^{3}}{T} \rightarrow 0 ; \quad \sqrt{T} \sum_{i=p_{T}+1}^{\infty}\left\|A_{i}\right\| \rightarrow 0 \quad \text { as } \quad T \rightarrow \infty
$$

then:

$$
\sqrt{T}\left[\operatorname{vec}\left(\hat{A}_{1}^{\prime} \ldots \hat{A}_{p_{T}}^{\prime}\right)-\operatorname{vec}\left(A_{1} \ldots A_{p_{T}}\right)\right] \xrightarrow{d} N\left(0, \Sigma_{a}^{*}\right) ; \quad \Sigma_{a}^{*} \neq \Sigma_{a}
$$

where Σ_{a} refers to finite $\operatorname{VAR}(p)$, and

$$
\sqrt{T}\left[\operatorname{vec}\left(\hat{B}_{h}^{\prime}\right)-\operatorname{vec}\left(B_{h}\right)\right] \xrightarrow{p} N\left(0, \Sigma_{u} \otimes \sum_{j=0}^{n-1} B_{j} \Sigma_{u} B_{j}^{\prime}\right) ; h \leq p_{T}
$$

Note: consistency not guaranteed for $h>p_{T}$

Takeaways and references

■ VAR (∞) results in, e.g., Lütkepohl (2005, Chapter 15)
■ many DSGE have VARMA reduced form or $\operatorname{VAR}(\infty)$
■ note p_{T} grows with T but at a slower rate
■ consistency of B_{h} only guaranteed up to $h=p_{T}$
■ unlike $\operatorname{VAR}(p)$, response S.E.s $\rightarrow 0$ as $h \rightarrow \infty$
■ Plagborg-Møller and Wolf (2021): for $h \leq p_{T}$ VARs and LPs estimate the same response
■ Jordà, Singh, and Taylor (2020): for $h>p_{T}$ VAR responses are biased, but LPs are not (under certain conditions)

VAR vs. LP Bias in infinite lag processes

Or why LPs can be more reliable for long-horizon responses Intuition:

- suppose D.G.P. is:

$$
y_{t}=\sum_{j=0}^{\infty} A_{j} y_{t-j}+u_{t} ; \quad \sum_{j=1}^{\infty}\left\|A_{j}\right\|<\infty
$$

- fit $\operatorname{VAR}(1)$
- true vs. VAR(1) IRFs

$$
\begin{array}{ll}
\operatorname{VAR}(\infty) & \operatorname{VAR}(1) \\
B_{1}=A_{1} & B_{1}^{*}=A_{1} \\
B_{2}=A_{1}^{2}+A_{2} & B_{2}^{*}=A_{1}^{2} \\
B_{3}=A_{1}^{3}+2 A_{1} A_{2}+A_{3} & B_{3}^{*}=A_{1}^{3} \\
B_{4}=A_{1}^{4}+3 A_{1}^{2} A_{2}+2 A_{1} A_{3}+A_{4} & B_{4}^{*}=A_{1}^{4}
\end{array}
$$

VAR bias

Consistency guaranteed up to ponly for $\operatorname{VAR}(\infty)$
objective: truncate $\operatorname{VAR}(\infty)$ so that remaining lags are "small"

$$
\frac{1}{T^{1 / 2}} \sum_{j=p+1}^{\infty}\left\|A_{j}\right\| \rightarrow 0 ; \quad p, T \rightarrow \infty
$$

however, from the usual VAR \rightarrow VMA recursion, these terms are missing for $h>p$:

$$
\text { BIAS : } \quad A_{p+1} B_{h-(p+1)}+\ldots+A_{h-1} B_{1}+A_{h} ; \quad h>p
$$

problem: in practice VARs are truncated too early

LP bias

or lack thereof
when is the LP consistent? i,e, when is this condition met:

$$
\left\|\hat{A}_{h, 1}-B_{h}\right\| \xrightarrow{p} 0 ; \quad p, T \rightarrow \infty
$$

in the LP:

$$
y_{t+h}=A_{h, 1} y_{t-1}+\ldots+A_{h, p} y_{t-p}+u_{t+h}
$$

turns out same as consistency of $\operatorname{VAR}(p)$, i.e.

$$
p^{1 / 2} \sum_{j=0}^{\infty}\left\|A_{k+j}\right\| \rightarrow 0
$$

see proof in Jordà, Singh, Taylor (2020)

Illustration of VAR vs. LP bias

Based on MA(24) model

Cumulative response

Another example

Figure 2 in Palgborg-Møller and Wolf (2021, ECTA)

Response of bond spread to monetary shock: Var and LP estimates

Multipliers and Counterfactuals

```
BACK TO INDEX
```

Two models, same response, different conclusions Alloza, Gonzalo, Sanz (2020)

$$
\text { (a) }\left\{\begin{array} { l l }
{ \Delta y _ { t } } & { = \beta \Delta s _ { t } + u _ { t } ^ { y } } \\
{ \Delta s _ { t } } & { = \rho \Delta s _ { t - 1 } + u _ { t } ^ { s } }
\end{array} ; \quad \text { (b) } \quad \left\{\begin{array}{ll}
\Delta y_{t} & =\beta \Delta s_{t}+\rho \Delta y_{t-1}+u_{t}^{y} \\
\Delta s_{t} & =u_{t}^{s}
\end{array} ; \boldsymbol{u}_{t} \sim D(0, l)\right.\right.
$$

Note: $\mathcal{R}_{s y}^{a}(h)=\beta \rho^{h}=\mathcal{R}_{s y}^{b}(h)$. Both can be estimated with the LP:

$$
\Delta y_{t+h}=\gamma_{h} \Delta s_{t}+\psi_{h} \Delta y_{t-1}+v_{t+h}
$$

Propagation in (a), due to correlated treatment, in (b) correlated outcome. Consider augmenting LP with treatment leads:

$$
\begin{aligned}
& \Delta y_{t+h}=\gamma_{h} \Delta s_{t}+\psi_{h} \Delta y_{t-1}+\sum_{i=1}^{h} \phi_{i} \Delta s_{t+i}+v_{t+h} ; \\
& \tilde{\mathcal{R}}_{s y}^{a}(h)=\beta ; \quad \tilde{\mathcal{R}}_{s y}^{b}(h)=\beta \rho^{h}
\end{aligned}
$$

What is going on?

■ in both cases, Δs_{t} is strictly exogenous. Leads are allowed in the LP
■ in model (a), including leads removes the effect from future potential treatments (due to treatment serial correlation)
■ in model (b), on average, there is no expectation of additional treatment. The leads do not matter
■ what is the effect of a single treatment? In (a) β, in (b) $\beta \rho^{h}$
■ think of the LP MA(h) residual structure. In general, the MA would have terms in u_{t+i}^{y} and u_{t+i}^{s}. But in model (b) coeffs on u_{t+i}^{s} are all zero
■ another way to think about these effects is using multipliers

From previous example

Consider the following model (model (a) earlier):

$$
\left\{\begin{array}{ll}
\Delta y_{t} & =\beta \Delta s_{t}+u_{t}^{y} \\
\Delta s_{t} & =\rho \Delta s_{t-1}+u_{t}^{s}
\end{array} \quad ; \quad u_{t} \sim D\left(\binom{0}{0} ;\left(\begin{array}{cc}
\sigma_{y} & 0 \\
0 & \sigma_{s}
\end{array}\right)\right)\right.
$$

Trivially: $\mathcal{R}_{s y}(h)=\beta \rho^{h} ; \mathcal{R}_{s s}(h)=\rho^{h}$
The cumulative impact, $\mathcal{C}_{i j}(h)=\sum_{k=0}^{h} \mathcal{R}_{i j}(k)$ can be directly estimated from:

$$
\begin{array}{ll}
y_{t+h}-y_{t-1}=\Delta_{h} y_{t+h}=\theta_{h} \Delta s_{t}+v_{t+h}^{y} ; & v_{t+h}^{y} \sim M A(h) \\
s_{t+h}-s_{t-1}=\Delta_{h} s_{t+h}=\psi_{h} \Delta s_{t}+v_{t+h}^{s} ; \quad v_{t+h}^{s} \sim M A(h)
\end{array}
$$

with $\mathcal{C}_{s y}(h)=\theta_{h}=\beta \sum_{k=0}^{h} \rho^{k} ; \mathcal{C}_{s S}(h)=\psi_{h}=\sum_{k=0}^{h} \rho^{k}$

Calculating the multiplier

Define:

$$
m_{h}=\frac{\mathcal{C}_{s y}(h)}{\mathcal{C}_{s s}(h)}=\frac{\beta \sum_{k=0}^{h} \rho^{k}}{\sum_{k=0}^{h} \rho^{k}}=\beta ; \text { cum. change in y due to cum. change in } s
$$

Suppose Δz_{t} is a valid instrument for Δs_{t} then:

$$
\begin{aligned}
& E\left(\Delta_{h} y_{t+h}, \Delta z_{t}\right)=\theta_{h} E\left(\Delta s_{t} \Delta z_{t}\right) \\
& E\left(\Delta_{h} s_{t+h}, \Delta z_{t}\right)=\psi_{h} E\left(\Delta s_{t} \Delta z_{t}\right)
\end{aligned}
$$

hence m_{h} can be directly estimated from the IV projection:

$$
\Delta_{h} y_{t+h}=m_{h} \Delta_{h} S_{t+h}+\eta_{t+h} ; \quad \text { instrumented with } \Delta z_{t}
$$

References

■ Ramey, Valerie A. 2016. Macroeconomic shocks and their propagation. In Handbook of Macroeconomics, Vol. 2, ed. John Taylor and Harald Uhlig. Elsevier, 71-162. Chapter 2.

■ Ramey, Valerie A. and Sarah Zubairy. 2018. Government spending multipliers in good times and in bad: Evidence from U.S. historical data. Journal of Political Economy, 126(2):850-901.

■ Stock, James H. and Mark Watson. 2018. Identification and estimation of dynamic causal effects in macroeconomics using external instruments. Economic Journal, 128(610): 917-948.

Panel data applications

LPs in panels

The set-up

$$
y_{i, t+h}=\alpha_{i}+\delta_{t}+s_{i, t} \beta_{h}+x_{i, t} \gamma_{h}+v_{i, t+h} ; \quad i=1, \ldots, n ; \quad t=1, \ldots, T
$$

- α_{i} unit-fixed effects

■ δ_{t} time-fixed effects
■ $x_{i, t}$ exogenous and pre-determined variables

- $s_{i, t}$ treatment variable
- β_{h} response coefficient of interest

Sample code: LP_example_panel.do

Panel-LPs

Remarks: usual panel data issues appear here too

- LP is costly in short-panels (lost time dimension cross-sections)
- but cross-section brings more power
- incidental parameter issues (fixed effects):

■ beware of high autocorr and low T (Alvarez and Arellano, 2003 ECTA)
■ will need Arellano-Bond or similar estimator
■ inference
■ n, T large \rightarrow two-way clustering helps MA(h) and heteroscedasticity
■ n large, T small \rightarrow cluster by unit helps with MA(h)

- T large, n small \rightarrow cluster by time helps heteroscedasticity
- else, Driscoll-Kraay is like Newey-West for panel data

■ when clustering with small n, T, may need bootstrap. See papers here and here. See also summclust and boot test STATA ado files

Cointegration
A brief detour
Back to index

What is cointegration?

Idea: two variables can be I(1) but their linear combination is I(0). Example:

$$
\left\{\begin{array}{l}
y_{1, t}=\gamma y_{2, t}+u_{1, t} \\
y_{2, t}=y_{2, t}+u_{2, t}
\end{array} ; \quad y_{1, t}, y_{2, t} \sim I(1) \quad \text { but } \quad z_{t}=y_{1, t}-\gamma y_{2, t} \sim I(0)\right.
$$

In general:

$$
y_{t}=\alpha+\Phi_{1} y_{t-1}+\ldots+\Phi_{p} y_{t-p}+u_{t}
$$

cointegration means:

$$
\Phi(1) \equiv I-\Phi_{1}-\ldots-\Phi_{p} \text { then } \operatorname{rank}(\Phi(1))=g<n
$$

that is, the system has $n-g$ unit roots and g cointegrating vectors, s.t. $\Phi(1)=B A^{\prime}$ with $A, B n \times g$ matrices, and $A^{\prime} y_{t}=z_{t}$ cointegrating vectors

The VECM representation

Using general representation of a $\operatorname{VAR}(p)$

$$
\begin{aligned}
& \boldsymbol{y}_{t+1}=\Phi_{1} y_{t}+\ldots+\Phi_{p+1} y_{t-p}+\boldsymbol{\alpha}+u_{t+1} \\
& y_{t+1}=\Psi_{1} \Delta \boldsymbol{y}_{t}+\ldots+\Psi_{p} \Delta \boldsymbol{y}_{t-p+1}+\Pi \boldsymbol{y}_{t}+\boldsymbol{\alpha}+u_{t+1}
\end{aligned}
$$

with $\Psi_{j}=-\left[\Phi_{j+1}+\ldots+\Phi_{p+1}\right]$; for $j=1, \ldots, p$ and $\Pi=\sum_{j=1}^{p+1} \Phi_{j}$ subtracting y_{t} on both sides:

$$
\Delta y_{t+1}=\Psi_{1} \Delta y_{t}+\ldots+\Psi_{p} \Delta y_{t-p+1}+\Psi_{0} y_{t}+\boldsymbol{\alpha}+u_{t+1}
$$

Note: $\Psi_{0}=-\Phi(1)=B A^{\prime}$ when there is cointegration, and $z_{t}=A^{\prime} y_{t}$

$$
\Delta y_{t+1}=\Psi_{1} \Delta y_{t}+\ldots+\Psi_{p} \Delta y_{t-p+1}-B z_{t}+\boldsymbol{\alpha}+u_{t+1}
$$

How does cointegration affect impulse responses?

Remarks

■ responses from levels VAR always correct
■ responses from differenced VAR only correct if no cointegration
■ cointegration improves efficiency ...
■ ... but estimation and inference more dificult
■ responses often not used to investigate
LR equilibrium relationships but should
■ useful to impose LR exclusion identification restrictions

Cointegrated systems in state-space form

notice:

$$
\Psi_{0}=\Pi-।=-\Phi(1)
$$

if rank $\left(\Psi_{0}\right)<n \rightarrow \Phi(1)=B A^{\prime}$; cointegrating vector: $\boldsymbol{z}_{t}=A^{\prime} y_{t}$

$$
\begin{aligned}
& {\left[\begin{array}{c}
z_{t+1} \\
\Delta y_{t+1} \\
\Delta y_{t} \\
\vdots \\
\Delta y_{t-p+1}
\end{array}\right]=\left[\begin{array}{ccccc}
A^{\prime} \Pi & A^{\prime} \Psi_{1} & \ldots & A^{\prime} \Psi_{p-1} & A^{\prime} \Psi_{p} \\
-B & \Psi_{1} & \ldots & \Psi_{p-1} & \Psi_{p} \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right]\left[\begin{array}{c}
z_{t} \\
\Delta y_{t} \\
\Delta y_{t-1} \\
\vdots \\
\Delta y_{t-p}
\end{array}\right]+\left[\begin{array}{c}
A^{\prime} u_{t+1} \\
u_{t+1} \\
0 \\
\vdots \\
0
\end{array}\right]} \\
& Z_{t+1}=\boldsymbol{\Psi} Z_{t}+V_{t+1}
\end{aligned}
$$

Usefulness of state-space representation

calculating impulse responses through recursive substitution long-run dynamics:

$$
\begin{aligned}
& z_{t+h}=\Psi_{[1,1]}^{h} z_{t}+\Psi_{[1,2]}^{h} \Delta y_{t}+\sum_{j=3}^{p-2} \boldsymbol{\Psi}_{[1, j]}^{h} \Delta y_{t-j+2}+\boldsymbol{\nu}_{t+h} \\
& \boldsymbol{\nu}_{t+h}=A^{\prime} u_{t+h}+A^{\prime}\left(I+\Gamma_{1}\right) U_{t+h-1}+\ldots+A^{\prime}\left(I+\Gamma_{1}+\ldots+\Gamma_{h-1}\right) U_{t+1}
\end{aligned}
$$

short-run dynamics:

$$
\begin{aligned}
\Delta y_{t+h} & =\boldsymbol{\Psi}_{[2,1]}^{h} z_{t}+\boldsymbol{\Psi}_{[2,2]}^{h} \Delta y_{t}+\sum_{j=3}^{p-2} \boldsymbol{\Psi}_{[2, j]}^{h} \Delta y_{t-j+2}+\boldsymbol{v}_{t+h} \\
\boldsymbol{v}_{t+h} & =u_{t+h}+\Gamma_{1} u_{t+h-1}+\ldots+\Gamma_{h-1} u_{t+1}
\end{aligned}
$$

where

$$
\Delta y_{t}=\sum_{j=0}^{\infty} \Gamma_{j} u_{t-j}
$$

Responses to equilibrium shocks

equilibrium dynamics, short- vs. long-run effects:

$$
\mathcal{R}_{z}\left(h ; A^{\prime} u_{t+1}=1\right)=\left(I+\Gamma_{1}+\ldots+\Gamma_{h}\right) A=\underset{\substack{ \\[1,1]}}{\boldsymbol{\Psi}^{h}}+\underset{\substack{[1,2]}}{h} A
$$

short-run dynamics, short- vs long-run effects:

$$
\mathcal{R}_{\Delta y}\left(h ; A^{\prime} u_{t+1}=1\right)=\Gamma_{h} A=\underset{\substack{[2,1]}}{\boldsymbol{\Psi}^{h}}+\underset{S R}{\boldsymbol{\Psi}_{[2,2]}^{h}} A
$$

remarks:
■ note shock cointegrating vector, \boldsymbol{z}, not a variable
■ each response, 2 parts:
1 return to equilibrium (LR)
2 short-run frictions (SR)

Application

Chong, Yanping, Òscar Jordà, and Alan M. Taylor. 2012. The Harrod-Balassa-Samuelson Hypothesis: Real Exchange Rates and their Long-Run Equilibrium. International Economic Review, 53(2): 609-634

VARIANCE DECOMPOSITIONS

```
BACK TO INDEX
```


intuition

two important recent references:

- Gorodnichenko, Yuriy and Byoungchan Lee. 2020. Forecast error variance decompositions with local projections. Journal of Business and Economics Statistics
■ Plagborg Møller, Mikkel and Christian K. Wolf. 2022. Instrumental variable identification of dynamic variance decompositions. Journal of Political Economy.
can always write $y_{t+h}=\hat{E}_{t}\left(y_{t+h}\right)+\hat{v}_{t+h}$
then R^{2} of regression of \hat{v}_{t+h} on $\epsilon_{j, t+h}, \ldots, \epsilon_{j, t}$ measures percent of FEV explained by j-shock
assumes structural shock $\epsilon_{j, t}$ available

SMOOTH LOCAL PROJECTIONS

Smoothing

relevant references:

- Barnichon, Regis and Christian Brownlees. 2018. Impulse response estimation by smooth local projections. Available at: https://sites.google.com/site/regisbarnichon/research
■ Barnichon, Regis and Christian Matthes. 2018. Functional approximations of impulse responses (FAIR). Journal of Monetary Economics, forthcoming.

Many solutions. A simple one: Gaussian Basis Functions

Intuition: impose some cross-horizon discipline to smooth LP wiggles. Can improve efficiency

Other options: bayesian shrinkage see, e.g. Miranda-Agrippino and Rico. 2018. Bayesian Local Projections

A general approach to smoothing

GMM provides local projection estimates of the response $\hat{\mathcal{R}}$ given by $\hat{\gamma}$ and $\hat{\Sigma}_{\hat{\gamma}}$
a natural solution is minimum distance
let $\boldsymbol{\psi}(\hat{\gamma}, \boldsymbol{\theta})$ be a function that returns a smoothed estimate of $\hat{\gamma}$ based on auxiliary parameters $\boldsymbol{\theta}$, then:

$$
\min _{\boldsymbol{\theta}}[\hat{\gamma}-\boldsymbol{\psi}(\boldsymbol{\theta})]^{\prime} \hat{\Sigma}_{\gamma}[\hat{\gamma}-\boldsymbol{\psi}(\boldsymbol{\theta})]
$$

delivering, $\hat{\boldsymbol{\theta}}, \hat{\Sigma}_{\hat{\theta}}$ and if $\operatorname{dim}(\boldsymbol{\gamma})>\operatorname{dim}(\boldsymbol{\theta})$, a test of overidentifying restrictions for $\boldsymbol{\psi}(\boldsymbol{\theta})$

Smoothing with Gaussian Basis Functions

suppose no controls to simplify

$$
\mathcal{R}(h ; a, b, c)=\psi(h)=a e^{-\left(\frac{h-b}{c}\right)^{2}}
$$

Using GMM set-up, two estimators: direct v. 2-step
Direct estimator:

$$
\min _{a, b, c}\left[\sum_{t=1}^{T} Z_{t}^{\prime}\left(y_{t, H}-S_{t} \psi(h)\right)\right]^{\prime} \hat{W}\left[\sum_{t=1}^{T} Z_{t}^{\prime}\left(y_{t, H}-S_{t} \psi(h)\right)\right]
$$

2-step: Step-1 is usual LP, get $\hat{\gamma}, \hat{\Sigma}_{\gamma}$, then min. distance

$$
\min _{a, b, c}[\hat{\gamma}-\phi(h)]^{\prime} \hat{\Sigma}_{\gamma}[\hat{\gamma}-\phi(h)]
$$

GBF-GMM

Remarks

■ direct method requires NL estimation techniques

- however, problem is reasonably well behaved

■ 2-step method provides useful intuition
■ note H-period LP, but 3 parameters so $(H+1)-3$ overidentifying restrictions
■ regardless of method, J-test natural specification test
■ considerable gain in parsimony \Longrightarrow efficiency
■ GBF approximation works well with "single humps"
■ multiple "humps" require more basis functions \Longrightarrow GBF approach no longer as practical

approximation using gaussian basis functions

recall:

$$
\mathcal{R}(h)=\psi(h)=a e^{-\left(\frac{h-b}{c}\right)^{2}}
$$

what does each parameter do?

- a scales the entire response

■ b dates the peak effect

- c measures the half-life

gaussian basis functions

the picture

Sample code: LP_GBF.do

GBF-GMM example

unemployment v. inflation response to monetary policy shock

Nonlinearities and other potential extensions

The principle

What we are after:

$$
\mathcal{R}_{s y}(h)=E\left[y_{t+h} \mid S_{t}=S_{0}+\delta ; x_{t}\right]-E\left[y_{t+h} \mid S_{t}=s_{0} ; x_{t}\right]
$$

No reason to assume the conditional expectation is linear

Example:

$$
\begin{aligned}
y_{t+h} & =\gamma_{1 h} s_{t}+\gamma_{2 h} s_{t}^{2}+\gamma x_{t}+v_{t+h} \quad \rightarrow \\
\mathcal{R}_{s y}(h) & =\gamma_{1 h}\left(s_{0}+\delta\right)+\gamma_{2 h}\left(s_{0}+\delta\right)^{2}+\gamma x_{t}-\left(\gamma_{1 h} s_{0}+\gamma_{2 h} s_{0}^{2}+\gamma x_{t}\right) \\
& =\gamma_{1 h}+\gamma_{2 h}\left(\delta^{2}+2 s_{0} \delta\right)
\end{aligned}
$$

Hence, $\mathcal{R}_{s y}(h)$ depends on δ and s_{0}, just like NL regression

Binary dependent variable

Example: response probability of financial crisis to today's credit shock

$$
\mathcal{R}_{s y}(h)=P\left(y_{t+h}=1 \mid s_{t}=s_{0}+\delta ; x_{t}\right)-P\left(y_{t+h}=1 \mid s_{t}=s_{0} ; x_{t}\right)
$$

Remarks:
■ logit/probit $\rightarrow \mathcal{R}_{\text {sy }}(h)$ depends on s_{0}, δ and \boldsymbol{x}_{t}

- can estimate a linear probability model. But crises are tail events

Another example: Text-based recession probabilities
Ferrari Minesso, M., Lebastard, L. \& Le Mezo, H. Text-Based Recession Probabilities. IMF Econ Rev (2022).

Response of recession probability

Marginal effect of 1% increase in newspaper-based index

Fig. 2 Marginal effects from Eq. (4.1). Notes: Marginal effects $\left(\frac{\partial P\left(\text { Recession }_{t+x}=1 \mid f\right)}{\partial \text { hdexet }_{i}}\right)$ from the probit regression for a 1% increase in the newspaper-based index (i.e., a 1% increase in the share of newspaper articles discussing a recession in the USA). Grey shaded areas report 95% confidence intervals

Quantile LPs

Example: does high corporate debt increase risk of left tail GDP draws? Does it depend on legal bankruptcy framework?

$$
\begin{aligned}
& \hat{\gamma}_{h, \tau}=\underset{\gamma_{h, \tau}}{\operatorname{argmin}} \sum_{1}^{t(p)}\left(\tau 1\left(\Delta_{h} y_{i t(p)+h} \geq s_{i t(p)} \gamma_{h, \tau}\right)\left|\Delta_{h} y_{i t(p)+h}-s_{i t(p)} \gamma_{h, \tau}\right|\right. \\
& \left.+(1-\tau) 1\left(\Delta_{h} y_{i t(p)+h}<s_{i t(p)} \gamma_{h, \tau}\right)\left|\Delta_{h} y_{i t(p)+h}-s_{i t(p)} \gamma_{h, \tau}\right|\right)
\end{aligned}
$$

Jordà, Kornejew, Schularick, and Taylor. 2022. Zombies at large? Corporate debt overhang and the macroeconomy. Review of Financial Studies

Figure A.4: Business and household debt, responses at $20^{\text {th }}$ percentile of real GDP per capita growth

Notes: Figures show the predictive effects on growth of a two-SD business/household debt buildup in the five years preceding the recession based on a LP series of quantile regressions. Business credit booms shown in the left-hand side panel and household debt booms shown in the right-hand side panel. Shaded areas denote the 95% confidence interval based on bootstrap replications. See text.

Factor models

Idea: control for many covariates using factor model. Suppose:

$$
\left\{\begin{array}{ll}
\boldsymbol{x}_{\mathrm{t}} & =\lambda(L) \boldsymbol{f}_{\mathrm{t}}+\boldsymbol{e}_{\mathrm{t}} \\
k \times 1 \\
f_{\mathrm{t}} & =\pi(L) \boldsymbol{f}_{\mathrm{t}-1}+\boldsymbol{\eta}_{\mathrm{t}}
\end{array} ; \quad k \gg q ; E\left(\boldsymbol{e}_{\mathrm{t}}\right)=E\left(\boldsymbol{\eta}_{\mathrm{t}}\right)=0 ; E\left(\boldsymbol{e}_{\mathrm{t}} \boldsymbol{\eta}_{\mathrm{t}-j}^{\prime}\right)=0 \forall j\right.
$$

Then LP can be specified as:

$$
y_{t+h}=\beta_{h} S_{t}+\sum_{j=0}^{p} \gamma_{j} f_{t-j}+v_{t+h}
$$

