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AEA Lectures Chicago, IL, January 2012
Lecture 1, Sunday, Jan 7th,pm-pm

Estimation of Average Treatment Effects Under Unconfoundedness

1. INTRODUCTION

In this lecture we look at several methods for estimating average effects of a program,
treatment, or regime, under unconfoundedness. The setting is one with a binary program.
The traditional example in economics is that of a labor market program where some individ-
uals receive training and others do not, and interest is in some measure of the effectiveness
of the training. Unconfoundedness, a term coined by Rubin (1990), refers to the case where
(non-parametrically) adjusting for differences in a fixed set of covariates removes biases in
comparisons between treated and control units, thus allowing for a causal interpretation of
those adjusted differences. This is perhaps the most important special case for estimating
average treatment effects in practice. Alternatives typically involves strong assumptions link-
ing unobservables to observables in specific ways in order to allow adjusting for the relevant
differences in unobserved variables. An example of such a strategy is instrumental variables,
which will be discussed in Lecture 3. A second example that does not involve additional

assumptions is the bounds approach developed by Manski (1990, 2003).

Under the specific assumptions we make in this setting, the population average treat-
ment effect can be estimated at the standard parametric v/N rate without functional form
assumptions. A variety of estimators, at first sight quite different, have been proposed for
implementing this. The estimators include regression estimators, propensity score based es-
timators and matching estimators. Many of these are used in practice, although rarely is
this choice motivated by principled arguments. In practice the differences between the esti-
mators are relatively minor when applied appropriately, although matching in combination
with regression is generally more robust and is probably the recommended choice. More im-
portant than the choice of estimator are two other issues. Both involve analyses of the data

without the outcome variable. First, one should carefully check the extent of the overlap
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in covariate distributions between the treatment and control groups. Often there is a need
for some trimming based on the covariate values if the original sample is not well balanced.
Without this, estimates of average treatment effects can be very sensitive to the choice of,
and small changes in the implementation of, the estimators. In this part of the analysis
the propensity score plays an important role. Second, it is useful to do some assessment of
the appropriateness of the unconfoundedness assumption. Although this assumption is not
directly testable, its plausibility can often be assessed using lagged values of the outcome as
pseudo outcomes. Another issue is variance estimation. For matching estimators bootstrap-
ping, although widely used, has been shown to be invalid. We discuss general methods for

estimating the conditional variance that do not involve resampling.

In these notes we first set up the basic framework and state the critical assumptions in
Section 2. In Section 3 we describe the leading estimators. In Section 4 we discuss variance
estimation. In Section 5 we discuss assessing one of the critical assumptions, unconfounded-
ness. In Section 6 we discuss dealing with a major problem in practice, lack of overlap in the
covariate distributions among treated and controls. In Section 7 we illustrate some of the
methods using a well known data set in this literature, originally put together by Lalonde

(1936).

In these notes we focus on estimation and inference for treatment effects. We do not dis-
cuss here a recent literature that has taken the next logical step in the evaluation literature,
namely the optimal assignment of individuals to treatments based on limited (sample) in-
formation regarding the efficacy of the treatments. See Manski (2004, 2005, Dehejia (2004),
Hirano and Porter (2005).

2. FRAMEWORK

The modern set up in this literature is based on the potential outcome approach developed
by Rubin (1974, 1977, 1978), which view causal effects as comparisons of potential outcomes

defined on the same unit. In this section we lay out the basic framework.

2.1 DEFINITIONS



Imbens/Wooldridge, AEA Lecture Notes 1, January 12 3

We observe N units, indexed by i = 1,..., N, viewed as drawn randomly from a large
population. We postulate the existence for each unit of a pair of potential outcomes, Y;(0)
for the outcome under the control treatment and Y;(1) for the outcome under the active
treatment. In addition, each unit has a vector of characteristics, referred to as covariates,
pretreatment variables or exogenous variables, and denoted by X;.! It is important that
these variables are not affected by the treatment. Often they take their values prior to the
unit being exposed to the treatment, although this is not sufficient for the conditions they
need to satisfy. Importantly, this vector of covariates can include lagged outcomes. Finally,
each unit is exposed to a single treatment; W, = 0 if unit ¢ receives the control treatment
and W; = 1 if unit 7 receives the active treatment. We therefore observe for each unit the
triple (W;,Y;, X;), where Y; is the realized outcome:

Y(0) if Wi =0,

Y, =Y(W,) = { Yi(1) i Wi =1.

Distributions of (W;,Y;, X;) refer to the distribution induced by the random sampling from
the population.

Several additional pieces of notation will be useful in the remainder of these notes. First,
the propensity score (Rosenbaum and Rubin, 1983) is defined as the conditional probability

of receiving the treatment,
e(r) =Pr(W, = 1|X; = x) = E[W;|X; = x].

Also, define, for w € {0, 1}, the two conditional regression and variance functions:
fiw(2) = E[Yi(w)| X = ], oo (1) = V(Yi(w)|X; = 2).

2.2 ESTIMANDS: AVERAGE TREATMENT EFFECTS

LCalling such variables exogenous is somewhat at odds with several formal definitions of exogeneity
(e.g., Engle, Hendry and Richard, 1974), as knowledge of their distribution can be informative about the
average treatment effects. It does, however, agree with common usage. See for example, Manski, Sandefur,
McLanahan, and Powers (1992, p. 28).
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In this discussion we will primarily focus on a number of average treatment effects (ATEs).
For a discussion of testing for the presence of any treatment effects under unconfoundedness
see Crump, Hotz, Imbens and Mitnik (2007). Focusing on average effects is less limiting
than it may seem, however, as this includes averages of arbitrary transformations of the
original outcomes.? The first estimand, and the most commonly studied in the econometric

literature, is the population average treatment effect (PATE):
rp = E[¥i(1) = Yi(0)].

Alternatively we may be interested in the population average treatment effect for the treated

(PATT, e.g., Rubin, 1977; Heckman and Robb, 1984):
pr = E[Y;(1) — Y;(0)|W = 1].

Most of the discussion in these notes will focus on 7p, with extensions to 7p7 available in

the references.

We will also look at sample average versions of these two population measures. These
estimands focus on the average of the treatment effect in the specific sample, rather than in
the population at large. These include, the sample average treatment effect (SATE) and the
sample average treatment effect for the treated (SATT):

75 = %é(mn—mm), and 757 = NiT > (i) -vi),

where Np = Zf\il W; is the number of treated units. The sample average treatment effects
have received little attention in the recent econometric literature, although it has a long
tradition in the analysis of randomized experiments (e.g., Neyman, 1923). Without further

assumptions, the sample contains no information about the population ATE beyond the

2Lehman (1974) and Doksum (1974) introduce quantile treatment effects as the difference in quantiles
between the two marginal treated and control outcome distributions. Bitler, Gelbach and Hoynes (2002)
estimate these in a randomized evaluation of a social program. Firpo (2003) develops an estimator for such
quantiles under unconfoundedness.
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sample ATE. To see this, consider the case where we observe the sample (Y;(0), Y;(1), Wi, X;),
1 =1,...,N; that is, we observe for each unit both potential outcomes. In that case the
sample average treatment effect, 7¢ = > (Y;(1) — Y;(0))/N, can be estimated without error.
Obviously the best estimator for the population average effect, 7p, is 75. However, we cannot
estimate 7p without error even with a sample where all potential outcomes are observed,
because we lack the potential outcomes for those population members not included in the
sample. This simple argument has two implications. First, one can estimate the sample ATE
at least as accurately as the population ATE, and typically more so. In fact, the difference
between the two variances is the variance of the treatment effect, which is zero only when
the treatment effect is constant. Second, a good estimator for one average treatment effect
is automatically a good estimator for the other. One can therefore interpret many of the
estimators for PATE or PATT as estimators for SATE or SATT, with lower implied standard

eITors.

The difference in asymptotic variances forces the researcher to take a stance on what the
quantity of interest is. For example, in a specific application one can legitimately reach the
conclusion that there is no evidence, at the 95% level, that the PATE is different from zero,
whereas there may be compelling evidence that the SATE is positive. Typically researchers
in econometrics have focused on the PATE, but one can argue that it is of interest, when one
cannot ascertain the sign of the population-level effect, to know whether one can determine
the sign of the effect for the sample. Especially in cases, which are all too common, where
it is not clear whether the sample is representative of the population of interest, results for

the sample at hand may be of considerable interest.
2.2 IDENTIFICATION

We make the following key assumption about the treatment assignment:
Assumption 1 (UNCONFOUNDEDNESS)

(1@-(0),1@-(1)) L w | x.
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This assumption was first articulated in this form in Rosenbaum and Rubin (1983a). Lech-
ner (1999, 2002) refers to this as the “conditional independence assumption,” Following a
parametric version of this in Heckman and Robb (1984) it is also referred to as “selection
on observables.” In the missing data literature the equivalent assumption is referred to as

“missing at random.”

To see the link with standard exogeneity assumptions, suppose that the treatment effect
is constant: 7 = Y;(1) — Y;(0) for all <. Suppose also that the control outcome is linear in X;:
with ¢; L X,;. Then we can write

YVi=a+7-W,+ X/ +¢.

Given the constant treatment effect assumption, unconfoundedness is equivalent to inde-
pendence of W, and ¢; conditional on X;, which would also capture the idea that W; is
exogenous. Without this constant treatment effect assumption, however, unconfoundedness

does not imply a linear relation with (mean-)independent errors.

Next, we make a second assumption regarding the joint distribution of treatments and

covariates:

Assumption 2 (OVERLAP)

Rosenbaum and Rubin (1983a) refer to the combination of the two assumptions as ”stongly
ignorable treatment assignment.” For many of the formal results one will also need smooth-
ness assumptions on the conditional regression functions and the propensity score (fu,(z)
and e(x)), and moment conditions on Y;(w). I will not discuss these regularity conditions

here. Details can be found in the references for the specific estimators given below.
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There has been some controversy about the plausibility of Assumptions 1 and 2 in eco-
nomic settings and thus the relevance of the econometric literature that focuses on estimation
and inference under these conditions for empirical work. In this debate it has been argued
that agents’ optimizing behavior precludes their choices being independent of the potential
outcomes, whether or not conditional on covariates. This seems an unduly narrow view.
In response I will offer three arguments for considering these assumptions. The first is a
statistical, data descriptive motivation. A natural starting point in the evaluation of any
program is a comparison of average outcomes for treated and control units. A logical next
step is to adjust any difference in average outcomes for differences in exogenous background
characteristics (exogenous in the sense of not being affected by the treatment). Such an
analysis may not lead to the final word on the efficacy of the treatment, but the absence of
such an analysis would seem difficult to rationalize in a serious attempt to understand the

evidence regarding the effect of the treatment.

A second argument is that almost any evaluation of a treatment involves comparisons
of units who received the treatment with units who did not. The question is typically not
whether such a comparison should be made, but rather which units should be compared, that
is, which units best represent the treated units had they not been treated. Economic theory
can help in classifying variables into those that need to be adjusted for versus those that do
not, on the basis of their role in the decision process (e.g., whether they enter the utility
function or the constraints). Given that, the unconfoundedness assumption merely asserts
that all variables that need to be adjusted for are observed by the researcher. This is an
empirical question, and not one that should be controversial as a general principle. It is clear
that settings where some of these covariates are not observed will require strong assumptions
to allow for identification. Such assumptions include instrumental variables settings where
some covariates are assumed to be independent of the potential outcomes. Absent those

assumptions, typically only bounds can be identified (e.g., Manski, 1990, 1995).

A third, related, argument is that even when agents optimally choose their treatment, two

agents with the same values for observed characteristics may differ in their treatment choices
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without invalidating the unconfoundedness assumption if the difference in their choices is
driven by differencese in unobserved characteristics that are themselves unrelated to the
outcomes of interest. The plausability of this will depend critically on the exact nature
of the optimization process faced by the agents. In particular it may be important that
the objective of the decision maker is distinct from the outcome that is of interest to the
evaluator. For example, suppose we are interested in estimating the average effect of a
binary input (e.g., a new technology) on a firm’s output. Assume production is a stochastic
function of this input because other inputs (e.g., weather) are not under the firm’s control,
or Y; = g(W,e;). Suppose that profits are output minus costs, m;(w) = g(w, ;) — ¢; - w, and
also that a firm chooses a production level to maximize expected profits, equal to output

minus costs:
W; = argmax E[m;(w)|¢;] = argmax E[g(w, €;) — ¢; - w|¢y],

implying
Wi =HE[g(1, &) — 9(0,£:) = cilci]} = h(ci).

If unobserved marginal costs ¢; differ between firms, and these marginal costs are independent

of the errors g; in the firms’ forecast of production given inputs, then unconfoundedness will

hold as

(9(07 5@')7 9(17 5@)) 1 Ci.

Note that under the same assumptions one cannot necessarily identify the effect of the input
on profits since (m;(0),m;(1)) are not independent of ¢;. See for a related discussion, in the
context of instrumental variables, Athey and Stern (1998). Heckman, Lalonde and Smith
(2000) discuss alternative models that justify unconfoundedness. In these models individuals
do attempt to optimize the same outcome that is the variable of interest to the evaluator.

They show that selection on observables assumptions can be justified by imposing restrictions
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on the way individuals form their expectations about the unknown potential outcomes. In
general, therefore, a researcher may wish to, either as a final analysis or as part of a larger

investigation, consider estimates based on the unconfoundedness assumption.

Given strongly ignorable treatment assignment one can identify the population average

treatment effect. The key insight is that given unconfoundedness, the following equalities

holds:
() = E[Y: ()| X; = 2] = E[¥;(w)|W; = w, X; = ] = E[Yi|W; = w, X; = ],

and fi,(z) is identified. Thus one can estimate the average treatment effect 7 by first

estimating the average treatment effect for a subpopulation with covariates X = x:
7(z) = E[Yi(1) = Yi(0)| Xi = 2] = E[Yi(1)|X; = 2] — E[Y;(0)| X; = 2]
=EY:(1)|X; =z, W; = 1] — E[Y;(0)|X; =z, W; = (]
= E[Y;| X;, W; = 1] — E[Y;| X;, W; = 0].

To make this feasible, one needs to be able to estimate the expectations E[Y;| X; = z, W; = w]
for all values of w and x in the support of these variables. This is where the second assumption
enters. If the overlap assumption is violated at X = x, it would be infeasible to estimate
both E[Y;|X; = z, W; = 1] and E[Y;|X; = =, W; = 0] because at those values of = there would

be either only treated or only control units.

Some researchers use weaker versions of the unconfoundedness assumption (e.g., Heck-
man, [chimura, and Todd, 1998). If the interest is in the population average treatment effect,

it is in fact sufficient to assume that
E[Yi(w)|W;, Xi] = E[Y;(w)| Xi],

for w = 0,1. Although this assumption is unquestionably weaker, in practice it is rare that

a convincing case is made for the weaker assumption without the case being equally strong
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for the stronger Assumption 1. The reason is that the weaker assumption is intrinsically
tied to functional form assumptions, and as a result one cannot identify average effects on

transformations of the original outcome (e.g., logarithms) without the strong assumption.

One can weaken the unconfoundedness assumption in a different direction if one is only
interested in the average effect for the treated (e.g., Heckman, Ichimura and Todd, 1997).
In that case one need only assume Y;(0) 1L W; | X;. and the weaker overlap assumption
Pr(W; = 1]X;) < 1. These two assumptions are sufficient for identification of PATT because

moments of the distribution of Y (1) for the treated are directly estimable.

An important result building on the unconfoundedness assumption shows that one need
not condition simultaneously on all covariates. The following result shows that all biases due

to observable covariates can be removed by conditioning solely on the propensity score:
Result 1 Suppose that Assumption 1 holds. Then:

(vi0), ¥:(v) L w;

Proof: We will show that Pr(W; = 1|Yi(0),Yi(1),e(X;)) = Pr(W; = 1le(X))) = e(Xi),
implying independence of (Y;(0),Y;(1)) and W; conditional on e(X;). First, note that

Pr(Wi = 1]Yi(0), Yi(1), e(Xy)) = E[W: = 1]Yi(0), Yi(1), e(X;)]

= E [E[W;|Yi(0), Yi(1), e(X), X;]

Yi(0), Yi(1), e(Xy)]

— E [E[W;|Y;(0), Y;(1), X]]

Yi(0), Yi(1), e(Xy)]

— E [E[W|X]]

Yi(0), Yi(1), e(X:)| = B [e(X)[¥5(0), Yi(1), e(X)] = e(Xy),

where the last equality but one follows from unconfoundedness. The same argument shows

that

e(X)] = E[e(X0)|e(X)] = e(X:).
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O

Extensions of this result to the multivalued treatment case are given in Imbens (2000)

and Lechner (2001).

To provide intuition for the Rosenbaum-Rubin result, recall the textbook formula for
omitted variable bias in the linear regression model. Suppose we have a regression model

with two regressors:
Yi = fo+ 01 Wi + 35X + <.

The bias of omitting X; from the regression on the coefficient on W; is equal to 550, where § is
the vector of coefficients on W; in regressions of the elements of X; on W;. By conditioning on
the propensity score we remove the correlation between X; and W; because X; I Wle(X;).
Hence omitting X; no longer leads to any bias (although it may still lead to some efficiency

loss).

2.4 EFFICIENCY BOUNDS AND ASYMPTOTIC VARIANCES FOR POPULATION AVERAGE

TREATMENT EFFECTS

Next we review some results on the effiency bound for estimators of the average treat-
ment effects 7p. This requires strong ignorability and some smoothness assumptions on the
conditional expectations of potential outcomes and the treatment indicator (for details, see
Hahn, 1998). Formally, Hahn (1998) shows that for any regular estimator for 7p, denoted
by 7, with

VN - (7 — 1p) =% N(0, V),

we can show that

2 . 2 .
V 2 E 07 (XZ) OO(XZ)

(X)) 1_6(Xi)+(T(Xi)—Tp)2 : (1)

Knowing the propensity score does not affect this efficiency bound.
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Hahn also shows that asymptotically linear estimators exist that achieve the efficiency

bound, and hence such efficient estimators can be approximated as
| N
T=Te N Zl w(}/b Wi> Xi> TP) + OP(N_1/2)>

where 9(+) is the efficient score:

Sl = (L - L) (00, ) . )

3. ESTIMATING AVERAGE TREATMENT EFFECTS

Here we discuss the leading estimators for average treatment effects under unconfounded-
ness. What is remarkable about this literature is the wide range of ostensibly quite different
estimators, many of which are regularly used in empirical work. We first briefly describe a

number of the estimators, and then discuss their relative merits.
3.1 REGRESSION

The first class of estimators relies on consistent estimation of i, (x) for w = 0,1. Given
[, () for these regression functions, the PATE and SATE are estimated by averaging their

difference over the empirical distribution of the covariates:
N
Frw = 1 O (1 (X) = (X)), 3)
i=1

In most implementations the average of the predicted treated outcome for the treated is
equal to the average observed outcome for the treated (so that > . W; - (X;) = >, W;-Yi),

and similarly for the controls, implying that 7,., can also be written as

s = éw (Y= x)) + =) - (n(X) - Y7).

Early estimators for j,(z) included parametric regression functions, for example linear re-

gression (e.g., Rubin, 1977). Such parametric alternatives include least squares estimators
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with the regression function specified as
:U“w('I) = ﬁ/ZB +7-w,

in which case the average treatment effect is equal to 7. In this case one can estimate 7

simply by least squares estimation using the regression function
Yi=a+p0'Xi+7- W, +e.

More generally, one can specify separate regression functions for the two regimes, g, (x) =
B! z. In that case one estimate the two regression functions separately on the two subsamples

and then substitute the predicted values in (3).

These simple regression estimators can be sensitive to differences in the covariate dis-
tributions for treated and control units. The reason is that in that case the regression
estimators rely heavily on extrapolation. To see this, note that the regression function for
the controls, po(z) is used to predict missing outcomes for the treated. Hence on average
one wishes to use predict the control outcome at Xp = > ;Wi - X;/Nr, the average covari-
ate value for the treated. With a linear regression function, the average prediction can be
written as Yo + 3/ (X7 — X¢). If X7 and the average covariate value for the controls, X ¢
are close, the precise specification of the regression function will not matter much for the
average prediction. However, with the two averages very different, the prediction based on

a linear regression function can be sensitive to changes in the specification.

More recently, nonparametric estimators have been proposed. Imbens, Newey and Ridder
(2005) and Chen, Hong, and Tarozzi (2005) propose estimating ., (z) through series or sieve

methods. A simple version of that with a scalar X would specify the regression function as

Ly

,uw(z) = Zﬁw,l : $k>

=0

with Ly, the number of terms in the polynomial expansion, an increasing function of the

sample size. They show that this estimator for 7p achieves the semiparametric efficiency
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bounds. Heckman, Ichimura and Todd (1997, 1998), and Heckman, Ichimura, Smith and
Todd (1998) consider kernel methods for estimating (), in particular focusing on local

linear approaches. Given a kernel K(-), and a bandwidth hy let

~ 5 . al Xi—ux 2
<aw,m> ﬁw,m) = al"ga mlﬁn K hN . (Y; — O,z — ﬁw,m . Xz) 5

leading to the estimator

3.2 MATCHING

Regression estimators impute the missing potential outcomes using the estimated regres-
sion function. Thus, if W; = 1, Y;(1) is observed and Y;(0) is missing and imputed with a
consistent estimator fiy(X;) for the conditional expectation. Matching estimators also im-
pute the missing potential outcomes, but do so using only the outcomes of nearest neighbours
of the opposite treatment group. In that sense matching is similar to nonparametric kernel
regression methods, with the number of neighbors playing the role of the bandwidth in the
kernel regression. In fact, matching can be inrrepreted as a limiting version of the standard
kernel estimator where the bandwidth goes to zero. This minimizes the bias among nonneg-
ative kernels, but potentially increases the variance relative to kernel estimators. A formal
difference with kernel estimators is that the asymptotic distribution is derived conditional on
the implicit bandwidth, that is, the number of neighbours, which is often fixed at one. Using
such asymptotics, the implicit estimate fi,,(x) is (close to) unbiased, but not consistent for

ty (). In contrast, the regression estimators discussed earlier relied on the consistency of
oo ().

Matching estimators have the attractive feature that given the matching metric, the re-
searcher only has to choose the number of matches. In contrast, for the regression estimators
discussed above, the researcher must choose smoothing parameters that are more difficult

to interpret; either the number of terms in a series or the bandwidth in kernel regression.
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Within the class of matching estimators, using only a single match leads to the most credible
inference with the least bias, at most sacrificing some precision. This can make the matching
estimator easier to use than those estimators that require more complex choices of smoothing

parameters, and may explain some of its popularity.

Matching estimators have been widely studied in practice and theory (e.g., Gu and Rosen-
baum, 1993; Rosenbaum, 1989, 1995, 2002; Rubin, 1973b, 1979; Heckman, Ichimura and
Todd, 1998; Dehejia and Wahba, 1999; Abadie and Imbens, 2002, AI). Most often they
have been applied in settings with the following two characteristics: (i) the interest is in
the average treatment effect for the treated, and (ii), there is a large reservoir of potential
controls. This allows the researcher to match each treated unit to one or more distinct con-
trols (referred to as matching without replacement). Given the matched pairs, the treatment
effect within a pair is then estimated as the difference in outcomes, with an estimator for the
PATT obtained by averaging these within-pair differences. Since the estimator is essentially
the difference in two sample means, the variance is calculated using standard methods for
differences in means or methods for paired randomized experiments. The remaining bias is
typically ignored in these studies. The literature has studied fast algorithms for matching
the units, as fully efficient matching methods are computationally cumbersome (e.g., Gu
and Rosenbaum, 1993; Rosenbaum, 1995). Note that in such matching schemes the order in

which the units are matched is potentially important.

Here we focus on matching estimators for PATE and SATE. In order to estimate these
targes we need to match both treated and controls, and allow for matching with replacement.
Formally, given a sample, {(Y;, X;, W;)}¥,, let £,,(i) be the index [ that satisfies W; # W;

and
> X - Xl < 16— Xl = m,
JIW;#W;

where 1{-} is the indicator function, equal to one if the expression in brackets is true and
zero otherwise. In other words, £,,() is the index of the unit in the opposite treatment group

that is the m-th closest to unit ¢ in terms of the distance measure based on the norm || - ||.
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In particular, ¢;(7) is the nearest match for unit i. Let Jy(7) denote the set of indices for
the first M matches for unit i: Jy (i) = {€1(3),...,¢n(7)}. Define the imputed potential
outcomes as:

. Y; it W;=0 . LN Y i W =0
Y:(0) = ! i v ’ Vi(1) = MZejedu) *i i )
0 { w Lgeautn Yo Wi=1, o) { Y, it W, =1.

The simple matching estimator is then
|
csmo_ L V(1) — ¥:(0 ) . 4
T N;( (1) - ¥:(0) (4)

Al show that the bias of this estimator is of order O(N~YK), where K is the dimension
of the covariates. Hence, if one studies the asymptotic distribution of the estimator by
normalizing by v/N (as can be justified by the fact that the variance of the estimator is of
order O(1/N)), the bias does not disappear if the dimension of the covariates is equal to

two, and will dominate the large sample variance if K is at least three.

Let us make clear three caveats to the Al result. First, it is only the continuous covariates
that should be counted in K. With discrete covariates the matching will be exact in large
samples, therefore such covariates do not contribute to the order of the bias. Second, if
one matches only the treated, and the number of potential controls is much larger than the
number of treated units, one can justify ignoring the bias by appealling to an asymptotic
sequence where the number of potential controls increases faster than the number of treated
units. Specifically, if the number of controls, Ny, and the number of treated, Ny, satisfy
Nl/Ng/K — 0, then the bias disappears in large samples after normalization by v/Nj.
Third, even though the order of the bias may be high, the actual bias may still be small
if the coefficients in the leading term are small. This is possible if the biases for different
units are at least partially offsetting. For example, the leading term in the bias relies on the
regression function being nonlinear, and the density of the covariates having a nonzero slope.
If either the regression function is close to linear, or the density of the covariates close to
constant, the resulting bias may be fairly limited. To remove the bias, Al suggest combining

the matching process with a regression adjustment.
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Another point made by Al is that matching estimators are generally not efficient. Even
in the case where the bias is of low enough order to be dominated by the variance, the
estimators are not efficient given a fixed number of matches. To reach efficiency one would
need to increase the number of matches with the sample size, as done implicitly in kernel
estimators. In practice the efficiency loss is limited though, with the gain of going from two
matches to a large number of matches bounded as a fraction of the standard error by 0.16

(see Al).

In the above discussion the distance metric in choosing the optimal matches was the
standard Euclidan metric dg(z,2) = (r — 2)'(x — z). All of the distance metrics used in
practice standardize the covariates in some manner. The most popular metrics are the

Mahalanobis metric, where
dy(z,2) = (v = 2) (B3 )(z - 2),

where ¥ is covariance matrix of the covairates, and the diagonal version of that
dar(z,2) = (v — 2)'diag(X3) (7 — 2).

Note that depending on the correlation structure, using the Mahalanobis metric can lead to
situations where a unit with X; = (5,5) is a closer match for a unith with X; = (0,0) than

a unit with X; = (1,4), despite being further away in terms of each covariate separately.
3.3 PROPENSITY SCORE METHODS

Since the work by Rosenbaum and Rubin (1983a) there has been considerable interest in
methods that avoid adjusting directly for all covariates, and instead focus on adjusting for
differences in the propensity score, the conditional probability of receiving the treatment.
This can be implemented in a number of different ways. One can weight the observations
in terms of the propensity score (and indirectly also in terms of the covariates) to create
balance between treated and control units in the weighted sample. Hirano, Imbens and

Ridder (2003) show how such estimators can achieve the semiparametric efficiency bound.
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Alternatively one can divide the sample into subsamples with approximately the same value
of the propensity score, a technique known as blocking. Finally, one can directly use the

propensity score as a regressor in a regression approach or match on the propensity score.

If the researcher knows the propensity score all three of these methods are likely to be
effective in eliminating bias. Even if the resulting estimator is not fully efficient, one can
easily modify it by using a parametric estimate of the propensity score to capture most of
the efficiency loss. Furthermore, since these estimators do not rely on high-dimensional non-

parametric regression, this suggests that their finite sample properties would be attractive.

In practice the propensity score is rarely known, and in that case the advantages of
the estimators discussed below are less clear. Although they avoid the high-dimensional
nonparametric estimation of the two conditional expectations ., (x), they require instead
the equally high-dimensional nonparametric estimation of the propensity score. In practice
the relative merits of these estimators will depend on whether the propensity score is more
or less smooth than the regression functions, or whether additional information is available

about either the propensity score or the regression functions.
3.3.1 WEIGHTING

The first set of “propensity score” estimators use the propensity score as weights to
create a balanced sample of treated and control observations. Simply taking the difference

in average outcomes for treated and controls,

YWY, Y (1-W)Y;
SW, S 1-W;

7=

is not unbiased for 77 = E[Y;(1) — Y;(0)] because, conditional on the treatment indicator, the
distributions of the covariates differ. By weighting the units by the inverse of the probability
of receiving the treatment, one can undo this imbalance. Formally, weighting estimators rely
on the equalities:

5] - 28] 0] - () -
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and similarly

= [4=7] - s,
implying

WY (1-W)-Y

=B |Gy~ e |

With the propensity score known one can directly implement this estimator as

LWy a-my,
N ; (e(X-) 1 —e(X)) ) ' (5)

7

In this particular form this is not necessarily an attractive estimator. The main reason is
that, although the estimator can be written as the difference between a weighted average of
the outcomes for the treated units and a weighted average of the outcomes for the controls,
the weights do not necessarily add to one. Specifically, in (5), the weights for the treated
units add up to (> W;/e(X;))/N. In expectation this is equal to one, but since its variance
is positive, in any given sample some of the weights are likely to deviate from one. One
approach for improving this estimator is simply to normalize the weights to unity. One can
further normalize the weights to unity within subpopulations as defined by the covariates.
In the limit this leads to the estimator proposed by Hirano, Imbens and Ridder (2003) who
suggest using a nonparametric series estimator for e(x). More precisely, they first specify a
sequence of functions of the covariates, e.g., a power series, hy(x), [ = 1,...,00. Next, they
choose a number of terms, L(N), as a function of the sample size, and then estimate the
L-dimensional vector 7 in

B v exp((h(@),..., hr(z))yL)
PT(W = 1|X = I) = 1+ eXp((hl(l'), L hL(I))’YL)’

by maximizing the associated likelihood function. Let 47 be the maximum likelihood esti-

mate. In the third step, the estimated propensity score is calculated as:

é(z) = exp((hi(z), ..., he(x))L
1+ exp((hi(x),...,hp(x))3L)
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Finally they estimate the average treatment effect as:

N

gt = 3 Y/z -SSR /21_6 ' (®

=1

Hirano, Imbens and Ridder (2003) show that this estimator is efficient, whereas with the true

propensity score the estimator would not be fully efficient (and in fact not very attractive).

This estimator highlights one of the interesting features of the problem of efficiently es-
timating average treatment effects. One solution is to estimate the two regression functions
() nonparametrically; that solution completely ignores the propensity score. A second
approach is to estimate the propensity score nonparametrically, ignoring entirely the two
regression functions. If appropriately implemented, both approaches lead to fully efficient
estimators, but clearly their finite sample properties may be very different, depending, for
example, on the smoothness of the regression functions versus the smoothness of the propen-
sity score. If there is only a single binary covariate, or more generally with only discrete
covariates, the weighting approach with a fully nonparametric estimator for the propensity
score is numerically identical to the regression approach with a fully nonparametric estimator

for the two regression functions.

One difficulty with the weighting estimators that are based on the estimated propensity
score is again the problem of choosing the smoothing parameters. Hirano, Imbens and Rid-
der (2003) use series estimators, which requires choosing the number of terms in the series.
Ichimura and Linton (2001) consider a kernel version, which involves choosing a bandwidth.
Theirs is currently one of the few studies considering optimal choices for smoothing param-
eters that focuses specifically on estimating average treatment effects. A departure from
standard problems in choosing smoothing parameters is that here one wants to use non-
parametric regression methods even if the propensity score is known. For example, if the
probability of treatment is constant, standard optimality results would suggest using a high
degree of smoothing, as this would lead to the most accurate estimator for the propensity
score. However, this would not necessarily lead to an efficient estimator for the average

treatment effect of interest.
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3.3.2 BLOCKING ON THE PROPENSITY SCORE

In their original propensity score paper Rosenbaum and Rubin (1983a) suggest the fol-
lowing “blocking propensity score” estimator. Using the (estimated) propensity score, divide
the sample into M blocks of units of approximately equal probability of treatment, letting
Jim be an indicator for unit ¢ being in block m. One way of implementing this is by dividing
the unit interval into M blocks with boundary values equal to m/M for m =1,..., M — 1,

so that
Jim = H{(m = 1)/M < e(X;) <m/M},

for m = 1,..., M. Within each block there are N,,, observations with treatment equal to
W, Nym = >_; {W; = w, Jiy, = 1}. Given these subgroups, estimate within each block the

average treatment effect as if random assignment holds,

N
o NlmZJZmWY ! Zjim(l—Wi)Yi.

=1

Then estimate the overall average treatment effect as:

M
~ ~ Nlm + NOm
Tblock = g Tm * T

m=1

Blocking can be interpreted as a crude form of nonparametric regression where the un-
known function is approximated by a step function with fixed jump points. To establish
asymptotic properties for this estimator would require establishing conditions on the rate
at which the number of blocks increases with the sample size. With the propensity score
known, these are easy to determine; no formal results have been established for the unknown

case.

The question arises how many blocks to use in practice. Cochran (1968) analyses a case
with a single covariate, and, assuming normality, shows that using five blocks removes at least

95% of the bias associated with that covariate. Since all bias, under unconfoudnedness, is
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associated with the propensity score, this suggests that under normality five blocks removes
most of the bias associated with all the covariates. This has often been the starting point
of empirical analyses using this estimator (e.g., Rosenbaum and Rubin, 1983b; Dehejia
and Wahba, 1999), and has been implemented in STATA by Becker and Ichino (2002).
Often, however, researchers subsequently check the balance of the covariates within each
block. If the true propensity score per block is constant, the distribution of the covariates
among the treated and controls should be identical, or, in the evaluation terminology, the
covariates should be balanced. Hence one can assess the adequacy of the statistical model
by comparing the distribution of the covariates among treated and controls within blocks.
If the distributions are found to be different, one can either split the blocks into a number
of subblocks, or generalize the specification of the propensity score. Often some informal
version of the following algorithm is used: If within a block the propensity score itself is
unbalanced, the blocks are too large and need to be split. If, conditional on the propensity
score being balanced, the covariates are unbalanced, the specification of the propensity score
is not adequate. In the illustrations in the next lecture a particular algorithm is decribed for

choosing the blocks.
3.3.3 REGRESSION ON THE PROPENSITY SCORE

The third method of using the propensity score is to estimate the conditional expectation
of Y given W and e(X) and average the difference. Although this method has been used
in practice, there is no particular reason why this is an attractive method compared to the
regression methods based on the covariates directly. In addition, the large sample properties

have not been established.
3.3.4 MATCHING ON THE PROPENSITY SCORE

The Rosenbaum-Rubin result implies that it is sufficient to adjust solely for differences in
the propensity score between treated and control units. Since one of the ways in which one
can adjust for differences in covariates is matching, another natural way to use the propensity

score is through matching. Because the propensity score is a scalar function of the covariates,
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the bias results in Abadie and Imbens (2002) imply that the bias term is of lower order
than the variance term and matching leads to a v/N-consistent, asymptotically normally
distributed estimator. The variance for the case with matching on the true propensity score
also follows directly from their results. More complicated is the case with matching on
the estimated propensity score. We are not aware of any results that give the asymptotic

variance for this case.
3.4. MIXED METHODS

A number of approaches have been proposed that combine two of the three methods de-
scribed earlier, typically regression with one of its alternatives. These methods appear to be
the most attractive in practice. The motivation for these combinations is that, although one
method alone is often sufficient to obtain consistent or even efficient estimates, incorporating
regression may eliminate remaining bias and improve precision. This is particularly useful
because neither matching nor the propensity score methods directly address the correlation
between the covariates and the outcome. The benefit associated with combining methods is
made explicit in the notion developed by Robins and Ritov (1997) of “double robustness.”
They propose a combination of weighting and regression where, as long as the parametric
model for either the propensity score or the regression functions is specified correctly, the re-
sulting estimator for the average treatment effect is consistent. Similarly, because matching
is consistent with few assumptions beyond strong ignorability, thus methods that combine

matching and regressions are robust against misspecification of the regression function.
3.4.1 WEIGHTING AND REGRESSION
One can rewrite the HIR weighting estimator discussed above as estimating the following

regression function by weighted least squares,

Yi=a+7-W,+¢,
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with weights equal to

N
o €(XZ) 1-— €(XZ) ’

Without the weights the least squares estimator would not be consistent for the average

treatment effect; the weights ensure that the covariates are uncorrelated with the treatment

indicator and hence the weighted estimator is consistent.

This weighted-least-squares representation suggests that one may add covariates to the

regression function to improve precision, for example as
/
)/;:Oé‘l'ﬁXZ‘l'TWZ‘l'EEZ,

with the same weights \;. Such an estimator, using a more general semiparametric regression
model, is suggested in Robins and Rotnitzky (1995), Robins, Rotnitzky and Zhao (1995),
Robins and Ritov (1997), and implemented in Hirano and Imbens (2001). In the parametric
context Robins and Ritov argue that the estimator is consistent as long as either the regres-
sion model or the propensity score (and thus the weights) are specified correctly. That is, in

the Robins-Ritov terminology, the estimator is doubly robust.
3.4.2 BLOCKING AND REGRESSION

Rosenbaum and Rubin (1983b) suggest modifying the basic blocking estimator by using
least squares regression within the blocks. Without the additional regression adjustment the
estimated treatment effect within blocks can be written as a least squares estimator of 7,

for the regression function
Y; :am‘l’Tm'Wi‘l’gi,

using only the units in block m. As above, one can also add covariates to the regression

function

K:am‘l’TmWZ_l_ﬁ;nXl_l—gla
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again estimated on the units in block m.
3.4.3 MATCHING AND REGRESSION

Since Abadie and Imbens (2002) show that the bias of the simple matching estimator
can dominate the variance if the dimension of the covariates is too large, additional bias
corrections through regression can be particularly relevant in this case. A number of such
corrections have been proposed, first by Rubin (1973b) and Quade (1982) in a parametric
setting. Let Y;(0) and Y;(1) be the observed or imputed potential outcomes for unit i; where
these estimated potential outcomes equal observed outcomes for some unit ¢ and its match
¢(i). The bias in their comparison, E[Y;(1) — Y;(0)] — (Y;(1) — Y;(0)), arises from the fact
that the covariates for units 7 and ¢(i), X; and Xy; are not equal, although close because

of the matching process.

To further explore this, focusing on the single match case, define for each unit:

oo | X if W; =0, o X it W; =0,
%:(0)= { Xo(i it Wy =1, Aill) = { X it Wi=1

If the matching is exact X;(0) = X;(1) for each unit. If not, these discrepancies will lead to
potential bias. The difference X;(1) — X;(0) will therefore be used to reduce the bias of the

simple matching estimator.

Suppose unit i is a treated unit (W; = 1), so that Y;(1) = Y;(1) and Y;(0) is an imputed
value for ¥;(0). This imputed value is unbiased for 11o(Xes)) (since Vi (0) = Yis)), but not
necessarily for uo(X;). One may therefore wish to adjust ¥;(0) by an estimate of 1io(X;) —
to(Xeey). Typically these corrections are taken to be linear in the difference in the covariates
for units i and its match, that is, of the form 3)(X;(1)—X;(0) = B6(Xi— Xys)). One proposed
correction is to estimate () directly by taking the control units that are used as matches for
the treated units, with weights corresponding to the number of times a control observations

is used as a match, and estimate a linear regression of the form

Y, = ap + 5o X; + &4,
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on the weighted control observations by least squares. (If unit 7 is a control unit the correc-
tion would be done using an estimator for the regression function p;(x) based on a linear
specification Y; = ay + 31X, estimated on the treated units.) Al show that if this correction
is done nonparametrically, the resulting matching estimator is consistent and asymptotically

normal, with its bias dominated by the variance.
4. ESTIMATING VARIANCES

The variances of the estimators considered so far typically involve unknown functions.

For example, as discussed earlier, the variance of efficient estimators of PATE is equal to

oi(Xi) | 05(Xy)

Ve =E e(X;) | 1—e(X))

+ (1 (Xi) = po(Xs) — )%,

involving the two regression functions, the two conditional variances and the propensity

sScore.
4.1 ESTIMATING THE VARIANCE OF EFFICIENT ESTIMATORS FOR Tp

For efficient estimators for 7p the asymptotic variance is equal to the efficiency bound
Vp. There are a number of ways we can estimate this. The first is essentially by brute force.
All five components of the variance, o3(x), o3(x), po(z), ui(z), and e(x), are consistently
estimable using kernel methods or series, and hence the asymptotic variance can be estimated
consistently. However, if one estimates the average treatment effect using only the two
regression functions, it is an additional burden to estimate the conditional variances and
the propensity score in order to estimate Vp. Similarly, if one efficiently estimates the
average treatment effect by weighting with the estimated propensity score, it is a considerable
additional burden to estimate the first two moments of the conditional outcome distributions

just to estimate the asymptotic variance.

A second method applies to the case where either the regression functions or the propen-
sity score is estimated using series or sieves. In that case one can interpret the estimators,
given the number of terms in the series, as parametric estimators, and calculate the vari-

ance this way. Under some conditions that will lead to valid standard errors and confidence
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intervals.

A third approach is to use bootstrapping (Efron and Tibshirani, 1993; Horowitz, 2002).
Although there is little formal evidence specific for these estimators, given that the estimators
are asymptotically linear, it is likely that bootstrapping will lead to valid standard errors and
confidence intervals at least for the regression and propensity score methods. Bootstrapping
is not valid for matching estimators, as shown by Abadie and Imbens (2007) Subsampling

(Politis and Romano, 1999) will still work in this setting.
4.2 ESTIMATING THE CONDITIONAL VARIANCE

Here we focus on estimation of the variance of estimators for 7g, which is the condi-
tional variance of the various estimators, conditional on the covariates X and the treatment

indicators W. All estimators used in practice are linear combinations of the outcomes,
N
=) MX W)Y,
i=1

with the A\(X, W) known functions of the covariates and treatment indicators. Hence the

conditional variance is

N
V(#X, W) =Y MK W)? -0 (X5).
=1

The only unknown component of this variance is o2 (z). Rather than estimating this through
nonparametric regression, Al suggest using matching to estimate o7, (). To estimate o7;, (X;)
one uses the closest match within the set of units with the same treatment indicator. Let
v(i) be the closest unit to ¢ with the same treatment indicator (W,; = W;). The sample

variance of the outcome variable for these 2 units can then be used to estimate o7, (X;):
. 2
o, (Xi) = (Vi = Yow) " /2.

Note that this estimator is not consistent estimators of the conditional variances. However

this is not important, as we are interested not in the variances at specific points in the
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covariates distribution, but in the variance of the average treatment effect. Following the

process introduce above, this is estimated as:

N
V(FX, W) =Y MK, W)?- 65, (X)),
=1

5. ASSESSING UNCONFOUNDEDNESS

The unconfoundedness assumption used throughout this discussion is not directly testable.
It states that the conditional distribution of the outcome under the control treatment, Y;(0),
given receipt of the active treatment and given covariates, is identical to the distribution of
the control outcome given receipt of the control treatment and given covariates. The same is
assumed for the distribution of the active treatment outcome, Y;(1). Yet since the data are
completely uninformative about the distribution of Y;(0) for those who received the active
treatment and of Y;(1) for those receiving the control, the data cannot directly reject the
unconfoundedness assumption. Nevertheless, there are often indirect ways of assessing the
this, a number of which are developed in Heckman and Hotz (1989) and Rosenbaum (1987).
These methods typically rely on estimating a pseudo causal effect that is known to equal
zero. If based on a statistical test we reject the null hypothesis that this causal effect varies
from zero, the unconfoundedness assumption is considered less plausible. These tests can be

divided into two broad groups.

The first set of tests focuses on estimating the causal effect of a treatment that is known
not to have an effect, relying on the presence of multiple control groups (Rosenbaum, 1987).
Suppose one has two potential control groups, for example eligible nonparticipants and
ineligibles, as in Heckman, Ichimura and Todd (1997). One interpretation of the test is
to compare average treatment effects estimated using each of the control groups. This can
also be interpreted as estimating an “average treatment effect” using only the two control
groups, with the treatment indicator now a dummy for being a member of the first group.
In that case the treatment effect is known to be zero, and statistical evidence of a non-zero
effect implies that at least one of the control groups is invalid. Again, not rejecting the

test does not imply the unconfoundedness assumption is valid (as both control groups could
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suffer the same bias), but non-rejection in the case where the two control groups are likely
to have different biases makes it more plausible that the unconfoundness assumption holds.
The key for the power of this test is to have available control groups that are likely to have
different biases, if at all. Comparing ineligibles and eligible nonparticipants is a particularly
attractive comparison. Alternatively one may use different geographic controls, for example

from areas bordering on different sides of the treatment group.

One can formalize this test by postulating a three-valued indicator T; € {—0, 1,1} for the
groups (e.g., ineligibles, eligible nonnonparticipants and participants), with the treatment
indicator equal to W; = 1{T; = 1}, so that

Y;(0) if T, € {—1,0}
Y; = |
If one extends the unconfoundedness assumption to independence of the potential outcomes

and the three-valued group indicator given covariates,

Y;(0),Yi(1) 1L T; | Xi,

then a testable implication is

Y:(0) L 1{T; = 0} ‘ X;, T; € {—1,0},
and thus

Y, L 1{T; =0} ‘ X;, T; € {—1,0}.

An implication of this independence condition is being tested by the tests discussed above.
Whether this test has much bearing on the unconfoundedness assumption depends on whether

the extension of the assumption is plausible given unconfoundedness itself.

The second set of tests of unconfoundedness focuses on estimating the causal effect of

the treatment on a variable known to be unaffected by it, typically because its value is



Imbens/Wooldridge, AEA Lecture Notes 1, January 12 30

determined prior to the treatment itself. Such a variable can be time-invariant, but the
most interesting case is in considering the treatment effect on a lagged outcome, commonly
observed in labor market programs. If the estimated effect differs from zero, this implies that
the treated observations are different from the controls in terms of this particular covariate
given the others. If the treatment effect is estimated to be close to zero, it is more plausible
that the unconfoundedness assumption holds. Of course this does not directly test this
assumption; in this setting, being able to reject the null of no effect does not directly reflect
on the hypothesis of interest, unconfoundedness. Nevertheless, if the variables used in this
proxy test are closely related to the outcome of interest, the test arguably has more power.

For these tests it is clearly helpful to have a number of lagged outcomes.

To formalize this, let us suppose the covariates consist of a number of lagged out-
comes Y; _1,...,Y; _r as well as time-invariant individual characteristics Z;, so that X; =
(Yi-1,...,Yi_r,Z;). By construction only units in the treatment group after period —1
receive the treatment; all other observed outcomes are control outcomes. Also suppose that
the two potential outcomes Y;(0) and Y;(1) correspond to outcomes in period zero. Now
consider the following two assumptions. The first is unconfoundedness given only T — 1 lags

of the outcome:

Yio(1),Yio(0) L Wi |Yi1,....Yi—(r-1), %,
and the second assumes stationarity and exchangeability:

JYi O a1(0),0 Vi (11 (0),Z0,W; (Ys|Ys—1, - -, Ys—(r—1), 2, w), does not depend on i and s.
Then it follows that

Yior L Wi| Yio,....Yi 1, Z;

which is testable. This hypothesis is what the procedure described above tests. Whether
this test has much bearing on unconfoundedness depends on the link between the two as-

sumptions and the original unconfoundedness assumption. With a sufficient number of lags
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unconfoundedness given all lags but one appears plausible conditional on unconfoundedness
given all lags, so the relevance of the test depends largely on the plausibility of the second

assumption, stationarity and exchangeability.
6. ASSESSING, AND ADDRESSING LACK OF, OVERLAP IN COVARIATE DISTRIBUTIONS

The second of the key assumptions in estimating average treatment effects requires that
the propensity score is strictly between zero and one. Although in principle this is testable,
as it restricts the joint distribution of observables, formal tests are not the main concern.
In practice, this assumption raises a number of issues. The first question is how to detect
a lack of overlap in the covariate distributions. A second is how to deal with it, given that

such a lack exists.
6.1 ASSESSING OVERLAP IN COVARIATE SCORE DISTRIBUTIONS

The first method to assess overlap is to report some summary statistics for all covariates.

Specifically, it is useful to report the normalized difference in covariate means by treatment

status:
. X1 — X,
nor — dif = ———5—,
S%o+ 5%
where
Ym0 S X ad 2,-—— Y (%-X,)
’ Nw :W;=w Z o Nw -1 :W;=w Z ’ ‘

Note that we do not report the t-statistic for the difference,

L Xi-X
Sg(,o/NO + S?(,I/Nl‘

Essentially the t-statistic is equal to the normalized difference multiplied by the square root
of the sample size. As such, the t-statistic partly reflects the sample size. Given a difference
of 0.25 standard deviations between the two groups in terms of average covariate values, a

larger t-statistic just indicates a larger sample size, and therefore in fact an easier problem in
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terms of finding credible estimators for average treatment effects. As this example illustrates,
a larger t-statistic for the difference between average covariates by treatment group does not
indicate that the problem of finding credible estimates of the treatment effect is more difficult.

A larger normalized difference does unambiguously indicate a more severe overlap problem.

In general a difference in average means bigger than 0.25 standard deviations is substan-
tial. In that case one may want to be suspicious of simple methods like linear regression with
a dummy for the treatment variable. Recall that estimating the average effect essentially
amounts to using the controls to estimate the conditional mean po(z) = E[Y;|W; =0, X; = z]
and using this estimated regression function to predict the (missing) control outcomes for the
treated units. With such a large difference between the two groups in covariate distributions,
linear regression is going to rely heavily on extrapolation, and thus will be sensitive to the

exact functional form.

More generally one can plot distributions of covariates by treatment groups. In the case
with one or two covariates one can do this directly. In high dimensional cases, however, this
becomes more difficult. One can inspect pairs of marginal distributions by treatment status,
but these are not necessarily informative about lack of overlap. It is possible that for each
covariate the distribution for the treatment and control groups are identical, even though

there are areas where the propensity score is zero or one.

A more direct method is to inspect the distribution of the propensity score in both
treatment groups, which can reveal lack of overlap in the multivariate covariate distributions.
Its implementation requires nonparametric estimation of the propensity score, however, and
misspecification may lead to failure in detecting a lack of overlap, just as inspecting various
marginal distributions may be insufficient. In practice one may wish to undersmooth the
estimation of the propensity score, either by choosing a bandwidth smaller than optimal for

nonparametric estimation or by including higher order terms in a series expansion.
6.2 SELECTING A SAMPLE WITH OVERLAP THROUGH MATCHING

Once one determines that there is a lack of overlap one can attempt to construct a sample
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with more overlap. Here we discuss two methods for doing so. The first is particularly
appropriate when the focus is on the average effect for the treated, and there is a relatively

large number of controls.

First, the treated observations are ordered, typically by decreasing values of the estimated
propensity score. The reason for this is that among units with high values of the propensity
score there are relatively more treated than control units, and therefore treated observations

with high values of the propensity score are relatively more difficult to match.

Then the first treated unit (e.g., the one with the highest value for the estimated propen-
sity score) is matched to the nearest control unit. Next, the second treated unit is matched
to the nearest control unit, excluding the control unit that was used as a match for the
first treated unit. Matching without replacement all treated units in this manner leads to a
sample of 2 - Ny units, (where Ny is the size of the original treated subsample), half of them
treated and half of them control units. Note that the matching is not necessarily used here
as the final analysis. We do not propose to estimate the average treatment effect for the
treated by averaging the differences within the pairs. Instead, this is intended as a prelim-
inary analysis, with the goal being the construction of a sample with more overlap. Given
a more balanced sample, one can use methods discussed in these notes for estimating the
average effect of the treatment, including regression, propensity score methods, or matching.
Using those methods on the balanced sample is likely to reduce bias relative to using the

simple difference in averages by treatment status.
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6.3 SELECTING A SAMPLE WITH OVERLAP THROUGH TRIMMING

The second method for addressing lack of overlap we discuss is based on the work by
Crump, Hotz, Imbens and Mitnik (2008). Their starting point is the definition of average
treatment effects for subsets of the covariate space. Let X be the covariate space, and A C X
be some subset. Then define

r(A) =" 1{X € A)- T(Xi)/z 1{X; € A}.

Crump et al calculate the efficiency bound for 7(A), assuming homoskedasticity, as

@ " L&) "1 —1e)<X>‘X © A\‘} |

where g(A) = Pr(X € A). They derive the characterization for the set A that minimizes the

asymptotic variance and show that it has the form
A"={reXla<eX)<1-a},
dropping observations with extreme values for the propensity score, with the cutoff value «

determined by the equation

v g L L <1
a-(1-a) e(X)- (I —e(X))]e(X)-(1-e(X)) ~ a-(1-a)

Crump et al then suggest estimating 7(A*). Note that this subsample is selected solely on the
basis of the joint distribution of the treatment indicators and the covariates, and therefore
does not introduce biases associated with selection based on the outcomes. Calculations for
Beta distributions for the propensity score suggest that v = 0.1 approximates the optimal

set well in practice.
7. ALGORITHM FOR ESTIMATING THE PROPENSITY SCORE AND STRATIFICATION

Many of the estimators discussed in this and the previous lecture are rely on estimators

for the propensity score. Here I briefly describe one way of selecting a specification for the
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propensity score. This particular procedure is a step-wise method, where increasingly flexible
specifications are selected until the specification is deemed adequate. This is not the only
way of doing, this, and in fact there are many such methods out there, some of which are
undoubtedly more effective. The main point is that the common practice of including the
full vector of covariates linearly, and not include any second order terms is not likely to be

effective.

The algorithm starts with a K-dimensional vector of covariates X; (these may already
contain functions of the original covariates). The algorithm will selection a subset of the
covariates to be included linearly, and based on that subset also select a number of second

order terms (both quadratic terms and interactions).

The algorithm starts with a logistic model with no covariates. Next, logistic regression
models are estimated with each of the covariates included separately. The covariate that
improves the log likelihood function the most is included, as long as the increase in the
log likelihood function is above some threshold tj;,. Next, we select among the K — 1
remaining covariates the one that improves the logistic model with the single covariate the
most, again based on the increase in the log likelihood function. We repeat this till no
additional covariate improves the log likelihood function by at least t;,. Suppose this leads

to selecting 0 < K, < K covariates out of the original set of K covariates.

In the second part we select among the Ky, X (K, + 1)/2 second order terms based on
these Ky, covariates. Similar to the way we selected the linear terms, we keep adding second
order terms, till no additional second order term improves the log likelihood by more than
tqua- The tuning constants used below are ¢, = 0.5 and ¢4, = 1.35, based on cutoffs for
likelihood ratio test statistics (equal to twice the increaese in the log likelihood function) of

1 and 2.71, the latter corresponding to a 10% level test.

One may modify this algorithm by selecting a subset of the covariates to be included
irrespective of the correlations with the treatment. In the analyses below, we selected the

last pre-program earnings and the indicator for those earnings being positive to be included
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in this way, prior to selecting further covariates.

Some of the estimators discussed below also require an algorithm for choosing the number
and boundaries for the blocks. Here is the algorithm used below. We start with a single
stratum. The option is to split the stratum in two equal parts, with the new boundary
point the median of the values of the estimated propensity score in the old stratum. The old
stratum will be split if three conditions are satisfied. First, the t-statistic for testing equality
of the average estimated propensity score among treated and controls is at least 1.96, the
number of treated and control observations in both new strata is at least 3, and the number
of obsersvations in each block is at least 3 plus the dimension of the covariate vector X;. We
then keep splitting the strata in the middle, until none of the strata satisfies the criteria for

further division.
8. AN ILLUSTRATION BASED ON THE LALONDE DATA

Here we look at application of the ideas discussed in these notes. We take the NSW job
training data orinally collected by Lalonde (1986), and subsequently analyzed by Dehejia
and Wahba (1999). These data are available on Dehejia’s website (reference). The starting
point is an experimental evaluation of this training program. Lalonde then constructed non-
experimental comparison groups to investigate the ability of various econometric techniques
to replicate the experimental results. In the current illustration we use three subsamples, the
(experimental) trainees, the experimental controls, and a CPS comparison group. In both

cases we focus on estimating the average effect of the treatment for the treated.

In the next three subsections we do the design part of the analysis. Without using the
outcome data we first assess the overlap in covariate distributions, then assess whether strong
ignorability has some credibility and finally create a matched sample and assess these issues

there.
8.1 SUMMARY STATISTICS

First we give some summary statistics
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TABLE 1: SUMMARY STATISTICS FOR EXPERIMENTAL SAMPLE

Trainees Controls CPS
(N=260) (N=185) (N=15,992)
mean (s.d.) mean (s.d.) nor-dif mean (s.d.) nor-dif

260.00 0.00 185.00 0.00 0.00 0.00  0.00 0.00

Black 084 036 083 0.38 0.03 0.07  0.26 1.72
Hispanic 0.06 024 0.11 0.31 0.12 0.07  0.26 0.04
Age 25.82 7.16  25.05 7.06 0.08 33.23 11.05 0.56
Married 019 039 015 0.36 0.07 0.71  0.45 0.87

No Degree 0.71 0.46 0.83  0.37 0.21 0.30  0.46 0.64
Education 10.35  2.01 10.09 1.61 0.10  12.03 2.87 0.48
Earnings '74  2.10  4.89 2.11 5.69 0.00 14.02 9.57 1.11
Unempl "74 0.71 0.46 0.75 0.43 0.07 0.12  0.32 1.05
Earnings '75  1.53 3.22 1.27  3.10 0.06 13.65 9.27 1.23
Unempl. 75 0.60 049 0.68 047 0.13 0.11  0.31 0.84

In this table we report averages and standard deviations for the three subsamples. In addition
we report for both the trainee/experimental-control and for the trainee/CPS-comparison-
group pairs the normalized difference in average covariate values by treatment status, nor-

malized by the standard deviation of these covariates:

X1 — X
\/ S0+ 5%

Again, it is not the statistical significance of this difference we are interested in, as much as
the degree of difficulty of the statistical problem of adjusting for these differences. In Table
1 we see that in the experimental data set the difference in average age between treated and
controls is 0.08 standard deviations. In the nonexperimental comparison the difference in

age is 0.56 standard deviations.

Right away we can see that the experimental data set is well balanced. The difference in
averages between treatment and control group is never more than 0.21 standard deviations.

In contrast, with the CPS comparison group the differences between the averages are up
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to 1.23 standard deviations from zero, suggesting there will be serious issues in obtaining

credible estimates of the average effect of the treatment.

In Figures 1 and 2 we present histogram estimates of the distribution of the propensity
score for the treatment and control group in the experimental Lalonde data. These distri-
butions again suggest that there is considerable overlap in the covariate distributions. In
Figures 3 and 4 we present the histogram estimates for the propensity score distributions for
the CPS comparison group. Now there is a clear lack of overlap. For the CPS comparison
group almost all mass of the propensity score distribution is concentrated in a small interval

to the right of zero, and the distribution for the treatment group is much more spread out.

The results so far already strongly indicate that simple analyses such as least squares

regression are unlikely to lead to credible estimates of the average causal effects of interest.
8.2 ASSESSING UNCONFOUNDEDNESS

First we use the experimental data. We analyze the data as if earnings in 1975 (Earn
'75) is the pseudo outcome. This is in fact a covariate, and so it cannot be affected by
the treatment, and we are looking for estimates that are substantially close to zero, and

statistically indistinguishable from zero. Table 2 reports the results for nine estimators.

1. The first is the simple difference in average outcomes:
=Y, -Y,.

2. The second estimator is based on least squares regression using all ten covariates:
Yi=a+7 -W,+ 73X, +e.

3. The third estimator is based on least squares regression using all ten covariates and

their interaction with the treatment indicator:

YVZ':Oé—l-T-Wi—l—ﬁ/Xi—l-’}/(Xi—Yl)'Wi—l-&'.
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The interaction is based on deviations from the average covariate values for the treated
in order for the least squares estimator for 7 to estimate the average effect on the

treated.

4. The fourth estimator uses the estimated propensity score to weight the observations:

ZY ZYll—e /Zl—e

i W;=1 i:W;=0

X
||

The weights here are modified from those discussed previously to take account of the

focus on the average effect for the treated.

5. Here the propensity score is used to create strata. Within the J strata the average
effect is estimated as the difference in average outcomes between treated and controls,
and the within-stratum estimates are averaged, weighted by the number of treated
units in each strata. The number of strata is choosen in a data-dependent way, as

described in Section 4.

6. Here all the treated observations are matched to the closets control, with replacement.
The matching is on all covariates, weighted by the diagonal matrix with the inverse of

the variances on the diagonal.

7. The seventh estimator is based on weighted least squares regression of the regression

function
Vi=a+7 Wi+t X +e,

with weights

é(X;)

A=W+ (1 -=-W;) ————.
+ ) T ey

(The fourth estimator is a special case of this where (3 is set equal to zero.)

8. The eight estimator is based on the same blocks as the fifth estimator, but now within

blocks linear regression is used to estimate the average effect.
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TABLE 2: ESTIMATES FOR LALONDE DATA WITH EARNINGS 75 AS OUTCOME

Experimental Controls CPS Comparison Group
est (s.e.)  t-stat est  (s.e.)  t-stat

Simple Dif 0.27 0.31 0.87 -12.12 0.25 -48.91
OLS (parallel) 0.22  0.22 1.02 -1.13  0.36 -3.17
OLS (separate) 0.17 0.22 0.74 -1.10  0.36 -3.07
Weighting 0.29 0.30 0.96 -1.56  0.26 -5.99
Blocking 0.26  0.32 0.83 -12.12 0.25 -48.91
Matching 0.11  0.25 0.44 -1.32 0.34 -3.87

Weighting and Regression 0.21  0.22 0.99 -1.58  0.23 -6.83
Blocking and Regression 0.12 0.21 0.59 -1.13  0.21 -5.42
Matching and Regression -0.01  0.25 -0.02 -1.34  0.34 -3.96

9. The ninth estimator uses the same matching as the sixth estimator. Then linear

regression is used on the 185 matches to estimate
Vi=a+ X +e,

and the estimated regression coefficients B are used to adjust the matched outcomes

based on the Abadie-Imbens estimator.

For all nine estimators the estimated effect is close to zero and statistically insignificant
at conventional levels. The results suggest that unconfoundedness is plausible for the exper-

imental data set. This is not surprising, as the randomization implies unconfoundedness.

With the CPS comparison group the results are very different. All nine estimators sug-
gest substantial and statistically significant differences in earnings in 1975 after adjusting
for all other covariates, including earnings in 1974. This suggests that relying on the un-
confoundedness assumption, in combination with these particular estimators, is not very

credible for this sample. This is not surprising, because the treated and control samples
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are so far apart, as measured by the normalized differences, that the estimates were very

unlikely to be robust.
8.3 CREATING A MATCHED SAMPLE

Now let us consider the matched CPS sample. Matching is done on here the estimated
propensity score, without replacement, for all the treated observations, starting with the
treated unit with the highest value for the estimated propensity score. This leads to a
matched sample with 185 treated (as before), and 185 controls. First we assess the balance

by looking at the summary statistics.

TABLE 4: SUMMARY STATISTICS FOR MATCHED CPS SAMPLE

Trainees (N=185) Controls (N=185)

mean (s.d.) mean (s.d.) nor-dif
Black 0.84 0.36 0.85 0.35 -0.02
Hispanic 0.06 0.24 0.06 0.25 -0.02
Age 25.82 7.16 25.88 7.65 -0.01
Married 0.19 0.39 0.25 0.43 -0.10
No Degree 0.71 0.46 0.57 0.50 0.20
Education 10.35 2.01 10.91 2.93 -0.16
Earnings '74  2.10 4.89 2.81 5.61 -0.10
Unempl 74 0.71 0.46 0.66 0.47 0.07
Earnings '75  1.53 3.22 1.82 3.79 -0.06
Unempl. 75 0.60 0.49 0.50 0.50 0.14

These suggest that the balance is much improved, with the largest differences now on the
order or 0.20 of a standard deviation, where before they difference was as high as 1.12. Now

the normalized differences are comparable to those in the experimental sample.

Figures 5 and 6 present histograms of the propensity score for this matched sample. Note
that we re-estimate the propensity score for this sample. If the matching had been perfect,
the estimated propensity score would be equal to 0.5 for all units. It is not, and there is still

considerable variation in the propensity score, but not to the extent that simple analyses
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could not adjust for the covariate differences between the treatment and control samples.

These normalized differences suggest that given unconfoundedness, the matched sample is
well balanced, and likely to lead to robust estimates. They do not directly reflect, however,
on the question whether unconfoundedness itself is plausible. In order to address that,
we return to the analysis with earnings in 1975 as the pseudo outcome. Again we report
estimates for nine estimators. Here we do not directly use the matched sample from Table 4.
Rather, we take the covariates excluding earnings in 1975 and the indicator for earnings in
1975 being positive, and create a matched sample based on the remaining covariates. This
obviously makes the subsequent comparison more “fair”. Based on this matched sample we
re-estimate the effect of the treatment on the pseudo outcome, earnings in 1975. The results

are in Table 5.

TABLE 5: ESTIMATES ON MATCHED CPS LALONDE DATA

Earn ’75 Outcome Earn ’78 Outcome
est (s.e.) t-stat est (s.e.) t-stat

Simple Dif -1.72 0.46 -3.74 0.87 0.80 1.08
OLS (parallel) -1.51  0.33  -4.52 1.40 077 181
OLS (separate)  -1.40 0.32 -4.38 1.26 0.77 1.64

Weighting -1.29  0.46 -2.80 1.20 0.80 1.49
Blocking -1.30  0.47  -2.75 1.16 082 141
Matching -1.50  0.39 -3.83 1.53 095 1.61

Weight and Regr -1.38 0.33 -4.16 1.32 0.78 1.69
Block and Regr  -1.47 0.33 -4.41 177 076 2.33
Match and Regr -1.51 0.39 -3.85 1.41 095 149

The results for earnings in 1975 still suggest substantial and statistically significant ef-
fects, so based on this we would not conclude that unconfoundedness is reasonable. Esti-

mates are robust across the nine estimators.

Finally we report the estimates for earnings in 1978. Only now do we actually use the

outcome data. Note that with the exclusion of the simple difference Y; — Y, the estimates
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are all between 1.16 and 1,77, and thus relatively insensitive to the choice of estimator. The
benchmark estimate from the experimental sample is Y; — Y = 1.79, very similar to these
non-experimental estimates. The irony is that all the estimators give answers consistent
with the experimental estimates, but the analysis based on the pseudo outcome suggests we

would not have known that without having the experimental estimates.
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Figure 1: histogram propensity score for controls, exper full sample
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Figure 2: histogram propensity score for treated, exper full sample
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Figure 3: hist p—score for controls, cps full sample Figure 5: hist p—score for controls, cps selected sample
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AEA Lectures Chicago, IL, January 2012
Lecture 3, Sunday, Jan 7th,pm-pm
Selection on Unobservables:

Part I: Instrumental Variables, Local Average Treatment Effects

1. INTRODUCTION

In this lecture we discuss the interpretation of instrumental variables estimators allowing
for general heterogeneity in the effect of the endogenous regressor. We shall see that instru-
mental variables estimators generally estimate average treatment effects, with the specific
average depending on the choice of instruments. Initially we focus on the case where both
the instrument and the endogenous regressor are binary. The example we will use is based
on one of the best known examples of instrumental variables, the paper by Joshua Angrist
on estimating the effect of veteran status on earnings (Angrist, 1990). We also discuss the
case where the instrument and or the endogenous variable take on multiple values, and

incorporate the presence of covariates.

The general theme of this lecture is that with heterogenous treatment effects, endogeneity
creates severe problems for identification of population averages. Population average causal
effects are only estimable under very strong assumptions on the effect of the instrument on
the endogenous regressor (sometimes referred to as “identification at infinity”, Chamberlain,
1986), or under the constant treatment effect assumptions. Without such assumptions we
can only identify average effects for subpopulations that are induced by the instrument to
change the value of the endogenous regressors. Following Angrist, Imbens and Rubin (1996),
we refer to such subpopulations as compliers, and we refer to the average treatment effect
that is point identifed as the local average treatment effect (Imbens and Angrist, 1994). The
“complier” terminology stems from the canonical example of a randomized experiment with
noncompliance. In this example a random subpopulation is assigned to the treatment, but

some of the individuals do not comply with their assigned treatment.

These complier subpopulations are not necessarily the subpopulations that are ez ante the



most interesting subpopulations. The reason to nevertheless focus on these subpopulations
is that the data are generally not informative about average effects for other subpopulations
without extrapolation, similar to the way in which a randomized experiment conducted on
men is not informative about average effects for women without extrapolation. The set up
here allows the researcher to sharply separate the extrapolation to the (sub-)population of
interest, from exploration of the information in the data about the causal effect of interest.
The latter analysis relies primarily on relatively interpretable, and substantively meaning-
ful assumptions, and it avoids functional form or distributional assumptions. Subsequently,
given estimates for the compliers, one can these estimates in combination with the data
to assess the plausibility of extrapolating the local average treatment effect to other sub-
populations, using the information on outcomes given one of the two treatment levels and
covariates, or construct bounds on the average effects for the primary population of interest

using the bounds approach from Manski (e.g., Manski, 2008).

With multiple instruments, and/or with covariates, one can assess the evidence for het-
erogeneity, and therefore investigate the plausibility of extrapolation to the full population

more extensively.
2. LINEAR INSTRUMENTAL VARIABLES WITH CONSTANT COEFFICIENTS

First let us briefly review standard textbook linear instrumental variables methods (e.g.,
Wooldridge, 2000). In the example from Angrist (1990) we use to illustrate the concepts
discussed in this lecture we are interested in the causal effect of military service on earnings,
using eligibility for the draft as the instrument. Let Y; be the outcome of interest for unit ¢
(log earnings in the example), W; the binary endogenous regressor (an indicator for veteran
status), and Z; the binary instrument (a binary indicator for draft eligibility). The standard
set up is as follows. A linear model is postulated for the relation between the outcome and

the endogenous regressor:
Yi=Bo+ B - Wi+ e (1)

This is a structural, behavioral, or causal relationship (we use the terms interchangeably).
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The concern is that the regressor W; is endogenous, that is, that W, is correlated with the
unobserved component of the outcome, ;. Suppose that we are confident that a second
observed covariate, the instrument Z;, is both uncorrelated with the unobserved component
g; and correlated with the endogenous regressor W;. The solution is to use Z; as an instrument

for W;. There are a couple of ways to implement this.

In Two-Stage-Least-Squares (TSLS) we first estimate a linear regression of the endoge-

nous regressor on the instrument by least squares. Let the estimated regression function

be

A

Wi =my+m1 - Z;.

Then we regress the outcome on the predicted value of the endogenousr regressor, using least

squares:

~ A

A atsh
Yi=a+7 W,

Alternatively, with a single instrument we can estimate the two reduced form regressions

~

Yi=4%+%-Z,  and W;=ro+-Z,
by least squares and estimate 3; through Indirect Least Squares (ILS) as the ratio
7 =41 /7,

irrespective of the validity of the behavioral model.

In the case with a single instrument and single endogenous regressor, we end up in both
cases with the ratio of the sample covariance of Y; and Z; to the sample covariance of W;

and Z;.

F (i -Y) - (Zi - 2)

¥ i (Wi = W) (2~ Z)

tsls

2
I
>
I
>
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This estimator is consistent for

v _ E[(Yi —E[Y]) - (Z — E[Z)]) (2)
E[(W: — E[Wi]) - (Z; — E[Z))]

Using a central limit theorem for all the moments and the delta method we can infer the

large sample distribution without additional assumptions:

VN - (7= 1Y) AN <0 E[e? - (Z — E[Z])"] )

(E[(W: —EW) - (Z — E[Z]))*

where ¢; = Y; — E[Y;] — 7V - (W; — E[W]). Under independence between the residual ¢; and

the instrument Z;, the asymptotic distribution further simplifies to:

4 Ele?) -E [(Z - E[Z])’] )
VN - (7Y =) S N0, 5 |
N =) <0 EL(W, - EWi]) - (Z: — E[Z])

3. POTENTIAL OUTCOMES

First we set up the problem in a slightly different way, using Rubin’s (1974) potential
outcomes approach to causality. This set up of the instrumental variables problem originates
with Imbens and Angrist (1994). Let Y;(0) and Y;(1) be two potential outcomes for unit ¢, one
for each value of the endogenous regressor or treatment. The first potential outcome Y;(0)
measures the outcome if person ¢ were not to serve in the military, irrespective of whether
this person served or not. The second potential outcome, Y;(1), measures the outcome given
military service, again irrespective of whether the person served or not. We are interested
in the causal effect of military service, Y;(1) — Y;(0). We cannot directly observe this since
we can only observe either Y;(0) or Y;(1), never both. Let W; be the realized value of the
endogenous regressor, equal to zero or one. We observe W, and
Yi(1) i W =1
Y;(0) it W; =0.

So far the set up is identical to that in the analysis under unconfoundedness in Lecture 1. Now

we introduce additional notation by defining similar potential outcomes for the treatment.
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Initially we focus on the case with a binary instrument Z;. In the Angrist example, Z; is a
binary indicator for having a draft number below the cutoff value that implied a potential
recruit would get called up for military service, and thus an indicator for being draft eligible.
Define two potential outcomes W;(0) and W;(1), representing the value of the endogenous
regressor given the two values for the instrument. The actual or realized (and observed)
value of the endogenous variable is

Wi(1) if 7, =1
W;(0) if Z; = 0.

In summary, we observe the triple (Z;, W;,Y;), where W; = W;(Z;) and Y; = Y;(W;(Z;)).
4. LOCAL AVERAGE TREATMENT EFFECTS

In this section we interpret the estimand (2) under weaker assumptions than the linear

additive model set up in (1).
4.1. ASSUMPTIONS

The key instrumental variables assumption is

Assumption 1 (INDEPENDENCE)

Zi L (Yi(0), Yi(1), Wi(0), Wi(1)).

This assumption requires that the instrument is as good as randomly assigned, and that it
does not directly affect the outcome. The assumption is formulated in a nonparametric way,

without definitions of residuals that are tied to functional forms.

It is important to note that this assumption is not implied by random assignment of Z;.
To see this, an alternative formulation of the assumption, slightly generalizing the notation,
is useful. First we postulate the existence of four potential outcomes, Y;(z, w), corresponding
to the outcome that would be observed if the instrument was exogenously set to Z; = z and
the treatment was exogenously set to W; = w. Then the independence assumption is the

combination of two assumptions.



Assumption 2 (RANDOM ASSIGNMENT)

Zi L (Yi(0,0),Y;(0,1),Yi(1,0), Yi(1,1), Wi(0), W;(1)).

Assumption 3 (EXCLUSION RESTRICTION)

Yi(z,w) = Y;(2, w), for all z, 2/, w.

The first of these two assumptions is implied by random assignment of Z;. It can be weakened
in the presence of covariates to unconfoundedness. The second assumption is substantive,
and randomization has no bearing on it. It corresponds to the notion that there is no direct
effect of the instrument on the outcome other than through the treatment. In the model-
based version of this, (1), it is captured by the absence of Z; in the behavioral equation.

This assumption has to be argued on a case-by-case basis.

It is useful for our approach to think about the compliance behavior of the different
individuals or units, that is how they respond in terms of the treatment received to different
values of the instrument. Table 1 gives the four possible pairs of values (W;(0), W;(1)), given
the binary nature of the treatment and instrument and their labels. The labels refer to the

canonical example of a randomized experiment with imperfect compliance.

Table 1: COMPLIANCE TYPES

Wi(0)
0 1
0 | never-taker defier
W;(1)
1| complier always-taker

We cannot directly establish the type of an individual based on what we observe for

them (the triple Z;, W;,Y;)) since we only see the pair (Z;, W;), not the pair (W;(0), W;(1))
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(typically observing Y; is immaterial for this argument). Nevertheless, we can rule out some
possibilities. Table 2 summarizes the information about compliance behavior from observed

treatment status and instrument. For each pair of (Z;, W;) values there are two possible

Table 2: COMPLIANCE TYPE BY TREATMENT AND INSTRUMENT

Z;

0 | complier/never-taker  never-taker/defier

1| always-taker/defier  complier/always-taker

types, with the two others ruled out.

To make additional progress we we consider a monotonicity assumption, also known as
the no-defiers assumption, introduced by Imbens and Angrist (1994):
Assumption 4 (MONOTONICITY /NO-DEFIERS)

Wi(1) > Wi(0).

This monotonicity assumption is very apealling in many applications. It is implied directly

by many (constant coefficient) latent index models of the type:

Wi(z) = Ymo +m - 2 +¢; > 0}, (3)

which would imply W;(1) > W;(0) if 7; > 0 and W;(1) < W;(0) otherwise. In the canonical
example of a randomized experiment with non-compliance this assumption is very plausible:
if Z; is assignment to a treatment, and W; is an indicator for receipt of treatment, it makes
sense that there are few, if any, individuals who always to the exact opposite of what their

assignment is.



4.2. THE LocAL AVERAGE TREATMENT EFFECT

Given monotonicity we can infer more about an individual’s compliance behavior, as

summarized in Table 3. For individuals with (Z;, W;) equal to (0,1) or (1,0) we can now

Table 3: COMPLIANCE TYPE BY TREATMENT AND INSTRUMENT GIVEN MONOTONICITY

Z;
0 1
0 | complier/never-taker never-taker
Wi
1 always-taker complier/always-taker

determine their type. For individuals with (Z;, W;) equal to (0,0) or (1,1) there are still
multiple types consistent with the observed behavior. Nevertheless, we can stochastically

infer the compliance types.

Now we proceed to identifying the marginal distribution of types and conditional potential
outcome distributions. Let 7., m,, and 7, be the population proportions of compliers, never-
takers and always-takers respectively. We can identify those from the population distribution

of treatment and instrument status:

E[WZ|ZZ:0] = g, ]E[WZ|ZZ: 1] :7Ta+7rc>

which we can invert to infer the population shares of the different types:

7, = E[W;|Z; = 0], 7. = E[W;|Z; = 1] — E[W;|Z; = 0],

and

T =1—m, —m.=1-E[W;|Z; =1].



Now consider average outcomes by instrument and treatment status. In the (Z;, W;) equal

to (0,1) or (1,0) subpopulations these expectations have a simple interpretation:

E[Y;|W; =0, Z; = 1] = E[Y;(0)|never — taker], (4)
and

E[Y;|W; =1, Z; = 0] = E[Y;(1)|always — taker]. (5)

In the (Z;, W;) equal to (0,0) or (1,1) the conditional outcome expectations are mixtures of

expected values for compliers and nevertakers and compliers and alwaystakers respectively:

Te .
Yi[W; =0 0] P [Y:(0)|complier] 4+ P E[Y;(0)never — taker],(6)
and
Te .
E[Y;,|W; = 1,7 = 1] = E[Y(1 1 B[, - .
Y| W, ] poprppy [Yi(1)|complier]+ poprppny E[Y;(1)|always — taker|.(7)

From these relationships we can infer the average outcome by treatment status for compliers,

first by combining (4) and (6),

Te X T By W, = 0,2 = 0] — 2 E[Y)|Wi = 0,7 — 1],

Tn Tn

E[Y;(0)|complier] =

and then by combining (5) and (7)

Tt T By W= 1,7 = 1] = %< . E[Y}|Wi = 1,7 = 0].

ElY;(1 lier] =
(1) eomplier] = " x

Thus we can infer the average effect for compliers, E[Y (1)—Y;(0)|complier] = E[Y;(1)|complier|—
E[Y;(0)|complier].

It turns out this is equal to the instrumental variables estimand (2). Consider the least
squares regression of Y; on a constant and Z;. The slope coefficient in that regression esti-

mates

E[Y;|Z = 1] - E[Y;| Z; = 0.



The two terms are equal to:

E[Y:|Z; = 1] = E[Yi(1)|complier] - . + E[Y;(0)|never — taker| - my + E[Y;(1)|always — taker] - 7.
and

E[Y:|Z; = 0] = E[Y;(0)|complier] - . + E[Y;(0)|never — taker| - my + E[Y;(1)|always — taker] - 7.
Hence the difference is

ElY:|Z; = 1] — E[Yi|Z; = 0] = E[Yi(1) — Y;(0)|complier] - 7.

The same argument can be used to show that the slope coefficient in the regression of W; on

Zi is

Hence the instrumental variables estimand, the ratio of these two reduced form estimands,

is equal to the local average treatment effect

w_ E[Yi|Zi = 1] - E[Y;|Z; = 0]
b= E[W;|Z; = 1] — E[W;|Z; = 0]

= E[Y;(1) — Y;(0)|complier]. (8)

The key insight is that the data are informative only about the average effect for compliers
only. Put differently, the data are not informative about the average effect for nevertakers
because nevertakers are never seen receiving the treatment, and they are not informative
about the average effect for alwaystakers because alwaystakers are never seen without the
treatment. A similar insight in a parametric settings is discussed in Bjorklund and Moffitt
(1987). (These results do not take away from the fact that one can construct informative
bounds about the average effect for nevertakers or alwaystakers based on the outcomes we

do observe for such individuals, in the spirit of the work by Manski, 2008.)
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A special case of considerable interest is that with one-side non-compliance. Suppose
that WW;(0) = 0, so that those assigned to the control group cannot receive the active treat-
ment (but those assigned to the active treatment can choose to receive it or not, so that
W;(1) € {0,1}). In that case only two compliance types remain, compliers and always-takers.
Monotonicity is automatically satisfied, and the average effect for compliers is now equal to
the average effect for the treated, since any one receiving the treatment is by definition a
complier. This case was first studied in Bloom (1984). It also has a useful connection to
Chamberlain’s notion of “identification at infinity,” (see also Heckman, 1990). Suppose that
we have a selection model with a participation equation as in (3), with m > 0. If Z; is a
continuous instrument, then in order to idenfify the average effect for the treated we need
Z; to have unbounded support. Within this specific selection model this is, as Chamberlain
(1987) in a different context, an unattractive identification condition. However, in many
application it is plausible that there is some value of the instrument such that individuals do

not have access to the treatment, implying identification of the average effect for the treated.
4.3 EXTRAPOLATING TO THE FULL POPULATION

Although we cannot consistently estimate the average effect of the treatment for always-
takers and never-takers, we do have some information about the potential outcomes for
these subpopulations that can aid in assessing the plausibility of extrapolating to average
effects for the full population. They key insight is that we can infer the average outcome

for never-takers and always-takers in one of the two treatment arms. Specifically, we can

estimate

E [Y;(0)|never — taker], and E[Y;(1)|always — taker], 9)
but not

E [Y;(1)|never — taker], and E[Y;(0)|always — taker],

We can learn from the expectations in (9) whether there is any evidence of heterogeneity in
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outcomes by compliance status, by comparing the pair of average outcomes of Y;(0);

E [Y;(0)|never — taker], and [E [Y;(0)|complier],

and the pair of average outcomes of Y;(1):

E [Y;(1)|always — taker], and E [Y;(1)|complier].

If compliers, never-takers and always-takers are found to be substantially different in levels,
based on evidence of substantial difference between E[Y;(0)|never — taker| and E[Y;(0)|complier],
and or/between E[Y;(1)|always — taker|, and E[Y;(1)|complier], then it appears much less
plausible that the average effect for compliers is indicative of average effects for other com-
pliance types. On the other hand, if one finds that outcomes given the control treatment
for never-takers and compliers are similar, and outcomes given the treatment are similar
for compliers and always-takers (and especially if this holds within various subpopulations
defined by observed covariates), then it appears to be more plausible that average treatment

effects for these groups are also comparable.
4.4 COVARIATES

The local average treatment effect result in (8) implies in general that one cannot consis-
tently estimate average effects for subpopulations other than compliers. This still holds in
cases where we observe covariates. One can incorporate the covariates into the analysis in a
number of different ways. Traditionally the TSLS or ILS set up is used with the covariates

entering in the structural outcome equation linearly and additively, as

Y, = 0o+ 01 Wi + 35Xi + &,

with the covariates added to the set of instruments. Given the potential outcome set up
with general heterogeneity in the effects of the treatment, one may also wish to allow for
more heterogeneity in the correlations with the covariates. Here we describe a general way

of doing so. Unlike TSLS-type approaches, this involves modelling both the dependence of
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the outcome and the treatment on the covariates. Although there is often a reluctance to
model the relation between the treatment, there is no apparent reason that economic theory
is more informative about the relation between covariates and outcomes than about the

relation between covariates and the choices that lead to the treatment.

A full model can be decomposed into two parts, a model for the compliance type given
covariates, and a model for the potential outcomes given covariates for each compliance type.
A traditional parametric model with a dummy endogenous variables might have the form

(translated to the potential outcome set up used here):

Wi(z) = {mo + m - 2 + mpX; +n; > 0}, (10)

Yi(w) = Bo+ f1 - w+ B3X; + <, (11)

with (7;, &;) jointly normally distributed and independent of the instruments(e.g., Heckman,

1978). A more general model would allow for separate outcome equations by treatment

status:
Y;(0) = Boo + B Xi + €0, (12)
Yi(1) = Bor + By Xi + €1, (13)

in combination with (10), (e.g., Bjorklund and Moffitt, 1987). Such models can be viewed
as imposing various restrictions on the relation between compliance types, covariates and
outcomes. For example, in the model characterized by equations (10) and (11), if m; > 0,

compliance type depends on 7;:

never — taker if n, < —mp—m — X,
unit 7 is a complier if —mg—m —mhX; < < —mp—m — X,
always — taker if —my—mX; <.

Not only does this impose monotonicity, by ruling out the presence of defiers, it also implies

strong restrictions on the relationship between type and outcomes. Specifically, the selection
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equation implies that compliers correspond to intermediate values of 7;, implying that con-
ditional expectations of Y;(0) and Y;(1) for compliers are in between those for never-takers

and always-takers.

An alternative approach to the conventional selection model that exploits the identifica-
tion results more directly, is to model the potential outcome Y;(w) for units with compliance
type t given covariates X; through a common functional form with type and treatment

specific parameters:

frxry(w)le, t) = f(yla; Ow),
for (w,t) = (0,n),(0,¢), (1,¢),(1,a). For example, using a normal model,
Yi(w)|Ty = ¢, X; =2 ~ N (2'Bur, 0ly) (14)

for (w7 t) = (07 n)? (07 C)? (17 C)? (17 a)
A natural model for the distribution of type is a trinomial logit model:

1

T, = lier| X;) = ’
pr(7i = complier|X;) = § +exp(m, Xi) + exp(m; Xi)

exp(m, X;i)
pr(7; = never — taker|X;) = 5 oxp(a/ X;) + exp(l X))

and

pr(7; = always — taker| X;) = 1 — Pr(7; = complier|X;) — Pr(7; = never — taker|X;).

The log likelihood function is then, factored in terms of the contribution by observed (W;, Z;)

values, using the normal model for the conditional outcomes in (14):

'C(Trm Tay Bons Boes Bies Bias Oon, Ooe; T1es Ula) =

14



exp(m, X;) 1 é (Yi — X{ﬁon)

>< .
11 1+ exp(m,X;) + exp(m,X;)  oon

o
i|Wi=0,Z;=1 On

o H ( exp(m, X;) 1 & (Yi - Xz(ﬁ(m) . 1 1 4 (Yi - X{ﬁ(]c))

1 + exp(7! X;) . O0c

X,
W =0.7—0 1+ exp(n! X;) oon Oon Ten
exp(m X; 1 Y: — X/ P14 1 1 Yi — XiBie
> H ( : ) g e ) / g [ e
, 1+exp(m! X;) 014 Ola 1+ exp(m! X;) o1c Olc
| W;=1,Z;=1
exp(m,X; 1 Y; — X!B1a
< 11 X)) 1 (Yim Xibu)
1+ exp(m) X;) + exp(n. X;) 014 O1a

i|\Wi=1,2;=0

For example, the second factor consists of the contributions of individuals with Z; = 0,
W; = 0, who are known to be either compliers or never-takers. Maximizing a likelihood
function with this mixture structure is straightforward using the EM algorithm (Dempster,
Laird, and Rubin, 1977). For an empirical example of this approach see Hirano, Imbens,

Rubin and Zhou (2000), and Imbens and Rubin (1997).

In small samples one may wish to incorporate restrictions on the effects of the covariates,
and for example assume that the effect of covariates on the potential outcome is the same
irrespective of compliance type, or even irrespective of the treatment status. An advantage of
this approach is that it can easily be generalized. The type probabilities are nonparametricaly
identified as functions of the covariates, and the similarly the outcome distributions are

nonparametrically identified, by type as a function of the covariates,.
5. EFFECTS OF MILITARY SERVICE ON EARNINGS

In a classic application of instrumental variables methods Angrist (1989) was interested
in estimating the effect of serving in the military on earnings. He was concerned about the
possibility that those choosing to serve in the military are different from those who do not
in ways that affects their subsequent earnings irrespective of serving in the military. To
avoid biases in simple comparisons of veterans and non-veterans, he exploited the Vietnam

era draft lottery. Specifically he uses the binary indicator whether or not someone’s draft

15
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lottery number made him eligible to be drafted as an instrument. The lottery number was
tied to an individual’s day of birth, so more or less random. Even so, that in itself does not
make it valid as an instrument as we shall discuss below. As the outcome of interest Angrist

uses total earnings for a particular year.
The simple ols regression leads to:

—

log(earnings), = 54364 — 0.0205 - veteran,

(0079)  (0.0167)

In Table 4 we present population sizes of the four treatment /instrument subsamples. For
example, with a low lottery number 5,948 individuals do not, and 1,372 individuals do serve

in the military.

Table 4: TREATMENT STATUS BY ASSIGNMENT

Z;

015,948 1,915

1]1,372 865

Using these data we get the following proportions of the various compliance types, given
in Table 5, under the no-defiers or monotonicity assumption. For example, the proportion

of nevertakers is estimated as the conditional probability of W; = 0 given Z; = 1:

1915
pr(nevertaker) = 1915 + 865 — 0.6888.

Table 6 gives the average outcomes for the four groups, by treatment and instrument

status.
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Table 5: COMPLIANCE TYPES: ESTIMATED PROPORTIONS

Wi (0)
0 1
0 | never-taker (0.6888) defier (0)
Wi(1)
1| complier (0.1237)  always-taker (0.1874)

Table 6: ESTIMATED AVERAGE OUTCOMES BY TREATMENT AND INSTRUMENT

Z;

—_—

0| E[Y]=5.4472 E[Y] = 5.4028

—_—

1| E[Y] =5.4076, E[Y] = 5.4289

Table 7 gives the estimated averages for the four compliance types, under the exclusion
restriction. This restriction is the key assumption here. There are a number of reasons
why it may be violated in this application. For example, never-takers may need to taking
active action to avoid military service if draft eligible, for example by continuing their formal
education, or by moving to Canada. Always-takers may be affected their lottery number if
draftees were treated differently in the military compared to volunteers. The local average

treatment effect is -0.2336, a 23% drop in earnings as a result of serving in the military.
Simply doing IV or TSLS would give you the same numerical results:

—

log(earnings), = 54836 — 0.2336 - veteran,

(0.0289)  (0.1266)

It is interesting in this application to inspect the average outcome for different compli-
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Table 7: COMPLIANCE TYPES: ESTIMATED AVERAGE OQUTCOMES

W(0)
0 1
0 never-taker: E[/YZ(\O)] = 5.4028 defier (NA)
Wi(1)
1 | complier: E[Y;(0)] = 5.6948, E[Y;(1)] = 5.4612 always-taker: E[Y;(1)] = 5.4076

ance groups. Average log earnings for never-takers are 5.40, lower by 29% than average
earnings for compliers who do not serve in the military. This suggests that never-takers are
substantially different than compliers, and that the average effect of 23% for compliers need
not be informative never-takers. In contrast, average log earnings for always-takers are only
6% lower than those for compliers who serve, suggesting that the differences between always-
takers and compliers are considerably smaller. Note that compliers have better outcomes
without the treatment than never-takers and better outcomes than always-takers given the

treatment. This is inconsistent with the simple normal selection model in(10)-(11).
6. MULTIVALUED INSTRUMENTS

For any two values of the instrument zy and z; satisfying the local average treatment

effect assumptions we can define the corresponding local average treatment effect:

Tz = E[Yi(1) = Yi(0)[Wilz1) = 1, Wi(z) = 0],

Note that these local average treatment effects need not be the same for different pairs of
instrument values. Comparisons of estimates based on different instruments underlies tests
of overidentifying restrictions in TSLS settings. An alternative interpretation of rejections
in such testing procedures is therefore the presence of heterogeneity in causal effects, rather
than that some of the instruments are invalid. Without restrictions on the heterogeneity of

the causal effects there are no tests in general for the validity of the instruments.
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The presence of multi-valued, or similarly, multiple, instruments, does, however, provide
an opportunity to assess variation in treatment effects, as well as an opportunity to obtain
average effects for subpopulations closer to the one of ultimate interest. Suppose that we have
an instrument Z; with support zg, 21, . . ., K. Suppose also that the monotonicity assumption

holds for all pairs z and z’, and suppose that the instruments are ordered in such a way that

p(zr-1) < p(zr), where p(z) = E[W;|Z; = 2].

Also suppose that the instrument is relevant, so that for some function g(Z),

Elg(Z:) - (W; — E[W;])] # 0.

Then the instrumental variables estimator based on using ¢g(Z) as an instrument for W

estimates a weighted average of the local average treatment effects 7, ., ,:

Cov(Y;, 9(Z,
’ )\ 22 9
™ = Cov(9(Z Z ¢ T

where the weights )\, are non-negative and satisfy

(p(zr) = p(ze1)) - S0, milg(z1) — Elg(Z)]
S o) = plzeer)) - oy mlg(z) — Elg(Z:)]

A =

Y

for
e = pr(Z; = zi),

implying that Zszl A = 1.

Choosing the function ¢(z) corresponds to choosing the weight function. There are
obviously limits to the weight functions that can be choosen. Omne can only estimate a
weighted average of the local average treatment effects defined for all pairs of instrument
values in the support of the instrument. If p(zp) = 0 for some 2y in the support of Z, one

can estimate the average effect on the treated as 7., .,.
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If the instrument Z has a continuous distribution, and the probability of receiving the
treatment given the instrument, p(z), is continuous in z, we can define the limit of the local
average treatment effects

Ty = lim Tyt 2!
22,21z

If the monotonicity assumption holds for all pairs z and 2/, we can use the implied

structure on the compliance behavior by modelling W;(z) as a threshold crossing process,

Wi(z) = 1{h(2) +n; = 0}, (15)

with the scalar unobserved component 7; independent of the instrument Z;. This type of
latent index model is used extensively in work by Heckman (Heckman and Robb, 1985; Heck-
man,1990; Heckman and Vytlacil, 2005), as well as in Vytlacil (2000). Vytlacil shows that
if the earlier three assumptions (independence, the exclusion restriction and monotonicity)
hold for all pairs z and 2/, than there is a function A(-) such that this latent index structure is
consistent with the joint distribution of the observables. The latent index structure implies
that individuals can be ranked in terms of an unobserved component 7; such that if for two

individuals ¢ and j we have n; > n;, than W;(z) > W;(z) for all z.

Given this assumption, we can define the marginal treatment effect 7(n) as

7(n) = E[Yi(1) = Yi(0)[ n: = n] .

In a parametric setting this was introduced by Bjorklund and Moffitt (1987). In the contin-
uous Z case this marginal treatment effect relates directly to the limit of the local average

treatment effects:

T(n) = 72y with 7 = —h(z2)).

Note that we can only define 7(n) for values of 7 for which there is a z such that 7 = —h(z2).

Normalizing the marginal distribution of 7 to be uniform on [0, 1] (Vytlacil, 2002), this
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restricts 7 to be in the interval [inf, p(2), sup, p(z)], where p(z) = pr(W; = 1|Z; = z). Heck-
man and Vytlacil (2005) characterize various average treatment effects (e.g., the population
average treatment effect, the average treatment effect for the treated, the local average treat-
ment effect) in terms of this marginal treatment effect. For example, the population average
treatment effect is simply the average of the marginal treatment effect over the marginal

distribution of 7:

- / ~()dEy ().

In practice the same limits remain on the identification of average effects. A necessary
condition for identification of the population average effect is that the instrument moves
the probability of participation from zero to one. Note that identification of the population
average treatment effect does not require identification of 7(n) at every value of . The latter
is sufficient, but not necessary. For example, in a randomized experiment (corresponding to
a binary instrument with the treatment indicator equal to the instrument) the population
average treatment effect is obviously identified, but the marginal treatment effect is not

identified for any value of 7.
7. MULTIVALUED ENDOGENOUS VARIABLES

Now suppose that the endogenous variable W; takes on values 0, 1, ..., J. We still assume
that the instrument Z; is binary. We study the interpretation of the instrumental variables
estimand

_ Cov(Y;, Z)  E[Y|Zi =1 —E[Y;|Z; = 0]

iv

We make the exclusion assumption that for all z in the support of Z;,

Yi(w), Wi(z) 1L Z,

and a version of the monotonicity assumption,

Wi(1) > Wi(0).
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Then we can write the instrumental variables estimand as
J
™ =3\ - EYi(h) - Yi(j — DIWi(1) > 5 > Wi(0)], (16)
j=1

where

pr(W;(1) > j > W;(0)

A = — , .
Zizl pI‘(Wi(l) >1> WZ(O)

The weights are non-negative and add up to one.

Note that we can estimate the weights \; because

pr(Wi(1) = j > Wi(0) = pr(Wi(1) = j) — pr(Wi(0) = j)

= pr(Wi(1) = jlZi = 1) — pr(Wi(0) = j|Zi = 0)

=pr(W; = j|Z; = 1) —pr(W; = j|Z; = 0),

using the monotonicity assumption.

8. INSTRUMENTAL VARIABLES ESTIMATES OF THE RETURNS TO EDUCATION USING

QUARTER OF BIRTH AS AN INSTRUMENT

Here we use a subset of the data used by Angrist and Krueger in their 1991 study of the
returns to education. Angrist and Krueger were concerned with the endogeneity of education,
with the standard argument that individuals with higher ability are likely to command higher
wages at any level of education, as well as be more likely to choose high levels of education.
In that case simple least squares estimates would over estimate the returns to education.
Angrist and Krueger realized that individuals born in different parts of the year are subject
to slightly different compulsory schooling laws. If you are born before a fixed cutoff date
you enter school at a younger age than if you are born after that cutoff date, and given that

you are allowed to leave school when you turn sixteen, those individuals born before the
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cutoff date are required to completely more years of schooling. The instrument can therefore
be thought of as the tightness of the compulsory schooling laws, with the tightness being

measured by the individual’s quarter of birth.

Angrist and Krueger implement this using census data with quarter of birth indicators

as the instrument. Table 8 gives average years of education and sample sizes by quarter of

birth.

Table 8: AVERAGE LEVEL OF EDUCATION BY QUARTER OF BIRTH

quarter 1 2 3 4

average level of education | 12.69  12.74 12.81 12.84

standard error 0.01 0.01 0.01 0.01

number of observations 81,671 80,138 86,856 80,844

In the illustrations below we just use a single instrument, an indicator for being born in
the first quarter. First let us look at the reduced form regressions of log earnings and years

of education on the first quarter of birth dummy:

educ; = 12.797 — 0.109 - qob,

(0.006)  (0.013)

and

—

log(earnings), = 5.903 — 0.011 - qob;,

(0.001)  (0.003)

The instrumental variables estimate is the ratio of the reduced form coefficients,

. —0.1019
V= ———=10.1020.
& —0.011 01020
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Now let us interpret this estimate in the context of heterogeneous returns to education,
using (16) and (17).. This estimate is an average of returns to education, consisting of two
types of averaging. The first averaging is over different levels of education. That is, it
is a weighted average of the return to the tenth year of education, to the elevent year of
education, and so on.. In addition, for any level, e.g., to moving from nine to ten years of
education, it is an average effect where the averaging is over those people whose schooling
would have been at least ten years of education if more restrictive compulsory schooling laws
had been in effect for them, and who would have had less than ten years of education had

they been subject to the looser compulsory schooling laws.

Furthermore, we can estimate how large a fraction of the population is in these categories.

First we estimate the
v = pr(Wi(1) > j > W;(0) = pr(W; > j|Z; = 1) — pr(W; > j|Z; = 0)
as

. 1 ‘ 1 4
Ui > WWi 2} =+ > wi= g

il Zi=1 412,=0

This gives the unnormalized weight function. We then normalize the weights so they add up
to one, \; = 45/ 3, -

Figure 1-4 present some of the relevant evidence here. First, Figure 1 gives the distribu-
tion of years of education for the Angrist-Krueger data. Figure 2 gives the normalized and
Figure 3 gives the unnormalized weight functions. Figure 4 gives the distribution functions
of years of education by the two values of the instrument. The most striking feature of these
figures (not entirely unanticipated) is that the proportion of individuals in the “complier”
subpopulations is extremely small, never more than 2% of the population. This implies that
these instrumental variables estimates are averaged only over a very small subpopulation,
and that there is little reason to believe that they generalize to the general population. (Nev-

ertheless, this may well be a very interesting subpopulation for some purposes.) The nature
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of the instrument also suggests that most of the weight would be just around the number of
years that would be required under the compulsory schooling laws. The weight function is

actually surprisingly flat, putting weight even on fourteen to fifteen years of education.
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AEA Lectures Chicago, IL, January 2012
Lecture 3, Monday, Jan 9th,pm-pm
Selection on Unobservables:

Part II: Regression Discontinuity Designs

1. INTRODUCTION

Since the late 1990s there has been a large number of studies (e.g., Lee, 2001, 2008;
VanderKlaauw, 2001) in economics applying and extending Regression Discontinuity (RD)
methods from its origins in the statistics literature in the early 60’s (Thisthlewaite and Cook,
1960). Here, we review some of the practical issues in implementation of RD methods. The
focus is on five specific issues. The first is the importance of graphical analyses as powerful
methods for illustrating the design. Second, we suggest using local linear regression methods
using only the observations close to the discontinuity point. Third, we discuss choosing the
bandwidth using cross validation specifically tailored to the focus on estimation of regres-
sion functions on the boundary of the support, following Ludwig and Miller (2005). Fourth,
we provide two simple estimators for the asymptotic variance, one of them exploiting the
link with instrumental variables methods derived by Hahn, Todd, and VanderKlaauw (2001,
HTV). Finally, we discuss a number of specification tests and sensivitity analyses based on
tests for (a) discontinuities in the average values for covariates, (b) discontinuities in the con-
ditional density of the forcing variable, as suggested by McCrary (2007), (¢) discontinuities

in the average outcome at other values of the forcing variable.
2. SHARP AND Fuzzy REGRESSION DISCONTINUITY DESIGNS
2.1 BAsiIcs

Our discussion will frame the RD design in the context of the modern literature on causal
effects and treatment effects, using the potential outcomes framework (Rubin, 1974), rather
than the regression framework that was originally used in this literature. For unit ¢ there

are two potential outcomes, Y;(0) and Y;(1), with the causal effect defined as the difference



Yi(1) — Y;(0), and the observed outcome equal to

Y;(0) if W; =0,

n:(l_Wi)-K(0)+Wi'n(1):{ Yi(1) if W; =1,

where W; € {0,1} is the binary indicator for the treatment.

The basic idea behind the RD design is that assignment to the treatment is determined,
either completely or partly, by the value of a predictor (the forcing variable X;) being on
either side of a common threshold. This predictor X; may itself be associated with the
potential outcomes, but this association is assumed to be smooth, and so any discontinuity
in the conditional distribution of the outcome, indexed by the value of this covariate at
the cutoff value, is interpreted as evidence of a causal effect of the treatment. The design
often arises from administrative decisions, where the incentives for units to participate in a
program are partly limited for reasons of resource constraints, and clear transparent rules

rather than discretion by administrators are used for the allocation of these incentives.
2.2 THE SHARP REGRESSION DISCONTINUITY DESIGN

It is useful to distinguish between two designs, the Sharp and the Fuzzy Regression
Discontinuity (SRD and FRD from hereon) designs (e.g., Trochim, 1984, 2001; HTV). In
the SRD design the assignment W; is a deterministic function of one of the covariates, the

forcing (or treatment-determining) variable X:

All units with a covariate value of at least ¢ are in the treatment group (and participation
is mandatory for these individuals), and all units with a covariate value less than ¢ are in
the control group (members of this group are not eligible for the treatment). In the SRD
design we look at the discontinuity in the conditional expectation of the outcome given the
covariate to uncover an average causal effect of the treatment:

lian[Yi|Xi =z — li¥nE[Yi|Xi =z] = lmE[Y;(1)|X; = 2] — imE[Y;(0)|X; = x|, (1)

zlc zTe
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is interpreted as the average causal effect of the treatment at the discontinuity point.
Tsrp = E[Yi(1) — Y;(0)|X; = ¢]. 2)

In order to justify this interpretation we make a smoothness assumption. Typically this

assumption is formulated in terms of conditional expectations!:
Assumption 1 (CONTINUITY OF CONDITIONAL REGRESSION FUNCTIONS)
E[Y(0)| X = z] and E[Y(1)|X = z],
are continuous in x.
Under this assumption,
TSRD = IHEE[YHXZ- =z — IH?E[YAXZ- = z].

The estimand is the difference of two regression functions at a point.

There is a unavoidable need for extrapolation, because by design there are no units with
X; = ¢ for whom we observe Y;(0). We therefore will exploit the fact that we observe units

with covariate values arbitrarily close to c.?

As an example of a SRD design, consider the study of the effect of party affiliation
of a congressman on congressional voting outcomes by Lee (2007). See also Lee, Moretti

and Butler (2004). The key idea is that electoral districts where the share of the vote for a

!More generally, one might want to assume that the conditional distribution function is smooth in the
covariate. Let Fy () x(y|z) = Pr(Yi(w) < y|X; = ) denote the conditional distribution function of Y;(w)
given X;. Then the general version of the assumption assume that Fy(oyx(y|z) and Fy(1)x(y|z) are
continuous in x for all y. Both assumptions are stronger than required, as we will only use continuity at
T = ¢, but it is rare that it is reasonable to assume continuity for one value of the covariate, but not at other
values of the covariate.

2 Although in principle the first component in the difference in (1) would be straightforward to estimate if
we actually observe individuals with X; = x, with continuous covariates we also need to estimate this term
by averaging over units with covariate values close to c.



Democrat in a particular election was just under 50% are on average similar in many relevant
respects to districts where the share of the Democratic vote was just over 50%, but the small
difference in votes leads to an immediate and big difference in the party affiliation of the
elected representative. In this case, the party affiliation always jumps at 50%, making this
is a SRD design. Lee looks at the incumbency effect. He is interested in the probability
of Democrats winning the subsequent election, comparing districts where the Democrats
won the previous election with just over 50% of the popular vote with districts where the

Democrats lost the previous election with just under 50% of the vote.
2.3 THE Fuzzy REGRESSION DISCONTINUITY DESIGN

In the Fuzzy Regression Discontinuity (FRD) design the probability of receiving the
treatment need not change from zero to one at the threshold. Instead the design allows for
a smaller jump in the probability of assignment to the treatment at the threshold:

lifnPr(Wi =1|X;=x) # li?lPI‘(Wi =1|X; = x),
without requiring the jump to equal 1. Such a situation can arise if incentives to participate
in a program change discontinuously at a threshold, without these incentives being powerful
enough to move all units from nonparticipation to participation. In this design we interpret
the ratio of the jump in the regression of the outcome on the covariate to the jump in the

regression of the treatment indicator on the covariate as an average causal effect of the

treatment. Formally, the estimand is

TFRD =

As an example of a FRD design, consider the study of the effect of financial aid on
college attendance by VanderKlaauw (2002). VanderKlaauw looks at the effect of financial
aid on acceptance on college admissions. Here X; is a numerical score assigned to college
applicants based on the objective part of the application information (SAT scores, grades)

used to streamline the process of assigning financial aid offers. During the initial stages of



the admission process, the applicants are divided into L groups based on discretized values

of these scores. Let

1 ifOSXZ'<Cl

2 ifcngi<Cg
Gi =

L ifCL_ngi

denote the financial aid group. For simplicity, let us focus on the case with L = 2, and a
single cutoff point ¢. Having a score just over ¢ will put an applicant in a higher category and
increase the chances of financial aid discontinuously compared to having a score just below c.
The outcome of interest in the VanderKlaauw study is college attendance. In this case, the
statistical association between attendance and the financial aid offer is ambiguous. On the
one hand, an aid offer by a college makes that college more attractive to the potential student.
This is the causal effect of interest. On the other hand, a student who gets a generous
financial aid offer from one college is likely to have better outside opportunities in the form
of financial aid offers from other colleges. In the VanderKlaauw application College aid is
emphatically not a deterministic function of the financial aid categories, making this a fuzzy
RD design. Other components of the college application package that are not incorporated
in the numerical score such as the essay and recommendation letters undoubtedly play an
important role. Nevertheless, there is a clear discontinuity in the probability of receiving an

offer of a larger financial aid package.

Let us first consider the interpretation of 7grp. HTV exploit the instrumental variables
connection to interpret the fuzzy regression discontinuity design when the effect of the treat-
ment varies by unit. Let W;(x) be potential treatment status given cutoff point x, for z in
some small neigborhood around c¢. W;(x) is equal to one if unit 7 would take or receive the
treatment if the cutoff point was equal to x. This requires that the cutoff point is at least in
principle manipulable.? For example, if X is age, one could imagine changing the age that

makes an individual eligible for the treatment from ¢ to ¢ 4+ €. Then it is useful to assume

3 Alternatively, one could think of the individual characteristic X; as being manipulable, but in many
cases this is an immutable characteristic such as age.



monotonicity (see HT'V):

Assumption 2 W;(x) is non-increasing in x at x = c.

Next, define compliance status. This concept is similar to that in instrumental variables,

e.g., Imbens and Angrist (1994), Angrist, Imbens and Rubin (1996). A complier is a unit

such that
lim W;(z) =0, and lim W;(z) = 1.

Compliers are units who would get the treatment if the cutoff were at X; or below, but they
would not get the treatment if the cutoff were higher than X;. To be specific, consider an
example where individuals with a test score less than ¢ are encouraged for a remedial teaching
program (Matsudaira, 2007). Interest is in the effect of the remedial teaching program on
subsequent test scores. Compliers are individuals who would participate if encouraged (if the
cutoff for encouragement is below or equal to their actual score), but not if not encouraged

(if the cutoff for encouragement is higher than their actual score). Then

lim, . E[Y;|X; = 7] — lim,. E[Y;|X; = 7]

= E[Y;(1) — Y;(0)|unit ¢ is a complier and X; = ¢].

The estimand is an average effect of the treatment, but only averaged for units with X; = ¢

(by regression discontinuity), and only for compliers (people who are affected by the thresh-

old).
3. THE FRD DESIGN, UNCONFOUNDEDNESS AND EXTERNAL VALIDITY
3.1 THE FRD DESIGN AND UNCONFOUNDEDNESS

In the FRD setting it is useful to contrast the RD approach with estimation of average

causal effects under unconfoundedness. The unconfoundedness assumption, e.g., Rosenbaum



and Rubin (1983), Imbens (2004), requires that

Yi(0),Y;(1) L W, | X,

If this assumption holds, then we can estimate the average effect of the treatment at X; = ¢

as

E[Y;(1) — ¥;(0)|X; = 2] = E[Y)|W; = 1, X; = ¢] — E[Y;|W; = 0, X; = c].

This approach does not exploit the jump in the probability of assignment at the discontinuity
point. Instead it assumes that differences between treated and control units with X; = ¢ are

interpretable as average causal effects.

In contrast, the assumptions underlying an FRD analysis implies that comparing treated
and control units with X; = ¢ is likely to be the wrong approach. Treated units with X; = ¢
include compliers and alwaystakers, and control units at X; = ¢ consist only of nevertak-
ers. Comparing these different types of units has no causal interpretation under the FRD
assumptions. Although, in principle, one cannot test the unconfoundedness assumption, one
aspect of the problem makes this assumption fairly implausible. Unconfoundedness is fun-
damentally based on units being comparable if their covariates are similar. This is not an
attractive assumption in the current setting where the probability of receiving the treatment
is discontinuous in the covariate. Thus units with similar values of the forcing variable (but
on different sides of the threshold) must be different in some important way related to the
receipt of treatment. Unless there is a substantive argument that this difference is immate-
rial for the comparison of the outcomes of interest, an analysis based on unconfoundedness
is not attractive in this setting. Moroever, even if unconfoundedness holds, if the expected
values of the potential outcomes given the forcing variables are continuous in the forcing
variable, and the monotonicity assumption holds, then the FRD approach will still estimate
a well defined average causal effect, equal to E[Y;(1) — Y;(0|X; = ¢] under unconfoundedness.
One can estimate this effect more efficiently under unconfoundedness, but the FRD approach

remains consistent for this average effect.



3.2 THE FRD DESIGN AND EXTERNAL VALIDITY

One important aspect of both the SRD and FRD designs is that they at best provide
estimates of the average effect for a subpopulation, namely the subpopulation with covariate
value equal to X; = ¢. The FRD design restricts the relevant subpopulation even further
to that of compliers at this value of the covariate. Without strong assumptions justifying
extrapolation to other subpopulations (e.g., homogeneity of the treatment effect) the designs
never allow the researcher to estimate the overall (population) average effect of the treatment.
In that sense the design has fundamentally only a limited degree of external validity, although
the specific average effect that is identified may well be of special interest, for example in cases
where the policy question concerns changing the location of the threshold. The advantage
of RD designs compared to other non-experimental analyses that may have more external
validity such as those based on unconfoundedness, is that RD designs generally have a

relatively high degree of internal validity in settings where they are applicable.
4. GRAPHICAL ANALYSES
4.1 INTRODUCTION

Graphical analyses should be an integral part of any RD analysis. The nature of RD
designs suggests that the effect of the treatment of interest can be measured by the value of
the discontinuity in the expected value of the outcome at a particular point. Inspecting the
estimated version of this conditional expectation is a simple yet powerful way to visualize
the identification strategy. Moreover, to assess the credibility of the RD strategy, it is useful
to inspect two additional graphs. The estimators we discuss later use more sophisticated
methods for smoothing but these basic plots will convey much of the intuition. For strikingly
clear examples of such plots, see Lee, Moretti, and Butler (2004), Lalive (2007), and Lee
(2007). Two figures from Lee (2007) are attached.

4.2 OUTCOMES BY FORCING VARIABLE

The first plot is a histogram-type estimate of the average value of the outcome by the

forcing variable. For some binwidth A, and for some number of bins Ky and K; to the left and



right of the cutoff value, respectively, construct bins (by, bgy1], for k=1,..., K = Ko + K;,

where
bp=c— (Ko —k+1)-h.

Then calculate the number of observations in each bin,

N
Ny, = Z Hbr < X < bigr},

i=1

and the average outcome in the bin:

N
Y- Nik-;n-l{bk < X0 < b}

The first plot of interest is that of the Y, for k = 1, K against the mid point of the bins,
bi = (b, + bri1)/2. The question is whether around the threshold ¢ there is any evidence of
a jump in the conditional mean of the outcome. The formal statistical analyses discussed
below are essentially just sophisticated versions of this, and if the basic plot does not show
any evidence of a discontinuity, there is relatively little chance that the more sophisticated
analyses will lead to robust and credible estimates with statistically and substantially sig-
nificant magnitudes. In addition to inspecting whether there is a jump at this value of the
covariate, one should inspect the graph to see whether there are any other jumps in the con-
ditional expectation of Y; given X; that are comparable to, or larger than, the discontinuity
at the cutoff value. If so, and if one cannot explain such jumps on substantive grounds, it
would call into question the interpretation of the jump at the threshold as the causal effect
of the treatment. In order to optimize the visual clarity it is important to calculate averages
that are not smoothed over the cutoff point. The attached figure is taken from the paper by
Lee (2007).

4.2 COVARIATES BY FORCING VARIABLE



The second set of plots compares average values of other covariates in the K bins. Specifi-

cally, let Z; be the M-vector of additional covariates, with m-th element Z;,,. Then calculate
;X
Lym = F : Z Lim, * 1{bk <X; < bk—l—l}-

The second plot of interest is that of the Z,,, for k = 1, K against the mid point of the
bins, by, for all m = 1,..., M. Lee (2007) presents such a figure for a lagged value of the
outcome, namely the election results from a prior election, against the vote share in the last
election. In the case of FRD designs, it is also particularly useful to plot the mean values of
the treatment variable W; to make sure there is indeed a jump in the probability of treatment
at the cutoff point. Plotting other covariates is also useful for detecting possible specification

problems (see Section 8) in the case of either SRD or FRD designs.
4.3 THE DENSITY OF THE FORCING VARIABLE

In the third graph one should plot the number of observations in each bin, Ny, against
the mid points b.. This plot can be used to inspect whether there is a discontinuity in the
distribution of the forcing variable X at the threshold. McCrary (2007) suggests that such
discontinuity would raise the question whether the value of this covariate was manipulated
by the individual agents, invalidating the design. For example, suppose that the forcing
variable is a test score. If individuals know the threshold and have the option of re-taking
the test, individuals with test scores just below the threshold may do so, and invalidate the
design. Such a situation would lead to a discontinuity of the conditional density of the test
score at the threshold, and thus be detectable in plots such as described here. See Section 8

for more discussion of the specification tests based on this idea.
5. ESTIMATION: LOCAL LINEAR REGRESSION
5.1 NONPARAMETRIC REGRESSION AT THE BOUNDARY

The practical estimation of the treatment effect 7 in both the SRD and FRD designs

is largely standard nonparametric regression (e.g., Pagan and Ullah, 1999; Hérdle, 1990;
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Li and Racine, 2007). However, there are two unusual features to estimation in the RD
setting. First, we are interested in the regression function at a single point, and second, that
single point is a boundary point. As a result, standard nonparametric kernel regression does
not work very well. At boundary points, such estimators have a slower rate of convergence
than they do at interior points. Standard methods for choosing the bandwidth are also not

designed to provide good choices in this setting.
5.2 LoCcAL LINEAR REGRESSION

Here we discuss local linear regression (Fan and Gijbels, 1996). Instead of locally fitting a
constant function, we can fit linear regression functions to the observations within a distance

h on either side of the discontinuity point:

N
miﬁn Y Yi—a—B-(Xi—0)?,
b li|c—h<Xi<c
and
N

min Z (}/;_ar_ﬁr' (Xi_c))z‘

ar,Br .
i|e<X;<c+h
The value of y;(c) and p,(c) are then estimated as

— —

fu(c) = i+ G- (c—c) = d, and fi,(c) = &, + B, - (c — ¢) = Gy,
Given these estimates, the average treatment effect is estimated as
TSRD = Qi — Q.

Alternatively one can estimate the average effect directly in a single regression, by solving
N

min Zl{c—thi§c+h}-(Yi—a—ﬁ-(Xi—c)—T-Wi—v-(Xi—c)-Wi)z,

a7 77—7
B,y Py

which will numerically yield the same estimate of 7ggrp.
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We can make the nonparametric regression more sophisticated by using weights that
decrease smoothly as the distance to the cutoff point increases, instead of the zero/one
weights based on the rectangular kernel. However, even in this simple case the asymptotic
bias can be shown to be of order h?, and the more sophisticated kernels rarely make much
difference. Furthermore, if using different weights from a more sophisticated kernel does
make a difference, it likely suggests that the results are highly sensitive to the choice of
bandwidth. So the only case where more sophisticated kernels may make a difference is
when the estimates are not very credible anyway because of too much sensitivity to the
choice of bandwidth. From a practical point of view one may just focus on the simple

rectangular kernel, but verify the robustness of the results to different choices of bandwidth.

For inference we can use standard least squares methods. Under appropriate conditions
on the rate at which the bandwidth goes to zero as the sample size increases, the resulting
estimates will be asymptotically normally distributed, and the (robust) standard errors from
least squares theory will be justified. Using the results from HTV, the optimal bandwidth is
h oc N=/%_ Under this sequence of bandwidths the asymptotic distribution of the estimator
7 will have a non-zero bias. If one does some undersmoothing, by requiring that h oc N=9
with 1/5 < § < 2/5, then the asymptotic bias disappears and standard least squares variance

estimators will lead to valid confidence intervals.
5.3 COVARIATES

Often there are additional covariates available in addition to the forcing covariate that
is the basis of the assignment mechanism. These covariates can be used to eliminate small
sample biases present in the basic specification, and improve the precision. In addition,
they can be useful for evaluating the plausibility of the identification strategy, as discussed
in Section 8.1. Let the additional vector of covariates be denoted by Z;. We make three

observations on the role of these additional covariates.

The first and most important point is that the presence of these covariates rarely changes

the identification strategy. Typically, the conditional distribution of the covariates Z given X

12



is continuous at x = c. If such discontinuities in other covariates are found, the justification
of the identification strategy may be questionable. If the conditional distribution of Z given
X is continuous at x = ¢, then including Z in the regression

N

r%in(; He—h<X;<c+h} - Yi—a—03-(X;—c)—7-Wi—~-(X; —c¢)- Wi —8Z)?,

=1

will have little effect on the expected value of the estimator for 7, since conditional on X

being close to ¢, the additional covariates Z are independent of .

The second point is that even though with X very close to ¢, the presence of Z in the
regression does not affect any bias, in practice we often include observations with values of
X not too close to c¢. In that case, including additional covariates may eliminate some bias

that is the result of the inclusion of these additional observations.

Third, the presence of the covariates can improve precision if Z is correlated with the
potential outcomes. This is the standard argument, which also supports the inclusion of
covariates even in analyses of randomized experiments. In practice the variance reduction
will be relatively small unless the contribution to the R? from the additional regressors is

substantial.
5.4 ESTIMATION FOR THE Fuzzy REGRESSION DISCONTINUITY DESIGN

In the FRD design, we need to estimate the ratio of two differences. The estimation issues
we discussed earlier in the case of the SRD arise now for both differences. In particular,
there are substantial biases if we do simple kernel regressions. Instead, it is again likely to
be better to use local linear regression. We use a uniform (rectangular) kernel, with the same

bandwidth for estimation of the discontinuity in the outcome and treatment regressions.

First, consider local linear regression for the outcome, on both sides of the discontinuity

point. Let

(uis ) =arg min " (Vi—ay = G- (Xi — o)), 3)

ayl,Byl
yhry i:c—h<X;<c
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(G ) =arg min — S° (Vi ay = By (Xi— ) (4)

a 76
YT G e< X <cth

The magnitude of the discontinuity in the outcome regression is then estimated as 7, =

Gryr — Oy Second, consider the two local linear regression for the treatment indicator:

(Gur. Bur) =arg min — >° (Wi = aw = B+ (Xi = )’ (5)
awlvﬁwl .
i:c—h<X;<c
<dw, Bwr) = arg min Z (Y; — avr — Buor - (X — c))z. (6)
awmﬁwr .
i:c<X;<c+h

The magnitude of the discontinuity in the treatment regression is then estimated as 7, =
Qur — Q. Finally, we estimate the effect of interest as the ratio of the two discontinuities:
Ty Qyr — Gy

(7)

Tw Qyr — Qi

Because of the specific implementation we use here, with a uniform kernel, and the same
bandwidth for estimation of the denominator and the numerator, we can characterize the
estimator for 7 as a Two-Stage-Least-Squares (TSLS) estimator (See HTV). This equality

still holds when we use local linear regression and include additional regressors. Define

1 Qyl
Vi=| {Xi<c}-(Xs—0 |, and 6= | By |. (8)
1{Xz 2 C} ) (XZ - C) ﬁyr
Then we can write
Y, =68V, +1- W+, (9)

Estimating 7 based on the regression function (9) by TSLS methods, with the indicator
1{X; > ¢} as the excluded instrument and V; as the set of exogenous variables is numerically

identical to 7grp as given in (7).
6. BANDWIDTH SELECTION

14



An important issue in practice is the selection of the smoothing parameter, the binwidth

h. Most of the empirical literature uses bandwidth selection methods that are borrowed from

the general nonparametric estimation literature, without adjusting for the special features

of the RD design. One exception is the work by by Ludwig and Miller (2005, 2007) that

develops cross-validation methods. See also Imbens and Lemieux (2008).

Here we focus on a recent alternative, a plug in method developed by Imbens and Kalya-

naraman (2008). Initially we focus on the SRD case, and in Section 6.2 we extend the

recommendations to the FRD setting.

6.1 BANDWIDTH SELECTION FOR THE SRD DESIGN

To set up the bandwidth choice problem we generalize the notation slightly. In the SRD

setting we are interested in the

TSRD = lifn w(x) — li?ﬂ (),

where u(x) = E[Y;|X; = z]. We estimate the two terms as

— —

fir(c) = lim p(z) = an(c), and fu(c) = lim p(z) = d(c),

zlc zle

where & (z) and 3(z) solve

(dl(z),ﬁl(z)) = argn;in Z Y;—a—3-(X; —x)).

76
jlz—h<X;<x

and &, (x) and B,(x) solve

(ar(2).Br(2)) =argmin D" (G —a =B (X; ),

a7ﬁ
j|:E<Xj <x+h

Imbens and Kalyanaraman focus on minimizing

E [((r(e) = fule)) = (ur(e) = pu(€)))’] -
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Both /i (c) and fi,.(c) are based on local linear estimators, with the same bandwidth h. This is
not necessary, but in practice it is unlikely that the differences in the optimal bandwidth are
substantial enough that they can be exploited with typical sample sizes. Under homoskedas-
ticity, so that the variance on the right and the left are the same, 0%(c) = ?(c) = 02(c), and
continuity of the density at ¢, fx(c) = fxi(c) = fx.(c), the leading terms in the expected

squared error are

E [((r(c) = fule)) = (ur(e) = pu(€)))’] -

. <(8£ (- Zm <c>)2> Gty (2};1()6 R GRS

Here C; and Cs are constants that depend on the kernel:

2
1 1/% — 13 1/%770 — 21T + 1/12772
Cl = — - — 02

4 \ oy —1v? - (ory — 1?)?

Vj:/ u! K (u)du, and Wj:/ u! K?(u)du.
0 0

Under the same conditions the optimal bandwidth is

1/5

hopt = (%)1/5. (%;C()C)y/s = _1 &@(C))z N7V, (13)

oz oz

Imbens and Kalyanaraman (2008) describe a data-dependent algorithm for estimating
the optimal bandwidth. The main difficulty is in estimating the second derivatives of the
regression function, and suggest a modification to avoid the denominator getting too close

to zero when the second derivatives are estimated imprecisely.
6.2 BANDWIDTH SELECTION FOR THE FRD DESIGN

In the FRD design, there are four regression functions that need to be estimated: the

expected outcome given the forcing variable, both on the left and right of the cutoff point,
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and the expected value of the treatment, again on the left and right of the cutoff point. In

principle, we can use different binwidths for each of the four nonparametric regressions.

In the section on the SRD design, we argued in favor of using identical bandwidths for
the regressions on both sides of the cutoff point. The argument is not so clear for the pairs
of regressions functions by outcome we have here, and so in principle we have two optimal
bandwidths, each based on minimizing a criterion like (13). It is likely that the conditional
expectation of the treatment is relatively flat compared to the conditional expectation of the
outcome variable, suggesting one should use a larger binwidth for estimating the former.*
Nevertheless, in practice it is appealing to use the same binwidth for numerator and denom-
inator. Since typically the size of the discontinuity is much more marked in the expected
value of the treatment, one option is to use the optimal bandwidth based on the outcome

discontinuity:.

4In the extreme case of the SRD design the conditional expectation of W given X is flat on both sides
of the threshold, and so the optimal bandwidth would be infinity. Therefore, in practice it is likely that the
optimal bandwidth would be larger for estimating the jump in the conditional expectation of the treatment
than in estimating the jump in the conditional expectation of the outcome.
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7. INFERENCE

We now discuss some asymptotic properties for the estimator for the FRD case given
in (7) or its alternative representation in (9).> More general results are given in HTV. We
continue to make some simplifying assumptions. First, as in the previous sections, we use a
uniform kernel. Second, we use the same bandwidth for the estimator for the jump in the
conditional expectations of the outcome and treatment. Third, we undersmooth, so that
the square of the bias vanishes faster than the variance, and we can ignore the bias in the
construction of confidence intervals. Fourth, we continue to use the local linear estimator.
Under these assumptions we give an explicit expression for the asymptotic variance, and
present two estimators for the asymptotic variance. The first estimator follows explicitly the
analytic form for the asymptotic variance, and substitutes estimates for the unknown quanti-
ties. The second estimator is the standard robust variance for the Two-Stage-Least-Squares
(TSLS) estimator, based on the sample obtained by discarding observations when the forcing

covariate is more than h away from the cutoff point. Both are robust to heteroskedasticity.
7.1 THE ASYMPTOTIC VARIANCE

To characterize the asymptotic variance we need a couple of additional pieces of notation.

Define the four variances

oy = lggl\/ar(YAXi =), oL, = lglg\/ar(mXi = 1),
0%, = li%Var(WﬂXi =1), Oryy = lgf?Var(Wi|Xi = 1),

and the two covariances
Cyw: = li%n Cov(Y;, Wi| X; = x), Cywr = li{n Cov(Y;, W;| X; = x).

Note that because of the binary nature of W, it follows that o3, = uw; - (1 — pw:), where

pwi = limgq. Pr(W; = 1|X; = ), and similarly for ¢3,,. To discuss the asymptotic variance

>The results for the SRD design are a special case of these for the FRD design.
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of 7 it is useful to break it up in three pieces. The asymptotic variance of vV Nh(7, — 7,) is

4
Ve, = 0 (03 + o) - (14)

The asymptotic variance of vV Nh(7, — Ty) is

4 2 2
Vi, = (o) G (15)

The asymptotic covariance of vV Nh(7, — 7,) and vV Nh(7, — T) is

Cryr = in(c) - (Cywr + Cywi) - (16)

Finally, the asymptotic distribution has the form

\/Nh-(%—T)LN(o,iQ-VT
.

Y

75 Ty
+T_4.‘/;w_2.%.07—y77—w . (17)

This asymptotic distribution is a special case of that in HT'V (page 208), using the rectangular
kernel, and with h = N~°, for 1/5 < § < 2/5 (so that the asymptotic bias can be ignored).

7.2 A PLUG-IN ESTIMATOR FOR THE ASYMPTOTIC VARIANCE

We now discuss two estimators for the asymptotic variance of 7. First, we can estimate

the asymptotic variance of 7 by estimating each of the components, 7,, 7,, V-, V,, and

c,

.~ and substituting them into the expression for the variance in (17). In order to do this

we first estimate the residuals
=Y — (X)) =Y, — {X; <c}-ay— H{X; >c}-ay,
ﬁi = WZ — ,&w(Xz) = WZ — 1{XZ < C} . dwl — 1{XZ > C} . dwr-

Then we estimate the variances and covariances consistently as

1 1
2 ) A2 2
Oy = N E € Oy = N E Eis

b G e—h<X;<c T ile<X;<c+h
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a’12/Vl = L Z ﬁ12> &Iz/Vr = ]\} Z ﬁ12>

N,
L e—h<X,; <c W fle<Xi<eth
A 1 A 1
Cywi = —N E Ei Miy Cywr = —N E Ei - Ni-
Ll e—h<X;<c W o< Xi<eth

Finally, we estimate the density consistently as

- N + Ny
o) =5 N
Then we can plug in the estimated components of V;, , V;,,, and C~, -, from (14)-(16), and

finally substitute these into the variance expression in (17).
7.3 THE TSLS VARIANCE ESTIMATOR

The second estimator for the asymptotic variance of 7 exploits the interpretation of the 7
as a TSLS estimator, given in (9). The variance estimator is equal to the robust variance for
TSLS based on the subsample of observations with ¢ — h < X; < ¢+ h, using the indicator
1{X; > ¢} as the excluded instrument, the treatment W; as the endogenous regressor and

the V; defined in (8) as the exogenous covariates.
8. SPECIFICATION TESTING

There are generally two main conceptual concerns in the application of RD designs,
sharp or fuzzy. A first concern about RD designs is the possibility of other changes at the
same cutoff value of the covariate. Such changes may affect the outcome, and these effects
may be attributed erroneously to the treatment of interest. The second concern is that of

manipulation of the covariate value.
8.1 TESTS INVOLVING COVARIATES

One category of tests involves testing the null hypothesis of a zero average effect on pseudo
outcomes known not to be affected by the treatment. Such variables includes covariates that

are by definition not affected by the treatment. Such tests are familiar from settings with

20



identification based on unconfoundedness assumptions. In most cases, the reason for the
discontinuity in the probability of the treatment does not suggest a discontinuity in the
average value of covariates. If we find such a discontinuity, it typically casts doubt on the
assumptions underlying the RD design. See the second part of the Lee (2007) figure for an

example.
8.2 TESTS OF CONTINUITY OF THE DENSITY

The second test is conceptually somewhat different, and unique to the RD setting. Mc-
Crary (2007) suggests testing the null hypothesis of continuity of the density of the covariate
that underlies the assignment at the discontinuity point, against the alternative of a jump
in the density function at that point. Again, in principle, one does not need continuity of
the density of X at ¢, but a discontinuity is suggestive of violations of the no-manipulation
assumption. If in fact individuals partly manage to manipulate the value of X in order to be
on one side of the boundary rather than the other, one might expect to see a discontinuity

in this density at the discontinuity point.
8.3 TESTING FOR JUMPS AT NON-DISCONTINUITY POINTS

Taking the subsample with X; < ¢ we can test for a jump in the conditional mean of the
outcome at the median of the forcing variable. To implement the test, use the same method
for selecting the binwidth as before. Also estimate the standard errors of the jump and use
this to test the hypothesis of a zero jump. Repeat this using the subsample to the right
of the cutoff point with X; > ¢. Now estimate the jump in the regression function and at

qx,1/2, and test whether it is equal to zero.
8.4 RD DESIGNS WITH MISSPECIFICATION

Lee and Card (2007) study the case where the forcing variable variable X is discrete. In
practice this is of course always true. This implies that ultimately one relies for identification
on functional form assumptions for the regression function p(x). Lee and Card consider a
parametric specification for the regression function that does not fully saturate the model,

that is, it has fewer free parameters than there are support points. They then interpret the
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deviation between the true conditional expectation E[Y|X = z| and the estimated regression
function as random specification error that introduces a group structure on the standard er-
rors. Lee and Card then show how to incorporate this group structure into the standard
errors for the estimated treatment effect. Within the local linear regression framework dis-
cussed in the current paper one can calculate the Lee-Card standard errors (possibly based
on slightly coarsened covariate data if X is close to continuous) and compare them to the

conventional ones.
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8.5 SENSITIVITY TO THE CHOICE OF BANDWIDTH

One should investigate the sensitivity of the inferences to this choice, for example, by
including results for bandwidths twice (or four times) and half (or a quarter of) the size of
the originally chosen bandwidth. Obviously, such bandwidth choices affect both estimates
and standard errors, but if the results are critically dependent on a particular bandwidth

choice, they are clearly less credible than if they are robust to such variation in bandwidths.
8.6 COMPARISONS TO ESTIMATES BASED ON UNCONFOUNDEDNESS IN THE FRD DESIGN

If we have an FRD design, we can also consider estimates based on unconfoundedness.
Inspecting such estimates and especially their variation over the range of the covariate can
be useful. If we find that for a range of values of X, our estimate of the average effect of the
treatment is relatively constant and similar to that based on the FRD approach, one would

be more confident in both sets of estimates.
9. ILLUSTRATION BASED ON LEE ELECTION DATA

Here we illustrate some of the methods discussed in these notes using data from Lee’s
paper on the effect of incumbency in congressional elections. The forcing variable in Lee’s
study is the difference in the vote share of the Democratic part versus the Republican party
in the last election. The threshold is zero: if the difference is greater than zero the Democrats

won the last election, and if not the Republicans won.

We consider two outcomes. The first is an indicator for democrats winning the next
election, and the second is the vote share for the democrats in next election, . We also use
one covariate, the vote share for the Democrats in the preceeding election. Lee’s data set

consists of 6558 congressional elections.

We use a uniform kernel with support [—0.5,0.5]. We calculate the optimal bandwidth

based on the Imbens-Kalyanaraman procedure. Table 1 presents the results.

Figures 1-3 present histogram-based estimates of the regression functions, and Figure 4

a histogram estimate of the density of the forcing variable. The binwidth in these figures is
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Outcome IK Bandwidth Estimate (s.e.)

Dem Win Next Elect 0.36 0.082 (0.010)
Demt Margin Next Election 0.27 0.412  (0.039)
Dem Margin Prev Election 0.28 -0.003  (0.013)

h = 0.05. There is no evidence of a discontinuity in the density function, or in the expected

value of the covariate, both supportive of the RD approach to this problem.
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Fig 1: Regression Function for Margin
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Imbens/Wooldridge, AEA Lecture Notes 5, January 12 1

AEA Lectures Chicago, IL, January 2012
Lecture 5, Monday, Jan 9th,pm-pm
Discrete Choice Models

1. INTRODUCTION

In this lecture we discuss multinomial discrete choice models. The modern literature
on these models goes back to the work by Daniel McFadden in the seventies and eighties,
(McFadden, 1973, 1981, 1982, 1984). In the nineties these models received much attention in
the Industrial Organization literature, starting with Berry (1994), Berry, Levinsohn, Pakes
(1995, BLP), and Goldberg (1995). In the IO literature the applications focused on demand
for differentiated products, in settings with relatively large numbers of products, some of
them close substitutes. In these settings a key feature of the conditional logit model, namely
the Independence of Irrelevant Alternatives (IIA), was viewed as particularly unattractive.
Three approaches have been used to deal with this. Goldberg (1995) used nested logit models
to avoid the ITA property. McCulloch and Rossi (1994), and McCulloch, Polson and Rossi
(2000) studied multinomial probit models with relatively unrestricted covariance matrices
for the unobserved components. BLP, McFadden and Train (2000) and Berry, Levinsohn
and Pakes (2004) uses random effects or mixed logit models, in BLP in combination with
unobserved choice characteristics and using methods that allow for estimation using only ag-
gregate choice data. The BLP approach has been very influential in the subsequent empirical

10 literature.

Here we discuss these models. We argue that the random effects approach to avoid ITA is
indeed very attractive, both substantively and computationally, compared to the nested logit
or unrestricted multinomial probit models. In addition to the use of random effects to avoid
the ITA property, the inclusion in the BLP methodology of unobserved choice characteristics,
and the ability to estimate the models with market share rather than individual level data
makes their methods very flexible and widely applicable. We discuss extensions to the BLP

set up allowing multiple unobserved choice characteristics, and the richness required for these
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models to rationalize general choice data based on utility maximization. We also discuss the

potential benefits of using Bayesian methods.
2. MULTINOMIAL AND CONDITIONAL LOGIT MODELS

First we briefly review the multinomial and conditional logit models.
2.1 MULTINOMIAL LOGIT MODELS

We focus on models for discrete choice with more than two choices. We assume that
the outcome of interest, the choice Y; takes on non-negative, un-ordered integer values
between zero and J; Y; € {0,1,...,J}. Unlike the ordered case there is no particular
meaning to the ordering. Examples are travel modes (bus/train/car), employment status
(employed /unemployed /out-of-the-laborforce), car choices (suv, sedan, pickup truck, con-

vertible, minivan), and many others.

We wish to model the distribution of Y in terms of covariates. In some cases we will
distinguish between covariates Z; that vary by units (individuals or firms), and covariates
that vary by choice (and possibly by individual), X;;. Examples of the first type include
individual characteristics such as age or education. An example of the second type is the
cost associated with the choice, for example the cost of commuting by bus/train/car, or the
price of a product, or the speed of a computer chip. This distinction is important from
the substantive side of the problem. McFadden developed the interpretation of these models
through utility maximizing choice behavior. In that case we may be willing to put restrictions
on the way covariates affect utilities: characteristics of a particular choice should affect the

utility of that choice, but not the utilities of other choices.

The strategy is to develop a model for the conditional probability of choice j given the
covariates. Suppose we only have individual-specific covariates, and the model is Pr(Y; =

J|Zi = z) = Pj(z;60). Then the log likelihood function is

N J
:Zzhh In P;(Zi; 6).

i=1 7=0
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A natural extension of the binary logit model is to model the response probability as

exp(z'v;)
1+ Z;’Zl exp(z’m)’

Pr(Y; = j|Zi = 2) =

for choices j =1,...,J and

1
1+ ZZ]:1 exp(z’m)’

for the first choice. The ~; here are choice-specific parameters. This multinomial logit model
leads to a very well-behaved likelihood function, and it is easy to estimate using standard
optimization techniques. Interestingly, it can be viewed as a special case of the following

conditional logit.
2.2 CONDITIONAL LOoGIT MODELS

Suppose all covariates vary by choice (and possibly also by individual, but that is not

essential here). Then McFadden proposed the conditional logit model:

exp(X/
PI'(Y; :j|Xi0>"'>XiJ) = i p( Zjﬁ? )
> 1o exp(X;,0)
for j =0,...,J. Now the parameter vector 5 is common to all choices, and the covariates

are choice-specific.

The multinomial logit model can be viewed as a special case of the conditional logit
model. Suppose we have a vector of individual characteristics Z; of dimension K, and J
vectors of coefficients 7;, each of dimension K. Then define for choice 5, j = 1,...,J, the
vector of covariates Xj; as the vector of dimension K x J, with all elements equal to zero

other than the elements K x (7 — 1) + 1 to K x j which are equal to Z;:

Z; 0 0 0
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and define the common parameter vector 3, of dimension K - J, as

i1
2
g=1 .
88
Then
4 exp(Zlv; exp(Xj;0) ‘
Pr(Y; = j|Z;) = p(Z;) I~ Pr(Y; = | X0, -, Xug),

L+ exp(Zim) Sy exp(X,,5)

fory=1,...,J, and

1 exp(X/, )

Pr(Y; =0|Z;) = 5 — = — ;
1+ - exp(Zim) leo exp(X;,3)

= PI'(Y; = 0|Xi07 R 7XiJ)‘

2.3 LINK WITH UTILITY MAXIMIZATION

McFadden motivates the conditional logit model by extending the single latent index

model to multiple choices. Suppose that the utility, for individual i, associated with choice

7, 18
U = ngﬁ + €i5. (1)

Furthermore, let individual i choose option j (so that Y; = j) if choice j provides the highest

level of utility, or
Y;:] if UZJ zUzl foralll:O,,J,

(ties have probability zero because of the continuity of the distribution for ¢).

Now suppose that the ¢;; are independent accross choices and individuals and have type
I extreme value distributions. Then the choice Y; follows the conditional logit model. The

type I extreme value distribution has cumulative distribution function

F(e) = exp(—exp(—¢)), and pdf f(e) = exp(—e) - exp(— exp(—e)).
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This distribution has a unique mode at zero, a mean equal to 0.58, and a a second moment
of 1.99 and a variance of 1.65. See Figure 1 for the probability density function and the

comparison with the normal density. Note the assymmetry of the distribution.

Given the extreme value distribution the probability of choice 0 is

Pr(Y; = 0[ X, ..., Xiy) = Pr(Uip > Uiy, ..., Ui > Uij)

= PI‘(E—:Z'(] + X{Oﬁ — lelﬁ > Eily -5 €40 + X{Oﬁ — X;Jﬁ > €Z'J)

S cio+XoB—X;, 8 eiot+X];8-X] ;8
Z/ / / f(eio) - fleir)dei - .., deio
o0 J—0 _

e}

= / exp(—eoi) exp(— exp(—¢o;) - exp(— exp(—eio — Xjof + X;10)) . ..

e}

x exp(—exp(—ei — Xjo0 + X[, 8))deio

= / exp(—&p;) exp [— exp(—eoi) — exp(—ei — X0+ X[10)) ...

— exp(—sio — X{Oﬁ + X;Jﬁ) dé—:io

exp(Xjo /)
>0 exp(XjoB)

To see the different steps in this derivation note that

| exploe)- expl—exp(—e)de = F(e) = expl—exp(—0)),

—0o0

for the extreme value distribution. Also,

/_00 exp(—e€) - exp(—exp(—e — ¢))de

e}
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= /_OO exp(—n + ¢) - exp(—exp(—n))dn

e}

— exp(c) - / " exp(—1) - exp(— exp(—n))dy = exp(e),

e}

by change of variables, which we apply with
c=—In(1+4+exp(X,;0— X ,0)+ ... +exp(X],0— X ,03)).

3. INDEPENDENCE OF IRRELEVANT ALTERNATIVES

The main problem with the conditional logit is the property of Independence of Irrelevant
Alternative (ITA). Consider the conditional probability of choosing j given that you choose

either 7 or [

v e P¥i=i)  exn(X,0)

This probability does not depend on the characteristics X, of alternatives m other than j
and [. This is sometimes unattractive. The traditional example is McFadden’s famous blue
bus/red bus example. Suppose there are initially three choices: commuting by car, by red
bus or by blue bus. It would seem reasonable be to assume that people have a preference
over cars versus buses, but are indifferent between red versus blue buses. One could capture

this by assuming that

Ui,rcdbus = Ui,bluobus;

with the choice between the blue and red bus being random. So, to be explicit, suppose that

Xi bluebus = Xiredbus = Xibus- Lhen suppose that the probability of commuting by bus is

exp(X; pusf)

Pr(Y; = bus) = Pr(Y; = redbus or bluebus) = (X7 B) + exp(XL )
i,bus i,car
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and the probability of choosing a red bus or blue bus, conditional on choosing a bus, is
1
Pr(Y; = redbus|Y; = bus) = 5"

That would imply that the conditional probability of commuting by car, given that one
commutes by car or red bus, would differ from the same conditional probability if there is
no blue bus. Presumably taking away the blue bus choice would lead all the current blue

bus users to shift to the red bus, and not to cars.

The conditional logit model does not allow for this type of substitution pattern. Another
way of stating the problems with the conditional logit model is to say that it generates
unrealistic substitution patterns. Let us make that argument more specific. Suppose that
individuals have the choice out of three Berkeley restaurants, Chez Panisse (C), Lalime’s (L),
and the Bongo Burger (B). Suppose the two characteristics of the restaurants are price with
Pe =95, P, =80, and Pg = 5, and quality, with Q¢ = 10, Q1 = 9, and ) = 2. Suppose
that market shares for the three restaurants are S¢ = 0.10, S, = 0.25, and S = 0.65. These
numbers are roughly consistent with a conditional logit model where the utility associated

with individual 7 and restaurant j is
Uij = _02PJ+2QJ+EZJ>

with independent extreme value €;;, and individuals go to the restaurant with the highest
utility. Now suppose that we raise the price at Lalime’s to 1000 (or raise it to infinity,
corresponding to taking it out of business). In that case the prediction of the conditional
logit model is that the market shares for Chez Panisse and the Bongo Burger go to S¢ = 0.13
and Sp = 0.87. That seems implausible. The people who were planning to go to Lalime’s
would appear to be more likely to go to Chez Panisse if Lalime’s is closed than to go to the
Bongo Burger, and so one would expect S & 0.35 and S &~ 0.65. The model on the other
hand predicts that most of the individuals who would have gone to Lalime’s will now dine

(if that is the right term) at the Bongo Burger.
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Recall the latent utility set up with the utility for individual ¢ and choice j equal to
U = ngﬁ + €. (2)

In the conditional logit model we assume independent €;; with extreme value distributions.
This is essentially what creates the IIA property. (This is not completely correct, because
other distributions for the unobserved, say with normal errors, we would not get ITA exactly,
but something pretty close to it.) The solution is to allow in some fashion for correlation
between the unobserved components in the latent utility representation. In particular, with
a choice set that contains multiple versions of essentially the same choice (like the red bus
or the blue bus), we should allow the latent utilities for these choices to be identical, or at
least very close. In order to achieve this the unobserved components of the latent utilities

would have to be highly correlated for those choices. This can be done in a number of ways.
4. MODELS WITHOUT INDEPENDENCE OF IRRELEVANT ALTERNATIVES

Here we discuss three ways of avoiding the ITA property. All can be interpreted as relax-
ing the independence between the unobserved components of the latent utility. All of these
originate in some form or another in McFadden’s work (e.g., McFadden, 1981, 1982, 1984).
The first is the nested logit model where the researcher groups together sets of choices. In
the simple version with a single layer of nests this allows for non-zero correlation between
unobserved components of choices within a nest and maintains zero correlation between the
unobserved components of choices in different nests. Second, the unrestricted multinomial
probit model with no restrictions on the covariance between unobserved components, beyond
normalizations. Third, the mixed or random coefficients logit where the marginal utilities
associated with choice characteristics are allowed to vary between individuals. This gener-
ates positive correlation between the unobserved components of choices that are similar in

observed choice characteristics.
4.1 NESTED LOGIT

One way to induce correlation between the choices is through nesting them. Suppose the
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set of choices {0,1,...,J} can be partitioned into S sets By, ..., Bg, so that the full set of

choices can be written as
{0,1,...,J} =US_|B,.

Let Zs be set-specific characteristics. (It may be that the set of set specific variables is
empty, or just a vector of indicators, with Zs an S-vector of zeros with a one for the sth
element.) Now let the conditional probability of choice j given that your choice is in the set

Bs, or Y; € B, be equal to

exp(p; ' X{;)
ZleB exp(p; lX/zﬁ)

Pr(Y; = j|X;,Y; € B) =
for j € Bs, and zero otherwise. In addition suppose the marginal probability of a chocie in

the set B, is

exp(Z;a) (ZleBS exp(p; lelﬁ))pS
Zt L exp(Zia) (ZleBt eXp(Pt Zzﬁ)) ’

Pr(Y; € B,|X;) =

If we fix ps =1 for all s, then

exp(X}; 8 + Zia)

P(Y; = X)) = — , ,
> et e, ©P(XG 8 + Zia)

and we are back in the conditional logit model.

In general this model corresponds to individuals choosing the option with the highest

utility, where the utility of choice j in set By for individual ¢ is
Uij = X{jﬁ + Z;Oé + €4,

where the joint distribution function of the ¢;; is
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Within the sets the correlation coefficient for the €;; is approximately equal to 1 —p. Between

the sets the €;; are independent.

The nested logit model could capture the blue bus/red bus example by having two nests,

the first B; = {redbus, bluebus}, and the second one By = {car}.

How do you estimate these models? Omne approach is to construct the log likelihood
and directly maximize it. That is complicated, especially since the log likelihood function
is not concave, but it is not impossible. An easier alternative is to directly use the nesting
structure. Within a nest we have a conditional logit model with coefficients 5/ps. Hence
we can directly estimate [3/ps using the concavity of the conditional logit model. Denote
these estimates of 3/ps by ﬁ//ﬁ Then the probability of a particular set By can be used to

estimate ps and a through

— Ps
exp(Zia) (Yien, p(Xi5/0)) exp(Zia + pii)

Pr()/z c Bs|XZ) = S e Ps S , ~ 9
S exp(Zl) (S, pXuT0) | St esp(Zi 7]

where

Ws =In <Z eXp(Xz/lﬁ//E)> )

leBs

known as the “inclusive values”. Hence we have another conditional logit model back that
is easily estimable. These two-step estimators are not efficient. The variance/covariance

matrix is provided in McFadden (1981).

These models can be extended to many layers of nests. See for an impressive example
of a complex model with four layers of multiple nests Goldberg (1995). Figure 2 shows the
nests in the Goldberg application. The key concern with the nested logit models is that
results may be sensitive to the specification of the nest structure. The researcher chooses
the choices that are potentially close, with the data being used to estimate the amount of
correlation. In contrast, in the random effects models, choices can only be close if they are

close in terms of observed choice characteristics, with the data being used to estimate the
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relative importance of the various choice characteristics. In that sense the nested logit model
can be more flexible, allowing the researcher to group together choices that are far apart in
terms of observed choice characteristics, but it is more demanding in requiring the researcher

to make these decisions a priori.
4.2 MULTINOMIAL PROBIT

A second possibility is to directly free up the covariance matrix of the error terms. This
is more natural to do in the multinomial probit case. See McCulloch and Rossi (1994)

McCulloch, Polson, and Rossi (2000) for general discussion.

We specify:
Uio XioB + €io
U — UZ _ X{lﬁ + €il
Uis X8+ €y
with
€0
€1
€ = . XZNN(O,Q),
€iJ

for some relatively unrestricted (J 4 1) x (J 4+ 1) covariance matrix 2. We do need some
normalizations on {2 beyond symmetry. Recall that in the binary choice case (which corre-
sponds to J = 1) there were no free parameters in the distribution of €, which implies three

restrictions on the symmetric matrix 2.

In principle we can derive the probability for each choice given the covariates, construct
the likelihood function based on that, and maximize it using an optimization algorithm like
Davidon-Fletcher-Powell (Gill, Murray, and Wright, 1981) or something similar. In practice
this is very difficult with J > 3. Evaluating the probabilities involves calculating a third
order integral involving normal densities. This is difficult to to using standard integration

methods. There are two alternatives.
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There is a substantial literature on simulation methods for computing estimates in these
models. See for an early example Manski and Lerman (1981), general studies McFadden
(1989), and Pakes and Pollard (1989), and Hajivassiliou and Ruud (1994) for a review.
Geweke, Keane, and Runkle (1994) and Hajivasilliou and McFadden (1990) proposed a way
of calculating the probabilities in the multinomial probit models that allowed researchers to
deal with substantially larger choice sets. A simple attempt to estimate the probabilities
would be to draw the ¢; from a multivariate normal distribution and calculate the probability
of choice j as the number of times choice j corresponded to the highest utility. This does
not work well in cases with many (more than four) choices. The Geweke-Hajivasilliou-
Keane (GHK) simulator uses a more complicated procedure that draws sequentially and
combines the draws with the calculation of univariate normal integrals so that the resulting

probabilities are smooth in the parameters.

From a Bayesian perspective drawing from the posterior distribution of g and 2 is

straightforward. The key is setting up the vector of unobserved random variables as

0= (8,2 Uo,....Us),

and defining the most convenient partition of this vector. Suppose we know the latent
utilities U; for all individuals. Then the normality makes this a standard linear model
problem, and we can sample sequentially from (|2 and Q|5 given the appropriate conjugate
prior distributions (normal for 5 and inverse Wishart for €2). Given the parameters drawing
from the unobserved utilities can be done sequentially: for each unobserved utility given the
others we would have to draw from a truncated normal distribution, which is straightforward.

See McCulloch, Polson, and Rossi (2000) for details.

The attraction of this approach is that there are no restrictions on which choices are
close. In contrast, in the nested logit approach the researcher specifies which choices are
potentially close, and in the random effects approach only choices that are close in terms of
observed choice characteristics can be close. The difficulty, however, with the unrestricted

multinomial probit approach is that with a reasonable number of chocies this frees up a
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large number of parameters (all elements in the (J + 1) x (J 4+ 1) dimensional covariance
matrix of latent utilities, minus some that are fixed by normalizations.) Estimating all these
covariance parameters precisely, based on only first choice data (as opposed to data where
we know for each individual additional orderings, e.g., first and second choices), is difficult

with the sample sizes typically available.
4.3 RANDOM COEFFICIENT (MIXED) LoGIT (OR PROBIT)

A third possibility to get around the ITA property is to allow for unobserved heterogeneity
in the slope coefficients. This is a very natural idea. Why do we fundamentally think that if
Lalime’s price goes up, the individuals who were planning to go Lalime’s go to Chez Panisse
instead, rather than to the Bongo Burger? The reason is that we think individuals who
have a taste for Lalime’s are likely to have a taste for close substitute in terms of observable

characteristics, Chez Panisse as well, rather than for the Bongo Burger.

We can model this by allowing the marginal utilities to vary at the individual level:
Uij = Xi; 8 + €35,

where the ¢;; are again independent of everything else, and of each other, either extreme

value, or normal. We can also write this as
Ui; = XZ{JB + vij,

where
vij = €5+ Xij - (B; = B),

which is no longer independent across choices. The key ingredient is the vector of individual
specific taste parameters ;. See for a general discussion of such models and their properties

in approximating general choice patterns McFadden and Train (2000). One possibility is to
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assume the existence of a finite number of types of individuals, similar to the mixture models

used by Heckman and Singer (1984) in duration settings:
ﬁi S {bo>b1> cee >bK}>
with

exp(Z; k)
Pr(5; = bk|Z;) = pr, or Pr(B8;=0blZ;) = L .
1+ 38 exp(Zim)

Here the taste parameters take on a finite number of values, and we have a finite mixture. We
can use either Gibbs sampling with the indicator of which mixture an observations belongs
to as an unobserved random variable, or use the EM algorithm (Dempster, Laird, and Rubin,

1977).

Alternatively we could specify

where we use a normal (continuous) mixture of taste parameters. Just evaluating the likeli-
hood function would be very difficult in this setting if there is a large number of choices. This
would involve integrating out the random coefficients which could be very computationally
intensive. See McFadden and Train (2000). Using Gibbs sampling with the unobserved ;

as additional unobserved random variables may be an effective way of doing inference.
5. BERRY-LEVINSOHN-PAKES

Here we consider again random effects logit models. BLP extended these models to allow
for unobserved product characteristics, endogeneity of choice characteristics, and developed
methods that allowed for consistent estimation without individual level choice data. Their
approach has been widely used in Industrial Organization, where it is used to model demand
for differentiated products, often in settings with a large number of products. See Nevo

(2000) and Ackerberg, Benkard, Berry, and Pakes (2005) for reviews and references.
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Compared to the earlier examples we have looked at there is an emphasis in this study,
and those that followed it, on the large number of goods and the potential endogeneity of
some of the product characteristics. (Typically one of the regressors is the price of the good.)
In addition the procedure only requires market level data. We do not need individual level
purchase data, just market shares and estimates of the distribution of individual characteris-
tics by market. In practice we need a fair amount of variation in these things to estimate the
parameters well, but in principle this is less demanding in terms of data required. On the
other hand, we do need data by market, where before we just needed individual purchases
in a single market (although to identify price effects we would need variation in prices by

individuals in that case).

The data have three dimensions: products, indexed by j = 0,...,J, markets, t =
1,...,T, and individuals, + = 1,..., N;. We only observe one purchase per individual.

The large sample approximations are based on large N and 7', and fixed J.

Let us go back to the random coefficients model, now with each utility indexed by indi-

vidual, product and market:

Uijt = /Bz{th + Cjt + €5t

The (j; is a unobserved product characteristic. This component is allowed to vary by market
and product. It can include product and market dummies (for example, we can have (j; =
¢; + ). Unlike the observed product characteristics this unobserved characteristic does not
have a individual-specific coefficient. The inclusion of this component allows the model to
rationalize any pattern of market shares. The observed product characteristics may include

endogenous characteristics like the price.

The €;;; unobserved components have extreme value distributions, independent across all

individuals ¢, products j, and markets ¢.

The random coefficients 3;, with dimension equal to that of the observable characteristics

X, say K, are assumed to be related to individual observable characteristics. We postulate
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the following linear form:

Bi= B+ ZT +m,
with

ni| Z; ~ N(0,%).

So if the dimension of Z; is L x 1, then I' is a L x K matrix. The Z; are normalized to have
mean zero, so that the (’s are the average marginal utilities. The normality assumption
is not necessary, and unlikely to be important. Other distributional assumptions can be

substituted.

BLP developed an approach to estimate models of this type that does not require in-
dividual level data. Instead it exploits aggregate (market level) data in combination with
estimates of the distribution of Z;. Specifically the data consist of estimated shares 3;; for
each choice j in each market ¢, combined with observations from the marginal distribution
of individual characteristics (the Z;’s) for each market, often from representative data sets

such as the CPS.

First write the latent utilities as
Uijt = 0jt + vije + €ijt,
where
dit = B'Xje + e, and v = (ZT +n:)' X;e.

Now consider for fixed I" and ¥ and 4;; the implied market share for product j in market
t, sj¢. This can be calculated analytically in simple cases. For example with I';; = 0 and

¥ = 0, the market share is a very simple function of the d;::

exp(dj¢)

Sjt(éjt,r = O,Z = 0) = m
1=0 It
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More generally, this is a more complex relationship. We can always calculate the implied
market share by simulation: draw from the distribution of Z; in market ¢, draw from the
distribution of 7;, and calculate the implied purchase probability (or even simulate the im-
plied purchase by also drawing from the distribution of €;;;). Do that repeatedly and you
will be able to calculate the market share for this product/market. Call the vector function

obtained by stacking these functions for all products and markets s(¢, ", X2).

Next, fix only I" and . For each value of d;; we can find the implied market share. Now
find the vector of ¢; such that the implied market shares are equal to the observed market
shares 5;; for all 7, . BLP suggest using the following algorithm. Given a starting value for

50

;1> use the updating formula:

5;?;-1 — 5;3 + In Sjt — In sjt(ék, F, Z)

BLP show this is a contraction mapping, and so it defines a function (s, I', X) expressing the
0 as a function of observed market shares, and parameters I' and X. In order to implement
this, one needs to approximate the implied market shares accurately for each iteration in the
contraction mapping, and then you will need to do this repeatedly to get the contraction

mapping to converge.

Note that does require that each market share is accurately estimated. If all we have is
an estimated market share, then even if this is unbiased, the procedures will not necessarily
work. In that case the log of the estimated share is not unbiased for the log of the true share.
In practice the precision of the estimated market share is so much higher than that of the

other parameters that this is unlikely to matter.

Given this function 0(s, ', X)) define the residuals
Wit = 5jt(s, F, Z) - ﬁ/th-

At the true values of the parameters and the true market shares this is equal to the unob-

served product characteristic (jq.



Imbens/Wooldridge, AEA Lecture Notes 5, January 12 18

Now we can use GMM or instrumental variable methods. We assume that the unobserved
product characteristics are uncorrelated with observed product characteristics (other than
typically price). This is not sufficient since the observed product characteristics enter directly
into the model. We need more instruments, and typically use things like characteristics of
other products by the same firm, or average characteristics by competing products. The
general GMM machinery will also give us the standard errors for this procedure. This is
where the method is most challenging. Finding values of the parameters that set the average

moments closest to zero can be difficult.

It is instructive to see what this approach does if we in fact have, and know we have, a
conditional logit model with fixed coefficients. In that case I' = 0, and X = 0. Then we can

invert the market share equation to get the market specific unobserved choice-characteristics
0jt = Insj — In sy,

where we set do; = 0. (this is typically the outside good, whose average utility is normalized

to zero). The residual is
Gt =050 — ' X =Insj — Insge — B/ Xje.
With a set of instruments Wj;, we run the regression
Insj: — Insy = ' X + €,
using Wj; as instrument for X;, using as the observational unit the market share for product

J in market t.

So here the technique is very transparent. It amounts to transforming the market shares
to something linear in the coefficients so we can use two-stage-least-squares. More generally
the transformation is going to be much more difficult with the random coefficients implying
that there is no analytic solution. Computationally these things can get very complicated.

Note however that we can estimate these models now without having individual level data,
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and that at the same time we can get a fairly flexible model for the substitution patterns.
At the same time you would expect to need a lot of structure to get the parameters precisely
estimated just as in the other models. Of course if you compare the current model to the
nested logit model you can impose such structure by imposing restrictions on the covariance

matrix.

Comparisons of the models are difficult. Obviously if the structure imposed is correct it
helps, but we typically do not know what the truth is, so we cannot conclude which one is

better on the basis of the data typically available.
6. MODELS WITH MULTIPLE UNOBSERVED CHOICE CHARACTERISTICS

The BLP approach allows for a single unobserved choice characteristic. This is essential
for their estimation strategy that requires only market share data, and exploits a one-to-one
relationship between market-specific unobserved product characteristics and market shares
given other parameters and covariates. With individual level data one may be able to, and
wish to allow for, multiple unobserved product characteristics. Elrod and Keane (1995),
Goettler and Shachar (2001), and Athey and Imbens (2007), among others, study such
models, in all cases with the unobserved choice characteristics constant across markets.

Athey and Imbens model the latent utility for individual ¢ in market ¢ for choice j as
Uije = X{uBi + Cvi + €ijes

with the individual-specific taste parameters for both the observed and unobserved choice

characteristics normally distributed:

(@)@NN@%m.

7

Even in the case with all choice characteristics exogenous, maximum likelihood estimation
would be difficult. Athey and Imbens show that Bayesian methods, and in particular markov-

chain-monte-carlo methods are effective tools for conducting inference in these settings.
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7. HEDONIC MODELS AND THE MOTIVATION FOR A CHOICE AND INDIVIDUAL SPECIFIC

ERROR TERM

Recently researchers have reconsidered using pure characteristics models for discrete
choices, that is models with no idiosyncratic error ¢;;, instead relying solely on the presence
of a few unobserved product characteristics and unobserved variation in taste parameters
to generate stochastic choices. Such an error term is the only source of stochastic variation
in the original multinomial choice models with only observed choice and individual charac-
teristics, but in models with unobserved choice and individual characteristics their presence
needs more motivation. Athey and Imbens (2007) discuss two arguments for including the

additive error term.

First, the pure characteristics model can be extremely sensitive to measurement error,
because it can predict zero market shares for some products. Consider a case where choices
are generated by a pure characteristics model that implies that a particular choice j has
zero market share. Now suppose that there is a single unit ¢ for whom we observe, due to
measurement error, the choice Y; = j. Irrespective of the number of correctly measured ob-
servations available that were generated by the pure characteristics model, the estimates of
the latent utility function will not be close to the true values corresponding to the pure char-
acteristics model due to the single mismeasured observation. Such extreme sensitivity puts
a lot of emphasis on the correct specification of the model and the absence of measurement

error, and is undesirable in most settings.

Thus, one might wish to generalize the model to be robust against small amounts of

measurement error of this type. One possibility is to define the optimal choice Y;* as the

choice that maximizes the utility and assume that the observed choice Y; is equal to the
optimal choice Y;* with probability 1 — §, and with probability §/(J — 1) any of the other

(2

choices is observed:

. 1-6 if Y=y,
Pr(}/;:y|}/;>XZ>VZ>ZI>>ZJ>Cl>>CJ):{ 5/(J—1) lfY*%z

This nests the pure characteristics model (by setting 6 = 0), without having the disad-
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vantages of extreme sensitivity to mismeasured choices that the pure characteristics model
has. If the true choices are generated by the pure characteristics model the presence of
a single mismeasured observation will not prevent the researcher from estimating the true
utility function. However, this specific generalization of the pure characteristics model has
an unattractive feature: if the optimal choice Y;* is not observed, all of the remaining choices
are equally likely. One might expect that choices with utilities closer to the optimal one are

more likely to be observed conditional on the optimal choice not being observed.

An alternative modification of the pure characteristics model is based on adding an
idiosyncratic error term to the utility function. This model will have the feature that,
conditional on the optimal choice not being observed, a close-to-optimal choice is more likely
than a far-from-optimal choice. Suppose the true utility is Uj; but individuals base their

choice on the maximum of mismeasured version of this utility:

S *
Uij = Uij + Eij,

with an extreme value €;;, independent across choices and individuals. The €;; here can be
interpreted as an error in the calculation of the utility associated with a particular choice.
This model does not directly nest the pure characteristics model, since the idiosyncratic error
term has a fixed variance. However, it approximately nests it in the following sense. If the
data are generated by the pure characteristics model with the utility function g(x,v, z, (),
then the model with the utility function A - g(x, v, 2, () + €;; leads, for sufficiently large A, to
choice probabilities that are arbitrarily close to the true choice probabilities (e.g., Berry and

Pakes, 2007).

Hence, even if the data were generated by a pure characteristics model, one does not lose
much by using a model with an additive idiosyncratic error term, and one gains a substantial

amount of robustness to measurement or optimization error.
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Imbens/Wooldridge, AEA Lecture Notes 1, January 12 1

AEA Lectures Chicago, IL, January 2012
Lecture 7a, Wednesday, Jan 7th, 8.00am-9.45am

Weak Instruments and Many Instruments

1. INTRODUCTION

In recent years a literature has emerged that has raised concerns with the quality of
inferences based on conventional methods such as Two Stage Least Squares (TSLS) and
Limited Information Maximum Likelihood (LIML) in instrumental variables settings when
the instrument(s) is/are only weakly correlated with the endogenous regressor(s). Although
earlier work had already established the poor quality of conventional normal approximations
with weak or irrelevant instruments, the recent literature has been motivated by empirical
work where ez post conventional large sample approximations were found to be misleading.
The recent literature has aimed at developing better estimators and more reliable methods

for inference.

There are two aspects of the problem. In the just-identified case (with the number of
instruments equal to the number of endogenous regressors), or with low degrees of over-
identification, the focus has largely been on the construction of confidence intervals that
have good coverage properties even if the instruments are weak. Even with very weak, or
completely irrelevant, instruments, conventional methods are rarely substantively mislead-
ing, unless the degree of endogeneity is higher than one typically encounters in studies using
cross-section data. Conventional TSLS or LIML confidence intervals tend to be wide when
the instrument is very weak, even if those intervals do not have the correct nominal cov-
erage for all parts of the parameter space. In this case better estimators are generally not
available. Improved methods for confidence intervals based on inverting test statistics have
been developed although these do not have the simple form of an estimate plus or minus a

constant times a standard error.

The second case of interest is that with a high degree of over-identification. These settings

often arise by interacting a set of basic instruments with exogenous covariates in order to
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improve precision. If there are many (weak) instruments, standard estimators can be severely
biased, and conventional methods for inference can be misleading. In particular TSLS has
been found to have very poor properties in these settings. Bootstrapping does not solve these
problems. LIML is generally much better, although conventional LIML standard errors are
too small. A simple to implement proportional adjustment to the LIML standard errors based
on the Bekker many-instrument asymptotics or the Chamberlain-Imbens random coefficients

argument appears to lead to substantial improvements in coverage rates.
2. MOTIVATION

Much of the recent literature is motivated by a study by Angrist and Krueger (1991, AK).
Subsequently Bound, Jaeger and Baker (1996, BJB) showed that for some specifications AK
employed normal approximations were not appropriate despite very large sample sizes (over

300,000 observations).
2.1 THE ANGRIST-KRUEGER STUDY

AK were interested in estimating the returns to years of education. Their basic specifi-

cation 1is:
Y'i:a‘l’ﬁ'Ei‘l’gb

where Y; is log (yearly) earnings and FE; is years of education. Their concern, following a
long literature in economics, e.g., Griliches, (1977), Card (2001), is that years of schooling
may be endogenous, with pre-schooling levels of ability affecting both schooling choices and
earnings given education levels. In an ingenuous attemp to address the endogeneity problem
AK exploit variation in schooling levels that arise from differential impacts of compulsory
schooling laws. School districts typically require a student to have turned six by January
1st of the year the student enters school. Since individuals are required to stay in school
till they turn sixteen, individual born in the first quarter have lower required minimum
schooling levels than individuals born in the last quarter. The cutoff dates and minimum
school dropout age differ a little bit by state and over time, so the full picture is more

complicated but the basic point is that the compulsory schooling laws generate variation in
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schooling levels by quarter of birth that AK exploit. Let @); be the indicator for being born

in the fourth quarter.

One can argue that a more natural analysis of such data would be as a Regression
Discontinuity (RD) design, where we focus on comparisons of individuals born close to the
cutoff date. We will discuss such designs in a later lecture. However, in the census only
quarter of birth is observed, not the actual date, so there is in fact little that can be done
with the RD approach beyond what AK do. In addition, there are substantive arguments
why quarter of birth need not be a valid instrument (e.g., seasonal patterns in births, or
differential impacts of education by age at entering school). AK discuss many of the potential
concerns. See also Bound, Jaeger and Baker (1996). We do not discuss these concerns here

further.

Table 1 shows average years of education and average log earnings for individual born in

the first and fourth quarter, using the 1990 census. This is a subset of the AK data.

TABLE 1: SUMMARY STATISTICS SUBSET OF AK DATA

Variable Ist Quarter 4th Quarter difference
Year of Education 12.688 12.840 0.151
Log Earnings 5.892 5.905 0.014
ratio 0.089

The sample size is 162,487. The last column gives the difference between the averages by
quarter, and the last row the ratio of the difference in averages. The last number is the Wald
estimate of the returns to education based on these data:
. Y,-Y
B==""'=0.0893 (0.0105),
E,— E;

where Y, and E, are the average level of log earnings and years of education for individuals

born in the ¢-th quarter. This is also equal to the Two-Stage-Least-Squares (TSLS) and
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Limited-Information-Maximum-Likelihood (LIML) estimates because there is only a single
instrument and a single endogenous regressor. The standard error here is based on the delta

method and asymptotic joint normality of the numerator and denominator.

AK also present estimates based on additional instruments. They take the basic in-
strument and interact it with 50 state and 9 year of birth dummies. Here we take this
a bit further, and following Chamberlain and Imbens (2004) we interact the single binary
instrument with state times year of birth dummies to get 500 instruments. Denote the 500
dimensional vector of interactions of year and state of birth by W;, and let X; = (W/E;)
be 501 dimensional the vector of included covariates (both endogenous and exogenous) and
Zi = (W!,Q; - W!) be the 1000 dimensional vector of exogenous variables (including both
the excluded instruments @; - W; and the included exogenosu regressors W;). This leads to

the following model:
Y;' = X{ﬁ +é&; = Wi/ﬁo + Ez . 61 + Eiy E[Zz . 5@'] =0.

Let Y, X, and Z be the N x 1 vector of log earnings, the N x 501 matrix with regressors,
and the N x 1000 matrix of instruments. The TSLS estimator for 3 is then

. -1

Prsis = (X/Z (z'Z)™ Z'X) (X’Z (2'Z)~" Z’Y) .
For these data this leads to

BrsLs = 0.073 (0.008).

The LIML estimator adds a normal model for the relation between the L vector X; and the

K-vector Z;, of the form
Ei = 7T/ZZ' + Vi,

and is based on maximization of the log likelihood function
N I
_ 1 L (Y= BWi— B~ 7' Z; (Y= Wi =B -7'Z;
L(67W>Q)_;(_§IH|Q|_§( Ei_,ﬂ./Zi Q Ei_,ﬂ_/Zi ’

where €2 is the reduced form covariance matrix (the covariance matrix of (e, ;).
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For this subset of the AK data we find, for the coefficient on years of education,
B = 0.095 (0.017).
In large samples the LIML and TSLS are equivalent under homoskedasticity.

2.2 THE BOUND-JAEGER-BAKER CRITIQUE

BJB found that are potential problems with the AK results. They suggested that despite
the large samples used by AK large sample normal approximations may be very poor. The
reason is that the instruments are only very weakly correlated with the endogenous regressor.
The most striking evidence for this is based on the following calculations, that are based
on a suggestion by Alan Krueger. Take the AK data and re-calculate their estimates after
replacing the actual quarter of birth dummies by random indicators with the same marginal
distribution. In principle this means that the standard (gaussian) large sample approxima-
tions for TSLS and LIML are invalid since they rely on non-zero correlations between the
instruments and the endogenous regressor. Doing these calculations once for the single and

500 instrument case, for both TSLS and LIML, leads to the results in Table 2

TABLE 2: REAL AND RANDOM QOB ESTIMATES

Single Instrument 500 Instruments
TSLS LIML
Real QOB 0.089  (0.011) 0.073 (0.008) 0.095 (0.017)
[0.037]
Random QOB 0.181  (0.193) 0.059 (0.009) -0.134 (0.065)
[0.251]

With the single instrument the results are not so disconcertening. Although the confidence
interval is obviously not valid, it is wide, and few researchers would be misled by the results.

With many instruments the results are much more troubling. Although the instrument con-
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tains no information, the results suggest that the instruments can be used to infer precisely
what the returns to education are. These results have provided the motivation for the re-
cent weak instrument literature. Note that there is an earlier literature, e.g., Phillips (1984)
Rothenberg (1984), but it is the BJB findings that got the attention of researchers doing

empirical work.
2.3 SIMULATIONS WITH WEAK INSTRUMENTS AND VARYING DEGREES OF ENDOGENEITY

Here we provide slightly more systematic simulation evidence of the weak instrument
problems in the AK setting. We create 10,000 artificial data sets, all of size 160,000, designed
to mimic the key features of the AK data. In each of these data sets half the units have
quarter of birth (denoted by @);) equal to 0 and 1 respectively. Then we draw the two reduced

form residuals v; and n; from a joint normal distribution

i\ 0 0.446 p-/0.446 - v/10.071
i 0 )\ p-+0.446 - /10.071 10.071 ‘

The variances of the reduced form errors mimic those in the AK data. The correlation

between the reduced form residuals in the AK data is 0.318. The implied OLS coefficient is
p-+/0.446/+/10.071. Then years of education is equal to

E; =12.688 4 0.151 - Q; + n;,
and log earnings is equal to

Now we calculate the IV estimator and its standard error, using either the actual qob
variable or a random qob variable as the instrument. We are interested in the size of tests
of the null that coefficient on years of education is equal to 0.089 = 0.014/0.151. We base
the test on the t-statistic. Thus we reject the null if the ratio of the point estimate minus
0.089 and the standard error is greater than 1.96 in absolute value. We repeat this for 12
different values of the reduced form error correlation. In Table 3 we report the proportion
of rejections and the median and 0.10 quantile of the width of the estimated 95% confidence

intervals.
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TABLE 3: COVERAGE RATES OF CONV

. TSLS CI By DEGREE OF ENDOGENEITY

p 0.0 0.1 0.2 03 04 05 06 07 08 09 09 099
implied OLS 0.00 0.02 0.04 006 0.08 0.11 0.13 0.15 0.17 0.19 0.20 0.21
Real QOB 095 095 095 095 095 095 095 096 095 095 0.95 0.95
Med Width 95% CI  0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.06 0.05 0.05 0.05
0.10 quant Width 0.08 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.05 0.04 0.04 0.04
Random QOB 099 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.92 0.82 0.53
Med Width 95% CI 1.82 1.81 1.78 1.73 1.66 1.57 1.45 1.30 1.09 0.79 0.57 0.26
0.10 quant Width 0.55 0.55 0.5403 0.53 0.51 048 0.42 0.40 0.33 0.24 0.17 0.08

In this example, unless the reduced form correlations are very high, e.g., at least 0.95,
with irrelevant the conventional confidence intervals are wide and have good coverage. The
amount of endogeneity that would be required for the conventional confidence intervals to
be misleading is higher than one typically encounters in cross-section settings. It is likely
that these results extend to cases with a low degree of over-identification, using either TSLS,
or preferably LIML. Put differently, although formally conventional confidence intervals are
not valid uniformly over the parameter space (e.g., Dufour, 1997), there are no examples we
are aware of where they have substantively misleading in just-identified examples. This in
contrast to the case with many weak instruments where especially TSLS can be misleading

in empirically relevant settings.
3. WEAK INSTRUMENTS

Here we discuss the weak instrument problem in the case of a single instrument, a single
endogenous regressor, and no additional exogenous regressors beyond the intercept. More

generally the qualitative features of these results by and large apply to the case with a few
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weak instruments. We consider the model
Yi= 0o+ b1 X +e,

Xi=mo+m - Zi + i,

with (g;,7;) L Z;, and jointly normal with covariance matrix 3. (The normality is mainly
for some of the exact results, and it does not play an important role.) The reduced form for

the first equation is
Yi=ao+ a1+ Zi + v

where the parameter of interest is 5; = ay /7. Let

eox[()- ()] a2 [(5)(5)])

i i i i

be the covariance matrix of the reduced form and stuctural disturbances respectively. Many
of the formal results in the literature are for the case of known €2, and normal disturbances.
This is largely innocuous, as €2 can be precisely estimated in typical data sets. Note that

this it not the same as assuming that X is known, which is not innocuous since it depends

on 2 and 3, and cannot be precisely estimated in settings with weak instruments

o Q1 — 26 + 7o Qi — 8O
Q19 — B0 Qa9 '

The standard estimator for (3; is

AV _ %Zi\il (Yi_?) (Zi_Z)
AL -X)(2-2)

where Y = > Y;/N, and similarly for X and Z.

A simple interpretation of the weak instrument is that with the concentration parameter
N
A:wf-Z(Zi—i)z/az.
i=1
close to zero, both the covariance in the numerator and the covariance in the denomina-

tor are close to zero. In reasonably large samples both are well approximated by normal
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distributions:
N
VN <N > (%= 7) (Z-Z) - Cov(V: z») SN OV 2).
i=1
and
1N
VN <N > (%= X) (2~ 7) - Cov(X,, Zz)) ~NO.V(X, - Z).
i=1
These two normal approximations tend to be accurate in applications with reasonable sample
sizes, irrespective of the population values of the covariances. If m; # 0, as the sample size
gets large, then the ratio will eventually be well approximated by a normal distribution

as well. However, if Cov(X;, Z;) ~ 0, the ratio may be better approximated by a Cauchy

distribution, as the ratio of two normals centered close to zero.

The weak instrument literature is concerned with inference for #; when the concentration

parameter \ is too close to zero for the normal approximation to the ratio to be accurate.

Staiger and Stock (1997, SS) formalize the problem by investigating the distribution of
the standard IV estimator under an alternative asymptotic approximation. The standard
asymptotics (strong instrument asymptotics in the SS terminology) is based on fixed param-
eters and the sample size getting large. In their alternative asymptotic sequence SS model 7y
as a function of the sample size, 7,y = ¢/v/N, so that the concentration parameter converges

to a constant:
A—> 02 . V(ZZ)

SS then compare coverage properties of various confidence intervals under this (weak instru-

ment) asymptotic sequence.

The importance of the SS approach is not in the specific sequence. The concern is more
that if a particular confidence interval does not have the appropriate coverage asymptotically
under the SS asymptotics, then there are values of the (nuisance) parameters in a potentially
important part of the parameter space (namely around m; = 0) such that the actual coverage

is substantially away from the nominal coverage for any sample size. More recently the issue
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has therefore been reformulated as requiring confidence intervals to have asymptotically the
correct coverage probabilities uniformly in the parameter space. See for a discussion from
this perspective Mikusheva (2007). For estimation this perspective is not helpful: there
cannot be estimators that are consistent for * uniformly in the parameter space since if
m = 0, there are no consistent estimators for 3;. However, for testing there are generally
confidence intervals that are uniformly valid, but they are not of the conventional form, that

is, a point estimate plus or minus a constant times a standard error.
3.1 TESTS AND CONFIDENCE INTERVALS IN THE JUST-IDENTIFIED CASE

Let the instrument ZZ- = 7, — 7 be measured in deviations from its mean. Then define

the statistic
1K
S(p) = N;Zi Yi-p- X5) .

Then, under the null hypothesis that 5, = 37, and conditional on the instruments, the
statistic vV IV - S(07) has an exact normal distribution

N
s~ (03222

Importantly, this result does not depend on the strength of the instrument. Anderson and

Rubin (1949, AR) propose basing tests for the null hypothesis
Hy: B1=/Y, against the alternative hypothesis H,: 3 # Y,

on this idea, through the statistic
N-S(8) IR
AR () = ——2-((1 -pY)Q .
=gz 00y
This statistic has an exact chi-squared distribution with degrees of freedom equal to one. In
practice, of course, one does not know the reduced form covariance matrix €2, but substituting
an estimated version of this matrix based on the average of the estimated reduced form

residuals does not affect the large sample properties of the test.
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A confidence interval can be based on this test statistic by inverting it. For example, for

a 95% confidence interval for 31, we would get
Clyys = {61 |AR(S) < 3.84}.

Note that this AR confidence interval cannot be empty, because at the standard IV estimator
31V we have AR(AIY) = 0, and thus 1V is always in the confidence interval. The confidence
interval can be equal to the entire real line, if the correlation between the endogenous re-
gressor and the instrument is close to zero. This is not surprising: in order to be valid even

if m; = 0, the confidence interval must include all real values with probability 0.95.
3.3 TESTS AND CONFIDENCE INTERVALS IN THE OVER-IDENTIFIED CASE

The second case of interest is that with a single endogenous regressor and multiple in-
struments. We deal separately with the case where there are many (similar) instrument,
so this really concerns the case where the instruments are qualitatively different. Let the

number of instrumens be equal to K, so that the reduced form is
X; =m0+ mZ; + i,

with Z; a k-dimensional column vector. There is still only a single endogenous regressor,
and no exogenous regressors beyond the intercept. All the results generalize to the case with
additional exogenous covariates at the expense of additional notatio. The AR approach can
be extended easily to this over-identified case, because the statistic v/ N - S(3;) still has a
normal distribution, but now a multivariate normal distribution. Hence one can base tests

on the AR statistic

N -1 -1
S - 1
AR (8%) =N -5 (89) <Zzi.z;> S (89) - (( 1 -0 )Q( g )) .
i=1
Under the same conditions as before this has an exact chi-squared distribution with degrees
of freedom equal to the number of instruments, k. A practical problem arises if we wish

to construct confidence intervals based on this statistic. Suppose we construct a confidence

interval, analogously to the just-identified case, as

Clos = {B1 |[AR(B1) < Xggs(K) },
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where XJq;(k) is the 0.95 quantile of the chi-squared distribution with degrees of freedom
equal to k. The problem is that this confidence interval can be empty. The interpretation
is that the test does not only test whether 3; = (37, but also tests whether the instruments

are valid. However, one generally may not want to combine those hypotheses.

Kleibergen (2002) modifies the AR statistic and confidence interval construction. Instead
of the statistic S(81), he considers a statistic that looks at the correlation between a particular
linear combination of the instruments (namely the estimated endogenous regressor) and the

residual:
_ 1M
S(8) =5 0 (Zm) - (vi- 8- Xa).
i=1

where 7 is the maximum likelihood estimator for m; under the restriction 5; = 37. The test
is then based on the statistic
N - S(39)? 1 -
K (p%) = ——FL . 1 =BV )Q .
( 1) Zi\i 72 ( 1 ) — 39
This statistic has no longer an exact chi-squared distribution, but in large samples it still
has an approximate chi-square distribution with degrees of freedom equal to one. Hence the

test is straightforward to implement using standard methods.

Moreira (2003) proposes a method for adjusting the critical values that applies to a
number of tests, including the Kleibergen test. His idea is to focus on similar tests, test
that have the same rejection probability for all values of the nuisance parameter. The
nuisance parameter is here the vector of reduced form coefficients 7, since we assume the
residual covariance matrix is known. The way to adjust the critical values is to consider the
distribution of a statistic such as the Kleibergen statistic conditional on a complete sufficient
statistic for the nuisance parameter. In this setting a complete sufficient statistic is readily
available in the form of the maximum likelihood estimator under the null, 7#;(3?). Moreira’s

preferred test is based on the likelihood ratio. Let

LR (6%) =2 (L (B 7) = L (8. 7(5)).
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be the likelihood ratio. Then let cpr(p,0.95), be the 0.95 quantile of the distribution of
LR(3Y) under the null hypothesis, conditional on 7(3Y) = p. The proposed test is to reject
the null hypothesis at the 5% level if

LR (3) > cLr(7(6Y),0.95),

where conventional test would use critical values from a chi-squared distribution with a
single degree of freedom. This test can then be converted to construct a 95% confidence
intervals. Calculation of the (large sample) critical values is simplified by the fact that they
only depend on the number of instruments &, and a scaled version of the #(3Y). Tabulations
of these critical values are in Moreira (2003) and have been programmed in STATA (See

Moreira’s website).
3.4 CONDITIONING ON THE FIRST STAGE

The AR, Kleibergen and Moreira proposals for confidence intervals are asymptotically
valid irrespective of the strength of the first stage (the value of 7). However, they are not
valid if one first inspects the first stage, and conditional on the strength of that, decides to
proceed. Specifically, if in practice one first inspects the first stage, and decide to abandon
the project if the first stage F-statistic is less than some fixed value, and otherwise proceed
by calculating an AR, Kleibergen or Moreira confidence interval, the large sample coverage
probabilities would not necessarily be the nominal ones. In practice researchers do tend
to inspect and report the strength of the first stage. This is particularly true in recent
instrumental variables literature where researchers argue extensively for the validity of the
instrumental variables assumption. This typically involves detailed arguments supporting
the alleged mechanism that leads to the correlation between the endogenous regressor and the
instruments. For example, Section I in AK (page 981-994) is entirely devoted to discussing
the reasons and evidence for the relation between their instruments (quarter of birth) and

years of education. In such cases inference conditional on this may be more appropriate.

Chioda and Jansson (2006) propose a clever alternative way to construct a confidence

interval that is valid conditional on the strength of the first stage. Their proposed confidence
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interval is based on inverting a test statistic similar to the AR statistic. It has a non-standard
distribution conditional on the strength of the first stage, and they suggest a procedure that
involves numerically approximating the critical values. A caveat is that because the first
stage F-statistic, or the first stage estimates are not ancillary, conditioning on them involves
loss of information, and as a result the Chioda-Jansson confidence intervals are wider than

confidence intervals that are not valid conditional on the first stage.
4. MANY WEAK INSTRUMENTS

In this section we discuss the case with many weak instruments. The problem is both
the bias in the standard estimators, and the misleadingly small standard errors based on
conventional procedures, leading to poor coverage rates for standard confidence intervals in
many situations. The earlier simulations showed that especially TSLS, and to a much lesser
extent LIML, have poor properties in this case. Note first that resampling methods such as
bootstrapping do not solve these problems. In fact, if one uses the standard bootstrap with
TSLS in the AK data, one finds that the average of the bootstrap estimates is very close to

the TSLS point estimat, and that the bootstrap variance is very close to the TSLS variance.

The literature has taken a number of approaches. Part of the literature has focused on
alternative confidence intervals analogues to the single instrument case. In addition a variety

of new point estimators have been proposed.
4.1 BEKKER ASYMPTOTICS

In this setting alternative asymptotic approximations play a bigger role than in the single
instrument case. In an important paper Bekker (1995) derives large sample approximations
for TSLS and LIML based on sequences where the number of instruments increases propor-
tionally to the sample size. He shows that TSLS is not consistent in that case. LIML is
consistent, but the conventional LIML standard errors are not valid. Bekker then provides
LIML standard errors that are valid under this asymptotic sequence. Even with relatively
small numbers of instruments the differences between the Bekker and conventional asymp-

totics can be substantial. See also Chao and Swanson (2005), and Hansen, Hausman and
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Newey () for extensions.

Here we describe the Bekker correction to the standard errors for the model with a single
endogenous regressors, allowing for the presence of exogenous regressors. We write the model

as:
Y; = 01 X1 + B35 Xai + & = 0'X; + &,

where the single endogenous variable X; satisfies:
Xy =mZvi + myXoi + 0 = 7' Zi + 15

Define the matrices P, and My as:
P, =7Z(Z'7)'7, My, =1-7Z(Z'7)'Z.

Let 02 be the variance of ¢;, with consistent estimator 62. The standard TSLS variance is
Vigs = 62 - (XP,X) 7",

Under the standard, fixed number of instrument asymptotics, the asymptotic variance for
LIML is identical to that for TSLS, and so in principle we can use the same estimator. In

practice researchers typically estimate the variance for LIML as
. -1
Vi = 6 (XP7X = A X'MzX)

To get Bekker’s correction, we need a little more notation. Define

Q=(Y X)Pz(Y X)/N:(g,i g;z)
so that

Q11 =YP,Y/N, Q12 = YP,X/N, and g = XP,X/N.
Now define

A—N. Qo2 — Qo285 — Q)5 5/ Qan + Qggﬁﬁlﬂgg.

Qi1 — 2Q428 + 5908
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Then:
N —1
%ekker = &2 . <XPZX - A X/sz)
N -1
X (XP,X — \-A)- (XPZX ~ X X’MZX) .

4.2 RANDOM EFFECTS ESTIMATORS

Chamberlain and Imbens (2004, CI) propose a random effects quasi maximum likelihood
estimator. They propose modelling the first stage coefficients m, for £ = 1,..., K, in the

regression

K
XZ-:7r0+7riZi+77i=7TO+Z7Tk'Zik+77i,
=1

(after normalizing the instruments to have mean zero and unit variance,) as independent
draws from a normal N (ji,, 02) distribution. (More generally CI allow for the possibility that
only some of the first stage coefficients come from this common distribution, to take account
of settings where some of the instruments are qualitatively different from the others.) The
idea is partly that in most cases with many instruments, as for example in the AK study, the
instruments arise from interacting a small set of distinct instruments with other covariates.
Hence it may be natural to think of the coefficients on these instruments in the reduced
form as exchangeable. This notion is captured by modelling the first stage coefficients as
independent draws from the same distribution. In addition, this set up parametrizes the
many-weak instrument problem in terms of a few parameters: the concern is that the values

of both . and o2 are close to zero.

Assuming also joint normality for (;,7;), one can derive the likelihood function

'C(ﬁ(b /617 0, Mty 072r7 Q)

In contrast to the likelihood function in terms of the original parameters (Gy, 51, 7o, 71, €2),
this likelihood function depends on a small set of parameters, and a quadratic approximation

to its logarithms is more likely to be accurate.
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CI discuss some connections between the REQML estimator and LIML and TSLS in
the context of this parametric set up. First they show that in large samples, with a large
number of instruments, the TSLS estimator corresponds to the restricted maximum likeli-
hood estimator where the variance of the first stage coefficients is fixed at a large number,
or o2 = oo:

BrsLs /& arg  max = L(ﬁo,ﬁl,ﬂo,ﬂmai = OO>Q)-
Bo,081,m0,ix

From a Bayesian perspective, TSLS corresponds approximately to the posterior mode given
a flat prior on all the parameters, and thus puts a large amount of prior mass on values of

the parameter space where the instruments are jointly powerful.

In the same setting with a large number of instruments, no exogenous covariates, and a
known reduced form covariance matrix, the LIML estimator corresponds approximately to
the REQML estimator where we fix o2 - (1 £1)’Q7'(1 3;1)" at a large number. In the special
case where we fix pu, = 0 and the random effects specification applies to all isntruments, CI
show that the REQML estimator is identical to LIML. However, like the Bekker asymptotics,
the REQML calculations suggests that the standard LIML variance is too small: the variance
of the REQML estimator is approximately equal to the standard LIML variance times

ot (0 ) (3)

This is similar to the Bekker adjustment.
4.3 CHOOSING SUBSETS OF THE INSTRUMENTS

In an interesting paper Donald and Newey (2001) consider the problem of choosing a
subset of an infinite sequence of instruments. They assume the instruments are ordered,
so that the choice is the number of instruments to use. Given the set of instruments they
consider a variety of estimators including TSLS and LIML. The criterion they focus on
is based on an approximation to the expected squared error. This criterion is not feasible
because it depends on unknown parameters, but they show that using an estimated version of

this leads to approximately the same expected squared error as using the infeasible criterion.
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Although in its current form not straightforward to implement, this is a very promising
approach that can apply to many related problems such as generalized method of moments

settings with many moments.
4.4 OTHER ESTIMATORS

Other estimators have also been investigated in the many weak instrument settings.
Hansen, Hausman and Newey (2006), and Hausman, Newey and Woutersen (2007) look at
Fuller’s estimator, which is modification of LIML that has finite moments. Phillips and Hale
(1977) (and later Angrist, Imbens and Krueger, 1999) suggest a jackknive estimator. Hahn,
Hausman and Kuersteiner (2004) look at jackknife versions of TSLS.

4.5 FLORES’ SIMULATIONS

Many simulations exercises have been carried out for evaluating the performance of testing
procedures and point estimators. In general it is difficult to assess the evidence of these
experiments. They are rarely tied to actual data sets, and so the choices for parameters,

distributions, sample sizes, and number of instruments are typically arbitrary.

In one of the more extensive simulation studies Flores-Lagunes (2007) reports results
comparing TSLS, LIML, Fuller, Bias corrected versions of TSLS, LIML and Fuller, a Jack-
nife version of TSLS (Hahn, Hausman and Kuersteiner, 2004), and the REQML estimator, in
settings with 100 and 500 observations, and 5 and 30 instruments for the single endogenous
variable. He looks at median bias, median absolute error, inter decile range, coverage rates,
and He concludes that “our evidence indicates that the random-effects quasi-maximum like-
lihood estimator outperforms alternative estimators in terms of median point estimates and
coverage rates.” Note that Flores-Lagunas does not include LIML with the Bekker standard

eITors.



Imbens/Wooldridge, AEA Lecture Notes 1, January 12 19

REFERENCES

ANDERSON, T., AND H. RUBIN, (1949), “Estimators of the Parameters of a Single

Equation in a Complete Set of Stochastic Equations,” Annals of Mathematical Statistics 21,
570-582-.

ANDREWS, D., M. MOREIRA, AND J. STOCK, (2006), “Optimal Two-sided Invariant

Similar Tests for Instrumental Variables Regresion,” Econometrica 74, 715-752-.

ANDREWS, D., AND J. STOCK, (2007), “Inference with Weak Instruments,” Advances

in Economics and Econometrics, Vol 111, Blundel,, Newey and Persson (eds.), 122-173.

ANGRIST, J., G. IMBENS, AND A. KRUEGER, (1999), “Jackknife Instrumental Variables

Estimation,” Journal of Applied Econometrics, 14, 57-67.

ANGRIST, J., AND A. KRUEGER, (1991), “Does Compulsory Schooling Attendance

Affect Schooling and Earnings,” Quarterly Journal of Economics 106, 979-1014.

BEKKER, P., (1994), “Alternative Approximations to the Distribution of Instrumental

Variables Estimators,” Fconometrica 62, 657-681.

Bounp, J., A. JAEGER, AND R. BAKER, (1996), “Problems with Instrumental Vari-
ables Estimation When the Correlation Between the Instruments and the Endogenous Ex-

planatory Variable is Weak,” Journal of the American Statistical Association 90, 443-450.

CARD, D., (2001), “Estimating the Return to Schooling: Progress on Some Persistent
Econometric Problems,” Econometrica 69(5), 1127-1160.

CHAMBERLAIN, G., AND G. IMBENS, (2004), “Random Effects Estimators with Many

Instrumental Variables,” Econometrica 72(1), 295-306.

CHAO, J., AND N. SWANSON, (2005), “Consistent Estimation with a Large Number of

Weak Instruments,” FEconometrica 73(5), 1673-1692.

DUFOUR, J.-M., (1997), “Impossibility Theorems in Econometrics with Applications to
Structural and Dynamic Models,” FEconometrica 65, 1365-1387.



Imbens/Wooldridge, AEA Lecture Notes 1, January 12 20

CHIODA, L., AND M. JANSON, (1998), “Optimal Conditional Inference for Instrumental

Y

Variables Regression,” unpublished manuscript, department of economics, UC Berkeley.

DoNALD, S., AND W. NEWEY, (2001), “Choosing the Number of Instruments,” FEcono-

metrica 69, 1161-1191.

FLORES-LAGUNES, A., (2007), “Finite Sample Evidence of IV Estimators Under Weak

Instruments,” Journal of Applied Econometrics, 22, 677-694.

FULLER, W., (1977), “Some Properties of a Modification of the Limited Information
Estimator,” Econometrica 45(), 939-954.

GRILICHES, Z., (1977), “Estimating the Returns to Schooling — Some Econometric Prob-

lems,” Econometrica 45(1), 1-22.

HAHN, J., AND J. HAUSMAN, (2003), “Weak Instruments: Diagnosis and Cures in

Empirical Ecnometrics,” American Economic Review, Papers and Proceedings 93, 118-115.

HAHN, J., J. HAUSMAN, AND G. KUERSTEINER, (2004), “Estimation with Weak Instru-

ments: Accuracy of Higher Order Bias and MSE Approxmiations,” Econometrics Journal.

HANSEN, C., J. HAUSMAN, AND W. NEWEY, (2006), “Estimation with Many Instru-

mental Variables,” Unpublished Manuscript, Department of Economics, MIT.

HausmaN, J., W. NEwWEY, T. WOUTERSEN, J. CHAO, AND N. SWANSON, (2007),

“Instrumental Variable Estimation with Heteroskedasticity and Many Instruments,” Unpub-

lished Manuscript, MIT.

KLEIBERGEN, F., (2002), “Pivotal Statistics for Testing Structural Parameters in In-

strumental Variables Regression,” Econometrica 70(5), 1781-1803.

MIKUSHEVA, A., (2007), “Uniform Inferences in Econometrics,” Chapter 3, PhD Thesis,

Harvard University, Department of Economics.

MOREIRA, M., (2001), “Tests with Correct Size when Instruments can be Arbitrarily

Weak,” Unpublished Paper, Department of Economics, Harvard University.



Imbens/Wooldridge, AEA Lecture Notes 1, January 12 21

MOREIRA, M., (2003), “A Conditional Likelihood Ratio Test for Structural Models,”
Econometrica 71(4), 1027-1048.

PHiLips, P., (1984), “Exact Small Sample Theory in the Simultaneous Equations Model,”
Handbook of Econometrics, (Griliches and Intrilligator, eds), Vol 2, North Holland.

PaiLLips, G., AND C. HALE, (1977), “The Bias of Instrumental Variables Estimators

of Simultaneous Equations Systems,” International Economic Review, 18, 219-228.

ROTHENBERG, T'., (1984), “Approximating the Distributions of Econometric Estimators
and Test Statistics,” Handbook of Econometrics, (Griliches and Intrilligator, eds), Vol 2,
Amsterdam, North Holland.

STAIGER, D., AND J. STOCK, (1997), “Instrumental Variables Regression with Weak

Instruments,” Econometrica 68, 1055-1096.



Imbens/Wooldridge, AEA Lecture Notes 7b, January ’12 1

AEA Lectures Chicago, IL, January 2012
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Generalized Method of Moments and Empirical Likelihood

1. INTRODUCTION

Generalized Method of Moments (henceforth GMM) estimation has become an important
unifying framework for inference in econometrics in the last twenty years. It can be thought
of as nesting almost all the common estimation methods such as maximum likelihood, or-
dinary least squares, instrumental variables and two-stage-least—squares and nowadays it is
an important part of all advanced econometrics text books (Gallant, 1987; Davidson and
McKinnon, 1993; Hamilton, 1994; Hayashi, 2000; Mittelhammer, Judge, and Miller, 2000;
Ruud, 2000; Wooldridge, 2002). Its formalization by Hansen (1982) centers on the presence
of known functions, labelled “moment functions”, of observable random variables and un-
known parameters that have expectation zero when evaluated at the true parameter values.
The method generalizes the “standard” method of moments where expectations of known
functions of observable random variables are equal to known functions of the unknown pa-
rameters. The “standard” method of moments can thus be thought of as a special case of
the general method with the unknown parameters and observed random variables entering
additively separable. The GMM approach links nicely to economic theory where orthogonal-
ity conditions that can serve as such moment functions often arise from optimizing behavior
of agents. For example, if agents make rational predictions with squared error loss, their
prediction errors should be orthogonal to elements of the information set. In the GMM
framework the unknown parameters are estimated by setting the sample averages of these

moment functions, the “estimating equations,” as close to zero as possible.

The framework is sufficiently general to deal with the case where the number of moment
functions is equal to the number of unknown parameters, the so—called “just-identified case”,

as well as the case where the number of moments exceeding the number of parameters to be
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estimated, the “over—identified case.” The latter has special importance in economics where
the moment functions often come from the orthogonality of potentially many elements of
the information set and prediction errors. In the just-identified case it is typically possible
to estimate the parameter by setting the sample average of the moments exactly equal to
zero. In the over-identified case this is not feasible. The solution proposed by Hansen
(1982) for this case, following similar approaches in linear models such as two— and three—
stage—least—squares, is to set a linear combination of the sample average of the moment
functions equal to zero, with the dimension of the linear combination equal to the number
of unknown parameters. The optimal linear combination of the moments depends on the
unknown parameters, and Hansen suggested to employ initial, possibly inefficient, estimates
to estimate this optimal linear combination. Chamberlain (1987) showed that this class of
estimators achieves the semiparametric efficient bound given the set of moment restrictions.
The Chamberlain paper is not only important for its substantive efficiency result, but also
as a precursor to the subsequent empirical likelihood literature by the methods employed:
Chamberlain uses a discrete approximation to the joint distribution of all the variables to
show that the information matrix based variance bound for the discrete parametrization is

equal to the variance of the GMM estimator if the discrete approximation is fine enough.

Th empirical likelihood literature developed partly in response to criticisms regarding
the small sample properties of the two-step GMM estimator. Researchers found in a number
of studies that with the degree of over-identification high, these estimators had substantial
biases, and confidence intervals had poor coverage rates. See among others, Altonji and
Segal (1996), Burnside and Eichenbaum (1996) , and Pagan and Robertson (1997). These
findings are related to the results in the instrumental variables literature that with many or
weak instruments two-stage-least squares can perform very badly (e.g., Bekker, 1994; Bound,
Jaeger, and Baker, 1995; Staiger and Stock, 1997). Simulations, as well as theoretical results,
suggest that the new estimators have LIML-like properties and lead to improved large sample

properties, at the expense of some computational cost.

2. EXAMPLES
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First the generic form of the GMM estimation problem in a cross—section context is
presented. The parameter vector 6% is a K dimensional vector, an element of ©, which is
a subset of RX. The random vector Z has dimension P, with its support Z a subset of
R¥. The moment function, 1) : Z x © — RM_ is a known vector valued function such that
EY(Z,0%)] =0, and E [¢(Z,0)] # 0 for all § € © with 0 # 6*. The researcher has available
an independent and identically distributed random sample 71, Z5, ..., Zn. We are interested

in the properties of estimators for 6* in large samples.

Many, if not most models considered in econometrics fit this framework. Below are some

examples, but this list is by no means exhaustive.

I. MAXIMUM LIKELIHOOD
If one specifies the conditional distribution of a variable Y given another variable X as

fyix (y|x, 8), the score function satisfies these conditions for the moment function:

Jln f
00

(Y, X,0) = (YX,0).

By standard likelihood theory the score function has expectation zero only at the true value
of the parameter. Interpreting maximum likelihood estimators as generalized method of
moments estimators suggests a way of deriving the covariance matrix under misspecification

(e.g., White, 1982), as well as an interpretation of the estimand in that case.

II. LINEAR INSTRUMENTAL VARIABLES

Suppose one has a linear model
Y = X'0" + ¢,

with a vector of instruments Z. In that case the moment function is
WY, X, Z,0)=27"-(Y — X'0).

The validity of Z as an instrument, together with a rank condition implies that 6* is the
unique solution to E[(Y, X, Z,0)] = 0. This is a case where the fact that the methods allow

for more moments than unknown parameters is of great importance as often instruments are
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independent of structural error terms, implying that any function of the basic instruments

is orthogonal to the errors.

III. A DynaMic PANEL DATA MODEL

Consider the following panel data model with fixed effects:
Yie=m+0-Yy_1+cu,

where £;; has mean zero given {Y;;_1,Yj;_2,...}. We have observations Y;; for t = 1,...,T
and ¢ = 1,..., N, with N large relative to 7. This is a stylized version of the type of
panel data models studied in Keane and Runkle (1992), Chamberlain (1992), and Blundell
and Bond (1998). This specific model has previously been studied by Bond, Bowsher, and
Windmeijer (2001). One can construct moment functions by differencing and using lags as

instruments, as in Arellano and Bond (1991), and Ahn and Schmidt, (1995):

Yit—o
Yit3
Y, Yo, 0) = |0 [ (= Yaos = 0+ (Vs = Yaoa)).
Yil
This leads to t — 2 moment functions for each value of t = 3,...,T, leading to a total of

(T'—1) - (T — 2)/2 moments, with only a single parameter. One would typically expect
that the long lags do not necessarily contain much information, but they are often used to
improve efficiency. In addition, under the assumption that the initial condition is drawn

from the stationary long-run distribution, the following additional T'— 2 moments are valid:
w2t(YVil7 CE 7YVZ'T7 9) - (Y;t—l - Y;t—2) : (Y;t - 9 : YVit—l)-

Despite the different nature of the two sets of moment functions, which makes them poten-
tially very useful in the case that the autoregressive parameter is close to unity, they can all
be combined in the GMM framework.

3. Two-sTEP GMM ESTIMATION

3.1 ESTIMATION AND INFERENCE
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In the just-identified case where M, the dimension of v, and K, the dimension of 8 are

identical, one can generally estimate #* by solving

1 & .
0=+ ;w(% Ogrmm)- (1)

If the sample average is replaced by the expectation, the unique solution is equal to *, and
under regularity conditions (e.g., Hansen, 1982, Newey and McFadden, 1994), solutions to
(1) will be unique in large samples and consistent for §*. If M > K the situation is more

complicated as in general there will be no solution to (1).

Hansen’s (1982) solution was to generalize the optimization problem to the minimization

of the quadratic form

Qo) = Hiwm] X {éwzi,e)}, 2)

for some positive definite M x M symmetric matrix C. Under the regularity conditions
given in Hansen (1982) and Newey and McFadden (1994), the minimand @, of (2) has the

following large sample properties:

N p
egmm E— 9*7

VN (Ogm — 0%) 2 N(0, (I'CT) "' T'CACT(I'CT) ™),
where

A=B(Za0 Wz 0] and D= E|gpu(z.0)]

In the just—identified case with the number of parameters K equal to the number of moments
M, the choice of weight matrix C' is immaterial, as égmm will, at least in large samples, be
equal to the value of # that sets the average moments exactly equal to zero. In that case
I' is a square matrix, and because it is full rank by assumption, I'" is invertible and the
asymptotic covariance matrix reduces to (I"A™!T") 7!, irrespective of the choice of C. In the
overidentified case with M > K, however, the choice of the weight matrix C' is important.

The optimal choice for C' in terms of minimizing the asymptotic variance is in this case
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the inverse of the covariance of the moments, A~!. Using the optimal weight matrix, the

asymptotic distribution is
VN (Bgmm — 6°) 5 N(0, (I'AT'T) 7). (3)

This estimator is generally not feasible because typically A~ is not known to the researcher.
The feasible solution proposed by Hansen (1982) is to obtain an initial consistent, but gen-
erally inefficient, estimate of #* by minimizing Q¢ n(0) using an arbitrary positive definite
M x M matrix C, e.g., the identity matrix of dimension M. Given this initial estimate, 6,

one can estimate the optimal weight matrix as

{ szz, (2, 0)

In the second step one estimates 6* by minimizing QA,17N(9). The resulting estimator égmm

-1

has the same first order asymptotic distribution as the minimand of the quadratic form with

the true, rather than estimated, optimal weight matrix, Qa-1 n(0).

Hansen (1982) also suggested a specification test for this model. If the number of moments
exceeds the number of free parameters, not all average moments can be set equal to zero,
and their deviation from zero forms the basis of Hansen’s test, similar to tests developed by

Sargan (1958). See also Newey (1985a, 1985b). Formally, the test statistic is

T = Q4 y(0gmm).

Under the null hypothesis that all moments have expectation equal to zero at the true value of
the parameter, 6*, the distribution of the test statistic converges to a chi-squared distribution

with degrees of freedom equal to the number of over-identifying restrictions, M — K.

One can also interpret the two—step estimator for over—identified GMM models as a just—
identified GMM estimator with an augmented parameter vector (e.g., Newey and McFadden,
1994; Chamberlain and Imbens, 1995). Define the following moment function:

39/(37 )
A/C¢($ B)
h(z,0) = h(x,0,1,A,8,A)= | A— w(iﬂ ﬁW( B (4)
I — 25(x,0)
"A=Y)(z, 0)
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Because the dimension of the moment function h(-), M x K+K+(M+1)xM/2+ M x K+K =
(M+1) x (2K + M/2), is equal to the combined dimensions of its parameter arguments, the
estimator for 6 = (6,1", A, 3, A) obtained by setting the sample average of h(-) equal to zero
is a just—identified GMM estimator. The first two components of h(x,d) depend only on 3
and A, and have the same dimension as these parameters. Hence * and A* are implicitly

defined by the equations

0
o[-
NCYP(X, B)
Given §* and A*; A* is defined through the third component of h(z,d), and given 5*, A*

and A* the final parameters 6* and I'* are defined through the last two moment functions.

This interpretation of the over-identified two-step GMM estimator as a just-identified
GMM estimator in an augmented model is interesting because it also emphasizes that results
for just—identified GMM estimators such as the validity of the bootstrap can directly be
translated into results for over-identified GMM estimators. In another example, using the
standard approach to finding the large sample covariance matrix for just—identified GMM
estimators one can use the just-identified representation to find the covariance matrix for
the over—identified GMM estimator that is robust against misspecification: the appropriate

submatrix of
(E {%(x, 5*)D_1 Eh(Z,6)h(Z, 6] (E [%(Z, 5*)})_1,

estimated by averaging at the estimated values. This is the GMM analogue of the White

(1982) covariance matrix for the maximum likelihood estimator under misspecification.
3.2 EFFICIENCY

Chamberlain (1987) demonstrated that Hansen’s (1982) estimator is efficient, not just in
the class of estimators based on minimizing the quadratic form Qy (), but in the larger
class of semiparametric estimators exploiting the full set of moment conditions. What is par-
ticularly interesting about this argument is the relation to the subsequent empirical likelihood

literature. Many semiparametric efficiency bound arguments (e.g., Newey, 1991; Hahn, 1994)
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implicitly build fully parametric models that include the semiparametric one and then search
for the least favorable parametrization. Chamberlain’s argument is qualitatively different.
He proposes a specific parametric model that can be made arbitrarily flexible, and thus
arbitrarily close to the model that generated the data, but does not typically include that
model. The advantage of the model Chamberlain proposes is that it is in some cases very
convenient to work with in the sense that its variance bound can be calculated in a straight-
forward manner. The specific model assumes that the data are discrete with finite support
{A1,..., Az}, and unknown probabilities 7y, ..., 7. The parameters of interest are then
implicitly defined as functions of these points of support and probabilities. With only the
probabilities unknown, the variance bound on the parameters of the approximating model
are conceptually straightforward to calculate. It then sufficies to translate that into a vari-
ance bound on the parameters of interest. If the original model is over-identified, one has
restrictions on the probabilities. These are again easy to evaluate in terms of their effect on

the variance bound.

Given the discrete model it is straightforward to obtain the variance bound for the prob-
abilities, and thus for any function of them. The remarkable point is that one can rewrite
these bounds in a way that does not involve the support points. This variance turns out to

be identical to the variance of the two-step GMM estimator, thus proving its efficiency.
4. EMPIRICAL LIKELIHOOD
4.1 BACKGROUND

To focus ideas, consider a random sample 71, Zs, ..., Zy, of size N from some unknown
distribution. If we wish to estimate the common distribution of these random variables, the
natural choice is the empirical distribution, that puts weight 1/N on each of the N sample
points. However, in a GMM setting this is not necessarily an appropriate estimate. Suppose

the moment function is

P(z,0) = z,

implying that the expected value of Z is zero. Note that in this simple example this moment
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function does not depend on any unknown parameter. The empirical distribution function
with weights 1/N does not satisfy the restriction Ep[Z] = 0 as Ep [Z] = >2z/N # 0.
The idea behind empirical likelihood is to modify the weights to ensure that the estimated
distribution F does satisfy the restriction. In other words, the approach is to look for
the distribution function closest to Fomp, within the set of distribution functions satisfying
Ep[Z] = 0. Empirical likelihood provides an operationalization of the concept of closeness

here. The empirical likelihood is

N
L(my,...,7n) =[]
=1

for 0 < m; <1, Zf\il m; = 1. This is not a likelihood function in the standard sense, and thus
does not have all the properties of likelihood functions. The empirical likelihood estimator
for the distribution function is

N N N

merXZm subject to Zm =1, and Zmzi = 0.

i=1 i=1 i=1
Without the second restriction the 7’s would be estimated to be 1/N, but the second restric-
tion forces them slightly away from 1/N in a way that ensures the restriction is satisfied. In

this example the solution for the Lagrange multiplier is the solution to the equation

N
Z1—|—t ZZ: ’

=1

and the solution for m; is:
i =1/(14+1- z).

More generally, in the over-identified case a major focus is on obtaining point estimates
through the following estimator for 6:

N
max » Inm, subject to Zm =1, Zm- (z:,0) = 0. (5)

0,
=1

Qin and Lawless (1994) and Imbens (1997) show that this estimator is equivalent, to order

O,(N~/2), to the two-step GMM estimator. This simple discussion illustrates that for some,
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and in fact many, purposes the empirical likelihood has the same properties as a parametric
likelihood function. This idea, first proposed by Owen (1988), turns out to be very powerful
with many applications. Owen (1988) shows how one can construct confidence intervals and

hypothesis tests based on this notion.

Related ideas have shown up in a number of places. Cosslett’s (1981) work on choice-
based sampling can be interpreted as maximizing a likelihood function that is the product
of a parametric part coming from the specification of the conditional choice probabilities,
and an empirical likelihood function coming from the distribution of the covariates. See
Imbens (1992) for a connection between Cosslett’s work and two-step GMM estimation. As
mentioned before, Chamberlain’s (1987) efficiency proof essentially consists of calculating
the distribution of the empirical likelihood estimator and showing its equivalence to the
distribution of the two-step GMM estimator. See Back and Brown (1990) and Kitamura

and Stutzer (1997) for a discussion of the dependent case.

4.2 CRESSIE-READ DISCREPANCY STATISTICS AND GENERALIZED EMPIRICAL LIKELI-

HOOD

In this section we consider a generalization of the empirical likelihood estimators based
on modifications of the objective function. Corcoran (1998) (see also Imbens, Spady and
Johnson, 1998), focus on the Cressie-Read discrepancy statistic, for fixed A, as a function of
two vectors p and ¢ of dimension N (Cressie and Read 1984):

1 a Pi g

I\(p,q) = PYITESY) ;Pi [(a) - 1] :
The Cressie-Read minimum discrepancy estimators are based on minimizing this difference
between the empirical distribution, that is, the N-dimensional vector with all elements equal
to 1/N, and the estimated probabilities, subject to all the restrictions being satisfied.

N N

n;l}enl,\(L/N, ) subject to ;m =1, and ;m U(z,0) = 0.

If there are no binding restrictions, because the dimension of ¥ (:) and 6 agree (the just-

identified case), the solution for = is the empirical distribution it self, and m; = 1/N. More
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generally, if there are over-identifying restrictions, there is no solution for  to ) . ¢(2;, 8) /N =
0, and so the solution for 7; is as close as possible to 1/N in a way that ensures there is
an exact solution to ) . m;1(2;,0) = 0. The precise way in which the notion “as close as

possible” is implemented is reflected in the choice of metric through .

Three special cases of this class have received most attention. First, the empirical like-
lihood estimator itself, which can be interpreted as the case with A — 0. This has the nice
interpretation that it is the exact maximum likelihood estimator if Z has a discrete distri-
bution. It does not rely on the discreteness for its general properties, but this interpretation

does suggest that it may have attractive large sample properties.

The second case is the exponential tilting estimator with A — —1 (Imbens, Spady and
Johnson, 1998), whose objective function is equal to the empirical likelihood objective funtion
with the role of 7 and ¢/N reversed. It can also be written as

N N N
min i ln; subject to Zm =1, and Z?Ti’l/i(zi, 0) =0.
i=1

7,0
=1 =1

Third, the case with A = —2. This case was originally proposed by Hansen, Heaton and
Yaron (1996) as the solution to
-1

min {i e e)}/ - [% iw 0z e)'] {i e 9)] |

where the GMM objective function is minimized over the € in the weight matrix as well as the
0 in the average moments. Hansen, Heaton and Yaron (1996) labeled this the continuously
updating estimator. Newey and Smith (2004) pointed out that this estimator fits in the

Cressie-Read class.

Smith (1997) considers a more general class of estimators, which he labels generalized
empirical likelihood estimators, starting from a different perspective. For a given function

g(+), normalized so that it satisfied g(0) = 1, ¢’(0) = 1, consider the saddle point problem

N
max min Zl g(t'Y(z;,0)).
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This representation is more attractive from a computational perspective, as it reduces the
dimension of the optimization problem to M + K rather than a constrained optimization
problem of dimension K + N with M + 1 restrictions. There is a direct link between the
t parameter in the GEL representation and the Lagrange multipliers in the Cressie-Read
representation. Newey and Smith (2004) how to choose g() for a given A so that the

corresponding GEL and Cressie-Read estimators agree.

In general the differences between the estimators within this class is relatively small
compared to the differences between them and the two-step GMM estimators. In practice
the choice between them is largely driven by computational issues, which will be discussed in
more detail in Section 5. The empirical likelihood estimator does have the advantage of its
exact likelihood interpretation and the resulting optimality properties for its bias-corrected
version (Newey and Smith, 2004). On the other hand, Imbens, Spady and Johnson (1998)
argue in favor of the exponential tilting estimator as its influence function stays bounded
where as denominator in the probabilities in the empirical likelihood estimator can get large.
In simulations researcher have encountered more convergence problems with the continuously
updating estimator (e.g., Hansen, Heaton and Yaron, 1996; Imbens, Johnson and Spady,
1998).

4.3 TESTING

Associated with the empirical likelihood estimators are three tests for over-identiyfing
restrictions, similar to the classical trinity of tests, the likelihood ratio, the Wald, and the
Lagrange multiplier tests. Here we briefly review the implementation of the three tests in
the empirical likelihood context. The leading terms of all three tests are identical to that of

the test developed by Hansen (1982) based on the quadratic form in the average moments.

The first test is based on the value of the empirical likelihood function. The test statistic

compares the value of the empirical likelihood function at the restricted estimates, the 7;



Imbens/Wooldridge, AEA Lecture Notes 7b, January ’12 13
with that at the unrestricted values, m; = 1/N:
N
LR =2-(L(t/N)— L(7)), where L(m) = Zlnm.
i=1

As in the parametric case, the difference between the restricted and unrestricted likelihood
function is multiplied by two to obtain, under regularity conditions, e.g., Newey and Smith
(2004), a chi-squared distribution with degrees of freedom equal to the number of over-

identifying restrictions for the test statistic under the null hypothesis.

The second test, similar to Wald tests, is based on the difference between the average
moments and their probability limit under the null hypothesis, zero. As in the standard
GMM test for overidentifying restrictions (Hansen, 1982), the average moments are weighted
by the inverse of their covariance matrix:

Z w(zh é)] )

i=1

/

N
j— 1 ) A _1
Wald = N LE:I ¥(zi,0)| A

where A is an estimate of the covariance matrix
A= E[(Z,0")9(Z,0)],
typically based on a sample average at some consistent estimator for 6*:
| N
A= N Z¢(2i, )¢ (2, 0)',
i=1
or sometimes a fully efficient estimator for the covariance matrix,
LN

The standard GMM test uses an initial estimate of 6* in the estimation of A, but with
the empirical likelihood estimators it is more natural to substitute the empirical likelihood
estimator itself. The precise properties of the estimator for A do not affect the large sample
properties of the test, and like the likelihood ratio test, the test statistic has in large samples
a chi-squared distribution with degrees of freedom equal to the number of over-identifying

restrictions.
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The third test is based on the Lagrange multipliers ¢t. In large samples their variance is
Vi= AT ATIT(IATID) IV ATE

This matrix is singular, with rank equal to M — K. One option is therefore to compare the

Lagrange multipliers to zero using a generalized inverse of their covariance matrix:
LM, =t (AT = AT'D(I'ATT)'I'ATY) e

This is not very attractive, as it requires the choice of a generalized inverse. An alternative

is to use the inverse of A1 itself, leading to the test statistic
LM, = t'At.
Because
1
VN -t =V,— 2i,0%) + 0,(1),
and V;AV;, = V,V, 9V, = V,, it follows that
LM2 = LM1 + Op(l).

Imbens, Johnson and Spady (1998) find in their simulations that tests based on LM, perform
better than those based on LM;. In large samples both have a chi-squared distribution with
degrees of freedom equal to the number of over-identifying restrictions. Again we can use
this test with any efficient estimator for ¢, and with the Lagrange multipliers based on any

of the discrepancy measures.

Imbens, Spady and Johnson (1998), and Bond, Bowsher and Windmeijer (2001) inves-
tigate through simulations the small sample properties of various of these tests. It appears
that the Lagrange multiplier tests are often more attractive than the tests based on the
average moments, although there is so far only limited evidence in specific models. One can
use the same ideas for constructing confidence intervals that do not directly use the nor-
mal approximation to the sampling distribution of the estimator. See for discussions Smith

(1998) and Imbens and Spady (2002).
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6. COMPUTATIONAL ISSUES

The two-step GMM estimator requires two minimizations over a K-dimensional space.
The empirical likelihood estimator in its original likelihood form (5) requires maximization
over a space of dimension K (for the parameter 6) plus NV (for the N probabilities), subject
to M +1 restrictions (on the M moments and the adding up restriction for the probabilities).
This is in general a much more formidable computational problem than two optimizations
in a K-dimensional space. A number of approaches have been attempted to simplify this
problem. Here we disuss three of them in the context of the exponential tilting estimator,
although most of them directly carry over to other members of the Cressie-Read or GEL

classes.
6.1 SOLVING THE FIRST ORDER CONDITIONS

The first approach we discuss is focuses on the first order conditions and then concentrates
out the probabilities . This reduces the problem to one of dimension K + M, K for the
parameters of interest and M for the Lagrange multipliers for the restrictions, which is is
clearly a huge improvement, as the dimension of the problem no longer increases with the
sample size. Let p and t be the Lagrange multipliers for the restrictions »  m = 1 and
> mb(2i,0) = 0. The first order conditions for the 7’s and 6 and the Lagrange multipliers

are

O=Inm —1—pu+t'(z,0),

0=exp(p—1)> t(z,0) - exp (t'9(2,0)).

i=1

The solution for 7 is

mi = exp(p — L+ t'1)(2;, 0)).
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To determine the Lagrange multipliers ¢ and the parameter of interest # we only need 7; up
to a constant of proportionality, so we can solve

N

0= Z ¢(Zz> 9) eXP(t/¢(zi> 9))7 (6)

i=1

and

N

0= 10 (o) xplt 0 (26) )

i=1
Solving the system of equations (6) and (7) is not straightforward. Because the probability
limit of the solution for ¢ is zero, the derivative with respect to 6 of both first order conditions
converges zero. Hence the matrix of derivatives of the first order conditions converges to
a singular matrix. As a result standard approaches to solving systems of equations can
behave erratically, and this approach to calculating 6 has been found to have poor operating

characteristics.
6.2 PENALTY FUNCTION APPROACHES

Imbens, Spady and Johnson (1998) characterize the solution for 6 and ¢ as

max K(t,0) subject to K(t,0) =0, (8)

where K(t,6) is the empirical analogue of the cumulant generating function:

K(t,0)=In [% Zexp(t'w(zi, 9)] .

They suggest solving this optimization problem by maximizing the unconstrained objective

function with a penalty term that consists of a quadratic form in the restriction:
max K (t,0) — 0.5 A- Ki(t, 0)W K, (t,0), (9)

for some positive definite M x M matrix W, and a positive constant A. The first order

conditions for this problem are

0= Ky(t,0) — A- Kp(t,0)W 'K,(t,0),
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0 - Kt(t, 9) - A . Ktt(t, Q)W_th(t, 9)

For A large enough the solution to this unconstrained maximization problem is identical to
the solution to the constrained maximization problem (8). This follows from the fact that the
constraint is in fact the first order condition for K(¢,). Thus, in contrast to many penalty
function approaches, one does not have to let the penalty term go to infinity to obtain the
solution to the constrained optimization problem, one only needs to let the penalty term
increase sufficiently to make the problem locally convex. Imbens, Spady and Johnson (1998)

suggest choosing
W - Ktt(t, 9) —|— Kt(t, Q)Kt(t, 9)/,

for some initial values for ¢ and 6 as the weight matrix, and report that estimates are generally

not sensitive to the choices of ¢t and 6.
6.3 CONCENTRATING OUT THE LAGRANGE MULTIPLIERS

Mittelhammer, Judge and Schoenberg (2001) suggest concentrating out both probabilities
and Lagrange multipliers and then maximizing over # without any constraints. As shown
above, concentrating out the probabilities m; can be done analytically. Although it is not
in general possible to solve for the Lagrange multipliers ¢ analytically, other than in the
continuously updating case, for given € it is easy to numerically solve for ¢. This involves

solving, in the exponential tilting case,

N
min ) _ exp(t's) (2, 6)).
=1

This function is strictly convex as a function of ¢, with the easy to calculate first and second

derivatives equal to

Z ¢(Zz> 9) eXP(t/¢(zi> 9))7

and
N

> (i, 0)1(2i, 0) exp(t'(2i, 0)),

i=1
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respectively. Therefore concentrating out the Lagrange multipliers is computationally fast
using a Newton-Raphson algorithm. The resulting function ¢(#) has derivatives with respect

to 0 equal to:
8t / -1
89/ - < Zw Zz, Zz, ) exp(t(@) '(/J(zl, 9))

1 9] 0
- <N 3 O e 0) exp(t(0) 0z 0) + (e O(0) T (21, 0) explr(0) e>>>
i=1
After solving for t(0), one can solve

max Z exp(t(6)(z;,0)). (10)

Mittelhammer, Judge, and Schoenberg (2001) use methods that do not require first deriva-
tives to solve (10). This is not essential. Calculating first derivatives of the concentrated
objective function only requires first derivatives of the moment functions, both directly and
indirectly through the derivatives of ¢(6) with respect to 6. In general these are straightfor-

ward to calculate and likely to improve the performance of the algorithm.

In this method in the end the researcher only has to solve one optimization in a K-
dimensional space, with the provision that for each evaluation of the objective function one
needs to numerically evaluate the function ¢(6) by solving a convex maximization problem.
The latter is fast, especially in the exponential tilting case, so that although the resulting op-
timization problem is arguably still more difficult than the standard two-step GMM problem,
in practice it is not much slower. In the simulations below I use this method for calculating
the estimates. After concentrating out the Lagrange multipliers using a Newton-Rahpson
algorithm that uses both first and second derivatives, I use a Davidon-Fletcher-Powell algo-
rithm to maximize over #, using analytic first derivatives. Given a direction I used a line

search algoritm based on repeated quadratic approximations.
7. A DyNAaMIC PANEL DATA MODEL

To get a sense of the finite sample properties of the empirical likelihood estimators we

compare some of the GMM methods in the context of the panel data model briefly discussed
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in Section 2, using some simulation results from Imbens. The model is
Yie=m+0-Yy_1+cu,

where £;; has mean zero given {Yj;_1,Y;;_2,...}. We have observations Y;; for t = 1,...,T
and ¢ =1,..., N, with N large relative to T". This is a stylized version of the type of panel
data models extensively studied in the literature. Bond, Bowsher and Windmeijer (2001)
study this and similar models to evaluate the performance of test statistics based on different

GMM and gel estimators. We use the moments

Yit—o
Yit3
Vi, Y 0) = | [ (i = Y = 0+ (Vs = Yaa)).
Yil
This leads to t — 2 moment functions for each value of t = 3,...,T, leading to a total of

(T'—1) - (T — 2)/2 moments. In addition, under the assumption that the initial condition
is drawn from the stationary long-run distribution, the following additional 7" — 2 moments

are valid:
th(YVil7 L 7YVZ'T7 9) - (Y;t—l - Y;t—Q) : (Y;t - 9 : YVit—l)-

It is important to note, given the results discussed in Section 4, that the derivatives of these
moments are stochastic and potentially correlated with the moments themselves. As a result
there is potentially a substantial difference between the different estimators, especially when

the degree of overidentification is high.

We report some simulations for a data generating process with parameter values estimated
on data from Abowd and Card (1989) taken from the PSID. See also Card (1994). This data
set contains earnings data for 1434 individuals for 11 years. The individuals are selected
on having positive earnings in each of the eleven years, and we model their earnings in

logarithms. We focus on estimation of the autoregressive coefficient 6.

We then generate artificial data sets to investigate the repeated sampling properties of

these estimators. Two questions are of most interest. First, how do the median bias and
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median-absolute-error deteriorate as a function of the degree of over-identification”? Here,
unlike in the theoretical discussion in Section 4, the additional moments, as we increase
the number of years in the panel, do contain information, so they may in fact increase
precision, but at the same time one would expect based on the theoretical calculations that
the accuracy of the asymptotic approximations for a fixed sample size deteriorates with the
number of years. Second, we are interested in the performance of the confidence intervals for
the parameter of interest. In two-stage-least-squares settings it was found that with many
weak instruments the performance of standard confidence intervals varied widely between
liml and two-stage-least-squares estimators. Given the analogy drawn by Hansen, Heaton
and Yaron (1996) between the continuously updating estimator and liml, the question arises
how the confidence intervals differ between two-step GMM and the various Cressie-Read and

GEL estimators.

Using the Abowd-Card data we estimate 6 and the variance of the fixed effect and the
idiosyncratic error term. The latter two are estimated to be around 0.3. We then consider
data generating processes where the individual effect n; has mean zero and standard deviation
equal to 0.3, and the error term has mean zero and standard deviation 0.3. We 8 = 0.9 in
the simulations. This is larger than the value in estimated from the Abowd-Card data. We
compare the standard Two-Step GMM estimator and the Exponential Tilting Estimator.
Table 1 contains the results. With the high autoregressive coefficient, § = 0.9, the two-
step GMM estimator has substantial bias and poor coverage rates.The exponential tilting
estimator does much better with the high autoregressive coefficient. The bias is small, on
the order of 10% of the standard error, and the coverage rate is much closer to the nominal

one.
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Table 1: SIMULATIONS, 6 = 0.9

Number of time periods
3 4 5 6 7 8 9 10 11

Two-Step GMM

median bias -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
relative median bias  -0.02 0.08 0.03 0.08 0.03 0.11 0.08 0.13 0.11
median absolute error  0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01
coverage rate 90% ci 0.88 0.85 0.82 0.80 0.80 0.79 0.78 0.79 0.76
covarage rate 95% ci 0.92 091 0.89 087 0.8 0.8 0.8 0.88 0.84

Exponential Tilting

median bias 0.00 0.00 0.00 -0.00 0.00 0.00 -0.00 0.00 0.00
relative median bias 0.04 0.09 0.02 -0.00 0.01 0.01 -0.02 0.08 0.13
median absolute error  0.05 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01
coverage rate 90% ci 0.87 0.86 0.84 0.86 0.88 0.86 0.87 0.88 0.87
covarage rate 95% c¢i 0.91 090 090 0.91 093 0.92 091 0.93 0.93

The relative median bias reports the bias divided by the large sample standard error. All results based on
10,000 replications.
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AEA Lectures Chicago, IL, January 2012
Lecture 9, Tuesday, Jan 10th, am

Partial Identification

1. INTRODUCTION

Traditionally in constructing statistical or econometric models researchers look for models
that are (point-)identified: given a large (infinite) data set, one can infer without uncertainty
what the values are of the objects of interest, the estimands. Even though the fact that a
model is identified does not necessarily imply that we do well in finite samples, it would
appear that a model where we cannot learn the parameter values even in infinitely large
samples would not be very useful. Traditionally therefore researchers have stayed away from
models that are not (point-)identified, often adding assumptions beyond those that could
be justified using substantive arguments. However, it turns out that even in cases where
we cannot learn the value of the estimand ezactly in large samples, in many cases we can
still learn a fair amount, even in finite samples. A research agenda initiated by Manski
(an early paper is Manski (1990), monographs include Manski (1995, 2003)), referred to as
partial identification, or earlier as bounds, and more recently adopted by a large number
of others, notably Tamer in a series papers (Haile and Tamer, 2003, Ciliberto and Tamer,
2007; Aradillas-Lopez and Tamer, 2007), has taken this perspective. In this lecture we focus
primarily on a number of examples to show the richness of this approach. In addition we
discuss some of the theoretical issues connected with this literature, and some practical issues

in implementation of these methods.

The basic set up we adopt is one where we have a random sample of units from some
population. For the typical unit, unit ¢, we observe the value of a vector of variables Z;.
Sometimes it is useful to think of there being in the background a latent variable variable
W;. We are interested in some functional 8 of the joint distribution of Z; and W;, but, not
observing W; for any units, we may not be able to learn the value of 6 even in infinite samples

because the estimand cannot be written as a functional of the distribution of Z; alone. The
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three key questions are (i) what we can learn about 6 in large samples (identification), (i)
how do we estimate this (estimation), and (#i¢) how do we quantify the uncertainty regarding

6 (inference).

The solution to the first question will typically be a set, the identified set. Even if we
can characterize estimators for these sets, computing them can present serious challenges.
Finally, inference involves challenges concerning uniformity of the coverage rates, as well as
the question whether we are interested in coverage of the entire identified set or only of the

parameter of interest.

There are a number of cases of general interest. I will discuss two leading cases in more
detail. In the first case the focus is on a scalar, with the identified set equal to an interval with
lower and upper bound a smooth, v/N-estimable functional of the data. A second case of
interest is that where the information about the parameters can be characterized by moment
restrictions, often arising from revealed preference comparisons between utilities at actions
taken and actions not taken. I refer to this as the generalized inequality restrictions (GIR)

setting. This set up is closely related to the generalized method of moments framework.
2. PARTIAL IDENTIFICATION: EXAMPLES

Here we discuss a number of examples to demonstrate the richness of the partial identi-

fication approach.
2.1 MissSING DATA

This is a basic example, see e.g., Manski (1990), and Imbens and Manski (2004). It is
substantively not very interesting, but it illustrates a lot of the basic issues. Suppose the
observed variable is the pair Z; = (D;, D; -Y;), and the unobserved variable is W; = Y;. D; is
a binary variable. This corresponds to a missing data case. If D; = 1, we observe Y;, and if
D; = 0 we do not observe Y;. We always observe the missing data indicator D;. We assume

the quantity of interest is the population mean 6 = E[Y]].

In large samples we can learn p = E[D;] and 1y = E[Y;|D; = 1]. The data contain no
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information about po = E[Y;|D; = 0]. It can be useful, though not always possible, to write
the estimand in terms of parameters that are point-identified and parameters that the data

are not informative about. In this case we can do so:

0=p-p1+(1—p)-po.

Since even in large samples we learn nothing about g, it follows that without additional
information there is no limit on the range of possible values for 6. Even if p is very close to
1, this small probability that D; = 0 combined with the possibility that pg is very large or

very small allows for a wide range of values for 6.

Now suppose we know that the variable of interest is binary: Y; € {0,1}. Then natural
(not data-informed) lower and upper bounds for j are 0 and 1 respectively. This implies

bounds on 6:

0 € g, 0usl = tm.p- 1+ (1—p).

These bounds are sharp, in the sense that without additional information we can not improve
on them. Formally, for all values 6 in [f1p, fus], we can find a joint distribution of (Y;, W;)
that is consistent with the joint distribution of the observed data and with 6. Even if YV is
not binary, but has some natural bounds, we can obtain potentially informative bounds on

6.

We can also obtain informative bounds if we modify the object of interest a little bit.
Suppose we are interested in quantiles of the distribution of Y;. To make this specific,
suppose we are interested in the median of Y;, 6p5 = med(Y;). The largest possible value
for the median arises if all the missing value of Y; are large. Define ¢,(Y;|D; = d) to be the
7 quantile of the conditional distribution of Y; given D; = d. Then the median cannot be
larger than ¢y /(2,)(Y;|D; = 1) because even if all the missing values were large, we know that
at least p- (1/(2p)) = 1/2 of the units have a value less than or equal to g2 (Y;|D; = 1).

Similarly, the smallest possible value for the median corrresponds to the case where all the
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missing values are small, leading to a lower bound of q(2,—1)/(2p)(Yi|D; = 1). Then, if p > 1/2,

we can infer that the median must satisfy

005 € (01, Oun] = [dp-1)/00)(YilDi = 1), q1/p)(Yi|Di = 1)] ,

and we end up with a well defined, and, depending on the data, more or less informative
identified interval for the median. If fewer than 50% of the values are observed, or p < 1/2,
then we cannot learn anything about the median of Y; without additional information (for
example, a bound on the values of Y;), and the interval is (—oo, c0). More generally, we can

obtain bounds on the 7 quantile of the distribution of Y;, equal to

0; € [Oup. Ous] = [d(r—-p)p(Yil Di = 1), ¢r/p(Yi| D; = 1)] .

which is bounded if the probability of Y; being missing is less than min(7,1 — 7).
2.2 RETURNS TO SCHOOLING

Manski and Pepper (2000, MP) are interested in estimating returns to schooling. They
start with an individual level response function Y;(w), where w € {0,1,...,20} is years of

schooling. Let
A(s, t) = E[Yi(t) — Yi(s)],

be the difference in average outcomes (log earnings) given t rather than s years of schooling.
Values of A(s,t) at different combinations of (s,t) are the object of interest. Let W; be
the actual years of school, and Y; = Y;(W;) be the actual log earnings. If one makes an

unconfoundedness type assumption that

for some set of covariates, one can estimate A(s,t) consistently given some support con-

ditions. MP relax this assumption. Dropping this assumption entirely without additional
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assumptions one can derive the bounds using the missing data results in the previous sec-
tion. In this case most of the data would be missing, and the bounds would be wide. More
interestingly MP focus on a number of alternative, weaker assumptions, that do not allow
for point-identification of A(s,t), but that nevertheless may be able to narrow the range of
values consistent with the data to an informative set. One of their assumptions requires that

increasing education does not lower earnings:

Assumption 1 (MONOTONE TREATMENT RESPONSE)

If w' > w, then Y;(w') > Yi(w).

Another assumption states that, on average, individuals who choose higher levels of education
would have higher earnings at each level of education than individuals who choose lower levels

of education.

Assumption 2 (MONOTONE TREATMENT SELECTION)

If w" > w', then for all w, E[Y;(w)|W; = w"] > E[Yi(w)|W; = w'].

Both assumptions are consistent with many models of human capital accumulation. They
also address the main concern with the exogenous schooling assumption, namely that higher
ability individuals who would have had higher earnings in the absence of more schooling, are

more likely to acquire more schooling.
Under these two assumptions, the bound on the average outcome given w years of school-

ing is

E[Y;|Wi = w] - Pr(W; > w) + Y E[Y;|W; = v] - Pr(W; = v)

v<w

< E[Yi(w)] <

E[Y;|Wi = w] - Pr(W; < w) + Y E[Y;|W; = v] - Pr(W; = v).

v>w
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Using data from the National Longitudinal Study of Youth MP a point estimator for the
upper bound on the the returns to four years of college, A(12,16) to be 0.397, with a 0.95
upper quantile of 0.450. Translated into an average yearl returns this gives us 0.099, which
is in fact lower than some estimates that have been reported in the literature. This analysis
suggests that the upper bound is in this case reasonably informative, given a remarkably

weaker set of assumptions.
2.3 CHANGES IN INEQUALITY AND SELECTION

There is a large literature on the changes in the wage distribution and the role of changes
in the returns to skills that drive these changes. One concern is that if one compares the
wage distribution at two points in time, any differences may be partly or wholly due to
differences in the composition of the workforce. Blundell, Gosling, Ichimura, and Meghir
(2007, BGHM) investigate this using bounds. They study changes in the wage distribution
in the United Kingdom for both men and women. Even for men at prime employment ages
employment in the late nineties is less than 0.90, down from 0.95 in the late seventies. The
concern is that the 10% who do not work are potentially different, both from those who work,
as well as from those who did not work in the seventies, corrupting comparisons between
the wage distributions in both years. Traditionally such concerns may have been ignored by
implicitly assuming that the wages for those not working are similar to those who are working,
possibly conditional on some observed covariates, or they may have been addressed by using
selection models. The type of selection models used ranges from very parametric models of
the type originally developed by Heckman (1978), to semi- and non-parametric versions of
this (Heckman, 1990). The concern that BGHM raise is that those selection models rely on
assumptions that are difficult to motivate by economic theory. They investigate what can
be learned about the changes in the wage distributions without the final, most controversial

assumptions of those selection models.

BGHM focus on the interquartile range as their measure of dispersion in the wage dis-
tribution. As discussed in Section 2.1, this is convenient, because bounds on quantiles often

exist in the presence of missing data. Let Fy|x(y|x) be the distribution of wages condi-
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tional on some characteristics X. This is assumed to be well defined irrespective of whether
an individual works or not. However, if an individual does not work, Y; is not observed.
Let D; be an indicator for employment. Then we can estimate the conditional wage dis-
tribution given employment, Fyx p(y|z,d = 1), as well as the probability of employment,
p(z) = pr(D; = 1|X; = z). This gives us tight bounds on the (unconditional on employment)

wage distribution

FY|X,D(y|a7>d =1)-p(x) < FY|X,D(?J|5E>d =1) < FY|X,D(?J|5E>d =1)-p(x) + (1 —p(z)).

We can convert this to bounds on the 7 quantile of the conditional distribution of Y; given

X; = z, denoted by ¢.(z):

G(r—(—p@) p@)(Yi|Di = 1) < ¢ () < gr/p) (Vi Dy = 1),

Then this can be used to derive bounds on the interquartile range qo.75() — qo.25():

900.75—(1—p())) /p(x)(Yi| Di = 1) = qo.25/p(x)(Yi|Di = 1)

< qo75(x) — qoas(x) <

q(0.25—(1-p(2))) /o) (Yil Di = 1) = qo.75/p()(Yi| Di = 1).

So far this is just an application of the missing data bounds derived in the previous
section. What makes this more interesting is the use of additional information short of
imposing a full selection model that would point identify the interquartile range. The first
assumption BGHM add is that of stochastic dominance of the wage distribution for employed

individuals:

Fyixp(ylz,d=1) < Fy|x,p(y|z,d = 0).
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One can argue with this stochastic dominance assumption, but within groups homogenous
in background characteristics including education, it may be reasonable. This assumption

tightens the bounds on the distribution function to:
Fyixplylz,d=1) < Fyixp(ylr,d=1) <
Fyixp(yle,d=1) - p(z) + (1 — p(x)).

Another assumption BGHM consider is a modification of an instrumental variables as-

sumption that an observed covariate Z is excluded from the wage distribution:
FyixzylX =2,Z =2)=Fyxz(y|X =2,Z =7"), for all x, z, .
This changes the bounds on the distribution function to:
max Fyixzplylr,z,d=1) p(z, 2)
< Fyixp(ylz) <
mZinFy|X7Z7D(y|a:, z,d=1)p(z)+ (1 —p(x)).

(An alternative weakening of the standard instrumental variables assumption is in Hotz,

Mullin and Sanders (1997), where a valid instrument exists, but is not observed directly.)

Such an instrument may be difficult to find, and BGHM argue that it may be easier
to find a covariate that affects the wage distribution in one direction, using a monotone

instrumental variables restriction suggested by Manski and Pepper (2000):
Fy|X7z(y|X =, /= Z) S Fy|X7z(y|X =, /= Z/), for all T,z < Z/.

This discussion is somewhat typical of what is done in empirical work in this area. A
number of assumptions are considered, with the implications for the bounds investigated.

The results lay out part of the mapping between the assumptions and the bounds.
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2.4 RANDOM EFFECTS PANEL DATA MODELS WITH INITIAL CONDITION PROBLEMS

Honoré and Tamer (2006) study dynamic random effects panel data models. We observe
(Xi1, Y, ..., Xip, Yir), for i = 1,...,N. The time dimension 7" is small relative to the
cross-section dimension N. Large sample approximations are based on fixed T and large
N. Inference would be standard if we specified a parametric model for the (components of
the) conditional distribution of (Y;1,. .., Yir) given (Xi1,..., X;r). In that case we could use
maximum likelihood methods. However, it is difficult to specify this conditional distribution
directly. Often we start with a model for the evolution of Y;; in terms of the present and

past covariates and its lags. As an example, consider the model

Yi = 1{X£tﬁ + Y1y + a; + e >0}

with the ¢; independent over time and individuals, and normally distributed, e; ~ N (0, 1).
The object of interest is the parameter governing the dynamics, . This model gives us the
conditional distribution of Yo, ..., Y;r given Y;1, ;; and given X1, ..., X;7. Suppose we also

postulate a parametric model for the random effects «;:

alXi, ..., Xir ~ G(al0),

(so in this case «; is independent of the covariates). Then the model is (almost) complete, in
the sense that we can almost write down the conditional distribution of (Y;i,...,Y;r) given

(Xi1, ..., Xir). All that is missing is the conditional distribution of the initial condition:

p(Yalou, Xa, ..., Xir).

This is a difficult distribution to specify. One could directly specify this distribution, but
one might want it to be internally consistent across different number of time periods, and
that makes it awkward to choose a functional form. See for general discussions of this initial
conditions problem Wooldridge (2002). Honoré and Tamer investigate what can be learned

about v without making parametric assumptions about this distribution. From the literature
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it is known that in many cases 7 is not point-identified (for example, the case with 7" < 3,
no covariates, and a logistic distribution for €;). Nevertheless, it may be that the range of

values of 7 consistent with the data is very small, and it might reveal the sign of ~.

Honoré and Tamer study the case with a discrete distribution for «, with a finite and
known set of support points. They fix the support to be —3,—2.8,...,2.8, 3, with unknown
probabilities. Given that the €;; are standard normal, this is very flexible. In a computational
exercise they assume that the true probabilities make this discrete distribution mimic the
standard normal distribution. In addition they set Pr(Y;; = 1|a;) = 1/2. In the case with
T = 3 they find that the range of values for v consistent with the data generating process
(the identified set) is very narrow. If v is in fact equal to zero, the width of the set is zero.
If the true value is 7 = 1, then the width of the interval is approximately 0.1. (It is largest
for 7 close to, but not equal to, -1.) See Figure 1, taken from Honoré and Tamer (2006).

The Honoré-Tamer analysis, in the context of the literature on initial conditions problems,
shows very nicely the power of the partial identification approach. A problem that had been
viewed as essentially intractable, with many non-identification results, was shown to admit

potentially precise inferences despite these non-identification results.
2.5 AucTiON DATA

Haile and Tamer (2003, HT from hereon), in what is one of the most influential appli-
cations of the partial identification approach, study English or oral ascending bid auctions.
In such auctions bidders offer increasingly higher prices until only one bidder remains. HT
focus on a symmetric independent private values model. In auction ¢, for t = 1,..., 7', bid-
der ¢ has a value v;;, drawn independently from the value for bidder j. Large sample results
refer to the number of auctions getting large. HT assume that the value distribution is the
same in each auction (after adjusting for observable auction characteristics). A key object of
interest, is the value distribution. Given that one can derive other interesting objects, such

as the optimal reserve price.

One can imagine a set up where the researcher observes, as the price increases, for each
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bidder whether that bidder is still participating in the auction. (Milgrom and Weber (1982)
assume that each bidder continuously confirms their participation by holding down a button
while prices rise continuously.) In that case one would be able to infer for each bidder their

valuation, and thus directly estimate the value distribution.

This is not what is typically observed. Instead of prices rising continuously, there are
jumps in the bids, and for each bidder we do not know at any point in time whether they are
still participating unless they subsequently make a higher bid. HT study identification in
this, more realistic, setting. They assume that no bidder ever bids more than their valuation,
and that no bidder will walk away and let another bidder win the auction if the winning
bid is lower than their own valuation. Under those two assumptions, HT show that one can

derive bounds on the value distribution.

One set of bounds they propose is as follows. Let the highest bid for participant ¢ in
auction t be by;. The number of participants in auction t is n;. Ignoring any covariates,
let the distribution of the value for individual i, v, be F),(v). This distribution function is
the same for all auctions. Let Fy(b) = Pr(by; < b) be the distribution function of the bids
(ignoring variation in the number of bidders by auction). This distribution can be estimated
because the bids are observed. The winning bid in auction ¢ is B; = max;—y, . _p, b;y. First
HT derive an upper bound on the distribution function F,(v). Because no bidder ever bids

more than their value, it follows that b;; < v;;. Hence, without additional assumptions,

F,(v) < Fy(v), for all v.

For a lower bound on the distribution function one can use the fact that the second
highest of the values among the n participants in auction ¢ must be less than or equal to the
winning bid. This follows from the assumption that no participant will let someone else win
with a bid below their valuation. Let F, ,,.,(v) denote the mth order statistic in a random

sample of size n from the value distribution, and let F'g ,,.,(b) denote the distribution of the
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winning bid in auctions with n participants. Then

FB,n:n('U) S Fy,n—l:n(v)-

The distribution of the any order statistic is monotonically related to the distribution of the

parent distribution, and so a lower bound on F,,,_1.,(v) implies a lower bound on F,(v).

HT derive tighter bounds based on the information in other bids and the inequalities
arising from the order statistics, but the above discussion illustrates the point that outside
of the Milgrom-Weber button auction model one can still derive bounds on the value dis-
tribution in an English auction even if one cannot point-identify the value distribution. If
in fact the highest bid for each individual was equal to their value (other than for the win-
ner for whom the bid is equal to the second highest value), the bounds would collaps and

point-identification would be obtained.
2.6 ENTRY MODELS AND INEQUALITY CONDITIONS

Recently a number of papers has studied entry models in settings with multiple equilibria.
In such settings traditionally researchers have added ad hoc equilbrium selection mechanisms.
In the recent literature a key feature is the avoidance of such assumptions, as these are often
difficult to justify on theoretical grounds. Instead the focus is on what can be learned in the
absence of such assumptions. In this section I will discuss some examples from this literature.
An important feature of these models is that they often lead to inequality restrictions, where

the parameters of interest 0 satisfy

E[(Z,0)] = 0,

for known ¢ (z, #). This relates closely to the standard (Hansen, 1983) generalized method of
moments (GMM) set up where the functions ¢ (Z, ) would have expectation equal to zero at
the true values of the parameters. We refer to this as the generalized inequality restrictions
(GIR) form. These papers include Pakes, Porter, Ho, and Ishii (2006), Cilberto and Tamer
(2004, CM from hereon), Andrews, Berry and Jia (2004). Here I will discuss a simplified
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version of the CM model. Suppose two firms, A and B, contest a set of markets. In market

m, m=1,..., M, the profits for firms A and B are

TAm = g + 5,4 . dBm + EAm, and TBm = QB + 5B . dAm + €Bm.-

where dp,, = 1 if firm F is present in market m, for F' € {A, B}, and zero otherwise. The
more realistic model CM consider also includes observed market and firm characteristics.
Firms enter market m if their profits in that market are positive. Firms observe all compo-
nents of profits, including those that are unobserved to the econometrician, (€, £pm), and

so their decisions satisfy:

dAm = 1{7TAm 2 0}, dBm = 1{7TBm 2 0}. (1)

(Pakes, Porter, Ho, and Ishii allow for incomplete information where expected profits are
at least as high for the action taken as for actions not taken, given some information set.)
The unobserved (to the econometrician) components of profits, €py,, are independent accross
markets and firms. For ease of exposition we assume here that they have a normal A/(0, 1)
distribution. (Note that we only observe indicators of the sign of profits, so the scale of
the unobserved components is not relevant for predictions.) The econometrician observes in
each market only the pair of indicators d4 and dg. We focus on the case where the effect of
entry of the other firm on a firm’s profits, captured by the parameters 64 and dp is negative,

which is the case of most economic interest.

An important feature of this model is that given the parameters § = (a4, 04, ap,dp), for
a given set of (€4, €pm) there is not necessarily a unique solution (da,, dp,). For pairs of

values (€am, €pm) such that

—ay <ea < —aq— 04, —ap <ep < —ap —0p,

both (da,dp) = (0,1) and (da,dp) = (1,0) satisfy the profit maximization condition (1).

In the terminology of this literature, the model is not complete. It does not specify the
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outcomes given the inputs. Figure 1, adapted from CM, shows the different regions in the

(€ Am,EBm) Space.

The implication of this is that the probability of the outcome (dan, dpm,) = (0, 1) cannot
be written as a function of the parameters of the model, § = (aa,d4,ap,05), even given
distributional assumptions on (£am,&pm). Instead the model implies a lower and upper

bound on this probability:

HL701(9) S Pr((dAm,dBm) = (0, 1)) S HU,OI(Q)-

Inspecting Figure 1 shows that

Hp01(0) = Pr(eam < —aa, —ap < epm)

+Pr(—aa < eam < —aa — 04, —ap — 0B < €Bm),

and

Hyo1(0) = Pr(eam < —aa,ap < epm)

+Pr(—aa < eam < —aa — 04, —ap — 0B < €5m),

+Pr(—aa < eam < —aa — 04, —ap < epm < —ap — 0p),

Similar expressions can be derived for the probability Pr ((dam,dsm) = (1,0)). Thus in

general we can write the information about the parameters in large samples as

Hy00(0) Pr ((dam, dpm) = (0,0)) Hyr00(0)
Hpo(0) | _ [ Pr((dam,dpm) =(0,1)) | _ | Huoi(0)
Hr10(0) Pr ((dam,dpm) = (1,0)) | = | Hui(9)
HL,11(9) Pr((dAm>dBm) = (1> 1)) HU,11(9)

(For (da,dg) = (0,0) or (da,dg) = (1,1) the lower and upper bound coincide, but for ease

of exposition we treat all four configurations symmetrically.) The Hy ;;(#) and Hy,;;(0) are
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known functions of #. The data allow us to estimate the foru probabilities, which contain
only three separate pieces of information because the probabilities add up to one. Given
these probabilities, the identified set is the set of all # that satisfy all eight inequalities. In
the simple model above, there are four parameters. Even in the case with the lower and

upper bounds for the probabilities coinciding, these would in general not be identified.

We can write this in the GIR form by defining

HUoo( ) (1 - dA) (1 - dB)
(1—da)- (1 —dg) — Hro(0)
Hyom(0) — (1 —da)-dg
(1—da)-dg— Hpoi(0)
Hy10(0) —da - (1 —dp) ’
da-(1—dg) — Hp10(0)
Hya1(0) —da - dp
da-dp — Hp11(0)

W(da,dplaa,ap,04,05) =

so that the model implies that at the true values of the parameters

E [w(dfb dB|OéA, ap, 5A> 53)] > 0.

3. ESTIMATION

Chernozhukov, Hong, and Tamer (2007, CHT) consider, among other things, the case

with moment inequality conditions,

E[y(2,0)] = 0

where 1(z, ) is a known vector of functions, of dimension M, and the unknown parameter

0 is of dimension K. Let © be the parameter space, a subset of R¥.

Define for a vector z the vector (z); to be the component-wise non-negative part, and
(x)— to be the component-wise non-positive part, so that for all z, x = ()_ + (z)4. For a
given M x M non-negative definite weight matrix W, CHT consider the population objective

function

Q(0) = E[v(Z,0)]_ WE[H(Z,0)]-.
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For all € in the identified set, denoted by ©; C ©, we have Q(0) = 0.

The sample equivalent to this population objective function is

Qu(0) = GZW&-,@)) WGZW“@)) -

We cannot simply estimate the identified set as
6r={0e0|Qn0) =0},

The reason is that even for 6 in the identified set @ 5 (#) may be positive with high probability.
A simple way to see that is to consider the standard GMM case with equalities and over-
identification. If E[1)(Z, )] = 0, the objective function will not be zero in finite samples in
the case with over-identification. As a result, ©; can be empty when ©; is not, even in large

samples.

This is the reason CHT estimate the set O as
O;={0c0|Qn0) <an},

where ay — 0 at the appropriate rate. In most regular problems ay = ¢/N, leading to an
estimator ©; that is consistent for © 1, by which we mean that the two sets get close to each

other, in the Hausdorf sense that

sup inf d(0,0") — 0, and sup inf d(6,0') — 0,
6cOr 0'€O; 9’6@1 0€Or

where d(60,0") = ((0 — 0)'(0 — 9’))1/2.
3. INFERENCE: GENERAL ISSUES

There is a rapidly growing literature concerned with developing methods for inference in
partially identified models, including Beresteanu and Molinari (2006), Chernozhukov, Hong,
and Tamer (2007), Imbens and Manski (2004), Rosen (2006), and Romano and Shaikh
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(2007ab). In many cases the partially identified set itself is difficult to characterize. In the
scalar case this can be much simpler. There it often is an interval, [fp5, Oup]. There are by
now a number of proposals for constructing confidence sets. They differ in implementation
as well as in their goals. One issue is whether one wants a confidence set that includes
each element of the identified set with fixed probability, or the entire identified set with that

probability. Formally, the first question looks for a confidence set CI? that satisfies

inf Pr(fe Cli) > a.

0€[0LB,0uB]

In the second case we look for a set CII%:e-%vsl guch that
Pr ([QLB, QUB] C CIZ) > .

The second requirement is stronger than the first, and so generally CI? C CI([fLB’eUB]. Here
we follow Imbens and Manski (2004) and Romano and Shaikh (2007a) who focus on the
first case. This seems more in line with teh traditional view of confidence interval in that
they should cover the true value of the parameter with fixed probability. It is not clear why
the fact that the object of interest is not point-identified should change the definition of a
confidence interval. CHT and Romano and Shaikh (2007b) focus on the second case.

Next we discuss two specific examples to illustrate some of the issues that can arise, in

particular the uniformity of confidence intervals.
3.1 INFERENCE: A MISSING DATA PROBLEM

Here we continue the missing data example from Section 2.1. We have a random sample
of (Wi, W; - Y;), fori = 1,...,N. Y; is known to lie in the interval [0, 1], interest is in
6 = E[Y], and the parameter space is © = [0, 1]. Define yy = E[Y|W = 1], A = E[Y|W = 0],
o> = V(YW = 1), and p = E[IW]. For ease of exposition we assume p is known. The
identified set is

Or=1[p-p,p- i+ (1—p).
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Imbens and Manski (2004) discuss confidence intervals for this case. The key feature of this
problem, and similar ones, is that the lower and upper bounds are well-behaved functionals
of the joint distribution of the data that can be estimated at the standard parametric v N
rate with an asymptotic normal distribution. In this specific example the lower and upper
bound are both functions of a single unknown parameter, the conditional mean p;. The first
step is a 95% confidence interval for p;. Let Ny = >, W; and Y, = >_.W; - Y;/N;. The

standard confidence interval is
CIm = [? —1.960/VN.,Y +1.96 - a/\/ﬁl} .
Consider the confidence interval for the lower and upper bound:
crm — [p- (? —1.96- a/\/ﬁl) D (? +1.96- a/\/ﬁl)} ,
and
Crpmat+(-p) = [p- (? —1.96- a/\/ﬁl) Y (1—p)p- <?+ 1.96 - a/\/ﬁl) F1- p} .

A simple and valid confidence interval can be based on the lower confidence bound on the

lower bound and the upper confidence bound on the upper bound:
Crl = [p- (?— 1.96 - a/\/ﬁl) - <?+ 1.96 - a/\/ﬁl) 41 —p} .

This is generally conservative. For each 6 in the interior of ©, the asymptotic coverage rate

is 1. For 0 € {015, 0y}, the coverage rate is a + (1 — «) /2.

The interval can be modified to give asymptotic coverage equal to o by changing the
quantiles used in the confidence interval construction, essentially using one-sided critical

values,

cr — [p- (? —1.645 - a/\/ﬁl) D (? +1.645 - a/\/ﬁl) t1— p} .
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This has the problem that if p = 0 (when @ is point-identified), the coverage is only a—(1—a).
In fact, for values of p close to zero, the confidence interval would be shorter than the
confidence interval in the point-identified case. Imbens and Manski (2004) suggest modifying

the confidence interval to
CI = [p- <?—CN-0/\/N1) D <?—|—C’N-a/\/ﬁ1) —l—l—p} ,
where the critical value Cy satisfies
<I>(C'N—|—\/N-ﬂ) —®(—Cy) =«
a/\/p
and Cy = 1.96 if p = 0. This confidence interval has asymptotic coverage 0.95, uniformly
over p.

3.2. INFERENCE: MULTIPLE INEQUALITIES

Here we look at inference in the Genereralized Inequality (GIR) setting. The example is a
simplified version of the moment inequality type of problems discussed in CHT, Romano and

Shaikh (2007ab), Pakes, Porter, Ho, and Ishii (2006), Andrews and Guggenberger (2007),

and Hirano and Porter, (2011). Suppose we have two moment inequalities,
E[X] > 46, and E[Y]> 6.

The parameter space is © = [0,00). Let ux = E[X], and uy = E[Y]. We have a random
sample of size N of the pairs (X,Y). The identified set is

@I = [0>min(:uX>:uY)]‘

The key difference with the previous example is that the upper bound is no longer a
smooth, well-behaved functional of the joint distribution. In the simple two-inequality ex-
ample, if px is close to py, the distribution of the estimator for the upper bound is not well

approximated by a normal distribution. Suppose we estimate the means of X and Y by
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X, and Y, and that the variances of X and Y are known to be equal to o?. A naive 95%

confidence interval would be
C? = [0,min(X,Y) + 1.645 - ¢ /N].

This confidence interval essentially ignores the moment inequality that is not binding in the
sample. It has asymptotic 95% coverage for all values of 1y, iy, as long as min(uy, iy ) > 0,
and px # py. The first condition (min(pux,puy) > 0) is the same as the condition in the
Imbens-Manski example. It can be dealt with in the same way by adjusting the critical value

slightly based on an initial estimate of the width of the identified set.

The second condition raises a different uniformity concern. The naive confidence interval
essentially assumes that the researcher knows which moment conditions are binding. This is
true in large samples, unless there is a tie. However, in finite samples ignoring uncertainty
regarding the set of binding moment inequalities may lead to a poor approximation, especially
if there are many inequalities. One possibility is to construct conservative confidence intervals
(e.g., Pakes, Porter, Ho, and Ishii, 2007). However, such intervals can be unnecessarily

conservative if there are moment inequalities that are far from binding.

One would like construct confidence intervals that asymptotically ignore irrelevant in-
equalities, and at the same time are valid uniformly over the parameter space. Bootstrap-
ping is unlikely to work in this setting. One way of obtaining confidence intervals that are
uniformly valid is based on subsampling. See Romano and Shaikh (2007a), and Andrews

and Guggenberger (2007). Little is known about finite sample properties in realistic settings.
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