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Outline 

 

HAC = Heteroskedasticity- and Autocorrelation-Consistent 
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1) HAC/HAR Inference: Overview 

 

The task: valid inference on β when Xt and ut are possibly serially correlated: 

 

Yt = Xtʹβ + ut, E(ut|Xt) = 0, t = 1,…, T  

 

Asymptotic distribution of OLS estimator: 

ˆ( )T    = 

1

1 1

1 1T T

t t t t

t t

X X X u
T T



 

   
   
   
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Assume throughout that WLLN and CLT hold:  

1

1 T

t t

t

X X
T 
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p

  ΣXX  and 
1

1 T

t t

t

X u
T 


d

  N(0, Ω),  

so   ˆ( )T    
d

   1 10, XX XXN     . 

 

ΣXX is easy to estimate, but what is Ω and how should it be estimated? 
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Ω: The Long-Run Variance of Xtut 

 

Let Zt = Xtut. Note that EZt = 0 (because E(ut|Xt) = 0). Suppose Zt is second order 

stationary.  Then 

T  = 
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  (Zt is second order stationary) 
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Standard approach: Newey-West Standard Errors 

 

 HAC/HAR SEs are generically needed in time series regression. The most 

common method (by far) for computing HAC/HAR SEs is to use the Newey-

West (1987) estimator. 

 Newey-West estimator: declining average of sample autocovariances 

ˆ ˆ1
m

NW

j

j m

j

m

 
    

 


 

where  ˆ
j  = 

1

1 ˆ ˆ
T

t t j

t

Z Z
T





  , where ˆ
tZ  = Xt ˆ

tu . 

 

 Rule-of-thumb for m: m = mT = .75T1/3 (e.g. Stock and Watson, Introduction 

to Econometrics, 3rd edition, equation (15.17). 

o This rule-of-thumb dates to the 1990s. More recent research suggests it 

needs updating – and that, perhaps, the NW weights need to be replaced. 

 

Four examples… 



Revised 1/8/15 4-6 
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Source: “USDA Assesses Freeze Damage of Florida Oranges,” Feb. 1, 2011 at 

http://blogs.usda.gov/2011/02/01/usda-assesses-freeze-damage-of-florida-oranges/ 

http://blogs.usda.gov/2011/02/01/usda-assesses-freeze-damage-of-florida-oranges/
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Example 1: OJ prices and Freezing degree-days: 

lnPt = α + β(L)FDDt + ut 

 

Example 2: GDP growth and monetary policy shock: 

     lnGDPt  = α + β(L)
m

t   + ut 

 

Example 3: Multiperiod asset returns: 

     ln(Pt+k/Pt)  = α +βXt + 
t l

tu 
, e.g. Xt = dividend yieldt 

 

Example 4: (GMM) Hybrid New Keynesian Phillips Curve: 

   t = xt + fEtt+1 + bt–1 + t 

   where xt = marginal cost/output gap/unemployment gap and  

   πt = inflation. Suppose γb + γf = 1 (empirically supported); then 

   t = xt + f (Ett+1 - t–1) + t 

   Instruments: {t–1, xt–1, t–2, xt–2,…} 

 ηt could be serially correlated by omission of supply shocks  
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Digression: Why not just use GLS? 

 

The path to GLS: suppose ut follows an AR(1)  

Yt = Xtʹβ + ut,  

ut = ρut-1 + εt, εt serially uncorrelated 

 

This suggests Cochrane-Orcutt quasi-differencing: 

(1-ρL)Yt = ((1-ρL)Xt)ʹ + εt or 
ty = 

tx ʹβ + εt 

(Feasible GLS uses an estimate of ρ – not the issue here) 

 

Validity of the quasi-differencing regression requires E(εt| tx ) = 0: 

E(εt| tx ) = E(ut – ρut-1|xt – ρxt-1) = 0 

 

For general ρ, this requires all the cross-terms to be zero: 

(i) E(ut|xt) = E(ut-1|xt-1) =0  

(ii) E(ut|xt-1) =0 

(iii) E(ut-1|xt) =0 – this condition fails in examples 1-4 
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2) Notational Preliminaries: Three Representations, Three Estimators 
 

The challenge: estimate   Ω = j

j





  

 This is hard: the sum has ’s! 

 

 Draw on the literature on estimation of the spectral density to estimate Ω 

 

 Three estimators of the spectral density: 

(1) Sum-of-covariances:   ˆ sc  = 
1

( 1)

ˆ( )
T

T j

j T

k j


 

   

(2) Weighted periodogram:   ˆ wp  = 
1

ˆ ˆ

( 1)

2 ( ) (2 / )
T

T ZZ
l T

K l I l T 


 

  

(3) VARHAC:      ˆ VARHAC  = 1 1

ˆ ˆ
ˆ ˆˆ(1) (1)uuA A    

 

We follow the literature and focus on (1) and (2)   
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(1) Sum-of-covariances estimator of Ω 

 

Ω = j

j





  

 

Because Zt is stationary and Ω exists, j dies off. This suggests and estimator of 

Ω based a weighted average of the first few sample estimators of : 

 

ˆ sc  = 
1

( 1)

ˆ( )
T

T j

j T

k j


 

   

where ˆ
j  = 

1

1 T

t t j

t

Z Z
T





   (throughout, use the convention Zt = 0, t<1 or t > T)  

kT(.) is the weighting function or “kernel”: 

 Example:  kT(j) = 1 – |j/mT| = “triangular weight function” =  “Bartlett kernel” 

= “Newey-West weights” with truncation parameter mT  

 We return to kernel and truncation parameter choice problem below 
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(2) Smoothed periodogram estimator of Ω 

 

The periodogram as an inconsistent estimator of the spectral density: 

 Fourier transform of Zt at frequency ω: dZ(ω) = 
1

1

2

T
i t

t

t

Z e
T









   

 The periodogram is  IZZ(ω) = ( ) ( )Z Zd d    

 

Asymptotically, IZZ(ω) is distributed as SZ(0)(
2

2 /2) (scalar case) 

 

 Mean: 

E IZZ(ω) = E( ( ) ( )Z Zd d  )  

= 

2

1

1 1

2

T
i t

t

t

E Z e
T



 

   

= 
1

2

i j

j

j

e 








  = SZ(ω) 
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 Distribution (Brillinger (1981), Priestley (1981), Brockwell and Davis 

(1991)):  

dZ(ω) = 
1

1

2

T
i t

t

t

Z e
T



 

  

 = 
1 1

1 1 1
cos sin

2

T T

t t

t t

Z t i Z t
T T

 
  

 
 

 
   

= z1 + iz2, say, where z1 and z2 are i.i.d. mean zero normal 

So 

IZZ(ω) = ( ) ( )Z Zd d   = 
2 2

1 2z z   
d

  SZ(ω)(
2

2 /2) 

 

 For ω evaluated at ωj = 2πj/T, j = 0, 1,…, T, dZ(ωj) and dZ(ωk) are 

asymptotically independent (orthogonality of sins and cosines). 

 The weighted periodogram estimator averages the periodogram near 

zero: 

ˆ wp  = 
1

( 1)

2 ( ) (2 / )
T

T ZZ

l T

K l I l T 


 

   
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(3) VAR-HAC estimator of Ω 

Approximate the dynamics of Zt by a vector autoregression:   A(L)Zt = ut 

 

so Zt has the vector MA representation,   Zt = A(L)-1ut 

Thus 

SZ(ω) =    
111

2

i i

uuA e A e 



 
   

so 

SZ(0) =    
1 11

1 1
2

uuA A


     

 

This suggests the VAR-HAC estimator (Priestley (1981), Berk (1974); den Haan 

and Levin (1997), 

 

ˆ VARHAC  = 1 1

ˆ ˆ
ˆ ˆˆ(1) (1)uuA A   

 

where ˆ(1)A   and ˆ ˆ
ˆ

uu  are obtained from a VAR estimated using ˆ
tZ . 
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3) The PSD Problem and Equivalence of Sum-of-Covariance and 

Spectral Density Estimators 

 

Not all estimators of Ω are positive semi-definite – including some natural ones. 

Consider the m-period return problem – so under the null β = 0, ut is a MA(m-1). 

This suggests using a specific sum of covariances estimator: 

   = 
1

( 1)

ˆ
m

j

j m



 

 . 

But   isn’t psd with probability one! Consider m = 2 and the scalar case: 

   = 
1

1

ˆ
j

j




  = 1
0

0

ˆ
ˆ 1 2

ˆ






 
 

 
 < 0 if 1

0

ˆ

ˆ




 = first sample autocorrelation < -0.5 

 

Solutions to the PSD problem 

 Restrict kernel/weight function so that estimator is PSD with probability 

one (standard method) 

 Hybrid, e.g. use   but switch to PSD method if   isn’t psd – won’t pursue 

(not used in empirical work) 
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Choice of kernel so that ˆ sc  is psd w.p.1 

 

Step 1: 

Note that ˆ wp  is psd w.p.1 if the frequency-domain weight function is non-

negative. Recall that ˆ wp  is psd if λʹ ˆ wp λ  0 for all λ. Now 

 

λʹ ˆ wp λ =  
1

( 1)

2 ( ) (2 / )
T

T ZZ

l T

K l I l T   


 

  

= 
1

( 1)

2 ( ) ( ) ( )
T

T Z l Z l

l T

K l d d    


 

  
 

  

= 
1

2

( 1)

2 ( ) ( )
T

T Z l

l T

K l d  


 

   0 

with probability 1 if KT(l)  0 for all l. 

 KT(l)  0, all l, is necessary and sufficient for ˆ wp  to be psd 
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Step 2:  ˆ wp  and ˆ sc  are equivalent! 

ˆ wp  = 
1

( 1)

2 ( ) (2 / )
T

T ZZ

l T

K l I l T 

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2 / 2 /
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 = 
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 = 
1

( 1)

ˆ ( )
T

j T

j T

k j


 

  = ˆ sc , where kT(j) = 
1

(2 / )

( 1)

( )
T

i j T l

T

l T

K l e 



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  

Result: ˆ sc  is psd w.p.1 if and only if kT is the (inverse) Fourier transform of a 

nonnegative frequency domain weight function KT. Also, kT is real if KT is 

symmetric (then kT(j) =  
1

1
(0) 2 ( )cos (2 / )

T

T Tl
K K l j T l




  ). 
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Kernel and bandwidth choice 

 

The class of estimators here is very large. What is a recommendation for 

empirical work? 

 

Two distinct questions: 

(i) What kernel to use? 

(ii) Given the kernel, what bandwidth to use? 

 

It turns out that problem (ii) is more important in practice than problem (i). 

 

Some final preliminaries 

 Closer look at four kernels: 

o Newey-West (triangular in time domain) 

o Flat in time domain 

o Flat in frequency domain 

o Epinechnikov (Quadratic Spectral) – certain optimality properties 

 Link between time domain and frequency domain kernels 
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Flat kernel in frequency domain 

In general: 

ˆ wp  = 
1

( 1)

2 ( ) (2 / )
T

T ZZ

l T

K l I l T 


 

  

Flat kernel: 

1
 if | |

2 1( )

0            if | |

T

TT

T

l B
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


 
 

  

Then ˆ wp  becomes 

ˆ̂
  = 

2 2

2 1

T

T

B

ZZ

l BT

l
I

B T

 
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 
 

  
  
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The time-domain kernel corresponding to the flat frequency-domain kernel is  

kT(j) = 
1

(2 / )

( 1)

( )
T

i j T l

T

l T

K l e 




 

   

= (2 / )1

2 1

T

T

B
i j T l

l BT

e
B




   

= … T    
sin(2 / )

2 /

T

T

j m

j m




 , where mT = T/BT 

 

Important points: 

 mTBT = T: using few periodogram ordinates corresponds to using 

many covariances 

 Flat in frequency domain (which is psd) produces some negative 

weights in the sum-of-covariance kernel 
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Three PSD kernels in pictures 

 

 

Kernel k(x), x = |j|/m K(u), u = |l|/B 

Newey-West 1-|x| if |x|  1  

Parzen 1 – 6x2 + 6|x|3 if |x|<.5 

2(1-|x|)3 if .5 |x|  1 

 

Flat spectral  1 if |u|  1 
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4) Three Approaches to the Bandwidth Problem 

 

As in all nonparametric problems, there is a fundamental tradeoff between bias 

and variance when choosing smoothing parameters. 

 

 In frequency domain: 

ˆ wp  = 2 ( ) (2 / )
B

T ZZ

l B

K l I l T 


  

Larger B decreases variance, but increases bias 

 In time domain: 

ˆ sc  = ˆ( )
m

T j

j m

k j


  

Larger m increases variance, but decreases bias 

 Recall mTBT = T 

 

How should this bias-variance tradeoff be resolved? 
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First generation answer: 

Obtain as good an estimate of Ω as possible (Andrews [1991]) 

 “Good” means: 

o psd with probability 1 

o consistent (HAC) 

o minimize mean squared error:  

MSE(̂) = E(̂  - Ω)2 = bias(̂)2 + var(̂ )  

o This yields a bandwidth mT that increases with, but more slowly than, T  

 Practical issue:  

o if true spectral density is flat in neighborhood of zero, you should include 

many periodogram ordinates (large B); equivalently, if true j’s are small 

for j0 then you should include few ˆ
j ’s 

o But, you don’t know the true spectral density!!  

o So, in practice you can estimate and plug in, or use a rule-of-thumb. 

o The m = .75T1/3
 rule of thumb assumes Xt and ut are AR(1) with 

coefficient 0.5 

 Then use asymptotic chi-squared critical values to evaluate test statistics. 
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Big problem with the first generation answer 

 

 The resulting estimators do a very bad job of controlling size when the errors 

are in fact serially correlated, even with a modest amount of serial correlation  

o den Haan and Levin (1997) provided early complete Monte Carlo 

assessment 

o We will look at MC results later 

 

 Why? The key insight is that the min MSE problem isn’t actually what we 

are interested in – we are actually interested in size control or equivalently 

coverage rates of confidence intervals. 

o For coverage rates of confidence intervals, what matters is not bias2, but 

bias (Velasco & Robinson [2001]; Kiefer & Vogelsang [2002]; Sun, 

Phillips, and Jin (2008)) 

 

 Practical implication: use fewer periodogram ordinates (smaller B) i.e. more 

autocovariances (larger m). 
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Approach #2: Retain consistency, but minimize size distortion 

 

Sketch of asymptotic expansion of size distortion 

for details see Velasco and Robinson (2001), Sun, Phillips, and Jin (2008) 

 

Consider the case of a single X and the null hypothesis β = β0. Then ut = Yt – Xtβ0, 

and Zt = Xtut, so the Wald test statistic is, 

WT = 
 

2
1/2

1

ˆ

T

tT Z




  

The probability of rejection under the null thus is, 

 

Pr[WT < c] = 
 

2
1/2

1
Pr

ˆ

T

tT Z
c

 
 


 
  


 

where c is the asymptotic critical value (3.84 for a 5% test). The size distortion is 

obtained by expanding this probability… 
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First, note that 
1/2

1

T

tT Z

  and ̂  are asymptotically independent. Now 

Pr[WT < c] = 
 

2
1/2

1
Pr

ˆ

T

tT Z
c

 
 


 
  


 = 

 
2

1/2

1
ˆ

Pr

T

tT Z
c

 
 


  
  


 

= 
 

2
1/2

1
ˆ

ˆPr

T

tT Z
E c

  
  

        


 

 
ˆ

E F c
  
  

   

, where F = chi-squared c.d.f 

= 

2
ˆ ˆ1

( ) ( ) ( ) ...
2

E F c cF c cF c
       

       
      

 

so the size distortion approximation is, 

Pr[WT < c] – F(c)  
2

ˆ ˆ( ) 1 ( )
( ) ( )

2

bias MSE
cF c cF c

 
 

 
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or 

Pr[WT < c] – F(c)  
2

ˆ ˆ( ) 1 var( )
( ) ( )

2

bias
cF c cF c

 
 

 
 + smaller terms 

 

Thus minimizing the size distortion entails minimizing a linear combination of 

bias and variance – not bias2 and variance 

 

  



Revised 1/8/15 4-33 

Approach #3: “Fixed b” asymptotics 

 

 Drop consistency – but use correct critical values that account for additional 

variance (HAR) 

o This decision has a cost – consistency provides first-order asymptotic 

efficiency of tests – but this isn’t worth much if you don’t have size 

control  

 

 Fixed b corresponds in our notation to fixed B (or, equivalently, to m  T) 

o The fixed-b calculations typically use a FCLT approach, see Kiefer-

Vogelsang (2002), Müller (2007), Sun (2013). 

o We will sidestep the FCLT results by using classical results from the 

spectral density estimation literature for the flat kernel in the frequency 

domain. 
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5) Application to Flat Kernel in the Frequency Domain 

 

Consider scalar Xt and flat-kernel in frequency domain: 

ˆ̂
  = ˆ ˆ

2 2

2

B

ZZ
l BT

l
I

B T

 



 
 
 

   = ˆ ˆ

1

2 2B

ZZ
lT

l
I

B T

 



 
 
 

  

 This adjusts the kernel to drop ω = 0 since ˆ ˆ (0)
ZZ

I  = 0 (OLS residuals are 

orthogonal to X)  

 The second equality holds because  

(i) in scalar case, IZZ(ω) = IZZ(-ω), and  

(ii) ˆ ˆ (0)
ZZ

I  = 0 because ˆ (0)
Z

d  = 0 ( ˆ
tu  are OLS residuals) 

 This kernel plays a special historical role in frequency domain estimation. 

 

We now provide explicit results for the three approaches: 

i. Fixed B (this kernel delivers asymptotic t2B inference!) 

ii. Min MSE 

iii. Min size distortion 
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i. Fixed b 

 

 For this kernel, you don’t need to use FCLT approach – the result for its 

fixed-B distribution is very old and is a cornerstone of classical theory of 

frequency domain estimation (e.g. Brillinger (1981)). For Xt, ut stationary, 

with suitable moment conditions, 

(a) 
ˆ̂
  

d

  Ω  
2

2( / 2 )B B , that is,  

ˆ̂
  ~ Ω  

2

2( / 2 )B B  

(b) Moreover 
ˆ̂
  is asymptotically independent of 

1/2

1

T

tT Z

  ~ N(0,Ω)  

 It follows that, for B fixed, the t statistic has an asymptotic t2B distribution: 

  t = 

1/2

1

1/2ˆ

T

tT Z




  

d

  t2B 

 

 This result makes the size/power tradeoff clear – using t2B distribution has 

power loss relative to asymptotically efficient normal inference – but the 

power loss is slight for B  10 (say).  
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Sketch of (a) and (b): 

Consider scalar case, and recall that  ˆ ˆ 0
ZZ

I  = 0 (OLS residuals), so 

(a) Distribution of 
ˆ̂
  with B fixed: 

ˆ̂
  = ˆ ˆ

1

2 2B

ZZ
l

l
I

B T

 



 
 
 

   

~ 
1

2 2B

ZZ l

l

l
S

B T

 




 
 
 

 , where l ~ 
2

2 / 2   

=  
2

1

2 1 2
(0) 0 ...

2

B

ZZ ZZ l

l

l
S S

B T

 




      
  

  

 
1

2
(0)

B

ZZ l

l

S
B






  

= 2πSzz(0) 
2

2( / 2 )B B   

= Ω
2

2( / 2 )B B  

(b) 
ˆ̂
  is independent of 

1/2

1

T

tT Z

 . This follows from the result above that 

dZ(ωl) and dZ(ωk) are asymptotically independent, applied here to dZ(0) (the 

numerator) and dZ at other ωl’s (the denominator) 
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ii. and iii. – Preliminaries for the asymptotic expansions 

Bias 

 ˆ̂
E    = ˆ ˆ

1

2 2
(0)

B

ZZZZ
l

l
E I S

B T

 



  
  

  
  


1

2 2
(0)

B

ZZ ZZ

l

l
S S

B T

 



  
  

  
  

=      
2

1

2 2 1 2
0 0 0 ... (0)

2

B

ZZ ZZ ZZ ZZ

l

l l
S S S S

B T T

  



           
    

  

=      
2

1

2 2 1 2
0 0 0 ... (0)

2

B

ZZ ZZ ZZ ZZ

l

l l
S S S S

B T T

  



           
    

  

Because SZZ(ω) = SZZ(-ω), SZZʹ(0) = 0, and after dividing by Ω, 

 ˆ̂
E     =  

2

1

2 1 2
0 2 (0)

2

B

ZZ ZZ

l

l
S S

B T

 




     
  

  = 

2
1

2

B

d T

 
 
 

  

where d = 
2

3 (0)

4 (0)

ZZ

ZZ

S

S 
 . 
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Variance 

2

ˆ̂
var( )


 = 

2

ˆ ˆ

1

2 2
var

B

ZZ
l

l
I

B T

 



  
  

  
  

  
2

2

2
1

4 2
var 2 (0)

B

ZZ ZZ

l

l
I S

B T

 




  
  
  

  

=

22
2 2

2
1

4 2
4 (0)

B

ZZ ZZ

l

l
S S

B T

 




 
 
 

  = … = 
1

B
 

(keeping only the leading term in the Taylor series expansion). 

 

Summary: relative bias and relative variance: 

2

ˆ̂
var( )


 = 

1

B
   and   

ˆ̂
( )E  


 = 

2
1

2

B

d T

 
 
 

, where d = 
2

3 (0)

4 (0)

ZZ

ZZ

S

S 
 

Special case: Zt is AR(1) with autoregressive parameter α0: 

d = 
2

2

3 (1 )

8



 


  
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ii. Min MSE 

MinB MSE(
ˆ̂
 ) = MinB bias2(

ˆ̂
 ) + var(

ˆ̂
 ) 

= MinB 

2
2

1

2

B

d T

  
  

  

 + 
2

B


 

Solution: 

ˆ( )MinMSE

TB  =  
2/5 4/5d T , where d = 

2

3 (0)

4 (0)

ZZ

ZZ

S

S 
 = 

2

2

3 (1 )

8



 


  

 

iii. Min Size Distortion 

MinB Pr[WT < c] – F(c)  MinB 
2

ˆ ˆ( ) 1 var( )
( ) ( )

2

bias
cF c cF c

 
 

 
 

Solution (for α > 0): 

1 ˆ( )stOrderSize

TB  = 

1/3

2/3( )

2 ( )

cF c
d T

F c

 
  

 

where c = 3.84 for 5% tests and F is 
2

1   cdf. 
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Optimal HAC Bandwidths for flat spectral kernel: 

Zt AR(1) with parameter α 

 T = 100 T = 800 

Minimize: MSE Size 

distortion 

MSE Size 

distortion 

α B m B m B m B m 
.1 43 5 25 8 131 6 62 13 
.2 30 7 18 11 90 9 45 18 
.3 23 9 14 14 69 12 36 22 
.4 18 11 12 17 54 15 30 27 
.5 14 14 10 21 43 19 25 33 
.6 11 18 8 25 33 24 20 40 
.7 8 24 6 32 25 32 16 51 
.8 6 35 5 44 17 47 11 70 
.9 3 65 3 73 9 85 7 116 

Notes: b = bandwidth in frequency domain, m = lag truncation parameter in 

time domain.  

o The rule-of-thumb m = .75T1/3 corresponds to m = 4 for T = 100 and m = 

7 for T = 800 (however not directly comparable since the rule-of-thumb 

is for the Newey-West kernel). 



Revised 1/8/15 4-41 

6) Monte Carlo Comparisons 

 

Illustrative results: 

 Design: Xt = 1, ut AR(1)  

 Flat spectral kernel (so that t2B inference is asymptotically valid under fixed-b 

asymptotics) 

 Two bandwidth choices: min MSE and minimize size distortion 

 Bandwidths chosen using plug-in formula based on estimated α (formula 

given above, with ̂  replacing α) 

 Additional MC results: den Haan and Levin (1997), Kiefer and Vogelsang 

(2002), Kiefer, Vogelsang and Bunzel (2000), Sun (2013). 
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7) Panel Data and Clustered Standard Errors 

 

Clustered standard errors are an elegant solution to the HAC/HAR problem in 

panel data. 

 Although the original proofs of clustered SEs used large N and small T 

(Arellano [2003]) in fact they are valid for small N if T is large (Hansen 

[2007], Stock and Watson [2008]), but using t or F (not normal or chi-

squared) inference. 

 The standard fixed effects panel data regression model 

 

Yit = αi + βʹXit + uit, i = 1,…,N, t = 1,…, T, 

 

where E(uit|Xi1,…, XiT, αi) = 0 and  uit is uncorrelated across i but possibly 

serially correlated, with variance that can depend on t; assume i.i.d. over i 

 The discussion here considers the special case Xt = 1– the ideas generalize 
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Clustered SEs with Xt = 1 

 

Yit = αi + β + uit, i = 1,…,N, t = 1,…, T, 

 

The fixed effects (FE) estimator is  

ˆ FE  = 
1 1

1 N T

it

i t

Y
NT  

   

Thus 

ˆ( )FENT    = 
1 1

1 1N T

it

i t

u
N T 

 
 
 

    

 = 
1

1 N

i

i

v
N 

 , vi = 
1

1 T

it

t

u
T 

  

 

For fixed N and large T, vi 

d

  N(0,Ω), i = 1,…, N (i.i.d.). Thus the problem is 

asymptotically equivalent to having N observations on vi, which is i.i.d. N(0,Ω). 
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Xt = 1 case, continued: 

Clustered variance formula:    ˆ cluster   = 
2

1

1
ˆ ˆ( )

N

i

i

v v
N 

 , 
îv  =   

1

1
ˆ

T

it

t

u
T 

  

By standard normal/t arguments: ˆ cluster  
d

  
2

1N

N

 
 = 

2

1 1

1

N N

N N

  



   

and         t = 0
ˆ

ˆ

FE

cluster

 


 

d

  1
1

N

N
t

N



  

 

 Note the complication of the degrees of freedom correction – this is because 

the standard definition of ˆ cluster  has N, not N-1, in the denominator. 

 Extension to multiple X: The F-statistic testing p linear restrictions on β, 

computed using ˆ cluster , is distributed ,p N p

N
F

N p



 

 For N very small, the power loss from tN-1 inference can be large – so for 

very small N it might be better to use HAC/HAR methods, not clustered SEs 

(not much work has been done on this tradeoff, however).  
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8) Summary 

 

 Applications of HAC/HAR methods are generic in time series. GLS is 

typically not justified because it requires strict exogeneity (no feedback from 

u to X) 

 Choice of the bandwidth is critical and reflects a tradeoff between bias and 

variance. 

 The rule-of-thumb m = .75T1/3 uses too few autocovariances (m is too small) 

– overweights variance at the expense of bias 

 However, inference becomes complicated when large m (small B) is used, 

because this increases the variance of ̂ . 

 In general (including for N-W weights), fixed-b inference is complicated and 

requires specialized tables (e.g. Kiefer-Vogelsang inference). 

 However, in the special case of the flat spectral kernel, asymptotically valid 

fixed-B inference is based on t2B. Initial results for size control (and power) 

using this approach are promising. 
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Outline 

 

1) What is weak identification, and why do we care? 

2) Classical IV regression I: Setup and asymptotics 

3) Classical IV regression II: Detection of weak instruments 

4) Classical IV regression III: Hypothesis tests and confidence intervals 

5) Classical IV regression IV: Estimation 

6) GMM I: Setup and asymptotics 

7) GMM II:  Detection of weak identification 

8) GMM III:  Hypothesis tests and confidence intervals 

9) GMM IV:  Estimation 

10) Many instruments 
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Introductory Application  

 

 
What is the price elasticity of demand for gasoline? 
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Data: 

 48 continental U.S. states, January 1989-March 2008, monthly 

 volume, pump prices (nominal and real), state taxes, unemployment 

rates 

 Source: Davis and Kilian, J. Appl. Econometrics (2011), augmented 

with unemployment rates (nicely documented replication files at 

http://qed.econ.queensu.ca/jae/2011-v26.7/davis-kilian/) 

  

http://qed.econ.queensu.ca/jae/2011-v26.7/davis-kilian/
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All regressions in first differences with fixed effects (why)? 

 
* (1) OLS, growth rates, HR SEs; 

reg dlvolume dlrpumpprice unemployment i.statefip i.time, r;  

*; 

* (2) OLS, growth rates, cluster SEs; 

reg dlvolume dlrpumpprice unemployment i.statefip i.time, cluster(statefip);  

*; 

* (3) 2SLS, contemporaneous pump price only; 

ivregress 2sls dlvolume unemployment (dlrpumpprice = drstatetax_tot)  

    i.statefip i.time, cluster(statefip);  

*; 

* (4) 2SLS, one lead and 0-2 lags of pump prices; 

ivregress 2sls dlvolume unemployment (F.dlrpumpprice L(0/2).dlrpumpprice  

  = F.drstatetax_tot L(0/2).drstatetax_tot) i.statefip i.time, 

  cluster(statefip);  

lincom F.dlrpumpprice + dlrpumpprice + L1.dlrpumpprice + L2.dlrpumpprice ; 

*; 

* (5) 2SLS, one lead and 0-3 lags of pump prices; 

ivregress 2sls dlvolume unemployment (F.dlrpumpprice L(0/3).dlrpumpprice  

  = F.drstatetax_tot L(0/3).drstatetax_tot) i.statefip i.time, 

  cluster(statefip);  

lincom F.dlrpumpprice + dlrpumpprice + L1.dlrpumpprice + L2.dlrpumpprice 

     + L3.dlrpumpprice; 
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. reg dlvolume dlrpumpprice unemployment i.statefip i.time, r; 

 

Linear regression                                      Number of obs =   11040 

                                                       F(278, 10761) =   37.02 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.4917 

                                                       Root MSE      =  .04481 

 

------------------------------------------------------------------------------ 

             |               Robust 

    dlvolume |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

dlrpumpprice |  -.1960045    .019535   -10.03   0.000    -.2342967   -.1577123 

unemployment |  -.0009202   .0006881    -1.34   0.181    -.0022689    .0004286 

             | 

 ------------------------------------------------------------------------------ 
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.  reg dlvolume dlrpumpprice unemployment i.statefip i.time, cluster(statefip); 

 

Linear regression                                      Number of obs =   11040 

                                                       F( 46,    47) =       . 

                                                       Prob > F      =       . 

                                                       R-squared     =  0.4917 

                                                       Root MSE      =  .04481 

 

                              (Std. Err. adjusted for 48 clusters in statefip) 

------------------------------------------------------------------------------ 

             |               Robust 

    dlvolume |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

dlrpumpprice |  -.1960045   .0399006    -4.91   0.000    -.2762742   -.1157348 

unemployment |  -.0009202   .0002402    -3.83   0.000    -.0014033    -.000437 

------------------------------------------------------------------------------ 
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. ivregress 2sls dlvolume unemployment (dlrpumpprice = drstatetax_tot)  

 

Instrumental variables (2SLS) regression               Number of obs =   11040 

                                                       Wald chi2(278)=22597.94 

                                                       Prob > chi2   =  0.0000 

                                                       R-squared     =  0.4593 

                                                       Root MSE      =  .04562 

 

                              (Std. Err. adjusted for 48 clusters in statefip) 

------------------------------------------------------------------------------ 

             |               Robust 

    dlvolume |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

dlrpumpprice |  -.7157622   .2239263    -3.20   0.001     -1.15465   -.2768747 

unemployment |  -.0008435   .0002272    -3.71   0.000    -.0012888   -.0003983 

             | 

------------------------------------------------------------------------------ 

  



Revised 1/8/15 5/6-13 

 

> ivregress 2sls dlvolume unemployment (F.dlrpumpprice L(0/2).dlrpumpprice = 

F.drstatetax_tot L(0/2).drstatetax_tot)  

>   i.statefip i.time, cluster(statefip); 

 

Instrumental variables (2SLS) regression               Number of obs =   10896 

                                                       Wald chi2(278)=12805.00 

                                                       Prob > chi2   =  0.0000 

                                                       R-squared     =  0.4565 

                                                       Root MSE      =  .04562 

                              (Std. Err. adjusted for 48 clusters in statefip) 

------------------------------------------------------------------------------ 

             |               Robust 

    dlvolume |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

dlrpumpprice | 

         F1. |   .3718785   .1418534     2.62   0.009     .0938509    .6499061 

         --. |  -.7353892    .233089    -3.15   0.002    -1.192235   -.2785432 

         L1. |   .1886337   .1439397     1.31   0.190     -.093483    .4707504 

         L2. |  -.1230229   .1116925    -1.10   0.271    -.3419363    .0958905 

unemployment |  -.0009755   .0002183    -4.47   0.000    -.0014034   -.0005476 

------------------------------------------------------------------------------ 
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.    lincom F.dlrpumpprice + dlrpumpprice + L1.dlrpumpprice + L2.dlrpumpprice ; 

 

 ( 1)  F.dlrpumpprice + dlrpumpprice + L.dlrpumpprice + L2.dlrpumpprice = 0 

 

------------------------------------------------------------------------------ 

    dlvolume |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |  -.2978998   .1886253    -1.58   0.114    -.6675985    .0717989 

------------------------------------------------------------------------------ 
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. * 2SLS, one lead and 0-3 lags of pump prices; 

. ivregress 2sls dlvolume unemployment (F.dlrpumpprice L(0/3).dlrpumpprice 

dlrpumpprice = F.drstatetax_tot L(0/3).drstatetax_tot)  

>   i.statefip i.time, cluster(statefip); 

 

Instrumental variables (2SLS) regression               Number of obs =   10848 

                                                       Wald chi2(278)=11495.52 

                                                       Prob > chi2   =  0.0000 

                                                       R-squared     =  0.4576 

                                                       Root MSE      =  .04557 

                              (Std. Err. adjusted for 48 clusters in statefip) 

------------------------------------------------------------------------------ 

             |               Robust 

    dlvolume |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

dlrpumpprice | 

         F1. |   .3724716   .1421469     2.62   0.009     .0938689    .6510744 

         --. |  -.7289675   .2341491    -3.11   0.002    -1.187891   -.2700438 

         L1. |    .186246   .1435427     1.30   0.194    -.0950925    .4675846 

         L2. |  -.1219444   .1117365    -1.09   0.275     -.340944    .0970552 

         L3. |  -.0012995   .1009509    -0.01   0.990    -.1991596    .1965605 

unemployment |  -.0008956   .0002608    -3.43   0.001    -.0014068   -.0003844 

------------------------------------------------------------------------------ 
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.    lincom F.dlrpumpprice + dlrpumpprice + L1.dlrpumpprice + L2.dlrpumpprice + 

L3.dlrpumpprice; 

 

 ( 1)  F.dlrpumpprice + dlrpumpprice + L.dlrpumpprice + L2.dlrpumpprice + 

L3.dlrpumpprice = 0 

 

------------------------------------------------------------------------------ 

    dlvolume |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |  -.2934937   .1789459    -1.64   0.101    -.6442212    .0572338 

------------------------------------------------------------------------------ 

 

 

-0.293  -0.30 = 2.8%  1200 mmt = + 105 mmt/year 
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Brief Review of IV Regression and Sources of Exogeneity 

 

IV regression with one included endogenous variable Y, no included exogenous 

regressors: 

 

yt = 0 + 1Yt + ut 

 

 The problem: corr(Y,u)  0, possibly because of simultaneous causation, 

omitted variable bias, or errors in variables. 

o If corr(Y,u)  0 then OLS is biased and inconsistent 

 

 Terminology:  endogeneity and exogeneity 

o An endogenous variable is one that is correlated with u  

o An exogenous variable is one that is uncorrelated with u  
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The IV Estimator, one Y and one Z 

yt = 0 + 1Yt + ut 

 

Two conditions for a valid instrument 

1. Instrument relevance:   corr(Z,Y)  0 

2. Instrument exogeneity:   corr(Z,u) = 0 

 

By instrument exogeneity,  

cov(u,Z) = cov(y – 0 – 1Y,Z) = 0 

so           cov(y,Zi) =  1cov(Y,Z) 

By instrument relevance, 1 = 
cov( , )

cov( , )

y Z

Y Z
 

 

The IV (2SLS) estimator:   
1

ˆ IV  = 
yZ

YZ

s

s
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Multiple instruments:  Zi is k  1 

For all vectors a, by instrument exogeneity, 

cov(u,aZ) = cov(y – 0 – 1Y,aZ) = 0 

or 

    cov(y,aZ) =  cov(1Y,aZ)  = 1cov(Y,aZ) 

 

By instrument relevance, 1 = 
cov( , )

cov( , )

y

Y





a Ζ

a Z
 

 

Which choice of a is the best?   

 when k > 1, different IV estimators are available 

 What is the value of a that results in the most efficient (lowest variance) 

estimator asymptotically?   

 Result is TSLS (or others! LIML, k-class,…) 
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Two Stage Least Squares (TSLS) 

 

Suppose you have k valid instruments, Z. 

Stage 1: Regress Y on Z, obtain the predicted values Ŷ  

Stage 2: Regress y on Ŷ ; the coefficient on Ŷ  is  

the TSLS estimator, 
1

ˆTSLS . 

 

 Intuitively, the first stage isolates part of the variation in Y that is uncorrelated 

with u 

 In terms of the previous slide, aZ is constructed to be the linear combination of 

instruments that is the predicted value of Y 

 This is the linear combination that maximizes the sample correlation between 

Y and aZ.  
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The General IV Regression Model 

Extension to: 

 multiple endogenous regressors (Y1,…,Ym) 

 multiple instrumental variables (Z1,…,Zk) 

 multiple included exogenous variables (W1,…,Wr) 

 

Why use multiple instruments? 

 More relevant instruments means more variation in Ŷ  which means smaller 

variance 

 

Why include the W’s? 

 For instrument exogeneity, you need corr(u,Z) = 0.  The definition of u 

depends on what variables are included – u might only be uncorrelated with 

Z, conditional on the W’s (you still need control variables!) 
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Terminology: identification & overidentification 

 In general, a parameter is identified if different values of the parameter produce 

different distributions of the data. 

 In IV regression, the coefficients 1,…, m are: 

o exactly identified if #IVs = k = m. 

o overidentified if k > m 

Then there are more than enough instruments – you can test the 

validity of redundant instruments (more on this shortly) 

o underidentified if k < m 

Then there are too few instruments – you need more! 

 

More terminology: strong and weak instruments 

 Strong instruments: partial correlation corr(Z,Y|W) is “large” 

 Weak instruments: partial correlation corr(Z,Y|W) is “small” 
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The IV regression model in matrix form 

 

y = Y + W + U  

 

where y is n  1, Y is n  m, and W is n  r and the n  k  matrix of k 

instruments is Z 

 

TSLS in general IV regression  

Stage 1: Regress Y on Z and W to obtain the predicted 

values Ŷ  

Stage 2: Regress y on Ŷ  and W; the coefficient vector on Ŷ  is  

the TSLS estimator, ˆTSLS  
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Conventional asymptotic results for the TSLS estimator: 

 

 If the instruments are strong and exogenous, plus some moments exist, then 

TSLS is consistent (
1

ˆTSLS  
p

 1) 

 If the data are i.i.d. (e.g. cross-sectional) and homoskedastic*, then TSLS 

estimator is asymptotically normal: 

n ( 1
ˆTSLS  – ) 

d

 N(0, TSLS) 

where 

TSLS =  
1

1 2

u




YZ ZZ ZYQ Q Q  

 

where QYZ = E(YtZt), etc. 

 

*Homoskedasticity: E(
2

tu |Zt) = 
2

u  = constant 
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n (
1

ˆTSLS  – ) 
d

 N(0, TSLS) 

TSLS =  
1

1 2

u




YZ ZZ ZYQ Q Q  

 

 Note that 
1

YZ ZZ ZYQ Q Q  is the (population) variance of the predicted value of Y 

from the first stage regression – so the higher the first-stage R2, the smaller the 

TSLS variance 

 Because of the asymptotic normal distribution, inference is conventional – 

confidence intervals are  1.96 standard errors, F-tests are justified, etc. 

 The linear combination of Z (aZ in previous slide) estimated in the first stage 

is the “right” one –TSLS is asymptotically efficient (under strong instruments) 

 Heteroskedasticity: 

o To guard against heteroskedasticity in TSLS, use “heteroskedasticity-

robust” (HR) standard errors  

o Under heteroskedasticity, IV is no longer efficient – the efficient 

estimator is the efficient GMM estimator (more on this shortly) 
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Checking Overidentifying Restrictions: the J-test 

 

Consider the simplest case: 

 

yt = 0 + 1Yt + ut,   

 

 Suppose there are two valid instruments:  Z1t, Z2t 

 Then you could compute two separate TSLS estimates. 

 Intuitively, if these 2 TSLS estimates are very different from each other, 

then something must be wrong: one or the other (or both) of the 

instruments must be invalid. 

 The J-test of overidentifying restrictions makes this comparison in a 

statistically precise way. 

 This can only be done if #Z’s > #Y’s (overidentified). 
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Sources of Exogeneity (where do instruments come from?) 

 

General comments 

The hard part of IV analysis is finding valid instruments 

 Traditional (simultaneous equation) method: “variables that are excluded 

from the equation of interest and enter another equation in the system” 

o e.g. supply shifters that do not affect demand 

  More general (contemporary) view: look for exogenous variation (Z) that is 

“as if” randomly assigned (does not directly affect y) but affects Y. 

 Formally these are the same but they suggest different empirical strategies.   
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 Stinebrinckner and Stinebrinckner (2008) is a great example for teaching… 

o Individual student data, 210 (first semester freshman wave of a multiyear 

panel data set), Berea College (Kentucky), 2001 

o Y = first-semester GPA 

o X = average study hours per day (time use survey) 

o Z = 1 if roommate brought video game, = 0 otherwise 
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1) What is weak identification, and why do we care? 

 

1a) Four examples 

 

Example #1:  Philip G. Wright and the supply and demand for flaxseed 

 

ln(
flaxseed

iQ ) = 0 + 1ln(
flaxseed

iP ) + ui 

 

The first application of IV regression was to estimate the supply elasticity of 

flaxseed. 

 

Flaxseed was used around the turn of the century for production of linseed oil – 

used (pre-petroleum derivatives) as a paint binder or wood finish.  

 

Philip G. Wright (1928), “The Tariff on Animal and Vegetable Oils,” App. B. 
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Figure 4, p. 296, from P.G. Wright, Appendix B (1928): 
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Philip Wright (1861-1934) 

Economist, teacher, poet 

MA Harvard, Econ, 1887 

Lecturer, Harvard, 1913-1917 

Sewall Wright (1889-1988) 

genetic statistician 

ScD Harvard, Biology, 1915 

Prof., U. Chicago, 1930-1954 
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The Wrights’ letters, December 

1925 - March 1926 
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Notes: e = supply elasticity,  = demand elasticity; by “output” in this 

paragraph PGW means supply. 
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… 
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 Flaxseed was grown mainly in the upper Midwest (can plant in April and 

harvest in August) 

 PGW data: 

o Prices are Minneapolis fall prices 

o Rainfall is average in Bismark ND, Duluth MN, Minneapolis MN 

o Data are annual, 1904-1923 

o PGW deviated all data from a linear trend 

o Y = Q (% deviation from trend) 

o X = P (% deviation from trend) 

o Z = building permits (deviation from trend) 

 Exogeneity: corr(ui, Building Permitsi) = 0? 

 Relevance: corr(Pi, Building Permitsi) 0? 
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Checking for Instrument Relevance: Wright’s Flaxseed Data 

What went wrong with PGW’s supply elasticity regression? 

 

Z = deviation of building permits from trend = bp_dev 
 

. ivregress 2sls output_dev (price_dev = bp_dev), first; 

 

First-stage regressions 

----------------------- 

                                                  Number of obs   =         20 

                                                  F(   1,     18) =       1.25 

                                                  Prob > F        =     0.2783 

                                                  R-squared       =     0.0649 

                                                  Adj R-squared   =     0.0130 

                                                  Root MSE        =     0.2168 

 

------------------------------------------------------------------------------ 

   price_dev |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      bp_dev |  -.2732793   .2444394    -1.12   0.278    -.7868275    .2402689 

       _cons |   .0077936   .0484871     0.16   0.874     -.094074    .1096612 

------------------------------------------------------------------------------ 
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Instrumental variables (2SLS) regression               Number of obs =      20 

                                                       Wald chi2(1)  =    0.72 

                                                       Prob > chi2   =  0.3974 

                                                       R-squared     =  0.1641 

                                                       Root MSE      =  .21633 

 

------------------------------------------------------------------------------ 

  output_dev |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   price_dev |  -.7553123   .8925526    -0.85   0.397    -2.504683    .9940587 

       _cons |  -.0906035   .0487388    -1.86   0.063    -.1861299    .0049228 

------------------------------------------------------------------------------ 

Instrumented:  price_dev 

Instruments:   bp_dev 
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Example #2 (cross-section IV): Angrist-Kreuger (1991)  

 What are the returns to education? 

 y = log(earnings) 

 Y = years of education 

 Z = quarter of birth; k = #IVs = 3 binary variables or up to 178 

 (interacted with year-of-birth, state-of-birth) 

 n = 329,509 

A-K results: ˆTSLS  = .081 (SE = .011) 

Then came Bound, Jaeger, and Baker (1995)… 

 

 The problem is that Z (once you include all the interactions) is weakly 

correlated with Y 
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Example #3 (linear GMM):  New Keynesian Phillips Curve 

 

e.g. Gali and Gertler (1999), where xt = labor share; see survey by Mavroeidis, 

Plagborg-Møller, and Stock (JEL, 2014).  Hybrid NKPC with shock t: 

 

t = xt + fEtt+1 + bt–1 + t 

 

Rational expectations:    Et–1(t – xt – ft+1 – bt–1) = 0 

GMM moment condition:  E[(t – ft+1 – bt–1 – xt)Zt] = 0 

Instruments:     Zt = {t–1, xt–1, t–2, xt–2,…} (GG: 23 total) 

Issues: 

 Zt needs to predict t+1 – beyond t–1 (included regressor) 

 But predicting inflation is really hard!  Atkeson-Ohanian (2001), Stock and 

Watson (2007), recent literature on backwards-looking Phillips curve 
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Example #4 (nonlinear GMM):  Estimating the elasticity of intertemporal 

substitution, nonlinear Euler equation 

 

With CRRA preferences, in standard GMM notation, 

 

h(Yt,) = 
1

1
1

G
t

t G

t

C
R

C



 







 
 

 
 

 

where Rt+1 is a G1 vector of asset returns and G is the G-vector of 1’s. 

GMM moment conditions (Hansen-Singleton (1982)): 

 

E[h(Yt,)  Zt] = 0 where Zt = ct, Rt, etc. 

 

 Zt must predict consumption growth (and stock returns) using past data 
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How important are these deviations from normality quantitatively? 

Nelson-Startz (1990a,b) plots of the distribution of the TSLS t-statistic: 

 

Dark line = irrelevant instruments; dashed light line = strong instruments; 

intermediate cases: weak instruments 
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Working definition of weak identification 

We will say that  is weakly identified if the distributions of GMM or IV 

estimators and test statistics are not well approximated by their standard 

asymptotic normal or chi-squared limits because of limited information in the 

data. 

 Departures from standard asymptotics are what matters in practice 

 The source of the failures is limited information, not (for example) heavy 

tailed distributions, near-unit roots, unmodeled breaks, etc. 

 We will focus on large samples - the source of the failure is not small-sample 

problems in a conventional sense.  In fact most available tools for weak 

instruments have large-sample justifications.  This is not a theory of finite 

sample inference (although it is closely related, at least in the linear model.) 

 Throughout, we assume instrument exogeneity – weak identification is about 

instrument relevance, not instrument exogeneity 
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Some special cases: 

 Special cases we will come back to 

o  is unidentified 

o Some elements of  are strongly identified, some are weakly identified 

 A special cases we won’t come back to 

o   is partially identified, i.e. some elements of  are identified and the 

rest are not identified 

 Not a special case  

o  is set identified, i.e. the true value of  is identified only up to a set 

within .  Weak identification and set identification could be married in 

theory, but they haven’t been.   

o Inference when there is set identification is a hot topic in econometric 

theory.  Set identification will come up in SVARs. 
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Additional preparatory comments 

 The literature has differing degrees of maturity and completion: 

o Testing and confidence intervals in classical (cross-sectional) IV regression 

model with a single included endogenous regressor: a mature area in which 

the first order problems are solved 

o Estimation in general nonlinear GMM – little is known  

 These lectures focus on: 

o explaining how weak identification arises at a general level; 

o providing practical tools and advice (“state of the art”)  

o providing references to the most recent literature (untested methods) 

 Literature reviews:   

o Mikusheva (2013) – focuses on linear IV, comprehensive 

o Andrews and Stock (2007) (comprehensive but technical) 
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Outline 

 

1) What is weak identification, and why do we care? 

2) Classical IV regression I: Setup and asymptotics 

3) Classical IV regression II: Detection of weak instruments 

4) Classical IV regression III: hypothesis tests and confidence intervals 

5) Classical IV regression IV: Estimation 

6) GMM I: Setup and asymptotics 

7) GMM II:  Detection of weak identification 

8) GMM III:  Hypothesis tests and confidence intervals 

9) GMM IV:  Estimation 

10) Many instruments 
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2) Classical IV regression I: Setup and asymptotics 

 

Classical IV regression model & notation 

Equation of interest:    yt = Yt  + ut,  m = dim(Yt) 

k exogenous instruments Zt:  E(utZt) = 0, k = dim(Zt) 

Auxiliary equations:    Yt = Zt + vt, corr(ut,vt) =  (vector) 

Sampling assumption    (yt, Yt, Zt) are i.i.d. 

 

Equations in matrix form:   y = Y + u 

         Y = Z + v 

Comments: 

 We assume throughout the instrument is exogenous (E(utZt) = 0) 

 Included exogenous regressors have been omitted without loss of generality 

 Auxiliary equation is just the projection of Y on Z 
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IV  regression with one Y and a single irrelevant instrument 

 

  ˆTSLS  =  




Z y

Z Y
 = 

( )



Z Y + u

Z Y
 =  + 





Z u

Z Y
  

 

If Z is irrelevant (as in Bound et. al. (1995)), then Y = Z + v = v, so 

 

ˆTSLS  –  =  




Z u

Z v
 = 1

1

1

1

T

t t

t

T

t t

t

Z u
T

Z v
T








 

d

  u

v

z

z
, where 

u

v

z

z

 
 
 

 ~ 
2

2
0, u uv

uv v

N
 

 

  
  

  

 

 

Comments: 

 ˆTSLS  isn’t consistent (this should make sense) 

 Distribution of ˆTSLS  is Cauchy-like (ratio of correlated normals) 
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 The distribution of ˆTSLS  is a mixture of normals with nonzero mean:  write zu 

= zv + ,    z, where   = uv/
2

v .  Then  

u

v

z

z
 = v

v

z

z

 
 =  +

vz


, and 

vz


|zv ~ N(0, 

2

2

vz


) 

so the asymptotic distribution of ˆTSLS  – 0 is the mixture of normals, 

ˆTSLS  – (0 + ) 

d

  

2

2
(0, ) ( )

vz v v

v

N f z dz
z


  (1 irrelevant instrument) 

 heavy tails (mixture is based on inverse chi-squared) 

 center of distribution of ˆTSLS  is 0 + .  But  

ˆOLS  - 0 = 
/

/

n

n





Y u

Y Y
 = 

/

/

n

n





v u

v v

p

  
2

uv

v




 = , so plim( ˆOLS ) = 0 +  

Thus ˆTSLS  is centered around plim( ˆOLS ) 

 

This is one end of the spectrum; the usual normal approximation is the other.  If 

instruments are weak the distribution is somewhere in between…
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TSLS with possibly weak instruments, 1 included endogenous regressor 

Suppose that Z is fixed and u, v are normally distributed.  Then the sample size 

enters the distribution of ˆTSLS  only through the concentration parameter 2, 

where 

2 =  ZZ/ 2

v  (concentration parameter). 

 

 2 plays the role usually played by n 

 As 2  , the usual asymptotic approximation obtains: 

as 2  , ( ˆTSLS  – ) 
d

  N(0, 2

u / 2

v )  

(the 2

v  terms in  and limiting variance cancel) 

 for small values of 2, the distribution is nonstandard 

 Digression: for a possibly helpful expansion of TSLS estimator in terms of 2 

in the classical case, see Rothenberg (1984) 
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How important are these deviations from normality quantitatively? 

Nelson-Startz (1990a,b) plots of the distribution of the TSLS t-statistic: 

 

Dark line = irrelevant instruments; dashed light line = strong instruments; 

intermediate cases: weak instruments 



Revised 1/8/15 5/6-62 

Four approaches to computing distributions of IV statistics with weak IVs 

The goal: a distribution theory that is tractable; provides good approximations 

uniformly in 2; and can be used to compare procedures  

 

1. Finite sample theory? 

 large literature in 70s and 80s under the strong assumptions that Z is 

fixed (strictly exogenous) and (ut, vt) are i.i.d. normal 

 literature died – distributions aren’t tractable, results aren’t useful 

 

2. Edgeworth expansions?  

 expand distn in orders of T–1/2 – requires consistent estimability 

 work poorly when instruments are very weak (Rothenberg (1984)) 

 

3. Bootstrap and subsampling?  

 Neither work uniformly (irrelevant to weak to strong) in general 

 We return to these later (recent interesting literature) 
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4. Weak instrument asymptotics 

Adopt nesting that makes the concentration parameter tend to a constant as 

the sample size increases; that is, model F as not increasing with the sample 

size. 

This is accomplished by setting  = C/ T   

 This is the Pitman drift for obtaining the local power function of the first-

stage F. 

 This nesting holds E2 constant as T  . 

 Under this nesting, F 
d

  noncentral 2

k /k with noncentrality parameter 

E2/k (so F = Op(1)) 

 Letting the parameter depend on the sample size is a common ways to 

obtain good approximations – e.g. local to unit roots (Bobkoski 1983, 

Cavanagh 1985, Chan and Wei 1987, and Phillips 1987) 
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Weak IV asymptotics for TSLS estimator, 1 included endogenous vble: 

ˆTSLS  – 0 = (YPZu)/(YPZY) 

Now 

YPZY = 

1
( ) ( )

TT T


         

    
    

Z v Z Z Z Z Z v
 

= 

1/2 1/2

T TT T T T

             
       

      

Z Z v Z Z Z Z Z Z Z Z v
 

= 

1/2 1/2 1/2 1/2

C C
T T T TT T

                 
           
             

Z Z v Z Z Z Z Z Z Z Z v
 

d

  ( + zv) ( + zv), 

where 

 = 1/2

ZZC Q , QZZ = EZtZt, and  
u

v

z

z

 
 
 

 ~ 
2

2
0, u uv

uv v

N
 

 

  
  

  
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Similarly,  

YPZu = 

1
( ) )

TT T


       

    
    

Z v Z Z Z Z u
 

= 

1

C
T TT T


       

      
    

Z Z v Z Z Z Z u
 

d

  ( + zv)zu, 

so 

ˆTSLS  – 0 
d

  
(  )

(  ) (  )

v u

v v

z z

z z



 



 
 

 Under weak instrument asymptotics, 2 
p

  CQZZC/ 2

v  = / 2

v  

 Unidentified special case: ˆTSLS  – 0 
d

  v u

v v

z z

z z




 (obtained earlier) 

 Strong identification:   ( ˆTSLS  – 0) 
d

  N(0, 2

u ) (standard limit) 
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Summary of weak IV asymptotic results: 

 Resulting asymptotic distributions are the same as in the exact normal classical 

model with fixed Z – but with known covariance matrices. 

 IV estimators are not consistent (and are biased) under this nesting 

 

Digression: Identification and consistency 

 Identification means (loosely) that if you change a parameter, the 

distribution of the data changes.  Because you can estimate the distribution 

of the data, this means you can work backwards to the parameter. 

 Identification does not imply consistency.  Consider the regression model, 

with T  : 

Yt = 0Dt + 1(1 – Dt) + ut, where Dt = 
1,  1,...,10

0,  11,...,

t

t T





 

Both 0 and 1 are identified, but only 1 is consistently estimable. 
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Summary of weak IV asymptotic results, ctd: 

 

 IV estimators are nonnormal ( ˆTSLS  has mixture of normals with nonzero mean, 

where mean  k/2) 

 Test statistics (including the J-test of overidentifying restrictions) do not have 

normal or chi-squared distributions 

 Conventional confidence intervals do not have correct coverage (coverage can 

be driven to zero) 

 Provide good approximations to sampling distributions uniformly in 2 for T 

moderate or greater (say, 100+ observations). 

 Remember, 2 is unknown – so these distributions can’t be used directly in 

practice to obtain a “corrected” distribution…. 
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Outline 

 

1) What is weak identification, and why do we care? 

2) Classical IV regression I: Setup and asymptotics 

3) Classical IV regression II: Detection of weak instruments 

4) Classical IV regression III: hypothesis tests and confidence intervals 

5) Classical IV regression IV: Estimation 

6) GMM I: Setup and asymptotics 

7) GMM II:  Detection of weak identification 

8) GMM III:  Hypothesis tests and confidence intervals 

9) GMM IV:  Estimation 

10) Many instruments 
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3) Classical IV regression II: Detection of weak instruments 

 

Bound et. al. revisited 

 n = 329,509 (it is 2, or 2/k, not sample size that matters!)  

 for K = 3 (quarter of birth only), F = 30.53,  

o Recall that E(F) = 1 + 2/k 

o Estimate of 2/k is 29.53 

o Estimate 2 as k(F–1) = 3(30.53–1) = 88.6 

 for K = 178 (all interactions), F = 1.869 

o Estimate of 2 = 178(1.869–1) = 154.7 

o Estimate of 2/k is 0.869 

 We will see that numerical work suggests that 

o 2/k = 29.53: strong instruments 

o 2/k = 0.869: very weak instruments 
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How weak is weak?  Need a cutoff value for 2 

 

The basic idea is to compare F to some cutoff.  But how should that cutoff be 

chosen?  In general, this depends on the statistic you are using (different statistics 

have different sensitivities to 2).  TSLS is among the worst (most sensitive) – 

and is also most frequently used.  So, it is reasonable to develop a cutoff for F 

assuming use of TSLS. 

 

Various procedures: 

 First stage F > 10 rule of thumb 

 Stock-Yogo (2005a) bias method 

 Stock-Yogo (2005a) size method 
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TSLS bias cutoff method (Stock-Yogo (2005a)) 

 

Let 2

10%bias  be the value of 2 such that, if 2  2

10%bias , the maximum bias of 

TSLS will be no more than 10% of the bias (inconsistency) of OLS. 

Stock-Yogo (2005a): decision rule of the form:  

 

if   F 
 
  

 .10(k),  conclude that instruments are 
weak

strong

 
 
 

 

where F is the first stage F-statistic* and .10(k) is chosen so that P(F > .10(k); 2 

= 2

10%bias ) = .05 (so that the rule acts like a 5% significance test at the boundary 

value 2 = 2

10%bias ). 

 

*F = F-statistic testing the hypothesis that the coefficients on Zt = 0 in the 

regression of Yt on Zt, Wt, and a constant, where Wt = the exogenous regressors 

included in the equation of interest. 
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TSLS bias cutoff method (Stock-Yogo (2005a)), ctd 

Some background:  

 The relative squared normalized bias of TSLS to OLS is, 

  

    
2

nB  = 

IV IV

OLS OLS

ˆ ˆ( β β) 'Σ ( β β)

ˆ ˆ( β β) 'Σ ( β β)

YY

YY

E E

E E

 

 
 

 

The square root of the maximal relative squared asymptotic bias is: 

 

Bmax =  max: 0 <   1 limn|Bn|, where  = corr(ut,vt) 

 

This maximization problem is a ratio of quadratic forms so it turns into a 

(generalized) eigenvalue problem; algebra reveals that the solution to this 

eigenvalues problem depends only on 2/k and k; this yields the cutoff 2

bias .  
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Critical values 

 

One included endogenous regressor 

The 5% critical value of the test is the 95% percentile value of the noncentral 
2

k /k distribution, with noncentrality parameter 2

bias /k 

 

Multiple included endogenous regressors 

The Cragg-Donald (1993) statistic is: 

 

gmin = mineval(GT), where GT = 1/2Σ̂

VV
YPZY 1/2Σ̂

VV
/k, 

 

 GT is essentially a matrix first stage F statistic 

 Critical values are given in Stock-Yogo (2005a) 

 

Software 

 STATA (ivreg2),… 
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5% critical value of F to ensure indicated maximal bias  

(Stock-Yogo, 2005a) 

 

To ensure 10% maximal bias, need F  11.52; F  10 is a rule of thumb
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5% critical values for Weak IV test statistic gmin ,  

for 10% maximal TSLS Bias (Stock-Yogo (2005), Table 1) m = dim(Yt) 

 

k m = 1 m = 2 m = 3 

3 9.08 – – 

4 10.27 7.56 – 

5 10.83 8.78 6.61 

6 11.12 9.48 7.77 

7 11.29 9.92 8.50 

8 11.39 10.22 9.01 

9 11.46 10.43 9.37 

10 11.49 10.58 9.64 

15 11.51 10.93 10.33 

20 11.45 11.03 10.60 

25 11.38 11.06 10.71 

30 11.32 11.05 10.77 
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Other methods for detecting weak instruments 

 

Stock-Yogo (2005a) size method 

 Instead of controlling bias, control the size of a Wald test of  = 0 

 Less frequently used 

 Not really relevant (any more) since fully robust methods for testing exist 

 

Recent work has focused on extention to heteroskedasticity and serial correlation 

 The problem: With heteroskedasticity, except in special cases the 

concentration parameter for 2SLS and the noncentrality parameter of the 

first-stage F (either hetero-robust or nonrobust) don’t coincide 

 The solution: ongoing research. See Olea Montiel and Pflueger (2013) , I. 

Andrews (2014)  
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Other methods for detecting weak instruments 

 

Examination of R2, partial R2, or adjusted R2 

 None of these are a good idea, more precisely, what needs to be large is the 

concentration parameter, not the R2.  An R2 = .10 is small if T = 50 but is 

large if T = 5000. 

 The first-stage R2 is especially uninformative if the first stage regression has 

included exogenous regressors (W’s) because it is the marginal explanatory 

content of the Z’s, given the W’s, that matters. 
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Outline 
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10) Many instruments 
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4) Classical IV regression III: 

Hypothesis tests and confidence intervals 

 

There are two approaches to improving inference (providing tools): 

 

Fully robust methods: 

 Inference that is valid for any value of the concentration parameter, including 

zero, at least if the sample size is large, under weak instrument asymptotics 

o For tests: asymptotically correct size (and good power!) 

o For confidence intervals: asymptotically correct coverage rates 

o For estimators: asymptotically unbiased (or median-unbiased) 

 

Partially robust methdos: 

 Methods are less sensitive to weak instruments than TSLS – e.g. bias is 

“small” for a “large” range of 2 
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Fully Robust Testing 

 The TSLS t-statistic has a distribution that depends on 2, which is unknown 

 Approach #1: use a statistic whose distribution depends on 2, but use a 

“worst case” conservative critical value 

o This is unattractive – substantial power loss 

 Approach #2: use a statistic whose distribution does not depend on 2
 (two 

such statistics are known) 

 Approach #3: use statistics whose distribution depends on 2, but compute 

the critical values as a function of another statistic that is sufficient for 2 

under the null hypothesis. 

o Both approaches 2 and 3 have advantages and disadvantages – we 

discuss both  
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Approach #2:  Tests that are valid unconditionally  

(that is, the distribution of the test statistic does not depend on 2) 

 

The Anderson-Rubin (1949) test 

Consider H0:  = 0 in  y = Y + u,   

Y = Z + v 

 

The Anderson-Rubin (1949) statistic is the F-statistic in the regression of y – Y0 

on Z. 

 

AR(0) = 0 0

0 0

( ) ( ) /

( ) ( ) / ( )

P k

M T k

 

 

 

  

Z

Z

y Y y Y

y Y y Y
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AR(0) = 0 0

0 0

( ) ( ) /

( ) ( ) / ( )

P k

M T k

 

 

 

  

Z

Z

y Y y Y

y Y y Y
 

 

Comments 

 AR( ˆTSLS ) = the J-statistic  

 Null distribution doesn’t depend on 2: 

Under the null, y – Y0 = u, so 

AR = 
/

/ ( )

P k

M T k



 

Z

Z

u u

u u
 ~ Fk,n–k   if ut is normal 

  AR 
d

  2

k /k   if ut is i.i.d. and Ztut has 2 moments (CLT) 

 The distribution of AR under the alternative depends on 2 – more 

information, more power (of course) 
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The AR statistic if there are included endogenous regressors 

 

Let W denote the matrix of observations on included exogenous regressors, so 

the structural equation and first stage regression are, 

 

   y = Y + W + u 

   Y = Z + WW  + v 

 

The AR statistic is the F-statistic testing the hypothesis that the coefficients on Z 

are zero in the regression of y – Y0 on Z and W. 
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Advantages and disadvantages of AR 

 

Advantages 

 Easy to use – entirely regression based 

 Uses standard F critical values 

 Works for m > 1 (general dimension of Z) (see Kleibergen and Mavroeidis 

(2009) for subset inference when m > 1)  

 

Disadvantages 

 Difficult to interpret:  rejection arises for two reasons: 0 is false or Z is 

endogenous 

 Power loss relative to other tests (we shall see) 

 Is not efficient if instruments are strong – under strong instruments, not as 

powerful as TSLS Wald test (power loss because AR(0) has k degrees of 

freedom) 
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Kleibergen’s (2002) LM test 

 

Kleibergen developed an LM test that has a null distribution that is 
2

1  - doesn’t 

depend on 2. 

 

Advantages 

 Fairly easy to implement 

 Is efficient if instruments are strong 

 

Disadvantages 

 Has very strange power properties – power function isn’t monotonic 

 Its power is dominated by the conditional likelihood ratio test 
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Approach #3: Conditional tests 

Conditional tests have rejection rate 5% for all points under the null (0, 
2) 

(“similar tests”) 

 

Recall your first semester probability and statistics course… 

 Let S be a statistic with a distribution that depends on  

 Let T be a sufficient statistic for  

 Then the distribution of S|T does not depend on  

 

Here (Moreira (2003)): 

 LR will be a statistic testing  = 0 (LR is “S” in notation above) 

 QT will be sufficient for 2 under the null (QT is “T”) 

 Thus the distribution of LR| QT does not depend on 2 under the null 

 Thus valid inference can be conducted using the quantiles of LR| QT – that is, 

critical values that are a function of QT 
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Moreira’s (2003) conditional likelihood ratio (CLR) test 

LR = max log-likelihood() – log-likelihood(0) 

 

After lots of algebra, this becomes: 

 

LR = ½{ ˆ
SQ  – ˆ

TQ  + [( ˆ
SQ  – ˆ

TQ )
2
 + 4 2ˆ

STQ ]
1/2

} 

 

where 

Q̂  = 
ˆ ˆ

ˆ ˆ

S ST

ST T

Q Q

Q Q

 
 
  

 = 
0Ĵ ̂–1/2

Y
+PZY

+
̂

–1/2
0Ĵ  

̂  = M 
ZY Y /(T–k),  Y+

 = (y  Y) 

0Ĵ  = 
1/2 1/2

0 0

1

0 0 0 0

ˆ ˆ

ˆ ˆ

b a

b b a a





   
    

, b0 = 
0

1



 
  

 a0 = 
0

1

 
 
 

. 
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CLR test, ctd. 

 

Implementation: 

 QT is sufficient for 2 (under weak instrument asymptotics) 

 The distribution of LR|QT does not depend on 2 

 LR proc exists in STATA (condivreg), GAUSS 

 STATA (condivreg), Gauss code for computing LR and conditional p-values 

exists 
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Advantages and disadvantages of the CLR test 

Advantages 

 More powerful than AR or LM 

 In fact, effectively uniformly most powerful among valid tests that are 

invariant to rotations of the instruments (Andrews, Moreira, Stock (2006) – 

among similar tests; Andrews, Moreira, Stock (2008) – among nonsimilar 

tests) 

 Implemented in software (STATA,…) 

 

Disadvantages 

 More complicated to explain and write down  

 Only developed (so far) for a single included endogenous regressor 

 As written, the software requires homoskedastic errors; extensions to 

heteroskedasticity and serial correlation have been developed but are not in 

common statistical software 
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Confidence Intervals 

(a) A 95% confidence set is a function of the data contains the true value in 

95% of all samples 

(b) A 95% confidence set is constructed as the set of values that cannot be 

rejected as true by a test with 5% significance level 

 

Usually (b) leads to constructing confidence sets as the set of 0 for which  –1.96 

< 0
ˆ

ˆ( )SE

 




 < 1.96.  Inverting this t-statistic yields ̂   1.96SE( ̂ ) 

 This won’t work for TSLS – tTSLS isn’t normal (the critical values of tTSLS 

depend on 2) 

 Dufour (1997) impossibility result for weak instruments: unbounded 

intervals must occur with positive probability. 

 However, you can compute a valid, fully robust confidence interval by 

inverting a fully robust test! 
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(1) Inversion of AR test: AR Confidence Intervals 

 

95% CI = {0: AR(0) < Fk,T–k;.05} 

 

Computational issues: 

 For m = 1, this entails solving a quadratic equation: 

AR(0) = 0 0

0 0

( ) ( ) /

( ) ( ) / ( )

P k

M T k

 

 

 

  

Z

Z

y Y y Y

y Y y Y
 < Fk,T–k;.05 

 

 For m > 1, solution can be done by grid search or using methods in Dufour 

and Taamouti (2005) 

 

 Sets for a single coefficient can be computed by projecting the larger set onto 

the space of the single coefficient (see Dufour and Taamouti (2005)), also see 

Kleibergen and Mavroeidis (2009) 
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AR confidence intervals, ctd. 

 

95% CI = {0: AR(0) < Fk,T–k;.05} 

  

Four possibilities: 

 a single bounded confidence interval 

 a single unbounded confidence interval 

 a disjoint pair of confidence intervals 

 an empty interval 

 

Note: 

 Difficult to interpret 

 Intervals aren’t efficient (AR test isn’t efficient) under strong instruments 
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(2) Inversion of CLR test: CLR Confidence Intervals 

 

95% CI = {0: LR(0) < cv.05(QT)} 

 

where cv.05(QT) = 5% conditional critical value 

 

Comments: 

 Efficient GAUSS and STATA (condivreg) software 

 Will contain the LIML estimator (Mikusheva (2005)) 

 Has certain optimality properties:  nearly uniformly most accurate invariant; 

also minimum expected length in polar coordinates (Mikusheva (2005)) 

 Only available for m = 1 
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Extensions to >1 included endogenous regressor 

 Usually the extension to higher dimensions is easy – standard normal t-ratios, 

chi-squared F-tests, etc.  But once normality of estimators and chi-squared 

distribution of tests are gone, the extensions are not easy.  

 CLR exists in theory, but unsolved computational issues because the 

conditioning statistic has dimension m(m+1)/2 (Kleibergen (2007)) 

 Can test joint hypothesis H0:  = 0 using the AR statistic: 

 

AR(0) = 0 0

0 0

( ) ( ) /

( ) ( ) / ( )

P k

M T k

 

 

 

  

Z

Z

y Y y Y

y Y y Y
 

 

under H0, AR 
d

  2

k /k  

  



Revised 1/8/15 5/6-95 

Recent references on testing in linear IV case, including robustifying 

(heteroskedasticity, autocorrelation): 

I. Andrews (2013) 
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Outline 

 

1) What is weak identification, and why do we care? 

2) Classical IV regression I: Setup and asymptotics 

3) Classical IV regression II: Detection of weak instruments 

4) Classical IV regression III: hypothesis tests and confidence intervals 

5) Classical IV regression IV: Estimation 

6) GMM I: Setup and asymptotics 

7) GMM II:  Detection of weak identification 

8) GMM III:  Hypothesis tests and confidence intervals 

9) GMM IV:  Estimation 

10) Many instruments 
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5) Classical IV regression IV: Estimation 

 

Estimation is much harder than testing or confidence intervals 

 Uniformly unbiased estimation is impossible (among estimators with support 

on the real line), uniformly in 2 

 Estimation must be divorced from confidence intervals 

 

Partially robust estimators (with smaller bias/better MSE than TSLS): 

Remember k-class estimators? 

ˆ( )k  = [Y(I – kMZ)Y]–1[Y(I – kMZ)y] 

TSLS:  k = 1,        

LIML:  k = ˆ
LIMLk  = smallest root of det(YY – kYMZY) = 0 

Fuller:  k = ˆ
LIMLk – c/(T–k–#included exog.), c > 0  
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Comparisons of k-class estimators 

 

Anderson, Kunitomo, and Morimune (1986) – using second order theory 

Hahn, Hausman, and Kuersteiner (2004) – using MC simulations 

 

LIML 

  median unbiased to second order 

 HHK simulations – LIML exhibits very low median bias 

 no moments exist! There can be extreme outliers 

 LIML also can be shown to minimize the AR statistic: 

 

ˆ LIML : min AR() = 0 0

0 0

( ) ( ) /

( ) ( ) / ( )

P k

M T k

 

 

 

  

Z

Z

y Y y Y

y Y y Y
 

so LIML necessarily falls in the AR confidence set if it is nonempty 
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Comparisons of k-class estimators, ctd. 

Fuller 

 With c = 1, lowest RMSE to second order among a certain class 

(Rothenberg (1984)) 

 In simulation studies (m=1), Fuller performs very well with c = 1  

Others  

 (Jacknife TSLS; bias-adjusted TSLS) are dominated by Fuller, LIML 

 

LIML (and other) estimators with heterogeneous treatment effects. 

Kolesár (2013) shows that a class of minimum distance estimators, which 

includes LIML and the Hausman et. al. (2012) many instrument estimator, 

can have an estimand that is outside the convex hull of the individual 

treatment effects – that is, it estimates an object which is not a treatment 

effect for anyone, or a (convex) average of anyone’s. A big problem for 

LIML and related estimators – making them much less attractive as a 

solution to the weak (or many) instrument problem. 
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Summary and recommendations 

 Under strong instruments, LIML, TSLS, k-class will all be close to each 

other. 

 under weak instruments, TSLS has greatest bias and large MSE  

 LIML has the advantage of minimizing AR – and thus always falling in the 

AR (and CLR) confidence set.  LIML is a reasonable (good) choice as an 

alternative to TSLS. 

 But LIML is not well-suited to situations in which there are heterogeneous 

treatment effects, such as individual-level program evaluation studies. 
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What about the bootstrap or subsampling? 

The bootstrap is often used to improve performance of estimators and tests 

through bias adjustment and approximating the sampling distribution. 

 

A straightforward bootstrap algorithm for TSLS: 

yt = Yt + ut 

Yt = Zt + vt 

i) Estimate ,  by ˆTSLS , ̂  

ii) Compute the residuals ˆ
tu , ˆ

tv  

iii) Draw T “errors” and exogenous variables from { ˆ
tu , ˆ

tv , Zt}, and construct 

bootstrap data ty , 
tY  using ˆTSLS , ̂  

iv) Compute TSLS estimator (and t-statistic, etc.) using bootstrap data 

v) Repeat, and compute bias-adjustments and quantiles from the boostrap 

distribution, e.g. bias = bootstrap mean of ˆTSLS  – ˆTSLS  using actual data 
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Bootstrap, ctd. 

 Under strong instruments, this algorithm works (provides second-order 

improvements). 

 Under weak instruments, this algorithm (or variants) does not even provide 

first-order valid inference 

The reason the bootstrap fails here is that ̂  is used to compute the 

bootstrap distribution.  The true pdf depends on 2, say fTSLS( ˆTSLS ;2) 

(e.g. Rothenberg (1984 exposition above, or weak instrument 

asymptotics).  By using ̂ , 2 is estimated, say by 2̂ .  The bootstrap 

correctly estimates fTSLS( ˆTSLS ; 2̂ ), but fTSLS( ˆTSLS ; 2̂ )  fTSLS( ˆTSLS ;2) 

because 2̂  is not consistent for 2. ‘ 
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Bootstrap, ctd. 

 This is simply another aspect of the nuisance parameter problem in weak 

instruments.  If we could estimate 2 consistently, the bootstrap would work 

– but we if so wouldn’t need it anyway (at least to first order) since we would 

have operational first order approximating distributions! 

 This story might sound familiar – it is the same reason the bootstrap fails in 

the unit root model, and in the local-to-unity model, which led to Hansen’s 

(1999) grid bootstrap, which has been shown to produce valid confidence 

intervals for the AR(1) coefficient by Mikusheva (2007). 

 Failure of bootstrap in weak instruments is related to failure of Edgeworth 

expansion (uniformly in the strength of the instrument), see Hall (1992) in 

general, Moreira, Porter, and Suarez (2005a,b) in particular. 

 One way to avoid this problem is to bootstrap test statistics with null 

distributions that do not depend on 2
.  Bootstrapping AR and LM does 

result in second order improvements, see Moreira, Porter, and Suarez 

(2005a,b). 
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What about subsampling?  

Politis and Romano (1994), Politis, Romano and Wolf (1999) 

 

Subsampling uses smaller samples of size m to estimate the parameters directly.  

If the CLT holds, the distribution of the subsample estimators, scaled by /m T , 

approximates the distribution of the full-sample estimator. 

 

A subsampling algorithm for TSLS:   

(i) Choose subsample of size m and compute TSLS estimator 

(ii) Repeat for all subsamples of size m (in cross-section, there are 

T

m

 
 
 

 such subsamples; in time series, there are T–m) 

(iii) Compute bias adjustments, quantiles, etc. from the rescaled 

empirical distribution of the subsample estimators. 
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Subsampling, ctd. 

 Subsampling works in some cases in which bootstrap doesn’t (Politis, 

Romano, and Wolf (1999)) 

 However, it doesn’t work (doesn’t provide first-order valid approximations 

to sampling distributions) with weak instruments (Andrews and 

Guggenberger (2007a,b)). 

 The subsampling distribution estimates fTSLS( ˆTSLS ; 2

m ), where 2

m  is the 

concentration parameter for m observations.  But this is less (on average, by 

the factor m/T) than the concentration parameter for T observations, so the 

scaled subsample distribution does not estimate fTSLS( ˆTSLS ; 2

T ). 

 Subsampling can be size-corrected (in this case) but there is power loss 

relative to CLR; see Andrews and Guggenberger (2007b) 
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Outline 

 

1) What is weak identification, and why do we care? 

2) Classical IV regression I: Setup and asymptotics 

3) Classical IV regression II: Detection of weak instruments 

4) Classical IV regression III: hypothesis tests and confidence intervals 

5) Classical IV regression IV: Estimation 

6) GMM I: Setup and asymptotics 

7) GMM II:  Detection of weak identification 

8) GMM III:  Hypothesis tests and confidence intervals 

9) GMM IV:  Estimation 

10) Many instruments 
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6) GMM I: Setup and asymptotics 

 

GMM notation and estimator 

GMM “error” term (G equations):  h(Yt;);  0 = true value 

Errors times k instruments:    t() = 
1 1

0( , )
G k

t th Y Z
 

  

Moment conditions - k instruments:  Et() = E[
1 1

0( , )
G k

t th Y Z
 

 ] = 0 

GMM objective function:   ST() = 1/2 1/2

1 1

( ) ( )
T T

t T t

t t

T W T    

 

   
   
   

   

GMM estimator:       ̂  minimizes ST() 

Linear GMM:        h(Yt;) = yt – Yt 

(linear GMM is the IV regression model, allowing for possible 

heteroskedasticity and/or serial correlation in the errors h) 
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Efficient GMM 

Centered sample moments:  T() =  1/2

1

( ) ( )
T

t t

t

T E   



  

Efficient (infeasible) GMM:  WT =  –1,  = E[T()T()] = 2
( )(0)

t
S   

Feasible GMM 

Estimator of :     ˆ ( )  = HAC estimator of  = ˆ ( )
S

j j

j S

 


 ,  

where    ˆ ( )j   =   
1

1
( ) ( ) ( ) ( )

T

t t t j t j

tT
        




   

      {j} are kernel weights (e.g. Newey-West) 

Feasible GMM variants 

One-step      WT = fixed matrix (e.g. WT = I) 

Two-step efficient:    (1)

TW  = I, (2)

TW  = ̂( (1)̂ )–1 

Iterated:      continue iterating, with ( 1)i

TW   = ̂ ( ( )ˆ i )-1 

CUE (Hansen, Heaton, Yaron 1996): WT = ̂()–1 (evaluate ̂  at every !) 
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Standard GMM asymptotics 

1)  Establish consistency by showing the minimum of ST will occur local to the 

true value 0:   Pr[ST() < ST(o)]  0 for |  – 0| >  

so by smoothness of the objective function, Pr[|̂   – 0| > ]  0 

 

2)  Establish normality by making quadratic approximation to ST, based on 

consistency (which justifies dropping the higher order terms in the Taylor 

expansion): 

ST(̂ )  ST(0) + T (̂  – 0)

0

1 ( )TS

T 








  

+ ½ T (̂  – 0)

0

21 ( )TS

T




 

 
 

   

 T (̂  – 0) 

so   T (̂  – 0)  

0

1
21 ( )TS

T




 



 
 

    0

1 ( )TS

T 








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If WT 
p

  W (say), then 

0

21 ( )TS

T




 



 
 

p

  DWD, where D = E

0

( )t



 






 

0

1 ( )TS

T 








 

d

  N(0,DWWD) 

so    T (̂  – 0)  

0

1
21 ( )TS

T




 



 
 

    0

1 ( )TS

T 








  

d

  N(0,[DWD]–1DWWD[DWD]–1) 

 

Feasible efficient GMM 

For two-step, iterated, and CUE, WT 
p

  –1, so T (̂  – 0) 
d

  N(0, ) 

where   = (D–1D)–1 

Estimator of variance matrix:      ̂  = [D̂(̂ )̂ (̂ )D̂(̂ )]–1 
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Weak identification in GMM – what goes wrong in the usual proof? 

Digression: 

 We will use the term “weak identification” because “weak instruments” is 

not precise in the nonlinear setting  

 In the linear case, the strength of the instruments doesn’t depend on  

 In nonlinear GMM, the strength of the instruments can depend on :  they 

can be weak for some departures h(Yt,) - h(Yt,0), but strong for others 

 

When identification is weak, there are 2 problems with the usual proof: 

(a) The curvature, which reflects the amount of information, is small, so the 

maximizer of ST might not be close to 0. 

(b) The curvature matrix is not well-approximated as nonrandom (I. Andrews 

and Mikusheva (2014a, b)) 

(c) The linear term, 

0

( )TS










, is not approximately normal with mean 0 
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Illustration: linear IV in the GMM framework 

The TSLS objective function (two-step GMM) is exactly quadratic: 

S() = (y – Y)PZ(y – Y) 

= [u – Y( – 0)]PZ[u – Y( – 0)] 

= uPZu + (2uPZY)( – 0) –  ½( – 0)(2YPZY)(  – 0) 

or   

ST(̂ ) = ST(0) + T (̂  – 0)

0

1 ( )TS

T 








  

+ ½ T (̂  – 0)

0

21 ( )TS

T




 

 
 

   

 T (̂  – 0) 

where       ST(0) = uPZu 

    

0

1 ( )TS

T 








 = 2uPZY/ T  

    

0

21 ( )TS

T




 



 
 = 2YPZY/T
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Illustration: linear IV in the GMM framework, ctd. 

(a) The curvature is small (so estimator need not be local) 

0

21 ( )TS

T




 



 
 = 2YPZY  

= 2
/

/ ( )
/ ( )

P k
M T k

M T k


 

 

Z
Z

Z

Y Y
Y Y

Y Y
 

= 2kF 2

vs , 

where F is the first-stage F and 2

vs  is the estimator of 2

v . 

(b)  The curvature is random – not well approximated by a constant 

   F/2  1 as 2  , but for small 2, F = 2 +op(1) 

(c)  Under weak instrument asymptotics, the linear term is non-normal: 

   

0

1 ( )TS

T 








 = 2uPZY/ T  

d

  2( + zv)zu, 

which has a mixture-of-normals distribution with a nonzero mean (recall the 

distribution of TSLS under weak instrument asymptotics) 
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Alternative asymptotics for weak identification 

As in the linear case, we need asymptotics for GMM that are tractable; that 

provide a good approximations uniformly in strength of identification; and that 

can be used to compare procedures. 

 

Alternative approaches: 

1. Finite sample – good luck! 

2. Edgeworth and related expansions – useful for developing partially robust 

procedures but won’t cover complete range through unidentified case 

3. Bootstrap & resampling – doesn’t work in linear IV special case 

4. Weak identification asymptotics – provide nesting (parameter sequence) that 

provides an approximation uniformly in strength of identification 
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Weak ID asymptotics in GMM 

(Stock and Wright (2000); Cheng and Andrews (2012)) 

Use local sequence (sequence of mean functions) to provide non-quadratic global 

approximation to ST(): 

 

ST() = 1/2 1/2

1 1

( ) ( )
T T

t T t

t t

T W T    

 

   
   
   

   

 

Write  

1/2

1

( )
T

t

t

T  



  =  1/2

1

( ) ( )
T

t t

t

T E   



  + 1/2

1

( )
T

t

t

T E 



  

      = T() + T Et() 

      = T() + mT() 
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Applied to the linear IV regression model, this reorganization yields, 

1/2

1

( )
T

t

t

T  



  = 1/2

1

( )
T

t t t

t

T y Y Z



  

=  1/2

0

1

( )
T

t t t

t

T u Y Z 



   

= 1/2

1

T

t

t

T 



   – E 1/2

0

1

( )
T

t t

t

T Y Z 



 
 

 
  

= T() + mT() 

where t =  0 0( ) ( )t t t t t tu Z Y Z E Y Z        .  Now: 

 T() = 1/2

1

T

t

t

T 



  
d

   N(0, ) (because t is mean zero and i.i.d. – 

instrument strength doesn’t enter this limit (subtracted out))  

 The mean function mT() is a finite nonrandom (linear) function under the 

local nesting  = T–1/2C 
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1/2

1

( )
T

t

t

T  



  =  1/2 1/2

1 1

( ) ( ) ( )
T T

t t t

t t

T E T E      

 

    = T() + mT() 

 

Suppose: 

1. mT 
p

  m uniformly in , where m() is a limiting (finite continuous 

differentiable) function. 

This is the extension to a function of assuming  = T–1/2C 

 

2. T()  (), where () is a Gaussian stochastic process on  with mean 

zero and covariance function (1,2) = E(1)(2) 



Revised 1/8/15 5/6-118 

Weak ID asymptotics in GMM, ctd. 

2. T  , where () is a Gaussian stochastic process on  with 

 mean zero and covariance function (1,2) = E(1)(2) 

 

Digression on T  :   

Item #2 is an extension of the FCLT.  Generally, the FCLT talks about 

convergence in distribution of a sequence of random  

functions, to a limiting function, which has a (limiting) distribution.  In 

the more familiar time series FCLT, the function is indexed by s = /T  

[0,1], and the limiting process has the covariance matrix of Brownian 

motion (it is Brownian motion).  Here, the function is indexed by , and 

the limiting process has the covariance matrix (1,2).  The proof of the 

FCLT entails proving: 
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(a) Convergence of finite dimensional distributions.  Here, this 

corresponds the joint distributions of T(1), T(2),…, T(r).  But 

T() =  1/2

1

( ) ( )
T

t t

t

T E   



 , so it is a weak (standard) assumption 

that T(1), T(2),…, T(r) will converge jointly to a normal; the 

covariance matrix is filled out using (1,2) (applied to all the points). 

 

(b) Tightness (or stochastic equicontinuity).  That is, for 1 and 2 close, 

that T(1) and T(2) must be close (with high probability).  This 

allows going from the function evaluated at finitely many points, to the 

function itself.  Proving this is application specific (depends on 

h(Yt,)).  Proof in the linear GMM case is in Stock and Wright (2000). 
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Back to main argument… 

 

Under 1 and 2,  1/2

1

( )
T

t

t

T  



   () + m() 

3. WT() 
p

  W() uniformly in , where W() is psd, continuous in  

 

Under 1, 2, and 3,    ST() = 1/2 1/2

1 1

( ) ( ) ( )
T T

t T t

t t

T W T     

 

   
   
   

    

 S() = [() + m()]W[() + m()] 

and 

      ̂   *, where * = argmin S() 
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̂   * = argmin {S() = [() + m()]W[ () + m()]} 

Comments 

 With t() = (yt – Yt)Zt and WT = (ZZ/T)–1, this yields the weak IV 

asymptotic distribution of TSLS obtained earlier. 

 ST() is not well approximated by a quadratic (is not quadratic in the limit) 

with a nonrandom curvature matrix that gets large – instead, ST() is Op(1) 

 ̂  is not consistent in this setup 

 ̂  has a nonstandard limiting distribution 

 Standard errors of ̂  aren’t meaningful (1.96SE isn’t valid conf. int.) 

 J-statistic doesn’t have chi-squared distribution 

 Well-identified elements of ̂  have the usual limiting normal distributions, 

under the true values of the weakly identified elements 

 Extensions and proofs are in Stock and Wright (2000) 

 What about intermediate “semi-strong” cases? Chen and Andrews (2012) 
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7) GMM II:  Detection of weak identification 

 

This is an open area of research with no best solution.  Some thoughts: 

 

1. In linear GMM, the noncentrality parameter of the first-stage F and the 

concentration parameter are no longer the same thing if there is 

heteroskedasticity and/or serial correlation in h(Yt,).  With 

heteroskedasticity, the first-stage F still provides a reasonable guide (MC 

findings) but with serial correlation the first stage F isn’t very reliable. 

 

2. Wright (2003) provides a test for weak instruments, based on the extension 

of the Cragg-Donald (1993) using the estimated curvature of the objective 

function.  The test is a test of non-identification (contrast with Stock-Yogo, 

testing whether 2 exceeds a critical cutoff; in  
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Wright (2003), the cutoff is taken to be 2 = 0 in linear IV case).  The test is 

conservative, which gives it low power against weak identification – a 

benefit in this instance.  Important drawback is that it is only local (multiple 

peak problem). 

 

3. Some symptoms of weak identification: 

 CUE, two-step, and iterated GMM converge to quite different values (see 

Hansen, Heaton, Yaron (1996) MC results) 

 for two-step and iterated, the normalization matters 

 multiple valleys in the CUE objective function 

 Significant discrepancies between GMM-AR confidence sets (discussed 

below) and conventional Wald confidence sets 
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8) GMM III:  Hypothesis tests and confidence intervals 

 

Extensions of methods in linear IV: 

 

(1) The GMM-Anderson Rubin statistic 

(Kocherlakota (1990); Burnside (1994), Stock and Wright (2000))  The extension 

of the AR statistic to GMM is the CUE objective function evaluated at 0: 

   
0( )CUE

TS   = 1/2 1 1/2

0 0 0

1 1

ˆ( ) ( ) ( )
T T

t t

t t

T T      

 

   
   

   
   

     
d

  (0)(0)
–1(0) ~ 2

k  

 Thus a valid test of 0:  = 0 can be undertaken by rejecting if ST(0) > 5% 

critical value of 2

k . 
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 The statistic above tests all elements of .  If some elements are strongly 

identified, they can be concentrated out (estimated under the null) for valid 

subset inference.  Specifically, let  = (, ), and let  be weakly identified 

and  be strongly identified.  Fix  at the hypothesized value 0 and let 

ˆGMM  be an efficient GMM estimator of , at the given value of 0.  Then 

construct the CUE objective function, using the hypothesized value of  and 

the estimated value of : 

0
ˆ( , )CUE GMM

TS    = 1/2 1 1/2

0 0 0

1 1

ˆ ˆ ˆˆ( , ) ( , ) ( , )
T T

GMM GMM GMM

t t

t t

T T         

 

   
   

   
   

 

The statistic 
0

ˆ( , )CUE GMM

TS    has a 2

dim( )k    distribution under H0:  = 0, 

and is a weak-identification robust test statistic for H0:  = 0. 
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In the homoskedastic linear IV model, the GMM-AR statistic simplifies to the 

AR statistic (up to a degrees of freedom correction): 

0( )CUE

TS   = 1/2 1 1/2

0 0 0

1 1

ˆ( ) ( ) ( )
T T

t t

t t

T T      

 

   
   

   
   

= 

1

1/2 2 1/2

0 0

1 1

'
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t t t v t t t

t t

T y Y Z s T y Y Z
T

 



 

 

          
    

 
Z Z

 

= 0 0

0 0

( ) ( )

( ) ( ) / ( )

P

M T k

 

 

 

  

Z

Z

y Y y Y

y Y y Y
 = k  AR(0) 

Comments: 

 The statistic, 
0( )CUE

TS  , is called various things in the literature, including the 

S-statistic, the CUE objective function statistic, the nonlinear AR statistic, 

and the GMM-AR statistic.  I think GMM-AR is the most descriptive and we 

will use that term here. 
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 The GMM-AR statistic has the same issues of interpretation issues as the 

AR, specifically, the GMM-AR rejects because of endogenous instruments 

and/or incorrect  

 With little information, the GMM-AR can fail to reject any values of  

(remember the Dufour (1997) critique of Wald tests) 
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(2) GMM-LM 

Kleibergen (2005) – develops score statistic (based on CUE objective 

function – details of construction matter) that provides weak-identification 

valid hypothesis testing for sets of variables 

(3) GMM-CLR 

Andrews, Moreira, Stock (2006) – extension of CLR to linear GMM with a 

single included endogenous regressor, also see Kleibergen (2007).  Very 

limited evidence on performance exists; also problem of dimension of 

conditioning vector 

(4) Other methods 

Guggenberger-Smith (2005) objective-function based tests based on 

Generalized Empirical Likelihood (GEL) objective function (Newey and 

Smith (2004)); Guggenberger-Smith (2008) generalize these to time series 

data.  Performance is similar to CUE (asymptotically equivalent under weak 

instruments) 
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Confidence sets 

 Fully-robust 95% confidence sets are obtained by inverting (are the acceptance 

region of) fully-robust 5% hypothesis tests 

 Computation is by grid search in general: collect all the points  which, when 

treated as the null, are not rejected by the GMM-AR statistic. 

 Subsets by projection (see Kleibergen and Mavroeidis (2009) for an application 

of GMM-AR confidence sets and subsets) 

 Valid tests must be unbounded (contain ) with finite probability with weak 

instruments 

Bottom line recommendation 

Work is under way in this area, but the best thing for now is to use the 

GMM-AR statistic to test  = 0, and to invert the GMM-AR statistic to 

construct the GMM version of the AR confidence set.  The GMM-AR 

statistic must in general be inverted by grid search.  The GMM-AR 

confidence set, if nonempty, will contain the CUE estimator. 
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Example (linear GMM):  New Keynesian Phillips Curve 

See the survey by Mavroeidis, Plagborg-Møller, and Stock (2014) 

 

 

Hybrid NKPC:    t = xt + fEtt+1 + bt–1 + t 

 

Rational expectations:   Et(t – xt – ft+1 – bt–1) = 0 

GMM moment condition:  E[(t – ft+1 – bt–1 – xt)Zt] = 0 

Instruments:     Zt = {t–1, xt–1, t–2, xt–2,…} 

 

m = 2, so AR sets are needed. Confidence intervals can be computed by 

projecting the sets to the axes.  
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minev(μ2) = 1.8              minev(μ2) = 108 
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9) GMM IV:  Estimation 

 

 Impossibility of a (data-based) fully robust estimators are available – just as 

in linear case 

 The challenge is to find partially robust estimators – estimators that improve 

upon 2-step and iterated GMM (which perform terribly – just like TSLS) 

 

(a) The continuous updating estimator (CUE) 

Hansen, Heaton, Yaron (1996).  The CUE minimizes, 

 

( )CUE

TS   = 1/2 1 1/2

1 1

ˆ( ) ( ) ( )
T T

t t

t t

T T      

 

   
   

   
   

 

Basic idea: “same  in the numerator and the denominator”. 
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Comments 

 The CUE might seem arbitrary but actually it isn’t.  In fact, it was shown 

above that in the linear model with spherical errors, the CUE objective 

function is the AR statistic, ( )CUE

TS   = AR().  It was stated above (without 

proof) that LIML minimizes the AR statistic.  So in the special case of linear 

GMM when there is no heteroskedasticity or serial correlation, the CUE 

estimator is LIML (asymptotically under weak instrument asymptotics if  is 

estimated). 

 CUE will always be contained in the GMM-AR set 

 The CUE seems to inherit median unbiasedness of LIML (MC result; for 

some theory see Hausman, Menzel, Lewis, and Newey (2007)) 

 CUE (like LIML) exhibits wide dispersion in MC studies (Guggenberger 

2005) 
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(b) Other estimators 

 Generalized empirical likelihood (GEL) family.  Interestingly, GEL 

estimators are asymptotically equivalent to CUE under weak instrument 

asymptotics (Guggenberger and Smith (2005)) 

 Fuller-k type modifications explored in Hausman, Menzel, Lewis, and 

Newey (2007), with some simulation evidence. 

 These alternative estimators are promising but preliminary and their 

properties, including the extent to which they are robust to weak instruments 

in practice, are not yet fully understood. 
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10) Many Instruments 

 

The appeal of using many instruments 

 Under standard IV asymptotics, more instruments means greater efficiency. 

 This story is not very credible because 

(a) the instruments you are adding might well be weak (you already have 

used the first two lags, say) and  

(b) even if they are strong, this requires consistent estimation of increasingly 

many parameter to obtain the efficient projection – hence slow rates of 

growth of the number of instruments in efficient GMM literature. 
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Example of problems with many weak instruments – TSLS 

 

Recall the TSLS weak instrument asymptotic limit: 

ˆTSLS  – 0 
d

  
(  )

(  ) (  )

v u

v v

z z

z z



 



 
 

with the decomposition, zu = zv + .  Suppose that k is large, and that 

/k   (one way to implement “many weak instrument asymptotics”).  Then 

as k  , 

zv/k 
p

  0 and zu/k 
p

  0 

zvzv/k 
p

  1 and zv/k 
p

  0 (zv and  are independent by construction) 

 

Putting these limits together, we have, as k  , 

(  )

(  ) (  )

v u

v v

z z

z z



 



 
 

p

  
1



 
 

In the limit that  = 0, as k   TSLS is consistent for the plim of OLS! 
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Comments  

 This calculation cuts a corner – it uses sequential asymptotics (T  , then k 

 ).  However the sequential asymptotics is justified under certain 

(restrictive) conditions on K/T (specifically, k4/T  0) 

 Typical conditions on k are k3/T  0 (e.g. Newey and Windmeijer (2004)) 

 Many instruments can be turned into a blessing (if they are not too weak! 

They can’t push the scaled concentration parameter to zero) by exploiting the 

additional convergence across instruments.  This can lead to bias corrections 

and corrected standard errors.  There is no single best method at this point 

but there is promising research, e.g. Newey and Windmeijer (2004), Chao 

and Swanson (2005), and Hansen, Hausman, and Newey (2006)) 



Revised 1/8/15 5/6-145 

Comments, ctd. 

 For testing, the AR, LM, and CLR are all valid under many instruments 

(again, slow rate: k   but k3/T  0) in the classical IV regression model; 

the CLR continues to be essentially most powerful (the power of the AR 

deteriorates substantially because of the large number of restrictions being 

tested) 

 An important caveat in all of this is that the rates suggest that the number of 

instruments must be quite small compared to the number of observations.  

(The specific rate at which you can add instruments depends on their strength 

– the stronger the instruments, the more you can add; see the discussion in 

Hansen, Hausman, and Newey (2006) for example.)  Consider the k3/T  0 

rate:  

with T = 200 and k = 6, k3/T =  1.08. 

with T = 329,509 and k = 178, k3
/T = 17 (!) 
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Instrument selection 

 Donald and Newey (2001) provide an information criterion instrument 

selection method in the classical linear IV model that applies when some 

instruments are strong ( strongly identified) and others possibly weak.  

Problem with is that you need to know which are strong. 

 Unaware of instrument selection methods that are appropriate when all 

instruments are possibly weak. 
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Final comments on many instruments 

 Strong instruments: more instruments, more efficiency 

 Weak instruments: more weak instruments, less reliable inference – more 

bias, size distortions (using standard estimators – two-step and iterated 

GMM) 

 Don’t be fooled by standard errors that get smaller as you add instruments.  

Remember the result that ˆTSLS  – ˆOLS  
p

  0 as k   (and k3/T  0) when 

all but a few instruments are irrelevant. 

 Some gains seem to be possible in theory (papers cited above) by exploiting 

the idea of many instruments but the theory is delicate: bias adjustments and 

size corrections that hold for rates such as k   but k3/T  0, but break 

down for k too large.  Work needs to be done before these are ready for 

implementation 

 For now, the best advice is to restrict attention to relatively few instruments, 

to use judgment selecting the strongest (recent lags, not distant ones), and to 

use relatively well understood. 
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Bottom line recommendations 

 

 Weak instruments/weak identification comes up in a lot of applications 

 In the linear case, it is helpful to check the first-stage F to see if weak 

instruments are plausibly a problem. 

 TSLS and 2-step efficient GMM can give highly misleading estimates if 

instruments are weak. 

 TSLS and 2-step GMM confidence intervals, constructed in the usual way 

( 1.96 standard errors) are highly unreliable (can have very low true 

coverage rates) if instruments are weak. 

 If you have weak instruments, the best thing to do is to get stronger 

instruments, but barring that you should use econometric procedures that 

are robust to weak instruments.  Robust procedures give valid inference 

even if the instruments are weak. 
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Bottom line recommendations, ctd. 

 

 In the linear case with m=1 and no serial correlation, the CLR and CLR 

confidence intervals are recommended.  Estimation by LIML is preferred 

to TSLS, but LIML can deliver very large outliers.  Fuller is also a 

plausible option (see above). 

 In the general nonlinear GMM case, GMM-AR confidence sets are 

recommended, but care must be taken in interpreting these (see discussion 

above).  If you must compute an estimator, CUE seems to be the best 

choice given the current state of knowledge. 
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1) VARs, SVARs, and the Identification Problem 

 

A classic question in empirical macroeconomics: what is the effect of a 

policy intervention (interest rate increase, fiscal stimulus) on macroeconomic 

aggregates of interest – output, inflation, etc? 

Let Yt be a vector of macro time series, and let 
r

t  denote an unanticipated 

monetary policy intervention.  We want to know the dynamic causal effect of 
r

t  

on Yt: 

t h

r

t

Y





, h = 1, 2, 3,…. 

 

where the partial derivative holds all other interventions constant.  In macro, this 

dynamic causal effect is called the impulse response function (IRF) of Yt to the 

“shock” (unexpected intervention) 
r

t . 

 The challenge is to estimate t h

r

t

Y




 
 
 

 from observational macro data. 
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Two conceptual approaches to estimating dynamic causal effects (IRF) 

1) Structural model (Cowles Commission): DSGE or SVAR 

2) Quasi-Experiments 

 

The identification problem. Consider the Reduced form VAR(p): 

     Yt = A1Yt–1 + … + ApYt–p + ut 

or     A(L)Yt = ut,  where A(L) = I – A1L – A2L
2 – … – ApL

p 

where Ai are the coefficients from the (population) regression of Yt on Yt-1,…,Yt-p. 

 ut = Yt – Proj(Yt|Yt-1,…, Yt–p) are the innovations, and are identified. 

 If ut were the shocks, then we could compute the structural IRF using the 

MA representation of the VAR, Yt = A(L)-1ut. 

 But in general ut is affected by multiple shocks: in any given quarter, GDP 

changes unexpectedly for a variety of reasons. 

 For example, if n = 2, 

u1t = R12u2t + 1t 

u2t = R21u1t + 2t 

o To identify R we need an instrument Zt or a restriction on the parameters. 

o For example, R12 = 0 identifies R (Cholesky decomposition) 
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Reduced form to structure: 

 

Suppose: (i)   A(L) is finite order p (known or knowable) 

(ii)  ut spans the space of structural shocks t, that is, t  = Rut, 

where R is square (equivalently, Yt is linear in the structural 

shocks & the model is invertible) 

(iii) A(L), u , and R are time-invariant, e.g. A(L) is invariant 

 to policy changes over the relevant period 

 

Because εt = Rut,  

RA(L)Yt = Rut = εt. 

Letting RA(L) = B(L), this delivers the structural VAR, 

      B(L)Yt = t,  

The MA representation of the SVAR delivers the structural IRFs: 

      Yt = D(L)t, D(L) = B(L)–1 = A(L)–1R–1 

Impulse response:  t h

t

Y





 = Dh 
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Summary of VAR and SVAR notation 

 

Reduced form VAR Structural VAR 

A(L)Yt = ut B(L)Yt = t 

Yt = A(L)–1ut = C(L)ut Yt = B(L)–1t = D(L)t 

A(L) = I – A1L – A2L
2 – … – ApL

p B(L) = B0 – B1L – B2L
2 – … – BpL

p 

 

Eutut = u (unrestricted) 

 
Ett =  = 

2

1

2

0

0 k





 
 
 
 
 

 

Rut = t 

B(L) = RA(L)   (B0 = R) 

D(L) = C(L)R–1 

 Note the assumption that the structural shocks are uncorrelated 

 D(L) is the structural IRF of Yt w.r.t. t. 

 structural forecast error variance decompositions are computed from D(L) 

and  
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 Identification of R and identification of shocks: Two equivalent views 

 

1.  Identification of R.  In population, we can know A(L).  If we can identify R, 

we can obtain the SVAR coefficients, B(L) = RA(L). 

 

2.  Identification of shocks.  If you knew (or could estimate) one of the shocks, 

you could estimate the structural IRF of Y w.r.t. that shock.  Partition Yt into 

a policy variable rt and all other variables: 

Yt = 

( 1 1)

(1 1)

k

t

t

X

r

 



 
 
 
 

 , ut = 

X

t

r

t

u

u

 
 
 

 , t = 

X

t

r

t





 
 
 

,  

The IRF/MA form is Yt = D(L)t, or 

Yt =  ( ) ( )YX YrD L D L

X

t

r

t





 
 
 

 = DYr(L)
r

t  + vt,  

where vt = DYX(L)
X

t . Because E
r

t vt = 0, the IRF of Yt w.r.t. 
r

t , DYr(L) is 

identified by the population OLS regression of Yt onto 
r

t . 
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A word on “invertibility”:   

 

Recall the SVAR assumption: 

(ii)  ut spans the space of structural shocks t, that is, t  = Rut,  

where R is square  

 This is often called the assumption of invertibility: the VAR can be inverted 

to span the space of structural shocks.  If there are more structural shocks 

than ut’s, then condition (ii) will not hold.   

 One response is to add more variables so that ut spans t.  This response is an 

important motivation of the FAVAR approach (references below) 

 If agents see future shocks, invertibility fails.  Or, does the definition of 

shock just become more subtle (an expectations shock)?   

 See Lippi and Reichlin (1993, 1994), Sims and Zha (2006b), Fernandez-

Villaverde, Rubio-Ramirez, Sargent, and Watson (2007), Hansen and 

Sargent (2007), E. Sims (2012), Blanchard, L’Huillier, and Lorenzoni 

(2012), Forni, Gambetti, and Sala (2012), and Gourieroux and Monfort 

(2014) 
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This talk 

 

 Early promise of SVARs  

Surveys of classical methods: Christiano, Eichenbaum, and Evans 

(1999), Lütkepohl (2005), Stock and Watson (2001), Watson (1994) 

Survey of new ideas about how to tackle the identification problem  

 

 Critiques of the 1990s  

 

 This talk focuses on the interesting new work on identification – much of it 

quite recent – in response to those critiques 
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Outline 
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3) New approaches to identification (post-2000) 
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Revised 1/8/15         7-11 

 

2a) Identification by Short Run Restrictions 

 

Overview: the traditional SVAR identification approach 

Bernanke (1986), Blanchard and Watson (1986), Sims (1986) 

 

(a) 2-variable example.  

u1t = R12u2t + 1t 

u2t = R21u1t + 2t 

 Suppose R12 = 0. E.g. Blanchard and Galí (2007) for oil price shocks. 

 Then ε1t = u1t so R21 can be estimated by OLS (u1t is uncorrelated with ε2t). 

 How credible is the Blanchard-Galí assumption? 
 

  



Revised 1/8/15         7-12 

 

(b) System identification. In general, the SVAR is fully identified if  

 

RuR =           

 

can be solved for the unknown elements of R and .. Recall that Σu is identified. 

 There are k(k+1)/2 distinct equations in the matrix equation above, so the 

order condition says that you can estimate (at most) k(k+1)/2 parameters.   

 If we set  = I (just a normalization), there are k2 parameters 

 So we need k2 – k(k+1)/2 = k(k–1)/2 restrictions on R.   

 If k = 2, then k(k–1)/2 = 1, which is delivered by imposing a single restriction 

(commonly, that R is lower or upper triangular). 

 This ignores rank conditions, which can matter.  

 This description of identification is via method of moments, however 

identification can equally be described via IV, e.g. see Blanchard and Watson 

(1986). 
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(c) Identification of only one shock or IRF.  Many applications now take a 

limited information approach, in which only a row of R is identified.  Partition t 

= Rut, and partition Yt so that: 

 
X

t

r

t





 
 
 

 = 
XX Xr

rX rr

R R

R R

 
 
 

X

t

r

t

u

u

 
 
 

           

 

If RrX and Rrr are identified, then (in population) 
r

t  can be computed using just 

the final row and DYr(L) can be computed by the regression of Yt on 
r

t , 1

r

t  ,…. 
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(d) The “fast-r-slow” scheme.  Almost all short-run restriction applications can 

be written as “fast-r-slow.”  Following CEE (1999), the benchmark timing 

identification assumption is 

  

S

t

r

t

f

t







 
 
 
 
 

 = 

0 0

0

SS

rS rr

fS fr ff

R

R R

R R R

 
 
 
 
 

S

t

r

t

f

t

u

u

u

 
 
 
 
 

 where Yt is partitioned 

St

t

ft

X

r

X

 
 
 
 
 

 

which identifies 
r

t  as the residual from regressing 
r

tu  on 
S

tu . 

 

Selected criticisms of timing restrictions (Rudebusch (1998), others) 

 The implicit policy reaction function doesn’t accord with theory or 

practical experience (does Fed ignore the stock market?)  

 Implementations often ignore changes in policy reaction functions 

 questionable credibility of lack of in-period response of Xst to rt 

 VAR information is typically far less than standard information sets 

 Estimated monetary policy shocks don’t match futures market data 
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2b) [Identification by Long Run Restrictions] 

 

This approach identifies R by imposing restrictions on the long run effect of one 

or more ’s on one or more Y’s. 

 

Reduced form VAR:     A(L)Yt = ut 

Structural VAR:      B(L)Yt = t,   Rut = t,  B(L) = RA(L) 

 

Long run variance matrix from VAR:   = A(1)–1u A(1)–1 

Long run variance matrix from SVAR:  = B(1)–1 B(1)–1 

Digression: B(1)–1 = D(1) is the long-run effect on Yt of t; this can be seen using 

the Beveridge-Nelson decomposition, 

    
1

t

s

s

Y


  = D(1) 
1

t

s

s




  + D*(L)t, where 
*

iD  = 
1

j

j i

D


 

  

Notation:  think of Yt as being growth rates, e.g. if Yt is employment growth, 

lnNt, then 
1

t

s

s

Y


  is log employment, lnNt 
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Long run restrictions, ctd. 

 

From VAR:    = A(1)–1u A(1)–1 

From SVAR:   = B(1)–1 B(1)–1 = RA(1)–1 A(1)–1R 

 

System identification by long run restrictions. The SVAR is identified if  

RA(1)–1 A(1)–1R =     (*)    

can be solved for the unknown elements of R and .. 

 There are k(k+1)/2 distinct equations in (*), so the order condition says that 

you can estimate (at most) k(k+1)/2 parameters.  If we set  = I (just a 

normalization), it is clear that we need k2 – k(k+1)/2 = k(k–1)/2 restrictions 

on R.   

 If k = 2, then k(k–1)/2 = 1, which is delivered by imposing a single exclusion 

restriction (that is, R is lower or upper triangular). 

 This ignores rank conditions, which matter  

 This is a moment matching approach; an IV interpretation comes later 
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Long run restrictions, ctd. 

 

The long run neutrality restriction.  The main way long restrictions are 

implemented in practice is by setting  = I and imposing zero restrictions on 

D(1).  Imposing Dij(1) = 0 says that the effect the long-run effect on the ith 

element of Yt, of the jth element of t is zero 

If  = I, the moment equation above can be rewritten, 

 

 = D(1)D(1)           

 

where D(1) = B(1)–1.  Because RA(1) = B(1), R is obtained from D(1) as  

R = A(1)–1B(1), and B(L) = RA(L) as above. 
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Comments: 

 If the zero restrictions on D(1) make D(1) lower triangular, then D(1) is the 

Cholesky factorization of . 

 Blanchard-Quah (1989) had 2 variables (unemployment and output), with the 

restriction that the demand shock has no long-run effect on the 

unemployment rate.  This imposed a single zero restriction, which is all that 

is needed for system identification when k = 2. 

 King, Plosser, Stock, and Watson (1991) work through system and partial 

identification (identifying the effect of only some shocks), things are 

analogous to the partial identification using short-run timing. 

 This approach was at the center of a debate about whether technology shocks 

lead to a short-run decline in hours, based on long-run restrictions (Galí 

(1999), Christiano, Eichenbaum, and Vigfusson (2004, 2006), Erceg, 

Guerrieri, and Gust (2005), Chari, Kehoe, and McGrattan (2007), Francis and 

Ramey (2005), Kehoe (2006), and Fernald (2007)) 

 More generally, the theoretical grounding of long-run restrictions is often 

questionable; for a case in favor of this approach, see Giannone, Lenza, and 

Primiceri (2014) 
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Long run restrictions, ctd. 

 

In this literature,  is estimated using the VAR-HAC estimator, 

VAR-HAC estimator of :  ̂  = 1 1ˆ ˆˆ(1) (1)uA A    

D(1) and R are estimated as:  ˆ (1)D  = Chol(̂), R̂  = 
1

ˆˆ (1) (1)D A


 
 

 

Comments: 

 A recurring theme is the sensitivity of the results to apparently minor 

specification changes, in Chari, Kehoe, and McGrattan’s (2007) example 

results are sensitive to the lag length.  It is unlikely that ˆ
u  is sensitive to 

specification changes, but ˆ(1)A  is much more difficult to estimate. 

 These observations are closely linked to the critiques by Faust and Leeper 

(1997), Pagan and Robertson (1998), Sarte (1997), Cooley and Dwyer (1998), 

Watson (2006), and Gospodinov (2008), which are essentially weak instrument 

concerns. 

 One alternative is to use medium-run restrictions, see Uhlig (2004) 
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3a) Identification from Heteroskedasticity 

 

Suppose: 

(a) The structural shock variance breaks at date s: ,1 before, ,2 after. 

(b) R doesn’t change between variance regimes. 

(c) normalize R to have 1’s on the diagonal, but no other restrictions; thus the 

unknowns are: R (k2–k); ,1 (k), and ,2(k). 

 

First period:  Ru,1R = ,1 k(k+1)/2 equations, k2 unknowns 

Second period:  Ru,2R = ,2 k(k+1)/2 equations, k more unknowns 

 

Number of equations = k(k+1)/2 + k(k+1)/2 = k(k+1) 

Number of unknowns = k2 – k + k + k = k(k+1) 

 

Rigobon (2003), Rigobon and Sack (2003, 2004) 

ARCH version by Sentana and Fiorentini (2001) 
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Identification from Heteroskedasticity,ctd. 

 

Comments: 

1. There is a rank condition here too – for example, identification will not be 

achieved if ,1 and ,2 are proportional. 

2. The break date need not be known as long as it can be estimated consistently 

3. Different intuition: suppose only one structural shock is homoskedastic.  Then 

find the linear combination without any heteroskedasticity! 

4. This idea also can be implemented exploiting conditional heteroskedasticity 

(Sentana and Fiorentini (2001)) 

5. But, some cautionary notes: 

a. R must remain constant despite change in  (think about it…) 

b. Strong identification will come from large differences in variances 

 

Example: Wright (2012), Monetary Policy at ZLB 

  



Revised 1/8/15         7-24 

 

 

Outline 

 

1) VARs, SVARs, and the Identification Problem 

2) Classical approaches to identification 

2a) Identification by Short Run Restrictions 

2b) [Identification by Long Run Restrictions] 

3) New approaches to identification (post-2000) 

3a) Identification from Heteroskedasticity 

3b) Direct Estimation of Shocks from High Frequency Data  

3c) External instruments 

3d) Identification by Sign Restrictions  

 



Revised 1/8/15         7-25 

 

3b) Direct Estimation of Shocks from High Frequency Data 

 

Monetary shock application:  Estimate r

t  directly from daily data on monetary 

announcements or policy-induced FF rate changes: 

 Recall, 

  Yt =  ( ) ( )YX YrD L D L

X

t

r

t





 
 
 

 = DYr(L)
r

t  + vt,  

where vt = DYX(L)
X

t , so if you observed 
r

t  you could estimate DYr(L). 

 Cochrane and Piazessi (2002)  

aggregates daily 
r

t  (Eurodollar rate changes after FOMC 

announcements) to a monthly 
r

t  series 

 Faust, Swanson, and Wright (2003, 2004) 

estimates IRF of rt wrt 
r

t  from futures market, then matches this to a 

monthly VAR IRF (results in set identification – discuss later) 

 Bernanke and Kuttner (2005) 
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3c) External Instruments 

 

The external instrument approach entails finding some external information 

(outside the model) that is relevant (correlated with the shock of interest) and 

exogenous (uncorrelated with the other shocks). 

 

Example 1: The Cochrane- Piazessi (2002) shock (ZCP) measures the part of 

the monetary policy shock revealed around a FOMC announcement – but not 

the shock revealed at other times. If CP’s identification is sound, ZCP  
r

t  but 

(i) corr(
r

t ,ZCP)  0 (relevance) 

(ii) corr(other shocks, ZCP) = 0 (exogeneity) 
 

Example 2: Romer and Romer (1989, 2004, 2008); Ramey and Shapiro 

(1998); Ramey (2009) use the narrative approach to identify moments at 

which fiscal/monetary shocks occur. If identification is sound, ZRR  
r

t  but 

(i) corr(
r

t ,ZRR)  0 (relevance) 

(ii) corr(other shocks, ZRR) = 0 (exogeneity) 
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Selected empirical papers that can be reinterpreted as external instruments 

 

 Monetary shock: Cochrane and Piazzesi (2002), Faust, Swanson, and 

Wright (2003. 2004), Romer and Romer (2004), Bernanke and Kuttner 

(2005), Gürkaynak, Sack, and Swanson (2005) 

 

 Fiscal shock: Romer and Romer (2010), Fisher and Peters (2010), Ramey 

(2011) 

 

 Uncertainty shock: Bloom (2009), Baker, Bloom, and Davis (2011), 

Bekaert, Hoerova, and Lo Duca (2010), Bachman, Elstner, and Sims 

(2010) 

 

 Liquidity shocks: Gilchrist and Zakrajšek’s (2011), Bassett, Chosak, 

Driscoll, and Zakrajšek’s (2011) 

 

 Oil shock: Hamilton (1996, 2003), Kilian (2008a), Ramey and Vine (2010) 
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The method of External Instruments 

Stock (2007), Stock and Watson (2012); Mertens and Ravn (2013);Gertler 

and P. Karadi (2014); for IV in VAR (not full method) see Hamilton (2003), 

Kilian (2009). 

Additional notation: focus on shock 1 

 Reduced form VAR:    A(L)Yt = ut 

 

Structural errors t:    Rut = εt or ut = R-1εt, or ut = Hεt 

 

 Structural MAR:    Yt = A(L)–1ut = C(L)ut = C(L)Hεt 

Partitioning notation:  ut = Ht =  
1

1

t

r

rt

H H





 
 
 
 
 

 =   1

1

t

t

H H







 
 
 

  

 Structural MAR:     Yt = C(L)Ht = C(L)H11t + C(L)Ht 

 

Structural MAR for jth variable: Yjt = 
1

,, 1 1

0 0

r

k jk j t k t k

k k

C H C H 
  

   

 

   
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Identification of H1 

A(L)Yt = ut,   ut = Hεt =  
1

1

t

r

rt

H H





 
 
 
 
 

 

 

Suppose you have k instrumental variables Zt (not in Yt) such that 

(i)  1t tE Z   =    0 (relevance) 

(ii)  jt tE Z   = 0, j = 2,…, r (exogeneity) 

(iii)  t tE   
 
= εε = D = 

1

2 2( ,..., )
r

diag     

Under (i) and (ii), you can identify H1 up to sign & scale 

( )t tE u Z  = ( )t tE H Z   =  
1

1

( )

( )

t t

r

rt t

E Z

H H

E Z





 
 
 
 


 

 =  1 0

0

rH H

 
 
 
 
 

 = H1αʹ  
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Identification of H1, ctd. 

 

( )t tE u Z   = ( )t tE H Z   =   1

1

( )

( )

t t

t t

E Z
H H

E Z








 
 
 
 

 = H1αʹ 

 

Normalization 

 The scale of H1 and 
1

2

  is set by a normalization subject to  

uu = HDHʹ    where D = 
1

2 2( ,..., )
r

diag     

 Normalization used here: a unit positive value of shock 1 is defined to 

have a unit positive effect on the innovation to variable 1, which is u1t.  

This corresponds to: 

 

(iv) H11 = 1  (unit shock normalization)  

 

where H11 is the first element of H1 
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Identification of H1, ctd. 

 

Impose normalization (iv): 

( )t tE u Z   = 
1t t

t t

Eu Z

Eu Z

 
 
  

  = H1αʹ = 
11

1

H

H




 
 

 
 = 

1

1

H




 
 

 
 

So  

1 1t t

t t

H Eu Z

Eu Z





 
 
  

  = 
1

1

H

H









 
  

 

or 

1 1t tH Eu Z
 = t tEu Z

 

 

  If Zt is a scalar (k = 1):  
1H 

 = 
1

t t

t t

Eu Z

Eu Z

  
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Identification of ε1t 

εt = H–1ut = 

1

t

r

H

u

H

 
 
 
 

 

 

 Identification of first column of H and εε = D identifies first row of H–1 

up to scale (can show via partitioned matrix inverse formula). 

 

 Alternatively, let  be the coefficient matrix of the population regression 

of Zt onto ut: 

 

    = 
1( )t t uE Z u    = 

1

1 ( )H HDH    = 
1 1 1

1H H D H      = (/
1

2

 )H1ʹ 

 

because H–1H1 = (1 0 … 0) ʹ.  Thus ε1t is identified up to scale by 

ut = 

1

2






H1ʹut = 

1

2






ε1t 
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Identification of ε1t, ctd 

 

ut is the predicted value from the population projection of Zt on t: 

 

 1t  = ut = 
1( )t t uE Z u   ut = 

1

2






ε1t 

  has rank 1 (in population), so this is a (population) reduced rank 

regression 

 2 instruments identify 2 shocks.  Suppose they are shocks 1 and 2, 

identified by Z1t and Z2t.  Then 

 

E(
1t 2t ) = 

1

1 2( ) ( )t t u t tE Z u E u Z   

     

which = 0 if both instruments satisfy (i) – (iii) 
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Estimation 

 

Recall notation:  H1 = 
11

1

H

H 

 
 
 

,  ut = 
1t

t

u

u

 
 
 

 

 

Impose the normalization condition (iv)  H11 = 1, so 

 

E(utZtʹ) = H1ʹ = 
1

1

H 

 
 
 

  or  E(ut  Zt) = 
1

1

H 

 
 
 

    

 

High level assumption (assume throughout) 

 

 1

1

1
[ ] [ ]

T

t t

t

u Z H
T




    d N(0,)     

 

  



Revised 1/8/15         7-36 

 

Estimation of H1 

 

Efficient GMM objective function: 

S(H1,;̂)   

= 1

1 11 1

1 11 1ˆˆ ˆ( ) ( ) ( ) ( )
T T

t t t t

t t

u Z u Z
H HT T

 

  

      
            

      
   

k = 1 (exact identification):    E(utZtʹ) = H1ʹ = 
1H



 

 
 
 

 

so GMM estimator solves,   1

1
ˆ

T

t tt
T u Z

  = 
1

ˆ

ˆˆH



 

 
 
 

 

GMM estimator:    
1Ĥ 

 = 

1

1

1

11

ˆ

ˆ

T

t tt

T

t tt

T u Z

T u Z












  

  

IV interpretation:     ˆ
jtu  = H1j 1̂tu  + ujt,  

       1̂tu  = jʹZt + vjt 
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GMM estimation of H
1
ʹ and ε1t 

 

Recall    1t  = 
1( )t t uE Z u   ut = ut   

 

Estimator: 

 k = 1: 

  1̂t  is the predicted value (up to scale) in the regression of Zt on ˆ
tu  

 

 k > 1(no-HAC): 

Absent serial correlation/no heteroskedasticity, the GMM estimator 

simplifies to reduced rank regression: 

 

Zt =  ˆ
tu  + t        (RRR) 

 

 If Zt is available only for a subset of time periods, estimate (RRR) using 

available data, compute predicted value over full period 
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Strong instrument asymptotics 

 

 k = 1 case: 

 1 1
ˆT H H   

d N(0, ʹ), where  = 1

1r

H

I





 
 
    

 Overidentified case (k > 1):  

o usual GMM formula 

o J-statistics, etc. are standard textbook GMM 

 

Weak instrument asymptotics: k = 1 

(Stock and Watson (2012b)) Weak IV asymptotic setup – local drift (limit of 

experiments, etc.): 

 = T = a/ T  

Obtain weak instrument distribution 
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Empirical Application: Stock-Watson (BPEA, 2012) 

Dynamic factor model identified by external instruments: 

 U.S., quarterly, 1959-2011Q2, 200 time series 

 Almost all series analyzed in changes or growth rates 

 All series detrended by local demeaning – approximately 15 year centered 

moving average: 

 
Quarterly GDP growth (a.r.)   Quarterly productivity growth 

Trend:    3.7%  2.5%         2.3%  1.8%  2.2%  
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Instruments 

 

1. Oil Shocks 

a. Hamilton (2003) net oil price increases 

b. Killian (2008) OPEC supply shortfalls 

c. Ramey-Vine (2010) innovations in adjusted gasoline prices 

 

2.  Monetary Policy 

a. Romer and Romer (2004) policy 

b. Smets-Wouters (2007) monetary policy shock 

c. Sims-Zha (2007) MS-VAR-based shock 

d. Gürkaynak, Sack, and Swanson (2005), FF futures market 

 

3. Productivity 

   a. Fernald (2009) adjusted productivity 

   b. Gali (200x) long-run shock to labor productivity 

   c. Smets-Wouters (2007) productivity shock  
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Instruments, ctd. 

 

4.  Uncertainty 

  a. VIX/Bloom (2009) 

  b. Baker, Bloom, and Davis (2009) Policy Uncertainty 

 

5. Liquidity/risk 

  a. Spread: Gilchrist-Zakrajšek (2011) excess bond premium  

  b. Bank loan supply: Bassett, Chosak, Driscoll, Zakrajšek (2011)  

c. TED Spread 

 

6. Fiscal Policy 

  a. Ramey (2011) spending news  

     b. Fisher-Peters (2010) excess returns gov. defense contractors 

  c. Romer and Romer (2010) “all exogenous” tax changes. 
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“First stage”: F1: regression of Zt on ut, F2: regression of u1t on Zt 

 
 

Structural Shock F1 F2 

1. Oil   

   Hamilton  2.9 15.7 
   Killian  1.1 1.6 

   Ramey-Vine 1.8 0.6 

2.  Monetary policy   

   Romer and Romer 4.5 21.4 
   Smets-Wouters  9.0 5.3 
   Sims-Zha  6.5 32.5 
   GSS 0.6 0.1 

3.  Productivity   

   Fernald TFP 14.5 59.6 
   Smets-Wouters 7.0 32.3 
   
   

Structural Shock F1 F2 

4.  Uncertainty   
   Fin Unc (VIX) 43.2 239.6 
   Pol Unc (BBD) 12.5 73.1 

5.  Liquidity/risk F1 F2 

   GZ EBP Spread 4.5 23.8 
   TED Spread  12.3 61.1 
   BCDZ Bank Loan  4.4 4.2 

6.  Fiscal policy   

   Ramey Spending 0.5 1.0 

   Fisher-Peters 
Spending 

1.3 0.1 

   Romer-Romer 
Taxes 

0.5 2.1 
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Correlations among selected structural shocks 

OilKilian oil – Kilian (2009) 

MRR  monetary policy – Romer and Romer (2004) 

MSZ  monetary policy – Sims-Zha (2006) 

PF  productivity – Fernald (2009) 

UB  Uncertainty – VIX/Bloom (2009) 

UBBD uncertainty (policy) – Baker, Bloom, and Davis (2012) 

LGZ  liquidity/risk – Gilchrist-Zakrajšek (2011) excess bond premium 

LBCDZ liquidity/risk – BCDZ (2011) SLOOS shock 

FR  fiscal policy – Ramey (2011) federal spending 

FRR  fiscal policy – Romer-Romer (2010) federal tax 

 OK MRR MSZ PF UB UBBD SGZ BBCDZ FR FRR 

OK 1.00            

MRR 0.65   1.00           

MSZ 0.35   0.93   1.00          

PF 0.30   0.20   0.06   1.00         

UB -0.37   -0.39   -0.29   0.19   1.00        

UBBD 0.11   -0.17   -0.22   -0.06   0.78   1.00       

LGZ -0.42   -0.41   -0.24   0.07   0.92   0.66   1.00      

LBCDZ 0.22   0.56   0.55   -0.09   -0.69   -0.54   -0.73   1.00   

FR -0.64   -0.84   -0.72   -0.17   0.26   -0.08   0.40   -0.13   1.00    

FRR 0.15   0.77   0.88   0.18   0.01   -0.10   0.02   0.19   -0.45   1.00 
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IRFs: strong-IV (dashed) and weak-IV robust (solid) pointwise bands 

 
Kilian (2008) oil shock (F2 = 1.6)  
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Hamilton (1996, 2003) oil shock (F2 = 15.7) 
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Ramey-Vine (2010) oil shock (F2 = 0.6) 
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Romer and Romer (2004) monetary policy shock (F2 = 21.4) 
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Smets-Wouters (2007) monetary policy shock (F2 = 5.3) 
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Sims-Zha (2006) monetary policy shock (F2 = 32.5) 
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Fernald (2009) productivity shock (F2 = 59.6) 
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Smets-Wouters (2007) productivity shock (F2 = 32.3) 
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Bloom (2009) (VIX) uncertainty shock (F2 = 239.6) 
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Baker, Bloom, Davis (2012) policy uncertainty shock (F2 = 73.1) 
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Gilchrist and Zakrajšek (2011) excess bond premium liquidity/risk shock  (F2 = 

23.8)  
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Bassett, Chosak, Driscoll, and Zakrajšek (2011) bank loan supply liquidity/risk 

shock (F2 = 4.2) 
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Ramey (2011) fiscal (spending) shock (F2 = 1.0) 
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Fisher and Peters (2010) fiscal (spending) shock (F2 = 0.1) 
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Romer and Romer (2010) fiscal (tax) schock (F2 = 2.1) 
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Outline 

 

1) VARs, SVARs, and the Identification Problem 

2) Classical approaches to identification 

2a) Identification by Short Run Restrictions 

2b) [Identification by Long Run Restrictions] 

3) New approaches to identification (post-2000) 

3a) Identification from Heteroskedasticity 

3b) Direct Estimation of Shocks from High Frequency Data  

3c) External Instruments 

3d) Identification by Sign Restrictions  

4) Inference: Challenges and Recently Developed Tools 
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3d) Identification by Sign Restrictions 

 

Consider restrictions of the form:  a monetary policy shock… 

 does not decrease the FF rate for months 1,…,6 

 does not increase inflation for months 6,..,12 

These are restrictions on the sign of elements of D(L). 

 

Sign restrictions can be used to set-identify D(L).  Let D denote the set of D(L)’s 

that satisfy the restriction. There are currently three ways to handle sign 

restrictions:  

1. Faust’s (1998) quadratic programming method 

2. Uhlig’s (2005) Bayesian method 

3. Uhlig’s (2005) penalty function method 

 

I will describe #2, which is the most popular method (the first steps are the same 

as #3; #1 has only been used a few times) 
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Sign restrictions, ctd. 

 

It is useful to rewrite the identification problem after normalizing by a Cholesky 

factorization (and setting  = I): 

 

SVAR identification:     RuR =  

Normalize  = I; then     u = R–1R–1= 
1

cR
QQ

1

cR
 

 

Where 
1

cR
 = Chol(u) and Q is a nn orthonormal matrix so QQʹ = I. Then 

 

Structural errors:   ut = 
1

cR
Qεt 

Structural IRF:    D(L) = C(L)
1

cR
Q 

 

Let D denote the set of acceptable IRFs (IRFs that satisfy the sign restrictions)
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Sign restrictions, ctd. 

Structural IRF:    D(L) = C(L)
1

cR
Q 

 

Uhlig’s algorithm (slightly modified): 

(i)   Draw Q  randomly from the space of orthonormal matrices 

(ii) Compute the IRF ( )D L  = D(L) = C(L) 1

cR  Q   

(iii) If ( )D L   D, discard this trial Q  and go to (i).  Otherwise, if  

( )D L   D, retain Q  then go to (i) 

(iv) Compute the posterior (using a prior on A(L) and u, plus the 

retained Q ’s) and conduct Bayesian inference, e.g. compute 

posterior mean (integrate over A(L), u, and the retained Q ’s), 

compute credible sets (Bayesian confidence sets), etc. 

 

This algorithm implements Bayes inference using a prior proportional to 

(A(L), u)1( ( )D L   D)(Q) 

where (Q) is the distribution from which Q is drawn. 
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n = 2 example 

 

Consider a n = 2 VAR: A(L)Yt = ut and structural IRF  

 

D(L) = 
11 12

21 22

( ) ( )

( ) ( )

D L D L

D L D L

 
 
 

 = A(L)-1 1

cR
Q. 

 

The sign restriction is D21,I  0, I = 1,…, 4 (shock 1 has a positive effect on 

variable 2 for the first 4 quarters). 

 

Suppose the population reduced form VAR is A(L)Yt = ut where 

 

A(L) = 
1

1

1

2

(1 ) 0

0 (1 )

L

L









 
 

 
  and Σu = I so 

1

cR
 = I. 

 

What does set-identified Bayesian inference look like for this problem, in a large 

sample?  

 With point-identified inference and nondogmatic priors, it looks like 

frequentist inference (Bernstein-von Mises theorem) 
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n = 2 example, ctd. 

 

Step 1: use n =2 to characterize Q 

 

In the n = 2 case, the restriction QQʹ = I implies that there is only one free 

parameter in Q, so that all orthonormal Q can be written, 

 

Q = 
cos sin

sin cos

 

 

 
 
 

 [check: 
cos sin

sin cos

 

 

 
 
 

cos sin

sin cos

 

 

 
  

 = I] 

 

 The standard method, used here, is to draw Q by drawing θ ~ U[0,2π]  

 The main point of this example is that the uniform prior on θ ends up being 

informative for what matters, D(L), so much so that the prior induced a 

Bayesian posterior coverage region strictly inside the identified set. 

 

Step 2:  Condition for checking whether Q is retained: 

21
ˆ ( )D L  = 

1 1

21

ˆ ˆ( ) cA L R Q  
 

  0 for first 4 lags 
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Step 3: In a very large sample, A(L) and Σu will be essentially known (WLLN), 

so that  

 

1 1ˆ ˆ( ) cA L R Q    
1

1

1

2

1 0 cos sin(1 ) 0

0 1 sin cos0 (1 )

L

L

 

 





    
   

    
  

= 
1 1

1 1

1 1

2 2

(1 ) cos (1 ) sin

(1 ) sin (1 ) cos

L L

L L

   

   

 

 

   
 

  
 

 

so    21
ˆ ( )D L  = 

1 1

21

ˆ ˆ( ) cA L R Q  
 

  (1-α2L)-1sinθ 

 

Thus the step, keep Q if 21,
ˆ

iD   0, i = 1,…,4 reduces to keep Q if sinθ  0, which 

is equivalent to 0  θ  π. 

 

Thus, in large samples the posterior of 21
ˆ ( )D L  is  (1-α2L)-1sinθ, for θ ~ U[0,π]. 
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Characterization of posterior 

A draw from the posterior (for a retained θ is):    D21(L) = (1-α2L)-1sinθ 

 

Posterior mean for D21,i:  E[D21,i] =  2 siniE     

=  2 sini E    

    = 2

0

1
sini d



  


  

= 2

0
( cos )

i





  = 2

2 i


  .637 2

i  

 

Posterior distribution: drop scaling by 2

i  and focus on sinθ part 

 

Pr[sinθ  x] = Pr[θ  Sin-1(x)] for θ ~ U[0,π/2] 

 

     = 2Sin-1(x)/π 

 

So the pdf of x is:  fX(x) = 12
Sin ( )

d
x

dx 

   = 
2

2

1 x 
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So the posterior of 21,
ˆ

iD  is: p( 21,
ˆ

iD |Y)   
2

2

2

1

i

x


 
 

  

67% posterior probability interval with equal mass in each tail: 

Lower cutoff:  

Pr[sinθ  x] = 1/6 → xlower = sin(π/12) = .259 

Pr[sinθ  x] = 5/6 → xupper = sin(5π/12) = .966 

 

so 67% posterior coverage interval is [.259 2

i , .966 2

i ], with mean .637 2

i  

 

What’s wrong with this picture? 

 Posterior coverage interval: [.259 2

i , .966 2

i ], with mean .637 2

i  

 Identified set is [0, 2

i ] 

 What is the frequentist confidence interval here? 

 Why don’t Bayesian and frequentist coincide? 
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Fry and Pagan (2011) 

Kilian and Murphy (JEEA, 2012)  

Moon and Schorfheide (ECMA, 2012) 

Moon, Schorfheide, and Granziera (WP, 2013) 
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Course Topics 
 

1. Time series refresher and inference tools (MW)  

2. The Kalman filter, nonlinear filtering, and Markov chain monte carlo 

(MW) 

3. Prediction with large datasets (MW) 

4. Heteroskedasticity and autocorrelation consistent/robust (HAC, HAR) 

standard errors (JS) 

5. Many instruments/weak identification in IV and GMM (JS) 

6. Structural VARs: Recent Developments (JS) 
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Lecture Outline 
 
1. Time Series Basics  
2. Spectral representation of stationary process 
3. Approximation tools (CLT, FCLT, etc.). 
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Time Series Basics (and notation) 

 

(References: Hayashi (2000), Hamilton (1994), Brockwell and Davis 
(1991)… , lots of other books) 
 
1.  {Yt}:  a sequence of random variables 
 
2.  Stochastic Process: The probability law governing {Yt} 
 
3.  Realization: One draw from the process, {yt} 
 
4. Strict Stationarity: The process is strictly stationary if the probability 
distribution of   (Yt ,Yt+1,...,Yt+k )  is identical to the probability distribution of 

  (Yτ ,Yτ+1,...,Yτ+k ) for all t, τ, and k. (Thus, all joint distributions are time 
invariant.)  
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5. Autocovariances:    γ t ,k = cov(Yt ,Yt+k ) 
 
6. Autocorrelations:    ρt ,k = cor(Yt ,Yt+k )  
 
7. Covariance Stationarity: The process is covariance stationary if  µt = 
E(Yt) =µ and γt,k = γk for all t and k.	
  
 
8. White noise: A process is called white noise if it is covariance 
stationary and µ = 0 and γk = 0 for k ≠ 0. 
 

9. Martingale: Yt follows a martingale process if E(Yt+1 | Ft) = Yt, where Ft 
⊆  Ft+1 is the time t information set.  
 
10. Martingale Difference Process: Yt follows a martingale difference 
process if E(Yt+1 | Ft) = 0. {Yt} is called a martingale difference sequence 
or “mds.” 
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11. The Lag Operator: “L” lags the elements of a sequence by one period.  

Lyt = yt−1, L2 yt = yt−2,. If b denotes a constant, then bLYt = L(bYt) = bYt−1. 
	
  

	
  

12.  Linear filter (moving averages):  Let {cj} denote a sequence of 
constants and  
c(L) =  c−rL−r + c−r+1L−r+1 + … + c0 + c1L + … + csLs  

denote a polynomial in L. Note that Xt = c(L)Yt = 
 

c jYt− jj=−r

s∑  is a moving 
average of Yt. c(L) is sometimes called a linear filter (for reasons discussed 
below) and X is called a filtered version of Y. 
 

13. AR(p) process: φ(L)Yt = εt where φ(L) = (1 − φ1L − … − φpLp) and εt is 
white noise.  
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14. MA(q) process: Yt = θ(L)εt where θ(L) = (1 − θ1L − … − θqLq) and εt 
is white noise.  
 

15. ARMA(p,q): φ(L)Yt = θ(L)εt. 
 
16. Wold decomposition theorem (e.g., Brockwell and Davis (1991)) 
Suppose Yt is generated by a “linearly indeterministic” covariance 
stationary process. Then Yt  can be represented as  

Yt = εt + c1εt−1 + c2εt−2 + … ,  

where εt	
   is white noise with variance  σε
2 ,   i=1

∞∑ ci
2 < ∞, and  

εt = Yt – Proj(Yt | lags of Yt) (so that εt is “fundamental”). 
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17. The autocovariance generating function for a covariance stationary 

process is given by 
  
γ (z) = γ j z

j
j=−∞

∞∑ , so the autocovariances are given by 

the coefficients on the argument zj.  

(a) With x represented as xt = c(L)εt, the ACGF is  

γ(z) = σε
2 c(z)c(z−1).   

Example: For the MA(1) model xt = (1 − c1L)εt 

γ0 =  σε
2(1 +   c1

2  ), γ−1 = γ1 = −  σε
2 c1, and γk = 0 for |k| > 1. Thus  

  

γ (z) = γ j z
j

j=−∞

∞∑
= γ −1z

−1 + γ 0z0 + γ 1z
1

=σε
2 −c1z

−1 + (1+ c1
2 )− c1z( )

=σε
2(1− c1z)(1− c1z

−1)
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18. Spectral Representation Theorem(e.g, Brockwell and Davis (1991)):  
Suppose Yt  is a discrete time covariance stationary zero mean process, 
then there exists an orthogonal-increment process Z(ω) such that  

 

(i) Var(Z(ω)) = F(ω)  

and  

(ii) Yt = 
  

eitω dZ(ω )
−π

π

∫  

 

where F is the spectral distribution function of the process. (The spectral 
density, S(ω), is the density associated with F.) 

This is a useful and important decomposition, and we’ll spend some time 
discussing it. 
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Lecture Outline 
 
1. Time Series Basics  
2. Spectral representation of stationary process 
3. Approximation tools (CLT, FCLT, etc.) 
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Some questions 

 

1. How important are the “seasonal” or “business cycle” components in 
Yt?  

2. Can we measure the variability at a particular frequency? Frequency 0 
(long-run) will be particularly important as that is what HAC/HAR 
Covariance matrices are all about. 

3. Can we isolate/eliminate the “seasonal” (“business-cycle”) component? 
(Ex-Post vs. Real Time). 
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2.1  Spectral representation of a covariance stationary stochastic 
process 

Deterministic processes: 

(a)  Yt = cos(ωt),  strictly periodic with period = 
 
2π
ω

,  

      Y0 = 1 
      amplitude = 1. 
 

(b) Yt = a×cos(ωt) + b×sin(ωt) ,  strictly period with period = 
 
2π
ω

,  

     Y0 = a 

     amplitude =   a2 + b2  
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Stochastic process:  

Yt = a×cos(ωt) + b×sin(ωt) , a and b are random variables, 0-mean, 

mutually uncorrelated, with common variance σ2. 

 

2nd - moments : 

E(Yt) = 0  

Var(Yt) = σ2×{cos2(ωt) + sin2(ωt) } = σ2 

  

Cov(Yt ,Yt−k ) =σ 2{cos(ωt)cos(ω (t − k))+ sin(ωt)sin(ω (t − k))}

=σ 2 cos(ωk)
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Stochastic process with more components:  

Yt =
  

{aj cos(ω jt)+ bj sin(ω jt)}
j=1

n

∑ , {aj,bj} are uncorrelated 0-mean random 

variables, with Var(aj) = Var(bj) =   σ j
2  

2nd - moments : 

E(Yt) = 0  

Var(Yt) = 
  

σ j
2

j=1

n

∑             (Decomposition of variance) 

Cov(YtYt−k) = 
  

σ j
2 cos(ω jk)

j=1

n

∑       (Decomposition of auto-covariances) 
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Stochastic Process with even more components: 
 

                  
  
Yt = cos(ωt)da(ω )

0

π

∫ + sin(ωt)db(ω )
0

π

∫  
 
da(ω) and db(ω):  random variables, 0-mean, mutually uncorrelated, 
uncorrelated across frequency, with common variance that depends on 
frequency.  This variance function, say S(ω),  is called the spectrum. 
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.. Digression: A convenient change of notation: 
 

Yt = a×cos(ωt) + b×sin(ωt)  

          

  

= 1
2

eiω (a − ib)+ 1
2

e− iω (a + ib)

= eiωZ + e− iωZ

 

 

where i =  −1 and eiω = cos(ω) + i×sin(ω), Z = 
  
1
2

(a − ib) and  Z  is the 

complex conjugate of Z. 
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Similarly  

  
Yt = cos(ωt)da(ω )

0

π

∫ + sin(ωt)db(ω )
0

π

∫  

    

  

= 1
2

eiωt (da(ω )− i db(ω ))
0

π

∫ + 1
2

e− iωt (da(ω )+ i db(ω ))
0

π

∫

= eiωt dZ(ω )
−π

π

∫
 

where dZ(ω) = 
 
1
2

(da(ω) − idb(ω)) for ω ≥ 0 and   dZ(−ω ) = dZ(ω ) for ω > 

0. 
Because da and db have mean zero, so does dZ. Denote the variance of 
dZ(ω) as Var(dZ(ω)) = E(dZ(ω)  dZ(ω ))=S(ω)dω, and using the 
assumption that da and db are uncorrelated across frequency E(dZ(ω)

  dZ(ω )')=0 for ω ≠ ω′. 
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Second moments of Y: 

E(Yt) = 
  
E eiωt dZ(ω )

−π

π

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= eiωt E(dZ(ω ))

−π

π

∫ = 0 

γk = E(YtYt−k) = 
  
E(YtYt−k ) = E eiωt dZ(ω )

−π

π

∫ e− iω (t−k ) dZ(ω )
−π

π

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

                                       

  

= eiωte− iω (t−k )E(dZ(ω )dZ(ω ))
−π

π

∫

= eiωk S(ω )dω
−π

π

∫ = 2 cos(ωk)S(ω )dω
0

π

∫
 

where the last equality follows from S(ω) = S(−ω).

 

Setting k = 0,  γ0 = Var(Yt) = 
  

S(ω )dω
−π

π

∫  

… End of Digression 
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Summarizing  

1. S(ω)dω can be interpreted as the variance of the cyclical component of  
Y corresponding to the frequency ω. The period of this component is 
period = 2π/ω.  

 
 

2. S(ω) ≥ 0 (it is a variance) 
 

 
3. S(ω) = S(−ω). Because of this symmetry, plots of the spectrum are 

presented for frequencies 0 ≤ ω ≤ π. 
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Example: The Spectrum of Building Permits 
 

 
Most of the mass in the spectrum is concentrated around the seven peaks evident in the plot. (These peaks are 
sufficiently large that spectrum is plotted on a log scale.) The first peak occurs at frequency ω = 0.07 
corresponding to a period of 90 months.  The other peaks occur at frequencies 2π/12, 4π/12, 6π/12, 8π/12, 
10π/12, and π.  These are peaks for the seasonal frequencies: the first corresponds to a period of 12 months, and 
the others are the seasonal “harmonics” 6, 4, 3, 2.4, 2 months. (These harmonics are necessary to reproduce an 
arbitrary − not necessary sinusoidal − seasonal pattern.)  
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Spectrum of Building Permits 
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4. γk = 
  

eiωk S(ω )dω
−π

π

∫ = 2 cos(ωk)S(ω )dω
0

π

∫  can be inverted to yield 
 

  
S(ω ) = 1

2π
e− iωkγ k

k=−∞

∞

∑ = 1
2π

γ 0 + 2 γ k cos(ωk)
k=1

∞

∑⎧
⎨
⎩

⎫
⎬
⎭ 
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“Long-Run Variance” 

 
The long-run variance is S(0), the variance of the 0-frequency (or ∞-period 
component).  

Since 
  
S(ω ) = 1

2π
e− iωkγ k

k=−∞

∞

∑ , then S(0) = 
  

1
2π

γ ke
− ik 0

k=−∞

∞

∑ = 1
2π

γ k
k=−∞

∞

∑ .  

 
As we will see, this plays an important role in statistical inference because 
(except for the factor 2π) it is the large-sample variance of the sample 
mean. 
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5. Recall that the ACGF is γ(z) = ∑γj zj .  
 
Thus,  S(ω) = (2π)-1γ(z), with  z = eiω. 
 
Application: If xt follows an ARMA process, then it can be represented as  

φ(L)xt = θ(L)εt, or xt = c(L)εt with c(L) = θ(L)/φ(L).   

The ACGF is therefore γ(z) =  σε
2c(z)c(z−1) = 

  
σε

2 θ(z)
φ(z)

θ(z−1)
φ(z−1)

, or 

  
γ (z) =σε

2 (1−θ1z − ...−θqzq )(1−θ1z
−1 − ...−θqz−q )

(1−φ1z − ...−φ pz p )(1−φ1z
−1 − ...−φ pz− p )

 

and the spectrum is  

 
  
Sy (ω ) = (2π )−1σε

2 (1−θ1e
iω − ...−θqe

iqω )(1−θ1e
− iω − ...−θqe

− iqω )
(1−φ1e

iω − ...−φ pe
ipω )(1−φ1e

− iω − ...−φ pe
− ipω )  
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This suggests a simple (parametric) method for estimating the spectrum of 
a series: 
 
(1) Estimate an appropriate ARMA model, say  
  φ̂(L)yt = θ̂(L)ε t

  
(2) Plug in estimated ARMA parameter values to form  
 

  
Ŝ y (ω ) = (2π )−1σ̂ ε

2 (1−θ̂1e
iω − ...−θ̂qe

iqω )(1−θ̂1e
− iω − ...−θ̂qe

− iqω )
(1− φ̂1e

iω − ...− φ̂ pe
ipω )(1− φ̂1e

− iω − ...− φ̂ pe
− ipω )

 

 
Non-parametric estimators based on the “Periodogram” will be discussed 
in the lecture on HAC/HAR standard errors.  
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 Lecture Outline 
 
1. Time Series Basics  
2. Spectral representation of stationary process 
3. Approximation tools (CLT, FCLT, etc.) 
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3 familiar notions 
 
1. Convergence in distribution or “weak convergence”: ξT, T = 1, 2, … is a 
sequence of random variables.  
 

ξT ⇒ ξ  (or ξT  →
d

ξ) means that the probability distribution function (PDF) 
of ξT converges to the PDF of ξ. (Equivalently, E(g(Xn) → E(g(X)) for any 
continuous bounded function g.)  
 
As a practical matter this means that we can approximate the PDF of ξT 
using the PDF of ξ when T is large. 
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2. Central Limit Theorem: Let εt be a mds(0, σε

2 ) with 2+δ  moments and  

ξT = 
  

1
T

ε t
t=1

T

∑ . Then ξT ⇒	
  ξ ~ N(0,  σε
2 ). 
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(Digression − Additional persistence …  
 
Suppose at = εt − θεt−1 = (1−θL)εt = θ(L)εt. Then 
 

  
T −1/2 at

t=1

T

∑ = T −1/2 (ε t −θε t−1)
t=1

T

∑ = T −1/2 ε t
t=1

T

∑ −θ ε t
t=0

T−1

∑ = (1−θ )T −1/2 ε t
t=1

T

∑ +θT −1/2 (εT − ε0 )

 
 
But θT−1/2(εT − ε0)  is negligible, so that  
 

 
   
T −1/2 at

t=1

T

∑ = (1−θ )T −1/2 ε t
t=1

T

∑ + op (1)⇒ (1−θ )ξ ∼ N 0,σε
2 (1−θ )2( ) 

 
Note:  σε

2 (1−θ )2 =  σε
2θ(1)2 = σε

2θ(eiω)θ(e-iω) with ω = 0 
 
and is the “long-run” variance of a. 
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This generalizes: suppose at = θ(L)εt and 
  

i |θ i |
i=0

∞

∑  < ∞ (so that the MA 

coefficients are “one-summable”), then 
 

   
T −1/2 at

t=1

T

∑ = θ(1)T −1/2 ε t
t=1

T

∑ + op (1)⇒θ(1)ξ ∼ N 0,σε
2θ(1)2( ) 

 
and  σε

2θ(1)2 is the long-run variance of a. 
 
 
 … End of Digression) 
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3. Continuous mapping theorem.  Let g be a continuous function and  
ξT ⇒ ξ, then g(ξT) ⇒ g(ξ).  
 
Example ξT is the usual t-statistic, and ξT ⇒ ξ ~ N(0, 1), then    ξT

2 ⇒ξ 2 ∼ χ1
2. 
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These ideas can be extended to random functions: 
 
A particular random function: The Wiener Process,  a continuous-time 
stochastic process sometimes called Standard Brownian Motion that will 
play the role of a “standard normal” in the relevant function space. 

 
Denote the process by W(s) defined on s∈ [0,1] with the following 
properties  
 
1. W(0) = 0  
 
2. For any dates 0 ≤ t1 < t2 < … < tk ≤ 1, W(t2)−W(t1), W(t3)−W(t4), … , 
W(tk)−W(tk−1) are independent normally distributed random variables with 
W(ti)−W(ti−1) ~ N(0, ti−ti−1).  
 
3. Realizations of W(s) are continuous w.p. 1.  
 
From (1) and (2), note that W(1) ~ N(0,1).  
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Another Random Function: Suppose εt ~ iidN(0,1), t = 1, … , T,  and let 
ξT(s) denote the function that linearly interpolates between the points 

ξT(t/T) = 
  

1
T

ε i
i=1

t

∑ .   
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Can we use W to approximate the probability law of ξT(s) if T is large? 
 
 
More generally, we want to know whether the probability distibution of a 
random function can be well approximated by the PDF of another 
(perhaps simpler, maybe Gaussian) function when T is large. Formally, we 
want to study weak convergence on function spaces.  
 
 
Useful References: Hall and Heyde (1980), Davidson (1994), Andrews 
(1994) 
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Suppose we limit our attention to continuous functions on s ∈[0,1] (the 
space of such functions is denoted C[0,1]), and we define the distance 
between two functions, say x and y as  d(x,y) = sup0 ≤ s ≤ 1 |x(s) – y(s)|.  
 
Three important theorems (Hall and Heyde (1980) and Davidson (1994, 
part VI): 
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Important Theorm 1:  (Hall and Heyde Theorem A.2) Weak Convergence 
of random functions on C[0,1] 
 
Weak convergence follows from (i) and (ii), where 
 
(i) Let 0 ≤ s1 < s2 … < sk ≤ 1, a set of k points. Suppose that (ξT(s1), ξT(s2), 
… , ξT(sk)) ⇒ (ξ(s1), ξ(s2), … , ξ(sk)) for any set of k points, {si}. 
 
(ii) The function ξT(s) is “tight” (or more generally satisfies “stochastic 
equicontinuity” as discussed in Andrews (1994)), meaning 
 
(a) For each ε > 0, Prob[sup|s−t|<δ|ξT(s) − ξT(t)| > ε ] → 0 as δ →0 uniformly 
in T.  (This says that the function ξT does not get too “wild” as T grows.) 
 
(b) Prob[|ξT(0)| > δ] → 0 as δ → ∞ uniformly in T. (This says the function 
ξT  can’t get too crazy at the origin ast T grows.) 
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Important Theorem 2: (Hall on Heyde Theorem A.3) Continuous Mapping 
Theorem  
 
 
Let g: C[0,1] → !  be a continuous function and suppose ξT(.)⇒ξ(.).  
 
 
Then g(ξT) ⇒g(ξ). 
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Important Theorem 3: (Hall and Heyde) Functional Central Limit 
Theorem:  
 
Suppose εt ~ mds with variance  σε

2 and bounded 2+δ  moments for some δ 
> 0.  
 
(a) Let   ξT (s)denote the function that linearly interpolates between the 

points ξ(t/T) = 
  

1
T

ε i
i=1

t

∑ . Then ξT ⇒σεW, where W is a Wiener process 

(standard Brownian motion). 
 

(b) The results can be extended to   ξT (s)=
  

1
T

ε i
i=1

[sT ]

∑ , the step-function 

interpolation, where [ . ] is the “less than or equal to integer function” (so 
that [3.1] = 3, [3.0] = 3, [3.9999] = 3, and so forth). 
 
See Davidson Ch. 29 for extensions. 
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 An Example:  

 (1): Let 
  
xt = ε i

i=1

t

∑ , where εi  is mds(0, σε
2 ), and let 

  
ξT (s) = 1

T
ε i =

i=1

[sT ]

∑ 1
T

x[sT ] 

be a step function approximation of  W(s).  
 
 
Then 
  

νT =  
  

1
T 3/2 xt

t=1

T

∑ = 1
T

1
T 1/2 ε i

i=1

t

∑⎡

⎣
⎢

⎤

⎦
⎥

t=1

T

∑ =σε 0

1

∫ ξT (s)ds ⇒σε 0

1

∫W (s)ds = ν  
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What does this all mean? 
 
Suppose I want to approximate the 95th quantile of the distribution of, say, 
 

vT =
  

1
T 3/2 xt

t=1

T

∑ . Because vT ⇒
  
v =σε 0

1

∫W (s)ds , I can use the 95th quantile of v 

are the approximator. 
 
 
How do I find (or approximate) the 95th quantile of v? 
 

Use Monte Carlo draws of 
  
σε N −3/2 zi

i=1

t

∑
t=1

N

∑  where zi ~ iidN(0,1) and N is 

very large. 
 
This approximation works well when T is reasonably large, and does not 
require knowledge of the distribution of x. 
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(Digression − Additional persistence …  
 
Suppose at = θ(L)εt, where the θ-coefficients are 1-summable. 
 
And, suppose xt = xt−1 + at. 
 
Then T−1/2x[sT] ⇒ θ(1)σεW(s). 
 
Note: θ(1)σε is the “long-run” standard deviation of a.  
 
 … End of Digression) 
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Application: Testing for a “Break”  
 
Model:   yt = βt + εt, where εt ~ iid (0,  σε

2) 
 

 

βt = 
  

β  for t ≤ τ
β +δ  for t > τ

⎧
⎨
⎪

⎩⎪
 

  
 
Null and alternative:  Ho:  δ = 0 vs.  Ho:  δ ≠ 0 
 
 
Tests for Ho vs. Ha depends on whether τ  is known or unknown.   
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Chow Tests (known break date) 
 
Least squares estimator of δ :     δ

! = Y2 −Y1  
 

where  
  
Y1 =

1
τ

yt
t=1

τ

∑  and 
  
Y2 =

1
T −τ

yt
t=τ+1

T

∑    

 

Wald statistic:  
   
ξW = 1

σ̂ ε
2

2
δ!

( 1
τ + 1

T−τ )
⇒ξ ~ χ1

2  

 

Follows from  
  
Y1 ~

a

N (β,
σ e

2

τ
) and 

  
Y2 ~

a

N (β +δ ,
σε

2

T −τ
) and they are  

 

independent so that 
   
δ! ~

a

N δ ,σε
2 1

τ
+ 1

T −τ
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
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Under Ho  ξW is distributed as a  χ1
2  random variable in large (τ and T−τ) 

samples.  Thus, critical values for the test can be determined from the χ2 
distribution. 
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Quandt Tests (Sup Wald or QLR) (unknown break date) 
 
 
Quandt (1960) suggested computing the Chow statistic for a large number 
of possible values of τ and using the largest of these as the test statistics.  

 
QLR statistic:  

  
ξQ = max

τ1≤τ ≤τ 2

ξW (τ ) 

 
where the Chow statistic ξW is now indexed by the break date.  
 
 
The problem is then to find the distribution of ξQ under the null (it will not 
be χ2), so that the critical value for the test can be determined.   
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Let s = τ/T. Under the null δ = 0, and (now using s as the index), we can 
then write ξW  as  

  

ξW ,T (s) = 1
σ̂ e

2

1
[sT ]

ytt=1

[sT ]∑ − 1
[(1− s)T ]

ytt=[sT ]+1

T∑⎡
⎣⎢

⎤
⎦⎥

2

1
[sT ] + 1

[(1−s)T ]

=
Ho 1
σ̂ e

2

[ 1
[sT ] t=1

[sT ]∑ ε t − 1
[(1−s)T ] t=[sT ]+1

T∑ ε t ]
2

1
[sT ] + 1

[(1−s)T ]

= 1
σ̂ e

2

[1
s

1
T t=1

[sT ]∑ ε t − 1
(1−s)

1
T t=[sT ]+1

T∑ ε t ]
2

1
s + 1

(1−s)

=
[1

s WT
a (s)− 1

(1−s) (WT
a (1)−WT

a (s))]2

1
s + 1

(1−s)

=
[WT

a (s)− sWT
a (1)]2

s(1− s)

 

 

where   WT
a (s) = 

  

1
σ̂ ε

1
T t=1

[sT ]∑ ε t , and the last equality follows from 

multiplying the numerator and denominator by   s
2 (1− s)2  and simplifying. 
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Thus, using FCLT, ξW,T  ⇒  ξ, where ξ(s) = 
  

[W (s)− sW (1)]2

s(1− s)
. 

 
Suppose that τ1  is chosen as [λT] and τ2 is chosen as [(1−λ)T], where  
0 <  λ < 0.5. Then  
 

 ξQ=
  

sup
λ≤s≤(1−λ )

ξW ,T (s), and 
  
ξQ ⇒ sup

λ≤s≤(1−λ )
ξ(s)  

 
 

It has become standard practice to use a value of λ = 0.15.  
 
The results have been derived here for the case of a single constant 
regressor. Exensions to the case of multiple (non-constant) regressors can 
be found in Andrews (1993) (Critical values for the test statistic are also 
given in Andrews (1993) with corrections in Andrews (2003), reprinted in 
Stock and Watson (2014).)  
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Lecture Outline 

 
1. Time Series Basics  
2. Spectral representation of stationary process 
3. Approximation tools (CLT, FCLT, etc.). 
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Course Topics 

 

1. Time series refresher and inference tools (MW)  

2. The Kalman filter, nonlinear filtering, and Markov chain monte carlo 

(MW) 

3. Prediction with large datasets (MW) 

4. Heteroskedasticity and autocorrelation consistent (HAC) standard   

errors (JS) 

5. Many instruments/weak identification in IV and GMM (JS) 

6. Structural VAR modeling (JS) 
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1. A motivating example 
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3.  Special Cases 
4.  MCMC (Gibbs) 
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1. A motivating example: Cogley and Sargent (2014)  
How “uncertain” and “instable” have prices been in the U.S. from 1850-
2012, and how did uncertainty/instability change over this historical 
period? 
 
Price level and inflation: pt = ln(Pt)  and πt = pt − pt−1 
 

Changes:  pt+h − pt  = πt+1 + πt+2 + … + πt+h 
 

Uncertainty: Var(pt+h − pt |Yt)  
Instability: E(pt+h − pt |Yt)2 + Var(pt+h − pt |Yt)   
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A Model:  
UC/Local-Level/IMA(1,1) model 

   (Nelson-Schwert (1977), Harvey (1989), others) 
 
 
                               πt    =      τt        +       εt  

          
                        
                                             Persistent      Not-Persistent 
                                          (martingale)        (white noise) 

 
 
(Δτ, ε): heteroskedastic (“UCSV”) 
(Stock-Watson (2007), Shephard (2013), Cogley-Sargent (2014), others). 
 
Note: CS also incorporate a “measurement error” component. 
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πt    =      τt        +       εt 

 
Challenges: 
 
(1) Estimation of τt and εt ? 
 
(2) Estimation of σΔτ and σε ? 
 
(3) Estimation of σΔτ(t) and σε(t) ? 
 
(4) E(pt+h − pt |Yt)  and Var(pt+h − pt |Yt) 
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1. A motivating example 
2.  Models, objects of interest, and general formulae 
3.  Special Cases 
4.  MCMC (Gibbs) 
5.  Likelihood Evaluation 
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2. General Model (Nonlinear, non-Gaussian state-space model) 
 

yt = H(st, εt) 

st = F(st–1, ηt) 

ε  and η  ~ iid 
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Example 1: Linear Gaussian Model 

yt = Hst + εt 

st = Fst–1 + ηt 

           
  

ε t

ηt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

~ iidN 0
0

⎛

⎝⎜
⎞

⎠⎟
,

Σε 0

0 Ση

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟  

 

Applications: 
• Unobserved component models (s is serially correlated part of y) 
• Factor Models (many y’s, few s’s) 
• TVP Regression models (H = Ht = xt, st = βt) 
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Example 2:  Hamilton Regime-Switching Model 

yt = µ(st) + σ(st)εt 
st = 0 or 1 with P(st = i | st–1 = j) = pij 

  

      (using st = F(st−1,ηt) notation:  
          st = 1(ηt ≤ p10 + (p11−p10)st−1), where η ~ U[0,1]) 
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Example 3:  Stochastic volatility model 
 

yt =  est εt 

st = µ + φ(st–1 – µ)  + ηt 
 

with, say, εt ~ iid(0,1) and  est = σt, the model for y is 

yt | st ~ N(0,   σ t
2) 
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Some things you might want to calculate 
 
Notation: y1:t = (y1, y2, … , yt),   s1:t =  (s1, s2, … , st),  
                f( . | . ) a generic density function. 
 
A. Prediction and Likelihood 

(i) f(st | y1:t–1) 

(ii) f(yt | y1:t–1) … Note f(y1:T) = 
  

f ( yt | y1:t−1)
t=1

T

∏  is  the likelihood  

 
B. Filtering: f(st | y1:t) 
 
C. Smoothing: f(st | y1:T). 
 



1	
  -­‐	
  12	
  

	
  

 
General Recursive Formulae (Kitagawa (1987)): 
 
Model: yt = H(st, εt),  st = F(st–1, ηt), ε and η  ~ iid  
 
A. Prediction of st and yt given Yt−1. 
(i)   

 

  

f (st | y1:t−1) = f (st ,st−1 | y1:t−1)dst−1∫
= f (st | st−1, y1:t−1) f (st−1 | y1:t−1)dst−1∫
= f (st | st−1) f (st−1 | y1:t−1)dst−1∫

 

 

(ii)        f ( yt | y1:t−1) = f ( yt | st ) f (st | y1:t−1)dst∫   (“t” component of likelihood) 
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Model: yt = H(st, εt),  st = F(st–1, ηt), ε and η  ~ iid  
 
B. Filtering 

      
  
f (st | y1:t ) = f (st | yt , y1:t−1) =

f ( yt | st , y1:t−1) f (st | y1:t−1)
f ( yt | y1:t−1)

=
f ( yt | st ) f (st | y1:t−1)

f ( yt | y1:t−1)
 

 
C. Smoothing 
 

  

f (st | y1:T ) = f (st ,st+1 | y1:T )dst+1∫ = f (st | st+1, y1:T ) f (st+1 | y1:T )dst+1∫
= f (st | st+1, y1:t ) f (st+1 | y1:T )dst+1∫ =

f (st+1 | st ) f (st | y1:t )
f (st+1 | y1:t )

⎡

⎣
⎢

⎤

⎦
⎥∫ f (st+1 | y1:T )dst+1

= f (st | y1:t ) f (st+1 | st )
f (st+1 | y1:T )
f (st+1 | y1:t )

dst+1∫
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3.  Special Cases 
4.  MCMC (Gibbs) 
5.  Likelihood Evaluation
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3.  Special Cases 

     Model: yt = H(st, εt),  st = F(st–1, ηt), ε and η  ~ iid  
General Formulae depend on H, F, and densities of ε and η. 

 
Well-known special case:  Linear Gaussian Model 

yt = Hst + εt 

st = Fst–1 + ηt 

           
  

ε t

ηt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

~ iidN 0
0

⎛

⎝⎜
⎞

⎠⎟
,

Σε 0

0 Ση

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

 
In this case, all joint, conditional distributions and so forth are Gaussian, 
so that they depend only on mean and variance, and these are readily 
computed.   
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Digression: Recall  that if   
 

  

a
b

⎛

⎝⎜
⎞

⎠⎟
~ N

µa

µb

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,
Σaa Σab

Σba Σbb

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,   

 

then (a|b) ~ N(µa|b, Σa|b) 
 

where µa|b = µa + Σab  Σbb
−1(b − µb) and Σa|b = Σaa − Σab  Σbb

−1Σba. 

 
Interpreting  a and b appropriately yields the Kalman Filter  and Kalman 
Smoother. 
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Model: yt = Hst + εt,  st = Fst–1 + ηt, 
  

ε t

ηt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

~ iidN 0
0

⎛

⎝⎜
⎞

⎠⎟
,

Σε 0

0 Ση

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

 
Let st/k = E(st | y1:k), Pt/k = Var(st | y1:k),  

µt/t–1 = E(yt |y1:t–1), Σt/t-1 = Var(yt|y1:t–1).  
 
Deriving Kalman Filter:  
Starting point: st−1 | y1:t–1 ~ N(st−1/t−1, Pt−1/t−1). Then  
 

 
  

st

yt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

| y1:t−1 ~ N
st /t−1

yt /t−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,
Pt /t−1 Pt /t−1H '

HPt /t−1 HPt /t−1H '+ Σε

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

 
interpreting st as “a” and yt as “b” yields the Kalman Filter. 
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Model: yt = Hst + εt,  st = Fst–1 + ηt, 
  

ε t

ηt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

~ iidN 0
0

⎛

⎝⎜
⎞

⎠⎟
,

Σε 0

0 Ση

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

Details of KF: 
 

 (i) st/t–1 = Fst–1/t–1 

(ii) Pt/t–1 = FPt–1/t–1F´ + Ση,  

(iii) µt/t–1 = Hst/t–1,  

(iv) Σt/t–1 = HPt/t–1H´ + Σε 

(v) Kt = Pt/t−1H′  Σt /t−1
−1  

(vi) st/t = st/t−1 + Kt(yt − µt/t−1) 

(vii) Pt/t = (I – Kt)Pt/t−1.  
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The log-likelihood is  
 

L(Y1:T) = constant 
  
−0.5 ln |Σt|t−1 |+( yt − µt|t−1) 'Σt|t−1

−1 ( yt − µt /t−1){ }
t=1

T

∑  

 
The Kalman Smoother (for st|T and Pt|T) is derived in analogous fashion 
(see Anderson and Moore (2005 ), or Hamilton (1990).)
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5. A Stochastic Volatility Model (Linear, but non-Gaussian Model) 
(With a slight change of notation) 

 

xt = σt et 
ln(σt) = ln(σt–1) + ηt 

 

or, letting yt = ln(  xt
2), st = ln(σt) and εt = ln(  et

2) 

 
yt = 2 st + εt 
st = st–1 + ηt 

 
Complication: εt ~ ln( χ1

2) 
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3 ways to handle the complication 
 
(1) Ignore it (KF is Best Linear Filter.  Gaussian MLE is QMLE)  
Reference: Harvey, Ruiz, Shephard (1994) 
 
(2) Work out analytic expressions for all the filters, etc. (Uhlig (1997) 
does this in a VAR model with time varying coefficients and stochastic 
volatility.  He chooses densities and priors so that the recursive formulae 
yield densities and posteriors in the same family.) 
 
(3) Numerical approximations to (2). 
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Numerical Approximations: A trick and a simulation method. 
 

Trick: Shephard (1994), Approximate the distribution of εt ~ ln( χ1
2) by a 

mixture of normals,  
  
ε t = qitvit

i=1

n

∑ , where vit ~ iidN(µi,   σ i
2 ), and P(qit=1)=pi.  

                            

 

 
(numbers taken from Omori, Chib, Shephard, and Nakajima (2007)  
 

terms of fy!t g which is linear in fhtg with an i.i.d. error !!t that follows a log w21 density

f ð!!t Þ ¼
1ffiffiffiffiffiffi
2p
p exp

!!t % expð!!t Þ
2

" #
; !!t 2 R.

Although the latter distributional form still precludes direct and simple inference, KSC
introduced the idea of accurately approximating the log w21 distribution by a matched
mixture of normal distributions

gð!!t Þ ¼
XK

j¼1
pjNð!

!
t jmj ; v

2
j Þ; !!t 2 R, (5)

where Nð!!t jmj ; v2j Þ denotes the density function of a normal distribution with mean mj and
variance v2j . The values of pj, mj and v2j found by KSC on the basis of K ¼ 7 components
are reproduced in the first block of columns in Table 1. They proceeded to develop an
efficient Bayesian MCMC method for sampling the resulting posterior distribution and
then reweighted the sampled draws in a way to ensure that the variates corresponded to the
posterior under the log w21 sampling density. The entire approach was shown to be efficient
and readily implementable.
In our current work, we have favored a tighter approximation to the density of the log w21

distribution that utilizes K ¼ 10 components. The component parameters are given in the
second block of Table 1. For the moment, the columns in the table labeled aj and bj can be
ignored.
That the move to K ¼ 10 components leads to a superior approximation is illustrated in

Fig. 1 where we plot the difference between the density of the log w21 distribution and the
approximating mixture distribution, evaluated over the range from the first to the 99th
percentiles. It can be seen from the first row of this figure that the new mixture with K ¼ 10
components provides a much closer fit. The second row of the figure shows that the new

approximation is also close for the density of
ffiffiffiffiffi
w21

q
.

ARTICLE IN PRESS

Table 1

Selection of ðpj ;mj ; v2j ; aj ; bjÞ

j KSC K ¼ 10

pj mj v2j pj mj v2j aj bj

1 0.04395 1.50746 0.16735 0.00609 1.92677 0.11265 1.01418 0.50710
2 0.24566 0.52478 0.34023 0.04775 1.34744 0.17788 1.02248 0.51124
3 0.34001 %0.65098 0.64009 0.13057 0.73504 0.26768 1.03403 0.51701
4 0.25750 %2.35859 1.26261 0.20674 0.02266 0.40611 1.05207 0.52604
5 0.10556 %5.24321 2.61369 0.22715 %0.85173 0.62699 1.08153 0.54076
6 0.00002 %9.83726 5.17950 0.18842 %1.97278 0.98583 1.13114 0.56557
7 0.00730 %11.40039 5.79596 0.12047 %3.46788 1.57469 1.21754 0.60877
8 0.05591 %5.55246 2.54498 1.37454 0.68728
9 0.01575 %8.68384 4.16591 1.68327 0.84163
10 0.00115 %14.65000 7.33342 2.50097 1.25049

Left-hand side was determined by Kim, Shephard and Chib, the ones on the right-hand side are new and represent
a better approximation.

Y. Omori et al. / Journal of Econometrics 140 (2007) 425–449428
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 χ1
2  density and n= 7 mixture approximation  

(picture taken from Kim, Shephard and Chib (1998)) 
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Simulation method: MCMC methods (here Gibbs Sampling)  
Some References: Casella and George (1992), Chib (2001), Fernandez-
Villaverde (2014), Geweke (2005), Koop (2003). 
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Markov Chain Monte Carlo (MCMC) methods  
 
Monte Carlo method:  Let a denote a random variable with density f(a), 
and suppose you want to compute Eg(a) for some function g.  (Mean, 
standard deviation, quantile, etc.) 

Suppose you can simulate from f(a).  Then 
   
Eg(a)! = 1

N
g(ai )

i=1

N

∑ , where ai 

are draws from f(a). If the Monte Carlo stochastic process is sufficiently 
well behaved, then    Eg(a)! p

N⎯ →⎯ = Eg(a) by the LLN. 

 
 
Markov Chains: Methods for obtaining draws from f(a). Suppose that it is 
difficult to draw from f(a) directly. Choose draws a1, a2, a3, … using a 
Markov chain. 
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Draw ai+1 from a conditional distribution, say h(ai+1|ai), where h has the 
following properties: 
 
(1) f(a) is the invariant distribution associated with the Markov chain. 
(That is, if ai is draw from f, then ai+1|ai is a draw from f.) 
 

(2)  Draws can’t be too dependent (or else 
   
Eg(a)! = 1

N
g(ai )

i=1

N

∑  will not be a 

good estimator of Eg(a).) 
 
Markov chain theory (see refs above) gives sufficient conditions on h that 
imply consistency and asymptotic normality of    Eg(a)! . In practice, 
diagnostics are used on the MC draws to see if there are problems. 
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How can h(ai+1|ai) be constructed so that f is invariant distribution. Gibbs 
sampling is one way. (Others … ) 
 
Gibbs idea:  partition a as a = (a1, a2).  
Then f(a1, a2) = f(a2|a1)f(a1) =  f(a1|a2)f(a2) 
 

This suggests the following: given the i’th  draw of a, say ai = (  ai
1,  ai

2), 
generate ai+1 in two steps: 
 

(i) draw   ai+1
1  from f(a1|  ai

2) 

(ii) draw   ai+1
2  from f(a2|  ai+1

1 ) 

 

Gibbs sampling is convenient when draws from f(a1|  ai
2) and f(a2|  ai+1

1 ) are 
easy. 
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Issues:  When will this work (or when will it fail) … draws are too 
correlated (requiring too many Gibbs draws for accurate Monte Carlo 
sample averages).   
 
Example:  Bimodality 

 



1	
  -­‐	
  30	
  

	
  

Checking quality of approximation:  
   
Eg(a)! = 1

N
g(ai )

i=1

N

∑  

   N (Eg(a)! − Eg(a))→
d

N (0,V )  

 

(1) 95% CI for Eg(a) =    Eg(a)! ±1.96 V̂ / N  

 
(2) Multiple runs from different starting values (should not differ 
significantly from one another) 
 

(3) Compare    Eg(a)!  based on Nfirst draws and last Nlast draws (say first 1/3 
and last 1/3 … middle 1/3 left out). The estimates should not differ 
significantly from one another. 
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Returning to the Stochastic Volatility Model 
 

xt = σt et,  ln(σt) = ln(σt–1) + ηt 

or 

yt = 2 st + εt,    st = st–1 + ηt 

yt = ln(  xt
2), εt = ln( χ1

2) ≈
  

qitvit
i=1

n

∑ , where vit ~ iidN(µi,   σ i
2 ), and P(qit=1)=pi. 

Smoothing Problem: E(σt | y1:T) = E(g(st) |y1:T) with g(s) = es: 
 

Let 
  
a = st{ }t=1

T
, qit{ }i=1,t=1

10,T( ) = (a1, a2) 

 
Jargon: “Data Augmentation” … add a2 to problem even though it is not 
of direct interest.) 
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Model: yt = 2 st + 
  

qitvit
i=1

n

∑ ,  st = st–1 + ηt,  vit ~ iidN(µi,   σ i
2 ), and P(qit=1)=pi. 

 
Gibbs Draws (throughout condition on y1:T) 
 

(i)  (a1 | a2):   st{ }t=1

T  | 
  

qit{ }i=1,t=1

10,T   

 

With 
  

qit{ }i=1,t=1

10,T  known, this is a linear Gaussian model (with known time 
varying “system” matrices).   
 

  st{ }t=1

T  | (
  

qit{ }i=1,t=1

10,T ,y1:T) is normal with mean and variance easily determined 
by formulae analogous to Kalman-filter (see Carter, C.K. and R. Kohn 
(1994)). 



1	
  -­‐	
  33	
  

	
  

(ii) (a2 | a1):   qit{ }i=1,t=1

10,T  |   st{ }t=1

T   

 

With st known, εt = yt – 2st can be calculated. So 
 

Prob(qit = 1 |   st{ }t=1

T ,YT) = 
  

fi (ε t ) pi

f j (ε t ) pjj=1

10∑
 

 

where fi is the N(µi,   σ i
2 ) density. 
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More Complicated Examples: 
 

TVP-VAR-SV Model:  
  
yt = Φt yt−i

i=1

p

∑ + et   (et ~ SV)  

(VAR) Cogley and Sargent (2005), Uhlig (1997), (SVAR) Primiceri 
(2005), Del Negro and Primiceri (2014), (Markov Switching VAR) Sims 
and Zha (2006) ... many others 
 

UC-SV:  Yt = τt + εt,  τt = τt−1 + ηt   (εt and ηt ~ SV) 
Cogley and Sargent (2104), Garnier, Mertens, and Nelson (2013), 
Shephard (2013), Stock and Watson (2007) … others 



1	
  -­‐	
  35	
  

	
  

                Yt = τt + εt,                            τt = τt−1 + ηt  

  
ln(ε t

2 ) = 2ln(σε ,t )+ qε ,i,tvε ,i,t
i=1

10

∑ ,   
  
ln(ηt

2 ) = 2ln(ση ,t )+ qη ,i,tvη ,i,t
i=1

10

∑  

ln(σε,t) = ln(σε,t−1) + υε,t,          ln(ση,t) = ln(ση,t−1) + υη,t,  
 

a = 
  
τ t{ }, σε ,t ,ση ,t{ }, qε ,i,t ,qη ,i,t{ }( ) = (a1, a2, a3) 

 
Gibbs Draws:  

(1) {τt }{qε,i,t, qη,i,t} | {σε,t, ση,t}, y1:T 
 (a) {τt }| {σε,t, ση,t}, y1:T :                   Kalman Filter (UC Model) 
 (b) {qε,i,t, qη,i,t} | {τt }{σε,t, ση,t}, y1:T:  Multinomial Mixture 
 
(2) {σε,t, ση,t} | {τt }, {qε,i,t, qη,i,t}, y1:T: “Kalman filter” – SV (as above) 
(Placement of q-draws is important − Del Negro and Primiceri (2014)) 
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Inflation (PCE Deflator) and smoothed estimate of τ 
(N =10,000, burnin = 2,000) 
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Estimates of τ  from two independent sets of draws 
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Estimates of σΔτ from two independent sets of draws 
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Estimates of σε from two independent sets of draws 
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Eg(a)! = 1

N
g(ai )

i=1

N

∑ ;       N (Eg(a)! − Eg(a))→
d

N (0,V )  

 
Average values over all dates 

 Serial 
Correlation in 

g(ai) 

  V / N   

   

V / n
Eg(a)!  

τ 0.15 0.0066 0.3% 

σΔτ 0.80 0.0073 1.6% 

σε 0.72 0.0058 0.9% 
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Computing the likelihood: Particle filtering  

Model: yt = H(st, εt),  st = F(st–1, ηt), ε and η  ~ iid  
The “t’th component” of likelihood:   f ( yt | y1:t−1) = f ( yt | st ) f (st | y1:t−1)dst∫  

 
Often f(yt|st) is known, and the challenge is f(st | y1:t−1). Particle filters use 
simulation methods to draw samples from f(st | y1:t−1)st | Yt−1), say (s1t, s2t, 
… snt), where sit  is a called a “particle.”  The t’th component of the 

likelihood can then be approximated as  
   
f ( yt | y1:t−1)! = 1

n
f ( yt | sit )

i=1

n

∑ . 

Methods for computing draws utilize the structure of the particular 
problem under study.  Useful references include Kim, Shephard and Chib 
(1998), Chib, Nardari and Shephard (2002), Pitt and Shephard (1999), and 
Fernandez-Villaverde and Rubio-Ramirez (2007), Fernandez-Villaverde 
(2014). 
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Returning to the Cogley-Sargent motivating example: 

 

Uncertainty: Var(pt+h − pt |Yt)  
 
Instability: E(pt+h − pt |Yt)2 + Var(pt+h − pt |Yt)   
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Uncertainty:   Var( pt+h − pt | p1:t )   
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Figure 8: Posteriors for smoothed conditional volatilities 5 and 10 years ahead

is no unequivocal answer to whether there was greater price-level uncertainty before

or after World War II. On the contrary, the answer depends on the particular years

being compared. We think it is sensible to focus on local peaks and troughs. As shown

in table 1, median estimates of smoothed volatilities 10 years ahead peaked in 1864,

1921, 1980, and 2009 and reached troughs in 1901, 1963, and 1992. Dates of peaks and

troughs for the 5-year horizon differ only slightly, so we concentrate on these 7 years.

Table 1: Peaks and Troughs in Smoothed Conditional Volatilities

Peaks 1864 1921 1980 2009
Troughs 1901 1963 1992

Note: Median estimates, h = 10 years.

Table 2 compares smoothed conditional volatilities in selected prewar and postwar

years. The columns and rows refer, respectively, to particular prewar and postwar

base years. Thus, the top left panel compares 1864 with 1963, while the bottom right

compares 1921 with 2009. The top entry in each panel is the ratio of the postwar

mean smoothed conditional standard deviation relative to that in the prewar base

year. Entries in parentheses record the proportion of posterior sample paths on which

conditional standard deviations are lower after the Second World War.

We begin by comparing peaks with peaks, viz. 1864 and 1921 v. 1980 and 2009.

At postwar peaks, mean smoothed volatilities were approximately 40-75 percent lower

than before the war, and the probability that uncertainty was greater at prewar peaks

either approaches or exceeds 95 percent. Our calculations therefore suggest that price-

17
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Instability:   E( pt+h − pt | p1:t )
2 +Var( pt+h − pt | p1:t )  
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Figure 9: Posteriors for smoothed conditional root mean square statistics 5 and 10
years ahead

extent, the financial crisis of 2009. The primary difference between the conditional

root mean square statistics shown in figure 9 and the conditional standard deviations

shown in figure 8 is that there are larger bumps in our instability measure in the 1970s.

Indeed, median estimates of price instability in late 1970s are larger than prewar peaks.

Otherwise, the evolution of conditional root mean square statistics resembles that of

conditional standard deviations.

Among other things, this means that our trough-to-trough comparisons of uncer-

tainty extend to our measure of instability. It follows that no compelling evidence

emerges that the price level was more stable during the two postwar moderations than

at the turn of the 20th century.

The main difference concerns peak-to-peak comparisons. For instance, while there

was less price-level uncertainty in 1980 than at prewar peaks, there was about as much

price-level instability. Mean smoothed crms statistics for 1980 are approximately 5 to

10 percent lower than those of 1864 and 1921 at the 5 year horizon and 5 to 10 percent

higher at the 10 year horizon, and the odds that prices were more stable in one era

over the other are not far from even (see the first and third columns of the 1980 row

in table 3).

Comparing the prewar peaks with 2009 yields similar results. The interquartile

range for µt was just 2-4 percent in 2009, but this is enough to push instability statistics

below the margin of significance. Relative to 1864 and 1921, ratios of mean smoothed

crms statistics are approximately 0.67-0.75, but the probability that crms statistics

were lower in 2009 falls below 0.9 (compare the 1864-2009 and 1921-2009 panels of

20
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Course Topics 

 

1. Time series refresher and inference tools (MW)  

2. The Kalman filter, nonlinear filtering, and Markov chain monte carlo 

(MW) 

3. Prediction with large datasets (MW) 

4. Heteroskedasticity and autocorrelation consistent (HAC) standard   

errors (JS) 

5. Many instruments/weak identification in IV and GMM (JS) 

6. Structural VAR modeling (JS) 
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1. Motivation and setup 

“Linear” prediction problem:   yt+1 = xt′β + εt+1 = 
  

xitβi
i=1

n

∑  + εt+1 

Sample size is T. 
 

Forecast: 
  
ŷT+1 = xiT β̂i

i=1

n

∑  

Forecast error: 
  
yT+1 − ŷT+1 = xiT (βi − β̂i )

i=1

n

∑ + εT+1 

MSFE: 
  
E xiT (βi − β̂i )

i=1

n

∑⎛⎝⎜
⎞
⎠⎟

2

+σ 2 

 
 
Suppose: (1) T is large and n is small 
      (2) T is large and n is large 
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“Linear” prediction problem:   yt+1 = xt′β + εt+1 = 
  

xitβi
i=1

n

∑  + εt+1 

 
Suppose: (2) T is large and n is large 
 
 
Approaches: 
 
(1) Use “small-n” estimators (e.g. OLS) 
 
(2) Impose some structure 

 
(a) Common “Factors”  (Dynamic Factor Model) 
 
(b) βi’s are “small”  (Shrinkage) 
 
(c) There are only a few non-zero βi’s  (Sparsity) 
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Dynamic Factor Models (DFMs) 
 
Forecasting setup:    yt+1 = α(L)ft + εt+1 
 
                                  xit = λi(L)ft + eit  
 

 Ψ(L)ft = ηt 
 
“ft” are latent factors.   
 
x is useful for forecasting for y because x provides information about f:  

  E( yt | xt ) = E α (L) ft | xt( )  
 
DFM: Use x to estimate f.  Use this to forecast y.  Estimated factors are 
also useful for other purposes. 
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DFMs: A brief survey 
 

xit = λi(L)ft + eit 

Ψ(L)ft = ηt 

 
(1) Large T, small n DFMs: (Geweke (1977), Sargent and Sims (1977), 
Engle and Watson (1981), Stock and Watson (1989)). Parametric model: 
 

ρi(L)eit = ait 

 

   

at

ηt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
∼ N 0

0
⎡

⎣
⎢

⎤

⎦
⎥ ,

Da 0

0 Σηη

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ,     Da diagonal. 

 
Estimation via ML (Kalman filtering, etc.). 
 
Conceptually and computationally difficult with large n. (Quah and 
Sargent (1989). 
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(2) Large-n “Approximate” factor models: Chamberlain-Rothschild (1983), Connor 
and Korajczyk (1986), Forni, Hallin, Lippi, Reichlin (2000, 2004), Stock and Watson (2002), Bai-
Ng (2002, 2006), many others … 
 

An example following Forni and Reichlin (1998): Suppose ft is scalar and 
λi(L) = λi (“no lags in the factor loadings”): 
  

Xit = λift + eit    
Then 

   
1

1 n

it
i
X

n =
∑  = ( )

1

1 n

i t it
i

f e
n

λ
=

+∑  = 
1 1

1 1n n

i t it
i i

f e
n n

λ
= =

⎛ ⎞ +⎜ ⎟⎝ ⎠
∑ ∑  

 
If the errors eit have limited dependence across series, then as n gets large, 

1

1 n

it
i
X

n =
∑  

p
→  λ ft 

In this special case, a very easy nonparametric estimator (the cross-
sectional average) is able to recover ft – as long as n is large 
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A convenient representation for the DFM: Xt = λ(L)ft + et 
                                              Ψ(L)ft = ηt, 
 
Suppose that λ(L) has at most pf lags.  Then the DFM can be written, 
 

   

X1t

!
Xnt

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 =  

   

λ10 … λ1p f

! " !
λn0 # λnp f

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
  

ft

!
ft− p f

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 + 

   

e1t

!
ent

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

 
or       

1n

tX
×

        =            
n r×
Λ                            

1r

tF
×

       +   
1n

te
×

 
 
Ft are sometimes called “static factors”. But, they aren’t static:  the VAR 
for ft implies that there is a VAR for Ft  

Φ(L)Ft = Gηt 
where G is a matrix of 1’s and zeros and Φ consists of 1’s, 0’s, and Ψ’s. 
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Principal Components (estimating the factors by least squares) 

                                       Xt  = ΛFt  + et 

Φ(L)Ft = Gηt  

Consider estimating Λ and {Ft} by least squares: 

1

1
,..., ,

1

min ( ) '( )
T

T

F F t t t t
t

T X F X F−
Λ

=

−Λ −Λ∑     (1) 

subject to Λ′Λ = Ir (identification).  Given Λ, the (infeasible) OLS 
estimator of Ft is: 

ˆ ( )tF Λ  = ( ) 1 tX
−′ ′Λ Λ Λ  

Now substitute ˆ ( )tF Λ  into (1) to concentrate out {Ft}: 

minΛ 1 1
1

[ ( ) ]T
t tt

T X I X− −
=

′ ′− Λ Λ Λ Λ∑  
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minΛ 1 1
1

[ ( ) ]T
t tt

T X I X− −
=

′ ′− Λ Λ Λ Λ∑   

→  maxΛ   T
−1 Xt

′Λ( ′Λ Λ)−1ΛXtt=1

T∑   

→  maxΛ tr{(Λ′Λ)–1/2′ Λ′( )1
1

T
t tt

T X X−
=

′∑ Λ(Λ′Λ)–1/2} 

→  maxΛ tr{Λ′ ˆ XXΣ Λ} s.t. Λ′Λ = Ir,  where ˆ XXΣ  = 
1

1

T
t tt

T X X−
=

′∑    

→  Λ̂ = first r eigenvectors of ˆ XXΣ  (corresponding to largest eigenvalues) 

Remember ˆ ( )tF Λ  = ( ) 1 tX
−′ ′Λ Λ Λ , so  

  ˆ ˆ( )tF Λ  = ( ) 1ˆ ˆ ˆ
tX

−
′ ′Λ Λ Λ  = ˆ tX′Λ    (because ˆ ˆ′Λ Λ = Ir) 

= first r principal components of Xt. 
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Distribution theory for PC as factor estimator 

Selected results for the approximate DFM:  Xt = ΛFt + et 

Typical conditions (Stock-Watson (2002), Bai-Ng (2002, 2006),…): 

(a) 
1

1 T

t t
i
F F

T =

′∑  
p
→  ΣF  (stationary factors) 

(b) Λ′Λ/n → (or 
p
→) ΣΛ   Full rank factor loadings 

(c) eit are weakly dependent over time and across series 
(approximate DFM) 

(d) F, e are uncorrelated at all leads and lags 
(e) n, T → ∞ plus Bai-Ng (2006) rate condition: n2/T → ∞  
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Selected results for the approximate DFM, ctd. 

Stock and Watson (2002), Bai and Ng (2006): 

o consistency of t̂F  for Ft (up to a r×r rotation) 
o t̂F  converges at a sufficiently fast rate that t̂F  can be used as a 

regressor (e.g. in forecasting equations) without adjusting standard 
errors – you can treat t̂F  as if it actually is Ft (up to a r×r rotation) 

o The PCA estimator of the common component is asymptotically 
normal at rate min(n1/2, T1/2) 

o Bai-Ng (2006) give a method for constructing confidence bands 
for predicted values (these are for predicted value [for example 
estimates of common components] – not forecast confidence 
bands) 
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Estimating the number of factors in F 
Most widely used method: Bai-Ng (2002) propose an estimator of r based 
on an information criterion; their main result is r̂  

p
→  r0 for the 

approximate DFM  
 
Digression on information criteria (IC) for lag length selection in an AR 
Consider the AR(p):  yt = a1yt–1 + … + apyt–p + εt 
• Why not just maximize the R2? 
• IC trades off estimator bias (too few lags) vs. estimator variance (too 

many lags), from the perspective of fit of the regression: 
 

Bayes Information Criterion:  BIC(p) = ( ) lnln SSR p Tp
T T

⎛ ⎞+⎜ ⎟⎝ ⎠
 

Akaike Information Criterion:  AIC(p) = ( ) 2ln SSR p p
T T

⎛ ⎞+⎜ ⎟⎝ ⎠
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The Bai-Ng (2002) information criteria have the same form: 

IC(r) = ( )ln SSR r
T

⎛ ⎞
⎜ ⎟⎝ ⎠

 + penalty(N, T, r) 

Bai-Ng (2002) propose several IC’s with different penalty factors that all 
produce consistent estimators of r.  Here is the one that seems to work best 
in MCs (and is the most widely used in empirical work): 

ICp2(r) = ln(V(r, ˆ rF )) + [ ]ln min( , )N Tr N T
NT
+⎛ ⎞

⎜ ⎟⎝ ⎠
 

where    V(r, ˆ rF ) = minΛ ( )
2

1 1

1 ˆ
N T

r r
it i t

i t

X F
NT

λ
= =

′−∑∑  

= 
1

1
,..., ,

1

min ( ) ( )'( )
T

T

F F t t t t
t

NT X F X F−
Λ

=

−Λ −Λ∑  

ˆ r
tF  are the PC estimates of r  
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Bai-Ng (2002) ICp2:  ICp2(r) = ln(V(r, ˆ rF )) + [ ]ln min( , )N Tr N T
NT
+⎛ ⎞

⎜ ⎟⎝ ⎠
 

where       V(r, ˆ rF ) = minΛ ( )
2

1 1

1 ˆ
N T

r r
it i t

i t

X F
NT

λ
= =

′−∑∑  

Comments: 

• ln(V(r, ˆ rF )) is a measure of (trace) fit – generalizes ln(SSR/T) in 
AIC/BIC 

• If N = T, then [ ]ln min( , )N Tr N T
NT
+⎛ ⎞

⎜ ⎟⎝ ⎠
 = 2

2 lnTr T
T

⎛ ⎞
⎜ ⎟⎝ ⎠

 = ln2 Tr
T

 

which is 2 × the usual BIC penalty factor 

• Both N and T are in the penalty factor: you need N, T → ∞. 

• Bai-Ng’s (2002) main result: r̂  
p
→  r0  
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Comments on Bai-Ng factor selection: 

• Monte Carlo studies show B-N works well when n, T are large, and 
DFM model is correct.  

• But in practice: 
o Different IC can yield substantially different answers 
o Adding series often increases the number of estimated factors 

(adding sectors should increase number of factors; adding series 
within sectors should not) 

• Judgment is required 
• There are several estimators that have been proposed and this is an on-

going area of research. 
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Empirical Applications using DFMs − many, here are a few: 
 
(1) Forecasting ... more on this below 

(2) SVARs: Bernanke, Boivin, and Eliasz’s (2005) is most famous 

example.  

(3) Factors as instruments: Bai and Ng (2011) 

(4) DSGE Modeling: Sargent (1989), Boivin-Giannoni (2006b). 

(5) Real-time tracking: Stock and Watson (1989), Giannone, Reichling 

and Small (2008), Council of Economic Advisors (2012) 

(6) Data Description: example follows … 
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Stock and Watson (2012) “Disentangling the Channels of the 2007-09 
Recession” 

Xt  = ΛFt  + et 

Φ(L)Ft = Gηt 
 
Were there new factors in the 2007-09 recession? 
 
Were there instabilities in Λ? 
 
Were there instabilities in Φ(L)? 
 
Were there unusually extreme values of η and/or e? 
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1.  Structural breaks post 2007Q4 
 
Empirical analysis 
 

1. Estimate DFM parameters using data through 2007Q3 
a. Compute factors using “old” factor loadings: 
b. t̂F  = 1ˆ ˆ ˆ( ) tX

−′ ′Λ Λ Λ , where Λ̂  are pre-07Q3 factor loadings 
c. How well do pre-07Q3 factors & factor loadings do in explaining 

post-07Q4 macro variables? 
 

2. Formal stability tests: 
a. Stability of Λ 
b. Test for new factor (excess covariance among idiosyncratic 

disturbances) 
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1.1.  Fit of pre-07Q3 parameters and factors, post-07Q4 
 
Figures: 
 
   Plot of 4-Q growth (100ln(Xt/Xt–4)) or 4-Q change: 
    solid = actual 
    dashed = common component (pre-07Q3 model) 
 
 
   Average R2      2007Q4 R2 
 
 
Average R2 = 1-quarter R2 of “ΛFt”, NBER peak to peak + 14 quarters, 
averaged over previous 7 recessions, 1960Q1,…, 2001Q1 
 
2007Q4 R2 = value for 2007Q4 – 2011Q2. 
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average R2: 0.78   2007Q4 R2: 0.64 

Estimation sample 
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average R2: 0.62   2007Q4 R2: 0.56 
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average R2: 0.29   2007Q4 R2: 0.83 
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average R2: 0.66   2007Q4 R2: 0.86 
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average R2: 0.89   2007Q4 R2: 0.95 
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average R2: 0.54   2007Q4 R2: 0.62 
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average R2: 0.94   2007Q4 R2: 0.96 



1	
  -­‐	
  29	
  

	
  

 
average R2: 0.85   2007Q4 R2: 0.89
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average R2: 0.59   2007Q4 R2: 0.53 
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average R2: 0.38   2007Q4 R2: 0.55 
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average R2: 0.51   2007Q4 R2: 0.82
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average R2: 0.39   2007Q4 R2: -1.54 



1	
  -­‐	
  34	
  

	
  

 
average R2: 0.22   2007Q4 R2: -0.03 
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average R2: 0.43   2007Q4 R2: 0.78 
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average R2: 0.43   2007Q4 R2: 0.78 
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average R2: 0.67   2007Q4 R2: 0.87 
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average R2: 0.12   2007Q4 R2: 0.89 
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Stock and Watson (2012) “Disentangling the Channels of the 2007-09 
Recession” 

Xt  = ΛFt  + et 

Φ(L)Ft = Gηt 
 
Were there new factors in the 2007-09 recession?  No 
 
Were there instabilities in Λ?  Not much 
 
Were there instabilities in Φ(L)?  Not much 
 
Were there unusually extreme values of η and/or e?  YES 
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Returning to the Prediction Problem 
 
Forecasting setup:    yt+1 = Ft′α + εt+1  
                                Xt  = ΛFt  + et 

                                Φ(L)Ft = Gηt 

 

Use X to estimate F using   F̂ PC .   
 

Use   F̂ PC  as if they were true values of F. 
 

Result (Stock-Watson (2002)):   ŷT+1 F̂ PC( )− ŷT+1 F( )→
ms

0 
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Outline 
 
1. Motivation and Setup 

2. Dynamic Factor Models 

3. Shrinkage 

4. Sparse Models 
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Linear prediction problem:  yt+1 = xt′β + εt+1  
 
Simpler problem: Orthonormal regressors. 
 
Transform regressors as pt = Hxt where H is chosen so that  
 

  
T −1 pt pt '

t=1

T

∑   = T−1P′P = In.                (Note: This requires n ≤ T) 

 
Regression equation: yt+1 = pt′α + εt+1 

 

OLS Estimator:   α̂ = (P ' P)−1 P 'Y = T −1P 'Y   
 

so that 
  
α̂ i = T −1 pit yt+1

t=1

T

∑   
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Note:  Suppose pt are strictly exogenous and εt ~ iidN(0,σ2). (This will 
motivate the estimators .. more discussion below). 
 
In this simple setting: 
 
(1)  α̂  are sufficient for α. 
 
(2)    α̂ −α( ) ∼ N 0,T −1σ 2In( )  
 

(3) MSFE: 
   
E piT (α i − !α i )

i=1

n

∑⎛⎝⎜
⎞
⎠⎟

2

+σ 2 ≈ n
T

MSE( !α )+σ 2  

 
 
So we can think about analyzing n-independent normal random variables, 
α̂ i , to construct estimators  !α (α̂ i ) that have small MSE − shrinkage can 
help achieve this.
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Shrinkage:  Basic idea 
 
Consider two estimators:  (1)  α̂ i  ~ N(αi , T−1σ2) 
 
                                          (2)   !α i  = ½ α̂ i  
 
MSE(α̂ i ) = T−1σ2 
 
MSE(α̂ i ) = 0.25 × (T−1σ2 + αi

2 )  
 
 
MSFE(α̂ ) = n

T
σ 2 +σ 2   

MSFE( !α ) = 0.25× n
T
σ 2 + α i

2

i=1

n

∑⎡
⎣⎢

⎤
⎦⎥
 + σ2

 

 

How big is α i
2

i=1

n

∑  ? 
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What is optimal amount (and form) of shrinkage? 
 

It depends on distribution of {αi}  
 
 
o Bayesian methods use priors for the distribution 

 
 

o Empirical Bayes methods estimate the distribution  
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Examples 1:  L2 – Shrinkage 
Bayes:  Suppose αi  ~ iidN(0,T−1ω2) 
             Then, with α̂ i |αi ~ N(αi, T−1σ2), 

 

 

α i

α̂ i

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
∼ N 0

0
⎡

⎣
⎢

⎤

⎦
⎥,T

−1 ω 2 ω 2

ω 2 σ 2 +ω 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜

⎞

⎠
⎟   

 

so that αi|α̂ i  ~ N ω 2

σ 2 +ω 2 α̂ i ,T
−1 ω 2σ 2

σ 2 +ω 2

⎛
⎝⎜

⎞
⎠⎟

  

 

MSE minimizing estimator conditional mean: 
 
!α i =

ω 2

ω 2 +σ 2 α̂ i   
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Empirical Bayes:  Requires estimates of σ2 and ω2 
 

If T−n is large, then σ2 can be accurately estimated. 
 

If n is large, then ω2 can be accurately estimated: 
       

       E(α̂ i
2  ) = T−1(σ2 + ω2), so ω̂ 2 = T

n
α̂ i
2

i=1

n

∑ −σ̂ 2   

 
(Extensions to more general distributions, etc. in this prediction 
framework − see Zhang (2005), and Knox, Stock and Watson (2004) and 
references therein.)
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Alternative Formulation: 
 
Write Joint density of data and α as  
 

constant × exp −0.5 1
σ 2 (yt+1 − pt 'α )

2 + 1
ω 2 α i

2

i=1

n

∑
t=1

T

∑⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

  

 
Which is proportional to posterior for α.  Because posterior is normal, 
mean = mode, so  !α  can be found by maximizing posterior.  Equivalently 
by solving: 
 

 
min !α (yt+1 − pt ' !α )

2 + λ !α i
2

i=1

n

∑
t=1

T

∑    with λ  = σ2/ω2 

 
This is called “Ridge Regression” 
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In the original X – regressor model, the ridge estimator of  
 

 
!β Ridge = X 'X + λIn( )−1 (X 'Y )  

 

and λ can be determined by prior-knowledge, or estimated (empirical 
Bayes, cross-validation, etc.) 
 
(Note this estimator allows n > T.) 
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Other shrinkage methods (There are many, of course, that depend on the 
assumed distribution of the regressions coefficients).   
One of particular interest is Bayesian model averaging (BMA). 
• References 

o Leamer (1978); Min and Zellner (1990); Fernandez, Ley, and 
Steele (2001), Koop and Potter (2004) 

o Surveys: Hoeting, Madigan, Raftery, and Volinsky (1999), 
Geweke and Whiteman (2004)  

• Basic idea: there are many possible models (submodels); assign them 
prior probability and compute posterior means. 

• The BMA setup (notation: using Xt, not Pt – this doesn’t need 
orthogonalized regressors in theory). 

Yt+1 | Xt is given by one of K models, denoted by  M1,…, MK. 
Models are linear, so Mk lists variables in model k 

π(Mk) = prior probability of model k 
Dt denotes the data set through date t 
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The predictive density is the density of YT+1 given the past data – the priors 
and the model are integrated out: 

  f(YT+1|DT) = 1
1

( | ) Pr( | )
K

k T T k T
k
f Y D M D+

=
∑ , 

where fk(YT+1|DT) = kth predictive density  
 
The posterior probability of model k is: 

Pr(Mk|DT) = 
1

Pr( | ) ( )
Pr( | ) ( )
T k k

K
T i ii

D M M
D M M

π
π

=∑
, 

where  

Pr(DT|Mk) = Pr( | , ) ( | )T k k k k kD M M dθ π θ θ∫  

θk = parameters in model k  

π(θk|Mk) = prior for θk in model k 
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Under quadratic loss, optimal forecast is the mean of the predictive 
density, which is the weighted average of the forecasts you would make 
under each model, weighted by the posterior probability of that model: 

   
!YT+1|T  = 

   
Pr( Mk | DT ) !YMk ,T+1|T

k=1

K

∑ ,  

where 
   
!YMk ,T+1|T  = posterior mean of YT+1 for model Mk. 

 
Comments  

• Akin to forecast combining – where there are K forecasts 
• How many models are there?  How many distinct subsets of 135 

variables can you make? 
• fun for computational Bayesians (MCMC, etc) 
• This simplifies with orthogonal regressors however… 
• Contrast with “Prediction Pools”: Hall and Mitchel (2007), Geweke 

and Amisano (2011). 
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BMA with orthogonal regressors  
Clyde, Desimone, and Parmigiani (1996), Clyde (1999): 
• Variable j is in the model with probability π (coin flip) 
• Given the model, the coefficients are distributed with a conjugate “g-

prior” – and you get a closed form expression for posteriors (see Stock 
and Watson (2012)) 

 
More Comments: 
1. Link to forecast combination – Bates and Granger (1969) … for an 

ambitious on-going application see Norges Bank (2014) 
 

2. If the parameters of the prior (the “hyperparameters”) are estimated, 
then this is parametric empirical Bayes. 
 

3. All the theory and setup of BMA is for the cross-sectional case – the 
theoretical Bayes justification doesn’t go through with predetermined 
regressors, nor for multistep forecasts.  So its motivation is by analogy 
to to the i.i.d./exogenous regressor case.  
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Outline 
 
1. Motivation and Setup 

2. Dynamic Factor Models 

3. Shrinkage 

4. Sparse Models 
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Sparse models:  Many/most values of βi or αi are zero. 
 
Can be interpreted as shrinkage with lots of point mass at zero: 
 
Approaches: 

• BMA … (but can be computationally challenging … 2n models): 
Hoeting, Madiga, Raftery, and Volinsky (1999)) 
 

• Hard thresholds (AIC/BIC) or smoothed out using “Bagging”: 
(Breiman (1996), Bühlmann and Yu (2002); Inoue and Kilian (2008))  
 

• L1 penalization: Lasso (“Least Absolute Shrinkage and Selection 
Operator”): Tibshirani (1996) 
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Lasso:  (With orthonormal regressors) 

 

Ridge: 
 
min !α (yt+1 − pt ' !α )

2 + λ !α i
2

i=1

n

∑
t=1

T

∑   

 

Lasso: 
 
min !α (yt+1 − pt ' !α )

2 + λ !α i
i=1

n

∑
t=1

T

∑  

 

Equivalently: 
 
min !α (α̂ i − !α i )

2 + λ !α i
i=1

n

∑
i=1

n

∑  

 



1	
  -­‐	
  57	
  

	
  

 
min !α (α̂ i − !α i )

2 + λ !α i
i=1

n

∑
i=1

n

∑  

Notes:  

• The solution yields sign( !α i ) = sign(α̂ i ) 
 

• Suppose α̂ i  > 0. FOC … 2 (α̂ i − !α i ) + λ = 0 
so solution is  

 
!α i =

α̂ i − λ / 2 if (α̂ i − λ / 2) > 0
0 otherwise                       

⎧
⎨
⎪

⎩⎪ 	
  
	
  

• Similarly for α̂ i  < 0. 
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Comments: 

 

(1) No closed form expression for estimator with non-orthogonal X, but 

efficient computational procedures using LARS (Efron, Johnstone, 

Hastie, and Tibshirani (2002), Hastie, Tibshirani, Friedman (2009)). 

 

(2) “Oracle” Results: Fan and Li (2001), Zhao and Yu (2006), Zou 

(2006), Leeb and Pötscher (2008), Bickel, Ritov, and Tsybakov (2009). 

 

(3) Nice overview for economists and economic research: Belloni, 

Chernozhukov, and Hansen (2014); application to choosing “controls” 

Belloni, Chernozhukov, and Hansen (2014b), and instruments  Belloni, 

Chen, Chernozhukov, and Hansen (2012). 
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(4) Bayes Interpretation: Park and Casella (2008) 

 

Suppose αi ~ iid  with f(αi) = constant × exp −γ α i( )  

Then posterior is  

 

constant × exp −0.5 1
σ 2 (yt+1 − pt 'α )

2 + 2γ α i
i=1

n

∑
t=1

T

∑⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

 

 

The lasso estimator (with λ = 2γσ2) yields the posterior mode. 

But note mode ≠ mean  for this distribution. 
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Outline 
 
1. Motivation and Setup 

2. Dynamic Factor Models 

3. Shrinkage 

4. Sparse Models 
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Course Topics 

 

1. Time series refresher and inference tools (MW)  

2. The Kalman filter, nonlinear filtering, and Markov chain monte carlo 

(MW) 

3. Prediction with large datasets (MW) 

4. Heteroskedasticity and autocorrelation consistent (HAC) standard   

errors (JS) 

5. Many instruments/weak identification in IV and GMM (JS) 

6. Structural VAR modeling (JS) 
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References for Lecture 3: Prediction with large datasets 
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1. Motivation and setup 

“Linear” prediction problem:   yt+1 = xt′β + εt+1 = 
  

xitβi
i=1

n

∑  + εt+1 

Sample size is T. 
 

Forecast: 
  
ŷT+1 = xiT β̂i

i=1

n

∑  

Forecast error: 
  
yT+1 − ŷT+1 = xiT (βi − β̂i )

i=1

n

∑ + εT+1 

MSFE: 
  
E xiT (βi − β̂i )

i=1

n

∑⎛⎝⎜
⎞
⎠⎟

2

+σ 2 

 
 
Suppose: (1) T is large and n is small 
      (2) T is large and n is large 
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“Linear” prediction problem:   yt+1 = xt′β + εt+1 = 
  

xitβi
i=1

n

∑  + εt+1 

 
Suppose: (2) T is large and n is large 
 
 
Approaches: 
 
(1) Use “small-n” estimators (e.g. OLS) 
 
(2) Impose some structure 

 
(a) Common “Factors”  (Dynamic Factor Model) 
 
(b) βi’s are “small”  (Shrinkage) 
 
(c) There are only a few non-zero βi’s  (Sparsity) 
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Outline 
 
1. Motivation and Setup 

2. Dynamic Factor Models 

3. Shrinkage 

4. Sparse Models 
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Dynamic Factor Models (DFMs) 
 
Forecasting setup:    yt+1 = α(L)ft + εt+1 
 
                                  xit = λi(L)ft + eit  
 

 Ψ(L)ft = ηt 
 
“ft” are latent factors.   
 
x is useful for forecasting for y because x provides information about f:  

  E( yt | xt ) = E α (L) ft | xt( )  
 
DFM: Use x to estimate f.  Use this to forecast y.  Estimated factors are 
also useful for other purposes. 
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DFMs: A brief survey 
 

xit = λi(L)ft + eit 

Ψ(L)ft = ηt 

 
(1) Large T, small n DFMs: (Geweke (1977), Sargent and Sims (1977), 
Engle and Watson (1981), Stock and Watson (1989)). Parametric model: 
 

ρi(L)eit = ait 

 

   

at

ηt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
∼ N 0

0
⎡

⎣
⎢

⎤

⎦
⎥ ,

Da 0

0 Σηη

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ,     Da diagonal. 

 
Estimation via ML (Kalman filtering, etc.). 
 
Conceptually and computationally difficult with large n. (Quah and 
Sargent (1989). 
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(2) Large-n “Approximate” factor models: Chamberlain-Rothschild (1983), Connor 
and Korajczyk (1986), Forni, Hallin, Lippi, Reichlin (2000, 2004), Stock and Watson (2002), Bai-
Ng (2002, 2006), many others … 
 

An example following Forni and Reichlin (1998): Suppose ft is scalar and 
λi(L) = λi (“no lags in the factor loadings”): 
  

Xit = λift + eit    
Then 

   
1

1 n

it
i
X

n =
∑  = ( )

1

1 n

i t it
i

f e
n

λ
=

+∑  = 
1 1

1 1n n

i t it
i i

f e
n n

λ
= =

⎛ ⎞ +⎜ ⎟⎝ ⎠
∑ ∑  

 
If the errors eit have limited dependence across series, then as n gets large, 

1

1 n

it
i
X

n =
∑  

p
→  λ ft 

In this special case, a very easy nonparametric estimator (the cross-
sectional average) is able to recover ft – as long as n is large 
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A convenient representation for the DFM: Xt = λ(L)ft + et 
                                              Ψ(L)ft = ηt, 
 
Suppose that λ(L) has at most pf lags.  Then the DFM can be written, 
 

   

X1t

!
Xnt

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 =  

   

λ10 … λ1p f

! " !
λn0 # λnp f

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
  

ft

!
ft− p f

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 + 

   

e1t

!
ent

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

 
or       

1n

tX
×

        =            
n r×
Λ                            

1r

tF
×

       +   
1n

te
×

 
 
Ft are sometimes called “static factors”. But, they aren’t static:  the VAR 
for ft implies that there is a VAR for Ft  

Φ(L)Ft = Gηt 
where G is a matrix of 1’s and zeros and Φ consists of 1’s, 0’s, and Ψ’s. 
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Principal Components (estimating the factors by least squares) 

                                       Xt  = ΛFt  + et 

Φ(L)Ft = Gηt  

Consider estimating Λ and {Ft} by least squares: 

1

1
,..., ,

1

min ( ) '( )
T

T

F F t t t t
t

T X F X F−
Λ

=

−Λ −Λ∑     (1) 

subject to Λ′Λ = Ir (identification).  Given Λ, the (infeasible) OLS 
estimator of Ft is: 

ˆ ( )tF Λ  = ( ) 1 tX
−′ ′Λ Λ Λ  

Now substitute ˆ ( )tF Λ  into (1) to concentrate out {Ft}: 

minΛ 1 1
1

[ ( ) ]T
t tt

T X I X− −
=

′ ′− Λ Λ Λ Λ∑  
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minΛ 1 1
1

[ ( ) ]T
t tt

T X I X− −
=

′ ′− Λ Λ Λ Λ∑   

→  maxΛ   T
−1 Xt

′Λ( ′Λ Λ)−1ΛXtt=1

T∑   

→  maxΛ tr{(Λ′Λ)–1/2′ Λ′( )1
1

T
t tt

T X X−
=

′∑ Λ(Λ′Λ)–1/2} 

→  maxΛ tr{Λ′ ˆ XXΣ Λ} s.t. Λ′Λ = Ir,  where ˆ XXΣ  = 
1

1

T
t tt

T X X−
=

′∑    

→  Λ̂ = first r eigenvectors of ˆ XXΣ  (corresponding to largest eigenvalues) 

Remember ˆ ( )tF Λ  = ( ) 1 tX
−′ ′Λ Λ Λ , so  

  ˆ ˆ( )tF Λ  = ( ) 1ˆ ˆ ˆ
tX

−
′ ′Λ Λ Λ  = ˆ tX′Λ    (because ˆ ˆ′Λ Λ = Ir) 

= first r principal components of Xt. 
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Distribution theory for PC as factor estimator 

Selected results for the approximate DFM:  Xt = ΛFt + et 

Typical conditions (Stock-Watson (2002), Bai-Ng (2002, 2006),…): 

(a) 
1

1 T

t t
i
F F

T =

′∑  
p
→  ΣF  (stationary factors) 

(b) Λ′Λ/n → (or 
p
→) ΣΛ   Full rank factor loadings 

(c) eit are weakly dependent over time and across series 
(approximate DFM) 

(d) F, e are uncorrelated at all leads and lags 
(e) n, T → ∞ plus Bai-Ng (2006) rate condition: n2/T → ∞  
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Selected results for the approximate DFM, ctd. 

Stock and Watson (2002), Bai and Ng (2006): 

o consistency of t̂F  for Ft (up to a r×r rotation) 
o t̂F  converges at a sufficiently fast rate that t̂F  can be used as a 

regressor (e.g. in forecasting equations) without adjusting standard 
errors – you can treat t̂F  as if it actually is Ft (up to a r×r rotation) 

o The PCA estimator of the common component is asymptotically 
normal at rate min(n1/2, T1/2) 

o Bai-Ng (2006) give a method for constructing confidence bands 
for predicted values (these are for predicted value [for example 
estimates of common components] – not forecast confidence 
bands) 
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Estimating the number of factors in F 
Most widely used method: Bai-Ng (2002) propose an estimator of r based 
on an information criterion; their main result is r̂  

p
→  r0 for the 

approximate DFM  
 
Digression on information criteria (IC) for lag length selection in an AR 
Consider the AR(p):  yt = a1yt–1 + … + apyt–p + εt 
• Why not just maximize the R2? 
• IC trades off estimator bias (too few lags) vs. estimator variance (too 

many lags), from the perspective of fit of the regression: 
 

Bayes Information Criterion:  BIC(p) = ( ) lnln SSR p Tp
T T

⎛ ⎞+⎜ ⎟⎝ ⎠
 

Akaike Information Criterion:  AIC(p) = ( ) 2ln SSR p p
T T

⎛ ⎞+⎜ ⎟⎝ ⎠
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The Bai-Ng (2002) information criteria have the same form: 

IC(r) = ( )ln SSR r
T

⎛ ⎞
⎜ ⎟⎝ ⎠

 + penalty(N, T, r) 

Bai-Ng (2002) propose several IC’s with different penalty factors that all 
produce consistent estimators of r.  Here is the one that seems to work best 
in MCs (and is the most widely used in empirical work): 

ICp2(r) = ln(V(r, ˆ rF )) + [ ]ln min( , )N Tr N T
NT
+⎛ ⎞

⎜ ⎟⎝ ⎠
 

where    V(r, ˆ rF ) = minΛ ( )
2

1 1

1 ˆ
N T

r r
it i t

i t

X F
NT

λ
= =

′−∑∑  

= 
1

1
,..., ,

1

min ( ) ( )'( )
T

T

F F t t t t
t

NT X F X F−
Λ

=

−Λ −Λ∑  

ˆ r
tF  are the PC estimates of r  
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Bai-Ng (2002) ICp2:  ICp2(r) = ln(V(r, ˆ rF )) + [ ]ln min( , )N Tr N T
NT
+⎛ ⎞

⎜ ⎟⎝ ⎠
 

where       V(r, ˆ rF ) = minΛ ( )
2

1 1

1 ˆ
N T

r r
it i t

i t

X F
NT

λ
= =

′−∑∑  

Comments: 

• ln(V(r, ˆ rF )) is a measure of (trace) fit – generalizes ln(SSR/T) in 
AIC/BIC 

• If N = T, then [ ]ln min( , )N Tr N T
NT
+⎛ ⎞

⎜ ⎟⎝ ⎠
 = 2

2 lnTr T
T

⎛ ⎞
⎜ ⎟⎝ ⎠

 = ln2 Tr
T

 

which is 2 × the usual BIC penalty factor 

• Both N and T are in the penalty factor: you need N, T → ∞. 

• Bai-Ng’s (2002) main result: r̂  
p
→  r0  
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Comments on Bai-Ng factor selection: 

• Monte Carlo studies show B-N works well when n, T are large, and 
DFM model is correct.  

• But in practice: 
o Different IC can yield substantially different answers 
o Adding series often increases the number of estimated factors 

(adding sectors should increase number of factors; adding series 
within sectors should not) 

• Judgment is required 
• There are several estimators that have been proposed and this is an on-

going area of research. 
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Empirical Applications using DFMs − many, here are a few: 
 
(1) Forecasting ... more on this below 

(2) SVARs: Bernanke, Boivin, and Eliasz’s (2005) is most famous 

example.  

(3) Factors as instruments: Bai and Ng (2011) 

(4) DSGE Modeling: Sargent (1989), Boivin-Giannoni (2006b). 

(5) Real-time tracking: Stock and Watson (1989), Giannone, Reichling 

and Small (2008), Council of Economic Advisors (2012) 

(6) Data Description: example follows … 
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Stock and Watson (2012) “Disentangling the Channels of the 2007-09 
Recession” 

Xt  = ΛFt  + et 

Φ(L)Ft = Gηt 
 
Were there new factors in the 2007-09 recession? 
 
Were there instabilities in Λ? 
 
Were there instabilities in Φ(L)? 
 
Were there unusually extreme values of η and/or e? 
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1.  Structural breaks post 2007Q4 
 
Empirical analysis 
 

1. Estimate DFM parameters using data through 2007Q3 
a. Compute factors using “old” factor loadings: 
b. t̂F  = 1ˆ ˆ ˆ( ) tX

−′ ′Λ Λ Λ , where Λ̂  are pre-07Q3 factor loadings 
c. How well do pre-07Q3 factors & factor loadings do in explaining 

post-07Q4 macro variables? 
 

2. Formal stability tests: 
a. Stability of Λ 
b. Test for new factor (excess covariance among idiosyncratic 

disturbances) 
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1.1.  Fit of pre-07Q3 parameters and factors, post-07Q4 
 
Figures: 
 
   Plot of 4-Q growth (100ln(Xt/Xt–4)) or 4-Q change: 
    solid = actual 
    dashed = common component (pre-07Q3 model) 
 
 
   Average R2      2007Q4 R2 
 
 
Average R2 = 1-quarter R2 of “ΛFt”, NBER peak to peak + 14 quarters, 
averaged over previous 7 recessions, 1960Q1,…, 2001Q1 
 
2007Q4 R2 = value for 2007Q4 – 2011Q2. 
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average R2: 0.78   2007Q4 R2: 0.64 

Estimation sample 
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average R2: 0.62   2007Q4 R2: 0.56 
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average R2: 0.29   2007Q4 R2: 0.83 
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average R2: 0.66   2007Q4 R2: 0.86 
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average R2: 0.89   2007Q4 R2: 0.95 
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average R2: 0.54   2007Q4 R2: 0.62 
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average R2: 0.94   2007Q4 R2: 0.96 
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average R2: 0.85   2007Q4 R2: 0.89
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average R2: 0.59   2007Q4 R2: 0.53 
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average R2: 0.38   2007Q4 R2: 0.55 
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average R2: 0.51   2007Q4 R2: 0.82
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average R2: 0.39   2007Q4 R2: -1.54 
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average R2: 0.22   2007Q4 R2: -0.03 
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average R2: 0.43   2007Q4 R2: 0.78 
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average R2: 0.43   2007Q4 R2: 0.78 
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average R2: 0.67   2007Q4 R2: 0.87 
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average R2: 0.12   2007Q4 R2: 0.89 
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Stock and Watson (2012) “Disentangling the Channels of the 2007-09 
Recession” 

Xt  = ΛFt  + et 

Φ(L)Ft = Gηt 
 
Were there new factors in the 2007-09 recession?  No 
 
Were there instabilities in Λ?  Not much 
 
Were there instabilities in Φ(L)?  Not much 
 
Were there unusually extreme values of η and/or e?  YES 
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Returning to the Prediction Problem 
 
Forecasting setup:    yt+1 = Ft′α + εt+1  
                                Xt  = ΛFt  + et 

                                Φ(L)Ft = Gηt 

 

Use X to estimate F using   F̂ PC .   
 

Use   F̂ PC  as if they were true values of F. 
 

Result (Stock-Watson (2002)):   ŷT+1 F̂ PC( )− ŷT+1 F( )→
ms

0 
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Outline 
 
1. Motivation and Setup 

2. Dynamic Factor Models 

3. Shrinkage 

4. Sparse Models 
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Linear prediction problem:  yt+1 = xt′β + εt+1  
 
Simpler problem: Orthonormal regressors. 
 
Transform regressors as pt = Hxt where H is chosen so that  
 

  
T −1 pt pt '

t=1

T

∑   = T−1P′P = In.                (Note: This requires n ≤ T) 

 
Regression equation: yt+1 = pt′α + εt+1 

 

OLS Estimator:   α̂ = (P ' P)−1 P 'Y = T −1P 'Y   
 

so that 
  
α̂ i = T −1 pit yt+1

t=1

T

∑   
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Note:  Suppose pt are strictly exogenous and εt ~ iidN(0,σ2). (This will 
motivate the estimators .. more discussion below). 
 
In this simple setting: 
 
(1)  α̂  are sufficient for α. 
 
(2)    α̂ −α( ) ∼ N 0,T −1σ 2In( )  
 

(3) MSFE: 
   
E piT (α i − !α i )

i=1

n

∑⎛⎝⎜
⎞
⎠⎟

2

+σ 2 ≈ n
T

MSE( !α )+σ 2  

 
 
So we can think about analyzing n-independent normal random variables, 
α̂ i , to construct estimators  !α (α̂ i ) that have small MSE − shrinkage can 
help achieve this.
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Shrinkage:  Basic idea 
 
Consider two estimators:  (1)  α̂ i  ~ N(αi , T−1σ2) 
 
                                          (2)   !α i  = ½ α̂ i  
 
MSE(α̂ i ) = T−1σ2 
 
MSE(α̂ i ) = 0.25 × (T−1σ2 + αi

2 )  
 
 
MSFE(α̂ ) = n

T
σ 2 +σ 2   

MSFE( !α ) = 0.25× n
T
σ 2 + α i

2

i=1

n

∑⎡
⎣⎢

⎤
⎦⎥
 + σ2

 

 

How big is α i
2

i=1

n

∑  ? 



1	
  -­‐	
  45	
  

	
  

What is optimal amount (and form) of shrinkage? 
 

It depends on distribution of {αi}  
 
 
o Bayesian methods use priors for the distribution 

 
 

o Empirical Bayes methods estimate the distribution  
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Examples 1:  L2 – Shrinkage 
Bayes:  Suppose αi  ~ iidN(0,T−1ω2) 
             Then, with α̂ i |αi ~ N(αi, T−1σ2), 

 

 

α i

α̂ i

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
∼ N 0

0
⎡

⎣
⎢

⎤

⎦
⎥,T

−1 ω 2 ω 2

ω 2 σ 2 +ω 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜

⎞

⎠
⎟   

 

so that αi|α̂ i  ~ N ω 2

σ 2 +ω 2 α̂ i ,T
−1 ω 2σ 2

σ 2 +ω 2

⎛
⎝⎜

⎞
⎠⎟

  

 

MSE minimizing estimator conditional mean: 
 
!α i =

ω 2

ω 2 +σ 2 α̂ i   
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Empirical Bayes:  Requires estimates of σ2 and ω2 
 

If T−n is large, then σ2 can be accurately estimated. 
 

If n is large, then ω2 can be accurately estimated: 
       

       E(α̂ i
2  ) = T−1(σ2 + ω2), so ω̂ 2 = T

n
α̂ i
2

i=1

n

∑ −σ̂ 2   

 
(Extensions to more general distributions, etc. in this prediction 
framework − see Zhang (2005), and Knox, Stock and Watson (2004) and 
references therein.)
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Alternative Formulation: 
 
Write Joint density of data and α as  
 

constant × exp −0.5 1
σ 2 (yt+1 − pt 'α )

2 + 1
ω 2 α i

2

i=1

n

∑
t=1

T

∑⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

  

 
Which is proportional to posterior for α.  Because posterior is normal, 
mean = mode, so  !α  can be found by maximizing posterior.  Equivalently 
by solving: 
 

 
min !α (yt+1 − pt ' !α )

2 + λ !α i
2

i=1

n

∑
t=1

T

∑    with λ  = σ2/ω2 

 
This is called “Ridge Regression” 
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In the original X – regressor model, the ridge estimator of  
 

 
!β Ridge = X 'X + λIn( )−1 (X 'Y )  

 

and λ can be determined by prior-knowledge, or estimated (empirical 
Bayes, cross-validation, etc.) 
 
(Note this estimator allows n > T.) 
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Other shrinkage methods (There are many, of course, that depend on the 
assumed distribution of the regressions coefficients).   
One of particular interest is Bayesian model averaging (BMA). 
• References 

o Leamer (1978); Min and Zellner (1990); Fernandez, Ley, and 
Steele (2001), Koop and Potter (2004) 

o Surveys: Hoeting, Madigan, Raftery, and Volinsky (1999), 
Geweke and Whiteman (2004)  

• Basic idea: there are many possible models (submodels); assign them 
prior probability and compute posterior means. 

• The BMA setup (notation: using Xt, not Pt – this doesn’t need 
orthogonalized regressors in theory). 

Yt+1 | Xt is given by one of K models, denoted by  M1,…, MK. 
Models are linear, so Mk lists variables in model k 

π(Mk) = prior probability of model k 
Dt denotes the data set through date t 
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The predictive density is the density of YT+1 given the past data – the priors 
and the model are integrated out: 

  f(YT+1|DT) = 1
1

( | ) Pr( | )
K

k T T k T
k
f Y D M D+

=
∑ , 

where fk(YT+1|DT) = kth predictive density  
 
The posterior probability of model k is: 

Pr(Mk|DT) = 
1

Pr( | ) ( )
Pr( | ) ( )
T k k

K
T i ii

D M M
D M M

π
π

=∑
, 

where  

Pr(DT|Mk) = Pr( | , ) ( | )T k k k k kD M M dθ π θ θ∫  

θk = parameters in model k  

π(θk|Mk) = prior for θk in model k 
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Under quadratic loss, optimal forecast is the mean of the predictive 
density, which is the weighted average of the forecasts you would make 
under each model, weighted by the posterior probability of that model: 

   
!YT+1|T  = 

   
Pr( Mk | DT ) !YMk ,T+1|T

k=1

K

∑ ,  

where 
   
!YMk ,T+1|T  = posterior mean of YT+1 for model Mk. 

 
Comments  

• Akin to forecast combining – where there are K forecasts 
• How many models are there?  How many distinct subsets of 135 

variables can you make? 
• fun for computational Bayesians (MCMC, etc) 
• This simplifies with orthogonal regressors however… 
• Contrast with “Prediction Pools”: Hall and Mitchel (2007), Geweke 

and Amisano (2011). 
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BMA with orthogonal regressors  
Clyde, Desimone, and Parmigiani (1996), Clyde (1999): 
• Variable j is in the model with probability π (coin flip) 
• Given the model, the coefficients are distributed with a conjugate “g-

prior” – and you get a closed form expression for posteriors (see Stock 
and Watson (2012)) 

 
More Comments: 
1. Link to forecast combination – Bates and Granger (1969) … for an 

ambitious on-going application see Norges Bank (2014) 
 

2. If the parameters of the prior (the “hyperparameters”) are estimated, 
then this is parametric empirical Bayes. 
 

3. All the theory and setup of BMA is for the cross-sectional case – the 
theoretical Bayes justification doesn’t go through with predetermined 
regressors, nor for multistep forecasts.  So its motivation is by analogy 
to to the i.i.d./exogenous regressor case.  
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Outline 
 
1. Motivation and Setup 

2. Dynamic Factor Models 

3. Shrinkage 

4. Sparse Models 
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Sparse models:  Many/most values of βi or αi are zero. 
 
Can be interpreted as shrinkage with lots of point mass at zero: 
 
Approaches: 

• BMA … (but can be computationally challenging … 2n models): 
Hoeting, Madiga, Raftery, and Volinsky (1999)) 
 

• Hard thresholds (AIC/BIC) or smoothed out using “Bagging”: 
(Breiman (1996), Bühlmann and Yu (2002); Inoue and Kilian (2008))  
 

• L1 penalization: Lasso (“Least Absolute Shrinkage and Selection 
Operator”): Tibshirani (1996) 
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Lasso:  (With orthonormal regressors) 

 

Ridge: 
 
min !α (yt+1 − pt ' !α )

2 + λ !α i
2

i=1

n

∑
t=1

T

∑   

 

Lasso: 
 
min !α (yt+1 − pt ' !α )

2 + λ !α i
i=1

n

∑
t=1

T

∑  

 

Equivalently: 
 
min !α (α̂ i − !α i )

2 + λ !α i
i=1

n

∑
i=1

n

∑  
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min !α (α̂ i − !α i )

2 + λ !α i
i=1

n

∑
i=1

n

∑  

Notes:  

• The solution yields sign( !α i ) = sign(α̂ i ) 
 

• Suppose α̂ i  > 0. FOC … 2 (α̂ i − !α i ) + λ = 0 
so solution is  

 
!α i =

α̂ i − λ / 2 if (α̂ i − λ / 2) > 0
0 otherwise                       

⎧
⎨
⎪

⎩⎪ 	
  
	
  

• Similarly for α̂ i  < 0. 
 



1	
  -­‐	
  58	
  

	
  

Comments: 

 

(1) No closed form expression for estimator with non-orthogonal X, but 

efficient computational procedures using LARS (Efron, Johnstone, 

Hastie, and Tibshirani (2002), Hastie, Tibshirani, Friedman (2009)). 

 

(2) “Oracle” Results: Fan and Li (2001), Zhao and Yu (2006), Zou 

(2006), Leeb and Pötscher (2008), Bickel, Ritov, and Tsybakov (2009). 

 

(3) Nice overview for economists and economic research: Belloni, 

Chernozhukov, and Hansen (2014); application to choosing “controls” 

Belloni, Chernozhukov, and Hansen (2014b), and instruments  Belloni, 

Chen, Chernozhukov, and Hansen (2012). 
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(4) Bayes Interpretation: Park and Casella (2008) 

 

Suppose αi ~ iid  with f(αi) = constant × exp −γ α i( )  

Then posterior is  

 

constant × exp −0.5 1
σ 2 (yt+1 − pt 'α )

2 + 2γ α i
i=1

n

∑
t=1

T

∑⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

 

 

The lasso estimator (with λ = 2γσ2) yields the posterior mode. 

But note mode ≠ mean  for this distribution. 
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Outline 
 
1. Motivation and Setup 

2. Dynamic Factor Models 

3. Shrinkage 

4. Sparse Models 

 

  



1	
  -­‐	
  61	
  

	
  

Course Topics 

 

1. Time series refresher and inference tools (MW)  

2. The Kalman filter, nonlinear filtering, and Markov chain monte carlo 

(MW) 

3. Prediction with large datasets (MW) 

4. Heteroskedasticity and autocorrelation consistent (HAC) standard   

errors (JS) 

5. Many instruments/weak identification in IV and GMM (JS) 

6. Structural VAR modeling (JS) 
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