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REVIEW OF IDENTIFICATION WITH LOCAL PROJECTIONS
Most of this already discussed in the previous lecture
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The issue
(Some) threats to identification

Recall, we need st|xt randomly assigned

Some examples when identification fails:
excluded observables: correlated with st and yt
unobservables: correlated with st and yt
simultaneity: st and yt jointly determined

(Some) solutions (well known from VARs):
parametric zero restrictions
internal instruments
external instruments
identification through heteroscedasticity
... and others
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Recall: zero short-run restrictions
Cholesky decomposition – Wold causal ordering

Σ = PP′ with P lower triangular:
always exists and is unique, but ...

different ordering of the variables, different P
implied 0 restrictions may be incorrect
just-identification =⇒ ordering cannot be tested
however, trivial to implement

Interpretation:
y(1),t does not contemporaneously depend on others
y(2),t only depends on y(1),t contemporaneously
y(3),t only depends on y(1),t, y(2),t contemporaneously
and so on...
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Recursive identification in LPs
Suppose n× 1 vector yt

Decide the causal ordering.
Include the contemporaneous values of variables causally ordered first:

yj,t+h = µh
j + βh

j,1y1,t + . . .+ βh
j,i−1yi−1,t + βh

j,iyi,t +
p∑

k=1

chj,kyt−k + vj,t+h

Structural LP Estimate

R̂ij(h) = β̂h
j,i; h = 0, 1 . . . ,H; i, j ∈ {1, . . . ,n}

Remark: good idea to order treatment variable (yi,t) last →
variation cannot be explained by observables
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Long-run zero restrictions with LPs
Two step procedure

Blanchard and Quah (1989) example:
yt = (xt,ut), xt log real GDP; ut unemployment rate

Step 1: long-run LP

xt+H − xt−1 = αH + δx,Hyt +
p∑

k=1

cHx,kyt−k + vx,t+H

δx,H: linear combination that best explains long-run GDP (i.e. supply shock)

Remark: choose H large
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Long-run identification
Step 2

yj,t+h = µh + βj,h(δ̂x,Hyt) +
p∑

k=1

chj,kyt−k + vj,t+h; j = x,u; h = 0, 1, . . . ,H

Remarks:
βj,h is the response of the jth variable to supply shock, in period h
δ̂x,Hyt comes from first step
little guidance on how to choose H. Try different values
Idea can be generalized in a number of ways:
medium-run identification?
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Sign restrictions
Example: monetary shock → positive response of rt+h for h = 0, 1, . . . ,H
with Rr(0) = 1 normalization

Idea: find all linear combinations δ such that Rr(h) > 0 and Rr(0) = 1

Step 1: rt+h = µr,h + gr,hyt +
∑p

k=1 chr,kyt−k + vr,t+h → ĝr,h

Step 2: yj,t+h = µj,h + γj,hyt +
∑p

k=1 chj,kyt−k + vj,t+h → γ̂j,h

Step 3: find δ such that

sup
δ

δ′γ̂j,h s.t. δ′ĝr,0 = 1

δ′ĝr,h ≥ 0 for h = 1, . . . ,H

same for inf to obtain upper and lower bounds for Rry(h)
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Remarks

note this is set identification not point identification
hence inference is much more complicated
Plagborg-Møller and Wolf (2021, ECTA) provide solution algorithm
choice of H matters, could be relatively short
simulation methods (bayesian) another way to go?
may combine with other constraints
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LP-IV
Stock and Watson (2018, Economic Journal) Assumptions

Suppose zt is a vector of instruments for the structural shock ϵ1,t and
denote zPt = zt − P(zt|wt) where wt collects all controls in the LP (e.g. yt−j)

1 Relevance: E
(
ϵP1,t zP

′
t
)
= α′ ̸= 0

2 Basic exogeneity: E
(
ϵPj,t zP

′
t

)
= 0, j ̸= 1

3 Lead-Lag exogeneity: E
(
ϵPj,t+h zP

′
t

)
= 0, ∀j,h ̸= 0

Remarks:
usual IV conditions except lead-lag exogeneity because dynamics
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LP-IV: Assumptions 1
Plagborg-Møller and Wolf (2021 ECTA)

Assumption 1: yt
ny×1

= µ+Θ(L) ϵt
nϵ×1

; where:

Θ(L)
ny×nϵ

≡
∞∑
h=o

ΘhLh s.t.
∞∑
h=0

||Θh|| < ∞ with ||Θh||2 = tr(Θ′
hΘh)

and Θ(x) has full column rank for all complex scalars x on the unit circle.

Remarks:
ϵt are structural, hence possibly Θ0 ̸= I
we can have nϵ > ny (non-invertibility)
yt is strictly stationary
Θh is the structural impulse response coefficient matrix
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LP-IV: Assumptions 2
Assumption 2: zt = cz +

∑∞
h=1(Ghzt−h + Λhyt−h) + αϵ1,t + νt with:

α ̸= 0 relevance condition
1−

∑∞
h=1 GhLh has all roots outside unit circle∑∞

h=1 ||Λh|| < ∞
νt ⊥ ϵt−j for any j, νt is measurement error

Remarks:
Assumptions 1 and 2 → validity of LP-IV and SVAR-IV
but LP-IV does not require invertibility

See Plagborg-Møller and Wolf (2021) for more details
Example code: LPIV_example.do
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Recall: Impulse responses as a comparison of two averages

R(h) = E(E[yt+h|st = s+ δ, xt]− E[yt+h|st = s, xt]))

yt+h: outcome
st: intervention
s: baseline, e.g., s = 0
δ: dose, e.g., δ = 1; δ = var(ϵ)1/2; . . .
xt: exogenous and predetermined variables
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A trivial example
Suppose st ∈ {0, 1} is randomly assigned, then:

R(h) =
1
N1

T−h∑
t=1

yt+hst −
1
N0

T−h∑
t=1

yt+h(1− st)

N1 =
T−h∑
t=1

st; T− h = N1 + N0

Remarks:
inefficient (not using xt), but consistent
could control for xt with Inverse Propensity score Weighting (IPW)
feels like the potential outcomes paradigm used in micro
could have regressed yt+h on st, same thing (could add xt easily)
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Inverse propensity score weighting
The basics: an alternative/complement to regression control

let st ∈ {0, 1} be policy treatment;
yt,H = (yt, yt+1, . . . , yt+H)

Selection on observables or conditional ignorability:

y(s) ⊥ s|x s ∈ {0, 1}

suppose s randomly assigned, then no need for x:

R̂(h) = 1
T1

T∑
t=1

st yt+h︸ ︷︷ ︸
µh
1

− 1
T0

T∑
t=1

(1− st) yt+h︸ ︷︷ ︸
µh
0

yt+h = µh
0 + stγh + vt+h → R = γ
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Rosenbaum and Rubin 1983
the propensity score as a sufficient statistic

before: y(s) ⊥ s|x; now: y(s) ⊥ s|p(s = 1|x) s ∈ {0, 1}

hence, if p̂t = p(st = 1|xt; θ̂) then:

R̂(h) = 1
T∗1

T∑
t=1

(
st yt+h

p̂t

)
− 1

T∗0

T∑
t=1

(
(1− st) yt+h

(1− p̂t)

)
with

T∗1 =
T∑

t=1

st
p̂t
; T∗0 =

T∑
t=1

1− st
1− p̂t
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Doubly robust IPW estimators

regression augmented IPW:

yt+h =
st
p̂t
(
µh
0 + (xt − µx)γ

h
0
)
+

1− st
1− p̂t

(
µh
1 + (xt − µx)γ

h
1
)
+ vt+h

see also augmented IPW by Lunceford and Davidian (2004)

Remarks:
p̂t usually a first-stage logit/probit → affects inference
IPW literature provides SE formulas, but not for time series settings
one solution is to use the bootstrap

IPW code available here
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INFERENCE
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Why is inference different with local projections?
It is the MA structure of the residuals

recall the AR(1) example, yt = ρyt−1 + ut. By recursive substitution:

yt+h = ρh+1yt−1 + ut+h + ρut+h−1 + . . .+ ρhut

so in a local projection:

yt+h = βh+1yt−1 + vt+h; vt+h = ut+h + ρut+h−1 + . . .+ ρhut

In general, we don’t know the MA structure
Jordà (2005) recommended HAC standard errors, e.g. Newey-West
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LAG AUGMENTATION A SIMPLER, MORE ELEGANT SOLUTION
MONTIEL-OLEA AND PLAGBORG-MØLLER. 2021. ECONOMETRICA
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The logic of lag augmentation
A simple example

DGP:: yt = ρyt−1 + ut; ut strictly stationary, E(ut|{us}s̸=t) = 0

LP: yt+h = βhyt + vt+h; vt+h ∼ MA(h)

Plug DGP into LP: yt+h = βhut + γhyt−1 + vt+h

FWL logic: obtain βh by regressing yt+h − γhyt−1 on yt − ρyt−1

β̂h =

∑T−h
t=1 (yt+h − γhyt−1)(yt − ρyt−1)∑T−h

t=1 (yt − ρyt−1)2
=

∑T−h
t=1 (βhut + vt+h)ut∑T−h

t=1 u2
t

= βh +

∑T−h
t=1 vt+hut∑T−h

t=1 u2
t
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Key insight
Same logic if DGP is VAR(p)

Recall:

β̂h = βh +

∑T−h
t=1 vt+hut∑T−h

t=1 u2
t

→ σ̂2(β̂h) =

∑T−h
t=1 v̂2t+hû2

t(∑T−h
t=1 û2

t

)2
although vt+h ∼ MA(h), note that vt+hut ∼ MA(0) since for any s < t:

E[vt+hutvs+hus] = E[E[vt+hutvs+hus|us+1,us+2, . . .]]

= E[vt+hutvs+h E[us|us+1,us+2, . . .]︸ ︷︷ ︸
= 0

]

Takeaway: do lag-augmented LP with White corrected errors.
No need for Newey-West
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Wild boostrap with lag augmentation
Response of jth variable to a shock

1 Lag-augmented LP → collect β̂j,h, σ̂j,h = σ̂(β̂j,h)

2 VAR(p) → ût (option: bias-adjust VAR coeffs Pope, 1990 procedure)
3 VAR(p) → β̂VAR

j,h

4 For each boostrap iteration b = 1, . . . ,B:
1 Generate bootstrap residuals û∗t ≡ Ztût; Zt ∼ N(0, 1) (wild bootstrap)
2 draw a block of p initial observations (y∗1 , . . . , y∗p) at random from T− p+ 1 blocks of p

observations from the data
3 Generate y∗t with (y∗1 , . . . , y∗p) initial observations, the bias-corrected VAR(p) coeffs, and û∗t
4 Apply augmented LP to {y∗t } → β̂∗

j,h, σ̂
∗
j,h

5 Store T̂∗b = (β̂∗
j,h − β̂VAR

j,h )/σ̂∗
j,h

5 Compute α/2 and 1− α/2 quantiles of {T̂∗b}
B
b=1 , say q̂α/2 and q̂1−α/2 respectively

6 the percentile confidence interval is:

[β̂j,h − σ̂j,hq̂1−α/2, β̂j,h − σ̂j,hq̂α/2]

See https://github.com/jm4474/Lag-augmented_LocalProjections
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Parametrically adjusted standard errors

General LP:

yt+h = βhst + γhxt + vt+h; vt+h = ut+h + ϕ1ut+h−1 + . . .+ ϕhut

Note: make no assumptions on how y, s, and x are dynamically related

hence no assumption on ϕ1, . . . , ϕh

Can view the LP as the DGP and estimate the ϕj directly as XMA(h) model
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LUSOMPA (2019) FGLS
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Lusompa’s (2019) FGLS procedure
See his paper for a bootstrap and Bayesian approaches

Step 1 (usual LP for h = 0):

yt = α0 + xtβ0 + stγ0 + ut → {ût}; γ̂0

Step 2 (use step 1 to fix LHS variable):

ỹt+1 = α1 + xtβ1 + stγ1 + vt+1; ỹt+1 = yt+1 − ûtγ̂0 → γ̂1

Step 3 (use estimates from Step 1 and 2):

ỹt+2 = α2 + xtβ2 + stγ2 + vt+2

ỹt+2 = yt+2 − (ûtγ̂1 + ût+1γ̂0) → γ̂2

rinse and repeat for steps 4 ... H
Note: always use Step 1 residuals ût in all steps
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Further comments and remarks
Many interesting results from Lusompa (2019)

VAR need not be DGP for FGLS to work
in small samples with high persistence,
NW has small sample bias
similar result in Herbst and Johannsen (2020)
shows two bootstrap algorithms
shows bayesian approach with time-varying example
focus is on pointwise uncertainty, however
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JOINT INFERENCE
LPS AS A GMM PROBLEM
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A simplification first
The Frisch-Waugh-Lovell theorem

Elements of the problem:
yt: outcome variable (response)
xt: control variables (constant, predetermined endogenous and

exogenous variables)
st: treatment variable (impulse)
zt: instrumental variables (possibly none in which case, st = zt)

Let PL(wt|vt) denote the linear regression of wt on vt
From now on, assume:

yet+h
def
= yt+h − PL(yt+h|xt)

set
def
= st − PL(st|xt)

zet
def
= zt − PL(zt|xt)
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Basic univariate LP results

yet+h = set γh + vt+h; h = 0, 1, . . . ,H

√
T(γ̂h − γh) =

1
T1/2

∑T−h
t=1 vet+hset

1
T
∑T

t=1 set
2 ;

1
T

T∑
t=1

set
2 p→ E(set

2
) = Qs

1
T1/2

T−h∑
t=1

vet+hset
d→ N(0,Ω); Ω = V

(
1
T1/2

T−h∑
t=1

vet+hset

)

Ω ≈
∞∑

j=−∞

E(set vt+hvt+h−jset−j) ≈

1
T

T−h∑
t=1

v2t+hset
2
+

1
T

L∑
l=1

T−h∑
t=l+1

ωlvt+hvt+h−lset set−l; ωl = 1− l
L+ 1
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Remarks

I am using T instead of T− h to keep it simple
asymptotically, it makes no difference
Newey-West or any other HAC estimator ok
In principle, L = h; h = 1, . . . ,H
can truncate at Lmax for efficiency
Lusompa (2020) GLS directly tackles MA errors
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Set-up

yet,H
(H+1)×1

≡ (yet . . . yet+H)
′; Set

(H+1)×(H+1)
≡ I(H+1) ⊗ set

1×1

vt,H
(H+1)×1

≡ (vt . . . vt+H)
′; Zet

(H+1)×(H+1)(k+l)
≡ ( Xet

(H+1)×(H+1)k
(I(H+1) ⊗ zet

1×l
));

moment condition:

E[Z′t(yet,H − Setβ)] = E[Zet
′vt,H] = 0

with

R = β
H+1×1

= (β0 . . . βH)
′
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Objective function

recall the moment condition:

E[Z′t(yet,H − Setβ)] = E[Zet
′vt,H] = 0

objective function:

min
β

[T−H∑
t=1

Zet
′
(yet,H − Setβ)

]′
Ŵ
[T−H∑

t=1
Zet

′
(yet,H − Setβ)

]

Ŵ =

(
1
T

T−H∑
t=1

Zet
′vt,Hv′t,HZet

)−1
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Estimator

In the simple case

γ̂ =

(
1
T

T−H∑
t=1

Zet
′Set

)−1(
1
T

T−H∑
t=1

Zet
′yet,H

)

more generally:

γ̂ =

(
1
T

T−H∑
t=1

Set
′Zet ŴZet

′Set

)−1(
1
T

T−H∑
t=1

Set
′Zet ŴZet

′yet,H

)
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The residual structure
Useful later when we construct GLS

vt,H =


vt
vt+1
...

vt+H

 =


1 0 . . . 0
ϕ1 1 . . . 0
... ... . . .

...
ϕH ϕH−1 . . . 1


︸ ︷︷ ︸

Φ


ut
ut+1
...

ut+H


︸ ︷︷ ︸

ut,H

in the AR(1) example, ϕh = ϕh and βh = ϕh

Note ϕ̂h = β̂h =⇒ exploit for GLS
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Estimating LP covariance matrix Σ

Using optimal Ŵ defined earlier, usual GMM result is:

Σ =

 1
T

T∑
t=1

Z′tSt

(
1
T

T∑
t=1

Z′tΦut,Hu′
t,HΦ

′Zt

)−1

S′tZt

−1

but Φ unknown. solutions:
Newey-West (as we saw earlier)
recursive estimates of Φ (GLS)
block bootstrap
Bayesian methods
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Comments on GMM

nothing unusual in using GMM to estimate LPs
LPs induce MA structure on residuals
optimal weighting matrix should reflect this
GMM results on LM test useful later
also useful later for Gaussian Basis Functions
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ERROR BANDS
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Inference on the trajectory of the response
key reference
”Simultaneous confidence bands: theory, implementation, and an application to SVARs” by José Luis Montiel

Olea and Mikkel Plagborg-Møller

idea
Rh is correlated with Rh−1
In AR(1) example CORR(R̂h, R̂h−1) = ϕ
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The sup-t procedure for joint inference
let the H× 1 vector R̂ collect impulse response coeffs
assume

R̂ d→ N (R,Σ)

can show error bands for response are such that:

P
( H⋂

h=1

[
Rh ∈ R̂h ± c σ̂h

])
→ P

(
max

h
|σh vh| ≤ c

)
choose c as smallest c.v. with simultaneous coverage

c = q1−α(Σ) ≡ q1−α

(
max

h
|σ−1

h vh|
)

where v = (v1, . . . , vH)′ ∼ N (0H,Σ) and σh = Σ[h,h]
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A simple algorithm to implement sup-t procedure
based on asymptotic normality

start with estimates of the response: R̂, Σ̂

1 draw i.i.d. vectors v̂(s) ∼ N (0H, Σ̂), for s = 1, ..., S
2 define q̂1−α as the empirical 1− α quantile of maxh |σ̂−1

h v̂(s)h | across
s = 1, . . . , S with σ̂h = Σ[h,h]

3 construct bands as
⋂H

h=1[R̂h − σ̂hq̂1−α, R̂h + σ̂hq̂1−α]
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Bootstrap/Bayesian version of sup-t algorithm

denote P̂ as either the bootstrap or posterior ϕ̂
1 ϕ̂ can be VAR parameters so that R̂ = R(ϕ̂)

2 ϕ̂ can be local projection estimates so that R̂ = ϕ̂

and generate s = 1, . . . , S draws R̂(s)

Hence:
1 let q̂h,δ denote the empirical δ quantile of R̂(s)

h
2

δ̂ = sup

δ ∈
[

α

(2H) ,
α

2

]∣∣∣∣
∑S

s=1 I
(
R̂(s) ∈

⋂H
h=1[q̂h,δ, q̂h,1−δ]

)
S ≥ 1− α


3 construct bands as

⋂H
h=1[q̂h,δ̂, q̂h,1−δ̂]
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SIGNIFICANCE BANDS
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Motivation
a common situation with VARs

Response of log CPI to a monetary shock

!

89�
�

Figure 3.1A.  Romer Hybrid Monetary VAR, 1969m1 – 2007m12    (90% confidence 
intervals) 

 

Figure 3.1B.  Romer Hybrid Monetary VAR, 1983m1 – 2007m12  (90% confidence intervals) 
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Basic idea
some observations

temptation: the response of CPI is basically zero
observation 1: all (48) coefficients negative rather than randomly
alternating between +/-
observation 2: response coefficients (highly) correlated
observation 3: collinearity → low individual t-stats (wide bands),
sometimes high F-stat

proposition: often the key question is significance of the overall response
rather than estimation uncertainty

is the average treatment effect (ATE) different from zero?
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A simple example
let {yt}Tt=1 be mean zero, stationary and homoscedastic AR(1). Using local
projections (LPs):

yt+h = βhyt + ut+h l = 1, ...,H

so that

β̂h =
1
n
∑n

t=1 yt+hyt
1
n
∑n

t=1 y2t

with n subset of T observations available for estimation
under the null

H0 : βh = 0, ∀ h → ũt+h = yt+h

here ũ denotes the residuals under the null
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A simple example
continued

using usual OLS formula for variance of β̂h, under the null,

σ̃2
β̂
=

1
n
∑n

t=1 y2t+h∑n
t=1 y2t

p→ 1
n

since yt is stationary and under H0, no serial correlation

hence, asymptotic confidence interval is ±c(1−α/2)/
√
n

c(1−α/2) standard Gaussian critical value
same as autocorrelogram error bands
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Significance bands in a local projection
the autocorelogram is the LP in an AR(1)
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Significance bands
LPIV set up and using xet notation for xt − PL(xt|It)

LPIV: yet+h = set γh + ut+h. Instrument: zet . Null: H0 : γh = 0

√
T(γ̂h − 0) =

1
T1/2

∑T−h
t=1 zet yet+h

1
T
∑T−h

t=1 zet set
;

1
T1/2

T−h∑
t=1

zet yet+h
d→ N(0, V);

1
T

T−h∑
t=1

zet set
p→ qzs

What is V under the null hypothesis?
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The variance under the null
Key: the variance is not a function of h!

V = V
(

1√
T

T−h∑
t=1

zet yet+h

)
≈

∞∑
j=−∞

E(zet yet+hzet−jyeth−j)

=
∞∑

j=−∞

E(zet zet−j)E(yet+hyet+h−j) under H0 + lead-lag exogeneity

=
∞∑

j=−∞

φz,jφy,j = φz,0φy,0 if z serially uncorrelated

hence

σ̃2
h = q̂−1

zs V̂q̂−1
zs

Note: use Barlett-type correction for V̂ (e.g. NW weights)
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