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Lecturer: Ariel Pakes, Harvard University.
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Consider two problems in discrete choice

• ν1 errors caused by mis-measurement or mis-specification

of functional form.

• Choice and group specific fixed effects.

But handling them requires additional assumptions. What

this lecture shows you is that there is a simple non-

parametric way of controlling for:

1. ν1 errors on the ”right hand side”, caused by either

errors in variables or miss-specification. Here we can

handle fixed effects that are group specific (that is

there are at least two observations with the same

value of ν2) but no additional ν2 error.

2



2. A free distribution of ν2 errors in the presence of

choice and group specific fixed effects if there is no

ν1 error.

3. With additional assumptions on the ν2 error we can

add state dependence to the second case.

I do not know of non-parametric ways of controlling

simultaneously for ν1 and ν2 errors. The interpretation

to (1) then is that the group specific fixed effects to-

gether with the included observed covariates captures

all of the determinants of choice while the interpreta-

tion of (2) is that the group and choice specific fixed

effects capture all of the sources of measurement and



specification error. So some thought in which set of

assumptions best describes the data and model you are

estimating is required before deciding on your estima-

tor.

I first take on the non-parametric ν1 case. I am going

to do this through an empirical example as it will also

show how we come to problems such as these and how

the techniques enable us to get answers to important

policy issues.



Hospital Choices, Hospital Prices and Financial In-
centives to Physicians by, Kate Ho and Ariel Pakes.
AER, 2014

Questions We Are Trying To Address.

• Do hospital referrals respond to the price paid by
the insurer to the hospital, and how do price re-
sponses differ with the incentive structure built into
insurance contracts with physician groups?

• What are the trade-offs between cost, “quality”,
and convenience factors implicit in the hospital choice
function, and how do they relate to the incentives
built into insurance contract?
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Relationship to US Health Reforms.

• PPACA: ACOs are groups of providers who share re-

sponsibility for managing a large part (often all) of the

health care needs of a group of Medicare patients (and

private sector ACOs are forming in parallel; often same

ACO).

• Cost control incentives for ACOs and California’s

physician groups are similar:

(i) both based on costs incurred by the group as a whole

(no rules on how to pass down to particular providers),

and

(ii) both either bear financial risk for hospital payments
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or benefit from hospital savings relative to a benchmark
(for ACOs it depends on a quality adjustment, but ≈
50% of saving).

Large and important prior literatures which: (i) esti-
mate models of hospital choice from discharge records,
and (ii) establish that HMOs generate cost savings.

One part of our analysis focuses on a part of the allo-
cation process that is not studied elsewhere:
(i) referral responses to insurer-paid hospital prices,
(ii) dependence of response to incentives in provider’s
insurer contracts.

Our main question. What impact do shared savings
programs have on the cost and quality of care?



Institutional Setting: The California Medical Care

Market 2003

• Focus on HMOs (53% of employed pop.)

• 7 largest HMOs had 87% of HMO market: we con-
sider all but Kaiser (about 1/3 of these; they do not
report prices).

• Physician contracts: HMOs have non-exclusive con-
tracts with large physician groups.

• Two payment mechanisms for physician groups:
(1.) Capitation; fixed payment per patient (≈ 75% of
hospitals payments in our data).
(2.) Fee-for-service contracts.
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Data for Our Analysis.

We utilize hospital discharge data for California in 2003;

only women in labor (largest patient group). Census of

hospital discharges of private HMO enrollees.

• Patient characteristics: insurer name, hospital name,

detailed diagnoses, procedures, age, gender, zip code,

list price, outcome measures.

• Hospital characteristics: average discount, address,

teaching status, number of beds, services, annual

profits.
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Data. Does not identify patients’ physician groups or

details of compensation schemes. Do observe each pa-

tient’s insurer and percent of each insurer’s payments

for primary services that are capitated. Considerable

dispersion in this across insurers:

• Blue Cross: 38% capitated payments.

• Pacificare: 97% capitated payments.
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Overview of the Model

Physician and patient jointly make the hospital choice

within a choice set determined by the insurer. Wi,π,h

provides observed part of the plan and severity specific

ordering of hospitals that this generates.

Wi,π,h = θp,πpi,π,h + gπ(qh(s), si) + θd,πd(li, lh)

• pi,π,h = the expected price at hospital h for treating

patient i in plan π.

• d(li, lh) = distance between hospital and patient’s

(home) location
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• si = measure of patient severity

• qh(s, si) = a different quality for each sickness level

in each hospital.

• gπ(·) = plan-specific non-parametric function of qh(s)

and si which allows hospital quality rankings to dif-

fer by severity and plan.



Note:

• plan trade-offs between “quality”, price, and con-

venience can differ across severities,

• different plans can make these trade-offs differently.
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Our questions in the context of the model.

• The price coefficient

– is it negative?

– more negative when insurer gives physicians in-

centives to control costs?

• Do the plans which are more averse to price send

patients to lower quality or to more distant hospi-

tals?
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Previous Hospital Choice Literature and Price

Effects.

Prior Literature. Utility as a function of distance,

hospital quality, hospital-patient interactions.

• Largely multinomial logit models with no price term

(logic: neither the doctor nor the patient pays)∗..

• The hospital quality terms and the patient-hospital

quality interactions are a particular parameteriza-

tion of our gπ(qh(s), s) terms.

∗Gaynor and Vogt construct and use a single price for each hos-
pital.
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The Price Variable

• Agents do not know price when decision is made:

need an expected price.

• Assume expected price per entering diagnosis/hospital

is the average list price per diagnosis/hospital multiplied

by a discount.

• Have data on average list price per entering diagnosis

(like hotel “rack rate”) and average discount at hospital

level.

• Define price = expected list price*(1-average dis-

count)
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Major problems with price measure: the ν1 error.

• Expectational and/or measurement error: likely more

of a problem for severities with a small number of

patients.

• Discounts are negotiated separately with each plan

and discounts vary widely.
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Notes on the Data.

• Discharge Descriptive Statistics. Note the average
discount is 67.5

• Adverse Outcomes. Note: Discharge not home =
patients; discharged to acute care or special nursing
facility, deaths, and discharge against medical advice.

• Plan characteristics (capitation, premium/month).

• Prices and Outcomes by Patient Age and Charlson
Score. Charlson score (Charlson et al, 1987, Jour-
nal of Chronic Diseases): clinical index that assigns
weights to comorbidities other than principal diagnosis
where higher weight indicates higher severity. Values
0-6 observed in data.
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Discharge Descriptive Stats Mean (Std Dev)

Number of patients 88,157
Number of hospitals 195
Teaching hospital 0.27
Ave. Dist. to Feasible Hosp. 24.6 (25.6)
Dist. to Chosen Hosp. 6.7 (10.3)
List price ($) $13,312 ($13,213)
List price*(1-discount) $4,317 ($4,596)
Length of Stay 2.54 (2.39)
Outcome Measures
Infant Readmission 9.42% (.1%)
Mother Readmission 2.39% (.1%)
Discharge Not Home 6.60% (.1%)
Plan Characteristics capit. pm/pm
Pacificare (FP) .97 149.9
Aetna (FP) .91 152.4
Health Net (FP) .80 184.9
Cigna (FP) .75 n.a.
Blue Shield (NFP) .57 146.3
Blue Cross (FP) .38 186.9
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Prices and Outcomes By Patient Type

Percentage
N P(1-δ) M-Read I-Read N-Home

Age
≤ 40 71073 4259 2.4 9.4 6.5
≥ 40 2044 5420 3.5 9.6 9.9

Charlson
0 71803 4256 2.3 9.4 6.5
≥ 0 1314 6227 5.8 12.3 10.5

• Price and outcome measures vary in the expected
direction with age and Charlson score.

• Most women are under 40, and most women come
in with a zero Charlson score (severity, however, also
differs by diagnosis).
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Mimic Prior Literature: Multinomial Logits

Wi,π,h =

θp,π(δhlp(ci, h)) + gπ(qh(s), si) + θdd(li, lh) + εi,π,h

where

• εi,π,h is added extreme value disturbance

• δh = 1 - discount, and lp(ci, h) = average list price

for type ci at h (so there is no measurement error in

price).

• si has age groups (4), principal diagnosis (21), Charl-

son score (6) and diagnosis generating Charlson score.
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Multinomials restrictions

• No expectational error in price. Particularly problem-

atic when small number of patients in group.

• Need to limit controls for gπ(qh(s), s) due to sample

size per (s, h); #h = 195, #s= 105 (omitting zeros ≈
16,000 fixed effects).

gπ(qh(s), si) = qh + βzhx(si)

where

• qh= hospital fixed effects,

• zh= hospital characteristics (teaching hospitals, FP
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hospitals, hospitals with transplant services, a measure

of quality of labor and birth services)

• x(si) = P(adverse outcomes — age, principal diag-

nosis, Charlson score).

If it is incorrect

gπ(qh(s), si) = qh + βzhx(si) + eπ(qh(s), si).

Cases:

• Fix si = s∗, eπ(qh(s), s∗) is absorbed in qh.

• Let si vary. Then residual will be positively correlated

with price if more severely ill women go to higher quality

hospitals and higher quality hospitals are more highly

priced.



Logit Results: 1

All Least sick Sick

Price .010** -0.017* .012**
(.002) (.009) .002

Distance -.215** -.215** -.217**
(.001) (.002) (.002)

Distance2 .001** .001** 0.001**
(.000) (.000) (.000)

zhx(si) Y Y Y
(15 coeffts)

Hosp. F.E.s Y Y Y
(194 coeffts)
N 88,157 43,742 44,059

Notes:
• Least sick patients are aged 20-39 with zero Charlson scores and
all diagnoses “routine”.
• Price is average list price by age group (4) × principal diagnosis
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(21) × Charlson Score (6) × diagnosis Charlson score was in where
possible.

Results. • Positive coefficient consistent with omitted

variable bias.

• When we control for hospital and consider a more

homogeneous severity group get a negative coefficient.

• When we look at the group with a lot of variance in

severity the coefficient is even more positive.

Conclude: It is likely that there is an omitted vari-

able and it is related to severity-hospital interac-

tions.



Results: Logit Analysis 2

Least sick patients
% capit Discharges Estimates

Spec 1: Price x
constant .069**(.014)
% capit -.127** (.016)

Spec 2: Price x
Pac-care 0.97 7,633 -0.077** (0.01)

Aetna 0.91 3,173 -0.011 (0.016)
HN 0.80 8,182 -0.038** (0.01)

Cigna 0.75 4,001 -0.021 (0.014)
BS 0.57 7,992 0.018 (0.011)
BC 0.38 12,761 0.008 (0.011)

Distance -0.215** (0.002)
Distance squared 0.001** (0.000)
zhx(si) controls Y
Hospital F.E.s Y
N 43,742
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Conclusions.

• Capitation. Matters for price effect (Capitation co-

efficient for sick patients was −.025(.006).)

• Magnitudes. From logits, even for least sick pa-

tients, questionable

-Distance. Average impact of a 1 mile increase in dis-

tance to hospital h (all else fixed) on Pih is a 13.7%

reduction. Comparable to prior estimates.

-Price. A $1000 price increase for Pacificare enrollees

(97% capitated) in hospital h a 5.2% reduction in Pih.

≈ $2,600 per mile for Pacificare (average price ≈ $3,400),

and higher for all others.
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Inequalities Analysis

Wi,π,h = θp,π(δhlp(ci, h)) + gπ(qh(s), si) + θd,πd(li, lh)

• Analysis done separately by plan.

• Normalize θd,π = 1. si determines severity group

and ci determines price group. Both far more de-

tailed than logit analysis.

• si groups: age × principal diagnosis × Charlson

score × diagnosis generating Charlson score × rank

of most serious comorbidity.
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• Price groups. Severity × actual comorbidity × #

comorbidities.

• Groupings done at suggestion of Columbia Pres-

byterian obstetricians: rank of most serious co-

morbidities determines hospital choice, but not the

number of comorbidities (which do determine hos-

pital costs).

• gπ(qh(s), si) freely interacts si groups (≈ 105) with

qh (hospital F.E.). We assume it absorbs all unob-

served quality variation that affects hospital choice.



Assumptions. For price start with

poi ≡ δ
o
hlp

o(coi , h) = δhlp(ci, h) + εi,π,h,

and in robustness analysis allow for within hospital vari-

ation (including plan effects), and

gπ(qh(s), soi ) = gπ(qh(s), si) + εsi,π,h,

where for all ε

E[εi,·,h|zi,π,h 6= po(ci, h), h] = 0.
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Inequalities Analysis: Developing Estimator.

Use Revealed Preference: If h′ was feasible for ih

Wih,π,h
≥Wih,π,h

′.

Procedure: Find all pairs of same π and s but different

c patients, say ih, ih′ s.t.:

• iπ,h visited h and had alternative h′

• iπ,h′ visited h′ and had alternative h.

Then sum the two revealed preference inequalities, and

then average over such couples.

• Equal and opposite gπ(·) terms drop out. , I.e.the ν2
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errors drop out.

• Terms that are errors in price average out.

Formalities. For any x let x(ih, h, h
′) ≡ xih,h − xih,h′. If

sih = sih′
, h′ ∈ C(ih), h ∈ C(ih′) then

0 ≤W (ih, h, h
′) = θpp

o(ih, h, h
′)

+ [g(qh, s
o)− g(qh′, s

o)]− d(ih, h, h
′) + ε(ih, h, h

′)

and

0 ≤W (ih′, h
′, h) = θpp

o(ih′, h
′, h)

+ [g(qh′, s
o)− g(qh, s

o)]− d(ih′, h
′, h) + ε(ih′, h

′, h).

So

0 ≤W (ih, h, h
′) +W (ih′, h

′, h) =



θp(p
o(ih, h, h

′) + po(ih′, h
′, h))− (d(ih, h, h

′) + d(ih′, h
′, h))

+ ε(ih, h, h
′) + ε(ih′, h

′, h).

For each x(ih, h, h
′) let

x(h, h′) =
1

Nh,h′

∑
ih:h′∈C(ih)

x(ih, h, h
′).

The sum of the revealed preference inequalities over

{ih : h′ ∈ C(ih)} and {ih′ : h ∈ C(ih)} is

−1

Nh,h′Nh′,h

(
θp[p

o(h, h′) + po(h′, h)] + d(h, h′) + d(h′, h)
)



→P κ ≥ 0, at θp = θ0.

Can interact this with any positive function and it should

still be positive at θ = θ0.

Moments. Interact the original inequalities with “in-

struments” (E[ε|z] = 0) of the same sign, proceeding

as above, and then summing over h′ > h. Instruments

• a constant term

• the positive and negative parts of distance differences

for h and for h′ (paper has a robustness test for errors

in this below).



Limitation of this methodology

• Unobservables causing selection absorbed in gπ(.);

i.e. there is no idiosyncratic structural (or ν2) error.

• Assume price variable has no “systematic” error

(i.e. it averages out for each plan). Assume the

distance measure is exact. (Paper has robustness

test for this).

Current limitations analogous to those for “matching

estimators”, only here we have inequalities from re-

vealed preference for each matched agent.
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Benefits:

• Differencing out the gπ(.) terms makes detailed hospital-

quality/patient-severity/plan controls possible,

• Averaging over patients addresses measurement er-

ror problems in price variable (and only require mean

independence, and not a distributional assumption,

of the error and we do use average discounts).
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Price and Severity Groups.

• 106 populated severity groups; 272 populated price
groups (157 hospitals with over 1000 switches).

• Columns of table: severity groups aggregated (over
age, principal diagnosis,...) into max rank.

• Rows give us the average of the price group in that
severity group. Prices increase with the number of
comorbidities in each rank.

• Given a severity, within rank differences in the price
group relative to distance differences give us the
distance-price trade-off for a given severity.
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Table 5: Prices: Aggregated Price and Severity Groups.

Number diags Max rank 1 Max rank 2 Max rank 3
of max rank Pats Price ($) SD Pats Price ($) SD Pats Price ($) SD

1 23029 3431 (15) 1612 13128 4968 (42) 2476 1273 7448 (356) 4256
2 11757 4145 (28) 2180 4196 6019 (88) 2785 64 11536 (2337) 20370
3 4077 4682 (60) 2356 1274 7428 (212) 3609 8 12733 (4009) 11338
4 1179 5505 (149) 2590 380 8602 (462) 5283 1 25573 (-) -
5 331 6189 (254) 3123 110 10186 (1002) 6084 0 -
≥ 5 95 7663 (936) 4896 55 13365 (1596) 8880 0 -

Total 40468 3857 (15) 19143 5488 (40) 1346 7687 (13065)
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Preparatory Analysis and Results.

• 73 - 283 moments per insurer.

• Can accept that the variance of price groups within
severity group does not effect our measures of ad-
verse effects (standard χ2 tests).

• Price variation: Moving from severity to price group-
ings explains an additional 12% of variance in price
(from 50% to 62% of total variance).

• Calculate t-statistic for each of our 977 moments
at θ = θ0. 6.1% negative, ≈ .7% with t ≤ −2.
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• Do analysis with and without moments with t < −2,
not much difference. Health Net sometimes varies
with whether you include the extra 2 moments and
so I include both but use those that drop the t < −2.

Baseline Price Coefficients.

% capit. θ̂p,π [CILB, CIUB]

Using observed discount dh
Pac/care 0.97 -1.50 [-1.68, -1.34]
Aetna 0.91 -0.92 [-0.95, -0.86]
(Hnet .80 -.17 [-0.27, -0.13])
HNet drop t ≤ -2 -0.78 [-0.80, -0.44]
Cigna 0.75 -0.35 [-0.40, -0.33]
BS 0.57 -0.06 [-0.15, 0.23]
(BC 0.38 -0.10 [-0.24, -.01])
BC drop t ≤ -2 -0.29 [-0.31, -0.25]



Note. (Except Blue Shield; A Not For Profit.)

• All negative.

• Ordered by capitation rates.

• Confidence intervals do not overlap.

Magnitude of Results

• ηd,p = percent distance reduction needed to com-

pensate for a 1% price increase (using d̂):



P-coeff= Logits Inequalities
patients= less-sick all

HMO % cap ηd,p ηd,p

Pac-care 0.97 0.33 11.10
Aetna 0.91 0.10 11.47
Health Net 0.80 0.15 06.52
Cigna 0.75 0.10 02.49
BC 0.38 −0.03 03.24

Note: Price elasticities.

• ≥ order of magnitude larger than logits.

• vary a great deal with capitation rates.



Plan-Specific Trade-offs: Quality, Cost, &

Distance.

Need plan-specific estimates of hospital “quality” (∀s).

Revealed preference implies that for each (π, s, h, h′)

qπh(s)− qπh′(s) ≥ gπ(s;h, h′) = θπpp(s;h, h′) + d(s;h, h′)

For each couple of hospitals in the same market we

have two such inequalities:

• One for those who chose h over h’, and one for those

who chose h’ over h.

•# inequalities per market = Hm(Hm−1), where Hm =

# of hospitals in market.
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Reliability of Ordering: Transitivity.

Note that regardless of θp

p(h, h′) ≥ 0 and d(h, h′) ≥ 0, ⇒ qh � qh′;

This defines a partial order which is independent of our

estimate. However, that partial order need not obey

transitivity. I.e. we could have

A � B, B � C, but C � A; or just; A � B, & B � A.

• No non-transitive cycle‘s non-parametrically. Very

few parametrically and all associated with differences

in means which were not significantly different from

zero.
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Quality Bounds.

Quality estimates depend on θp, but our results change
very little as we vary the θp’s over their c.i.’s. Here I
use point estimates of θp.

For a given (π, s) the quality of hospital h relative to a
(market-specific) base hospital (H), is bounded by

q(h) ≡ min
h′ 6=h

E[− q̂(H,h′)− q̂(h′, h)] ≥ qh

≥ max
h′ 6=h

E[q̂(h′, H, ) + q̂(h, h′)] ≡ q(h).

We stack these inequalities for each hospital, weight
each by its estimated standard error, and then find
the (set) estimator that minimizes the squared inequal-
ity violations (drop all comparisons with less than 5
switches)

33



Constraining the Quality Estimates.

• Too many qπh(s) estimates (and sample sizes too

small). Aggregate to five “Super-severity” groups: four

determined by obstetrician (ordered by size) and a “re-

mainder”. Use five biggest markets (Bay Area, Inland

Empire, LA, Orange County, San Diego); they contain

almost all data with 5 or more switches.

Question. Are the insurers orderings affine transforms

of one another? Or can we accept

qπh(s) = απ,m,s + βπ,m,sqs,h.

m is for market. Note that the estimates of {qπh(s)} are

independent across plans. So if they are alike it is not

because of the way we construct the estimates.
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Implications of Accepting.

Preferences are linear functions of price, distance and a

quality measure which is common across insurers. Can

then compare trade-offs across insurers.

If in addition

βπ,m,s = βπ,

we can omit the (m, s) indices and divide Wi,π,h by βπ

to obtain

E[Wi,π,h|ci, li, lh] ∝ −
(θπ
βπ

)
p(ci, h, π)−

( 1

βπ

)
d(li, lh) + qh,si.

This makes differences in plans’ trade-offs between

cost, perceived quality, and distance transparent.
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Details.

• Normalize BC coeff.s = 1.

• First equality takes 1,078 estimates to 452 parame-

ters. R2 = .982 (see picture).

• Both equalities give us 380 parameters R2 = .957

(see picture) Fall in R2 is .00009 per added constraint.

• Results when we aggregate all markets are incredi-

bly precise, but they are a lot more variant when we

disaggregate by market.
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Trade-Offs for the Different Plans.

Insurer P-care Aetna Hnet Cigna BC

% cap 0.97 0.91 0.80 0.75 0.38

−θpπ 1.50 0.92 0.78 0.35 0.29
−βπ 5.13 3.12 2.63 1.20 1.00

θ
p
π/βπ .293 .295 .297 .291 .290
−1/βπ 0.20 0.32 0.38 0.83 1.00

Upper and Lower Bounds on C.I. θp/β∗π
Upper 0.34 0.35 0.34 0.35 0.31
Lower 0.26 0.25 0.26 0.25 0.25.

∗Calculated as lower bound (upper bound) θp divided

by upper bound (lower bound) βπ.
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• Just as the price coefficient increases montonically

with capitation rate, so does the quality coefficient.

• The implication is that their ratio, which is the trade-

off between price and our quality measure, is virtually

identical across plans.

•More highly capitated plans send their patients further

to obtain the same quality – but do not sacrifice quality.

Results consistent with (independent) outcome data.

χ2 tests of differences of four outcomes∗ conditional on

our five severities. Tested each couple of the five in-

surers for each severity and none significant.

∗Mother and infant readmission within twelve months, mother and
infant not discharged to home.
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A Simple Counterfactual Analysis

• Findings indicate that patients in insurers using cap-

itation incentives are referred to lower-priced hospi-

tals. Assume the introduction of capitation would

prompt low-capitation insurers to “act like” high-

capitation insurer.

• Ask: under this assumption, how much would be

saved if the use of capitation contracts was in-

creased?

• Consider patients of Blue Cross (lowest-capitation

insurer). Assume that increasing percent capitation
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to Pacificare level would change BC utility equation
to that of Pacificare. Simulate BC patients’ hospi-
tal referrals under Pacificare utility equation.

• Finding: 4.8% reduction in average price paid, with
6 mile average increase in distance, very little qual-
ity change. Savings in other diagnosis groups could
be higher - since procedures and costs might vary
more across hospitals

Potential implications for structure of ACOs

• Analysis assumes physicians free to choose hospitals
within the existing networks



• Of approx 430 ACOs established by 1/13, around

50% integrated with a hospital system, the rest

sponsored by physician group

• If ACOs integrated with hospital(s), with physi-

cian incentives to use own hospitals, cost reductions

could be more limited.

• Could offset the benefits of integration (e.g. im-

proved information flow, care coordination).



Conclusions.

• Hospital referrals are sensitive to price.

• The sensitivity of the hospital referrals to price de-

pends on the extent to which the contracts the plan

signs with physician groups are capitated: a 60%

difference in extent of capitation triples coefficients

and more than triples elasticities.

• At least in an environment where hospitals and other

providers are separate, the higher capitation insurers
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substitute convenience for cost, but do not sacri-

fice quality for cost. They simply send their patients

further to get the same quality of care.

I now move to the non-parametric case where there

are only ν2 errors and choice specific fixed effects (or

dummy variables). This is based on the paper



Moment Inequalities for Multinomial Choice with

Fixed Eects,

by Ariel Pakes and Jack Porter.

Setup.

Observations (i, t) make choices d ∈ D, where #D = D.

i indexes “group”, of observations, t indexes

within-group. Formalization is the random utility model

with choice specific effects

Ud,i,t = gd(xi,t, θ0) + fd(λd,i, εd,i,t), (1)

(often fd(·) = λd,i + εd,i,t). Do need f(·) additively

separable from gd(·).
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The observed choice is

yi,t ∈ argmax
d∈D

Ud,i,t.

Motivation.

Familiar models.

• Panel data: Choice specific individual effects in panel
data. E.g: Conditional logit (Chamberlain, 1980).

• Market demand: Consumers (t) within markets (i)
chose products (d) with unobserved attributes (λi,d)
(BLP/MicroBLP,1995/2004, Pure Characteristics,2007).

• “Descriptive” form for discrete choice. Provides the
discrete choice analogue of the “within” analysis used
in continuous choice problems. Examples.



Assumption.

εi,t ≡ [εi,1,t, . . . εi,D,t]; εi ≡ [εi,1, . . . εi,T ]; λi ≡ [λi,1, . . . , λi,D].

Assumption 1 (main stochastic assumption).

The conditional distributions of εi,s and εi,t conditional

on (xi,s, xi,t, λi), for any s 6= t, are the same, or

εi,s|xi,s, xi,t, λi ∼ εi,t|xi,s, xi,t, λi.

• No other restriction on εi (either over t, or across

d ∈ D).
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Relationship to Prior Literature.

• Assumption used in a binary choice linear panel data
problem by Manski (1987) who gives conditions for
point identification, and in non-linear single index prob-
lems where the outcome determined by fixed effects, a
disturbance, and is monotone in an index of covariates
and parameters, (Honore, 1992; Abrevaya, 2000).

• Neither approach used above generalizes to multino-
mial choice.

• Panel Data Model: nests conditional logit (Chamber-
lain, 1980), and more generally the “strict exogeneity”
assumptions (Chamberlain, 1980)

εi,s|xi,1, . . . xi,T , λi ∼ εi,t|xi,1, . . . , xi,T , λi.
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• Demand Systems: nests “BLP/MicroBLP” and the

“Pure Characteristics” demand models (choice specific

fixed effects plus random coefficients).

Advantages/Disadvantages of Approach.

General Panel Data.

• εi,s freely related to εi,t (the assumption only con-

strains the marginal distribution of the vector εi,s).

• Fi,ε(·) can vary over i (only need Ti ≥ 2).

• Circumvents incidental parameter problem.

Demand Models (with panels).

• εi,d,t arbitrarily related to εi,s,t (no vestiges of IIA or

limits on substitutability), and



• the marginal distribution of εi,d,t can vary with d.

Weaknesses.

• In general we only get set identification.
• Might be relatively uninformative when D is large.

Parametric εi Distribution.

• No other assumption (including the homogeneity as-
sumption above). Should work for large D. This is
revealed preference; but this time with disturbances
(though parametric).
• A “truly” dynamic choice model with switching cost
model and unobserved heterogeneity: with no need to
specify agent’s perceptions of the future or to calculate
the value function).



Logic Underlying Estimation.

The stochastic assumption restricts the marginal dis-

tribution of εi,t to be the same for different t. This plus

the fact that the λd,i do not vary over t implies that the

relative response probabilities of observations (i, s) and

(i, t) are determined solely by comparing

gd(xi,s, θ) to gd(xi,t, θ).

Non-parametric results come from this fact.



Structure of Talk.

• Begin with a single conditional moment inequality
(makes role of assumptions and the logic transparent).

• Add information; provide additional conditional mo-
ment inequalities.

• Endogenous r.h.s. variables; heterogeneity and state
dependence;.

• Parametric Information on Disturbance Distribution:
(i) Static multinomial choice (set valued generalization
of conditional logit to any parametric distribution),
(ii) Dynamic discrete choice with unobserved hetero-
geneity and switching costs.
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Simple Conditional Moment Inequality

Fix (and omit) the index i, the group index, and let
D = #D. Fix θ and for that θ compare the index
functions for period s to those for t and find that choice
that maximizes the difference in them, i.e.

dD(xs, xt, θ) = argmaxc∈D[gc(xs, θ)− gc(xt, θ)].

Notes:
• dD(xs, xt, θ) does not depend on either εs or εt, so
when we consider the probability that s choses dD and
t does not there is no selection problem.

• dD(xs, xt, θ) can be computed without knowing the
λi,d (which difference out).
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• Note. If d ≡ dD(xs, xt, θ0), then for all c 6= d

[gc(xs, θ0) + λc − (gd=D(xs, θ0) + λd=D)] ≤

[gc(xt, θ0) + λc − (gd=D(xt, θ0) + λd=D)].

⇒

max
c6=d

[gc(xs, θ0) + λc − (gd(xs, θ0) + λd)]

≤ max
c6=d

[gc(xt, θ0) + λc − (gd(xt, θ0) + λd)]

• ⇒ a conditional moment inequality for the difference

in indicator functions. For now assume no ties. Then

if Ωs,t = (xs, xt, λ),



Pr(yt = d|Ωs,t) =

P (εd,t ≥ max
c6=d

[gc(xt, θ0) + λc− gd(xt, θ0)− λd] + εc,t|Ωs,t),

≤ (by our inequality)

P (εd,t ≥ max
c6=d

[gc(xs, θ0) + λc− gd(xs, θ0)− λd] + εc,t|Ωs,t),

= (by equivalence of marginals)

P (εd,s ≥ max
c6=d

[gc(xs, θ0) +λc− gd(xs, θ0)−λd] + εc,s|Ωs,t).

= Pr(ys = d|Ωs,t). ♠
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Additional Inequalities.

Fix θ and rank the differences this induces. So

dD(xs, xt, θ) = argmaxc∈D[gc(xs, θ)− gc(xt, θ)],

dD−1(xs, xt, θ) = argmaxc∈D,c 6=dD[gc(xs, θ)− gc(xt, θ)],

dD−2(xs, xt, θ) = argmaxc∈D,c/∈{dD,dD−1}[gc(xs, θ)−gc(xt, θ)],

. . .

d1(xs, xt, θ) = argminc∈D[gc(xs, θ)− gc(xt, θ)].



• For θ = θ0 the probability of choosing one of the
w-highest ranked differences is

P ({ys = dD} ∪ {ys = dD−1} ∪ · · · ∪ {ys = dD−w}|Ωs,t).

•We develop inequalities for differences in the probabil-
ities of these choices between s and t for w ∈ (1 . . . D].

Proof of Inequality.

P ({ys = dD} ∪ {ys = dD−1} ∪ · · · ∪ {ys = dD−w}|Ωs,t) =

P
{
εs :

w⋃
r=0

{εdD−r ≥ max
c6=dD−r

gc,s(·)+λc−gdD−r,s(·)−λdD−r+εc
∣∣∣Ωs,t}

which by equivalence of sets

P{εs :
w⋃
r=0

{εdD−r ≥ max
c6∈{dD,...,dD−w}

gc,s(·)+λc−gdD−r,s(·)−λdD−r+εc|Ωs,t}
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Note that for r ≤ w,

max
c6∈{dD,...,dD−w}

gc,s(·) + λc − gdD−r,s(·)− λdD−r + εc|Ωs,t} ≤

max
c6∈{dD,...,dD−w}

gc,t(·) +λc−gdD−r,t(·)−λdD−r +εc|Ωs,t},⇒ .

So

P{εs :
w⋃
r=0

{εdD−r ≥ max
c6∈{dD,...,dD−w}

gc,s(·)+λc−gdD−r,s(·)−λdD−r+εc|Ωs,t}

≥ (from the inequality above)

P{εs :
w⋃
r=0

{εdD−r ≥ max
c6∈{dD,...,dD−w}

gc,t(·)+λc−gdD−r,t(·)−λdD−r+εc|Ωs,t} =

which from our stochastic assumption, =

P{εt :
w⋃
r=0

{εdD−r ≥ max
c6∈{dD,...,dD−w}

gc,t(·)+λc−gdD−r,t(·)−λdD−r+εc|Ωs,t} =



(which from the set equivalence argument above) =

= Pr({yt = d
(D)
s,t }∪{yt = d

(D−1)
s,t }∪· · ·∪{yt = d

(D−w)
s,t } | Ωs,t). ♠

So our first proposition concerns

mw(ys, yt, xs, xt, θ) =

1
{
yt ∈ ∪wr=0{d

D−r
s,t (θ)}

}
− 1

{
ys ∈ ∪wr=0{d

D−r
s,t (θ)}

}
.

Proposition. ∀w ≤ D − 1

0 ≤ Eε[mw(yi,s, yi,t, xi,s, xi,t, θ0) | xi,s, xi,t], ♠.

I.e. for any h( xi,s, xi,t) ≥ 0

0 ≤ Eε[mw(yi,s, yi,t, xi,s, xi,t, θ0)h( xi,s, xi,t)].



• Potential content of inequalities. Let r rank dif-

ferences. If the realizations of

ys = drs,t(θ) and of yt = dr−ks,t (θ),

then the (s, t) comparison can contribute to the empiri-

cal analogues of restrictions from at most k conditional

moments for any fixed θ.

• The conditional expectations of{
1{ys ∈ ∪Dq=drs,t(θ)−j} − 1{yt ∈ ∪Dq=drs,t(θ)−j}

}k−1

j=0
,

should be positive at θ = θ0.
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Information in comparisons. If “rank” = the rank of

the difference in index functions, and

• rank[yi,s(θ)] ≥ rank[yi,t(θ)] then the comparison does

not provide evidence against that value of θ.

• However if rank[yi,s(θ)] < rank[yi,t(θ)], i.e. if k < 0,

then there is evidence against θ and that evidence

is stronger the larger (in absolute value) is |k| and

the values of {gd(xi,t, θ)− gd(xi,s, θ)}yi,s+k
d=yi,s

.
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• Importance of using all the choices. Say we would

have only used first ranked choice. Then we only have

mD
s,t(·, θ), and

yi,s 6= Ds,t(θ) and yi,t 6= Dt,s(θ)⇒ mD
s,t(·, θ) = 0.

If D is large P{yi,s = Ds,t(θ)} is typically small (even at

θ = θ0) ⇒ we only use a small fraction of data (even if

yi,s = Ds,t(θ) − 1 and the difference in index functions

is negligible).
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Asymptotics.

• Can let either n, T or both grow large. If n grows large

holding T fixed the number of parameters grows with

the number of observations, but we have circumvented

the incidental parameter problem in the estimates of θ.

• More detail on the asymptotics requires assumptions

on the dependence structure of the observations. Then

one can use the recent literature on estimating parame-

ters when the model generates conditional moment in-

equalities (Andrews and Shi, 2013; Chetverikov 2013;

Armstrong 2014; Chernozhukov, Lee and Rosen, 2013,

...).
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Monte Carlo Example: Two Period Entry Model∗

The Need for a “Within” Estimator (here i indices

markets and t firms in market). Goal: provide a sum-

mary of how the values of active firms depend on the

number and type of competitors conditional on market

“profitability”: i.e. general demand and supply condi-

tions which are, in part, unobserved.

• Early work that did not “endogenize” the disturbances

in the entry equation typically found that the value of

active firms was positively related to the number of

competitors; more profitable markets had more firms

∗From Pakes, A.: “Behavioral and Descriptive Forms of Choice
Models”, IER, 2014.
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and we could not fully condition on market profitability.

This starts the two period entry literature (Bresnahan

and Reiss 1990, Berry 1992, Tamer 2003, and Ciliberto

and Tamer 2009).

• We propose to treat the profitability of the market

as an “unobservable” and do a “within-market” anal-

ysis. Discrete analogue to group specific fixed effects

in continuous problems which lead to “within” analysis

(or difference in differences).

How do we proceed? i indexes market, and t firms.

• Compute Markov Perfect equilibria to a set of infinite

horizon entry games with different market sizes.

• Use equilibrium policies to simulate market structures.



• Regress the value function of firms in the simulated

market structures on market size and the number and

type of competitors.

• This summary is computed in a way which endows

the coefficients with both a meaning and comparabil-

ity across studies of different markets (elsewhere I have

called it a “descriptive form”).

• The error is now mean independent of observables

by construction, and it can include approximation and

measurement errors (unlike prior two-period models).

• Finally assume market size is unobserved, so it be-

comes the “choice-specific” fixed effect, and use our

estimation technique to try to recover the descriptive

form that conditions on market size.



DGP for Monte Carlo. Firms differ in their: (i) loca-
tion (l; east or west), (ii) quality of their product (q),
and their market (differentiated by size, our λ, with
sixty values).
• Consumers differ in their location and their sensitivity
to price.
• Six firms can participate in each market. In each pe-
riod some are potential entrants who can enter either
east or west or not enter.
• Incumbents decide whether to exit and if they con-
tinue they can invest in quality.
• The outcome of the investment is stochastic, and
there are random draws on the sunk cost of entry and
exit values in every period.
• There is also a fixed cost which differs with the quality
level and by market.
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Equilibria. Static equilibrium conditions on the char-

acteristics of active firms and is Nash in prices. Dy-

namic choices are Markov Perfect in entry, exit, and in-

vestment policies (an Ericson-Pakes, 1995, model com-

puted with the Pakes-McGuire,1994 algorithm).

Notation:

Q divides firms into high and low quality,

nQ,l is the number competitors with the same (Q, l)

nQ is the number of competitors with the same Q.

nl is the number of competitors with the same l.

M is market size.



Goal of Analysis. The algorithm delivers a value func-

tions for each active firm and potential entrant, for an

incumbent that would be V (l, q, s) where s is the vector

(counting measure) which tells us how many competi-

tors at each (l, q). We regress

V (l, q, s) = (nQ,l, nQ, nl, Q,M)β + ε

gives us a minimum mean square predictor of the value

of being active conditional on market size (our “de-

scriptive form”). We then try and predict the descrip-

tive form from the entry and exit decisions assuming M

is unknown.
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Table 1: True Descriptive Forms.

Expected Discounted Value
θ With Mkt.Size No Mkt.Size.

nl,q -0.73 (0.01) -0.48 (0.01)
n−l -0.58 (0.01) -0.16 (0.02)
n−q -0.07 (0.01) 0.18 (0.01)
q=H 1.59 (0.01) 1.69 (0.02)
R2 0.80 n.r. 0.22 n.r.
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• Easy to see the effects of market size. The coeffi-

cients in the two columns differ markedly and the R2

drops to one quarter of its value. There are good rea-

sons to endogenize entry decisions.

• Even after allowing for the free {λ}i twenty per cent

of the variance is not accounted for. This variance is

orthogonal to x by construction: it is the approximation

error from the descriptive form.

• Approximation error is ignored in prior models.
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Estimation Notes: Using the P-P Algorithm.

• Use entry-exit decisions which allow for choice specific

FE but no M to try to replicate descriptive form.

• The residuals here do not necessarily satisfy that

within a market

ε|xs,xt,λ
∼ ε|xr,xs,λ.

• The potential entrants have a trinomial choice (don’t

enter, enter west, or enter east). The incumbents can

only chose to exit or continue.
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Estimation Questions.

• Does the restrictive assumption on heteroscedasticity

matter?

• Does the addition of 2nd choice data help?

• Does it matter if we only compare agents with the

same choice set (prior models lump potential entrants

and incumbents together)?
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• Always cover the true parameter, but use of only

the highest ranked difference leads to wide confidence

intervals.

• Adding the inequality for the second highest index de-

creases the width of the confidence interval by a factor

of about 3.

• When we compare across choice sets we actually do

a bit better, but the difference is small.
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Table 2. P-P Estimators of Descriptive Form.

Estimator nl,q n−l n−q
Descriptive Form

1. OLS with λ -0.73 (.03) -0.25 (.04) -0.10 (.01)

Use Only Largest Difference in Index: All Choice Sets.
2. Point Estimate -0.53 -0.42 -0.02
3. Confidence Interval [-.96,-.19] [-.94,.01] [-.34,.02]

Use 1st & 2nd Differences: Compare Across Choice Sets.
4. Point Estimates -0.61 -0.28 -0.13
5. Confidence Interval [-.77 -.49] [-.36,-.19] [-.16,-.09]

Use 1st & 2nd Differences: Only Within Choice Sets
6. Point Estimates -0.60 -0.26 -0.14
7. Confidence Interval [-.74 -.44] [-.39,-.22] [-.22,-.07]

Adding Information: ε ∼ Fi(·|β).
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Case 1: Static Multinomial Choice. Likely impor-

tant for large choice sets. Focus on the panel data case:

i.e. limits in N (limits in T is covered by the demand

literature). For this case Chamberlain (1980) assumed

a logistic distribution and provided a conditional mle.

We generalize to any joint distribution.

Assumption 3. Fi(ε|Σ(β)), for β ∈ Rk.

Notes. E[εi|xi, λi] = 0 since λi picks up means. No

other assumption on the distribution of εi: i.e. no need

for the group homogeneity assumption. ⇒ if Fi(·) has

the same marginals over t prior results generate a non-

parametric test of whether Fi(·) could be right.



Logic. If ys = d but yt = q then by revealed preference

gd(xs, θ0)− gq(xs, θ0) + λd − λq + εd,s − εq,s ≥ 0

≥ gd(xt, θ0)− gq(xt, θ0) + λd − λq + εd,t − εq,t.

So if ∆c
s,t(θ) ≡ gc(xs, θ)− gc(xt, θ),

εd,s − εq,s − (εd,t − εq,t) ≥∆q
s,t(θ0)−∆d

s,t(θ0).

It follows that

Pr
(
εd,s−εq,s−(εd,t−εq,t)−(∆q

s,t(θ0)−∆d
s,t(θ0)) ≥ 0|xs, xt, λ, β0

)
≥ Pr(ys = d, yt = q|xs, xt, λ, θ0, β0). ♠
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To obtain our proposition for this case define

mF (ys, yt, xs, xt, θ) ≡

1{εd,s−εq,s−(εd,t−εq,t)−(∆q
s,t(θ)−∆d

s,t(θ)) ≥ 0}−1{ys = d, yt = q}.

Proposition 4 Assumption (3) implies that for all (s, t)

and for all (d, q) ∈ {(d, q) : d 6= q, (d, q) ∈ D2}

E[mF (ys, yt, xs, xt, θ0)|xs, xt, β0] ≥ 0. ♠

For each (s, t) couple this gives us 2D(D − 1) inequali-

ties; one each for {ys = d, yt = q} for d 6= q, (d, q) ∈ D2,

and the analogous inequalities for {yt = d, ys = q}; and

there are Ti(Ti − 1) such couples for each i.
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