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1 Additional Definitions of Accuracy

Our Definition 1 can be equivalently expressed in terms of the monotone likelihood ratio prop-

erty. Let P be a choice process and let f i be the density of F i with respect to F . Wlog suppose

that a is the correct choice and b is not. Suppose that F a is absolutely continuous w.r.t. F b;

we say that F a and F b have the monotone likelihood ratio property, denoted F a %MLRP F b, if

the likelihood fa(t)/f b(t) is an increasing function.

Though the above concepts can be useful for theoretical analysis, in empirical work time

periods will need to be binned to get useful test statistics. For this reason we introduce two

weaker concepts that are less sensitive to finite samples, as their oscillation is mitigated by

conditioning on larger sets of the form [0, t]. First, let Qi(t) := P ({i}×[0,t])
F (t)

be the probability

of choosing i conditional on stopping in the interval [0, t]. Second, we say that F a first order

stochastically dominates F b, denoted F a %FOSD F b if F a(t) ≤ F b(t) for all t ∈ T . Below, we

summarize the relationships between these concepts.
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Lemma O.1.

1. Let P be a choice process and suppose that F a is absolutely continuous w.r.t. F b. Then P

has increasing (decreasing/constant) accuracy if and only if F a %MLRP F
b (F a -MLRP F

b

/ F a = F b).

2. If P has increasing (decreasing/constant) accuracy, then Qa(t) is an increasing (decreas-

ing, constant) function.

3. If Qa(t) is an increasing (decreasing, constant) function, then F a %FOSD F b (F a -FOSD F b,

F a = F b).

Proof of Lemma O.1

To prove part (1) note that by the definition of a conditional distribution (property (c) p.

343 of Dudley, 2002) we have F i(t) =
∫

[0,t]
pi(s)
P i
dF (s), so the density of F i with respect to F is

f i(t) = pi(t)
P i

. Since F a is absolutely continuous w.r.t. F b, the ratio fa(t)
fb(t)

is well defined F -almost

everywhere and equals pa(t)
pb(t)

Pa

P b
. This expression is increasing (decreasing, constant) if and only

if pa(t) is increasing (decreasing, constant).

To prove part (2), note that by the definition of a conditional distribution we have

Qi(t) =
P iF i(t)

F (t)
=

∫
[0,t]

pi(s)dF (s)

F (t)
. (1)

Thus, for t < t′ we have

Ql(t) > Ql(t′) iff

∫
[0,t]

pl(s)dF (s)

F (t)
≥

∫
[0,t]

pl(s)dF (s) +
∫

(t,t′]
pl(s)dF (s)

F (t) + [F (t′)− F (t)]

iff

∫
[0,t]

pl(s)dF (s)

F (t)
≥

∫
(t,t′]

pl(s)dF (s)

F (t′)− F (t)
,

which is true if pl(·) is a decreasing function since the LHS is the average of pl on [0, t] and

the RHS is the average on (t, t′]. However, the opposite implication may not hold, for example,

consider pl(t) := (t − 2/3)2 and F (t) = t for t ∈ [0, 1]. Then pl(t) is not decreasing, but Ql(t)

is.
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To prove part (3), note that by (1) we have

F l(t) > F r(t) iff
Ql(t)

P l
≥ Qr(t)

P r
iff Ql(t) ≥ P l = lim

s→∞
Ql(s),

where we used the fact that Ql(t) + Qr(t) = 1 and P l + P r = 1. Thus, if Ql is a decreasing

function, the RHS will hold. However, the opposite obviously doesn’t have to hold.

2 A more general model of attention

Given attention levels βlt, β
r
t ≥ 0 the signal at time t is given by

dZi
t =

(
βit
)γ/2

θidt+ dBi
t ,

for some fixed γ ≥ 1. We assume that the attention budget is fixed at every point in time,

βlt + βrt ≤ 2. The posterior variance of alternative i is given by (σit)
2

= 1

(σi0)
−2

+
∫ t
0 (βis)

γds
, so the

posterior variance on the difference is

vt =
(
σlt
)2

+ (σrt )
2 =

1

(σi0)
−2

+ ylt
+

1

(σi0)
−2

+ yrt
,

where yit =
∫ t

0
(βis)

γ
ds is a measure of the total attention the agent has spent on alternative

i ∈ {l, r}.

We first consider the auxiliary problem of minimizing the posterior variance at some fixed

time t. At each point in time s the agent optimally exhausts the total attention budget of two,

βst + βrs = 2. We divide the proof in two cases γ ≥ 1 and γ ≤ 1.

γ ≤ 1: We claim that the agent can minimize the posterior variance vt by paying equal
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attention to the two signals βlt = βrt = 1. To see this, note that, ylt + yrt is bounded by 2t

ylt + yrt =

∫ t

0

(
βls
)γ

+ (βrs)
γ ds ≤

∫ t

0

max
βl,βr,βl+βr≤2

[(
βl
)γ

+ (βr)γ
]

ds

=

∫ t

0

[(1)γ + (1)γ] ds =

∫ t

0

2ds = 2t .

Hence, a relaxed version of the problem of minimizing posterior variance at time t is given by

min
(ylt,y

r
t )

1

(σi0)
−2

+ ylt
+

1

(σi0)
−2

+ yrt

s.t. ylt + yrt = 2 t .

As the objective function is concave in ylt and yrt it follows that the solution to the above

problem satisfies ylt = yrt = t. As this is achievable by βlt = βrt = 1 this means that the policy

which pays equal attention minimizes the posterior variance at time any time t simultaneously.

γ ≥ 1: We claim that the agent can without loss use only attention levels 0 or 2. To see

this, note that, the agent can always achieve the total attention yit by paying attention only to

i for the length of time yit/2
γ

yit =

∫ t

0

(
βis
)γ

ds =

∫ yit/2
γ

0

2γds .

It thus suffices to show that ylt/2
γ + yrt /2

γ ≤ t , as this implies that by paying full attention

to signal l from time [0, ylt/2
γ] and then full attention to signal r for time [ylt/2

γ, ylt/2
γ + yrt /2

γ]

the agent can replicate the vector of total attention (ylt, y
r
t ) . We have that the time it takes

the agent to replicate the attention vector (ylt, y
r
t ) is less than t

ylt/2
γ + yrt /2

γ =
1

2γ

∫ t

0

(
βls
)γ

+ (βrs)
γ ds ≤ 1

2γ

∫ t

0

max
βl,βr,βl+βr≤2

[(
βl
)γ

+ (βr)γ
]

ds

=
1

2γ

∫ t

0

2γds = t .
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Hence, the problem of minimizing posterior variance at time t can be rewritten as

min
(ylt,y

r
t )

1

(σi0)
−2

+ ylt
+

1

(σi0)
−2

+ yrt

s.t. ylt + yrt = 2γ t .

As the objective function is concave in ylt and yrt it follows that the solution to the above problem

satisfies ylt = yrt = 2γ−1 t. This means that any policy where the agent pays full attention to the

left alternative βls = 2 for half the time ( t
2
) and full attention to the right alternative βrs = 2

for half the time ( t
2
) minimizes the posterior variance at time t.

Next, consider the policy which divides time in intervals of equal length ∆ and pays full

attention to the left alternative in the even intervals and full attention to the right alternative

in the odd intervals. By construction ylt = yrt → 2γ−1 t when the length of the intervals

∆ ↘ 0 for every t. As a consequence the limit policy minimizes the posterior variance at all

points in time simultaneously, and the limit variance at each t is ṽ?t = 2 1

(σi0)
−2

+2γ−1 t
. Note that

if γ = 1 which is the case stated in the main text, then the same posterior variance is achieved

by the policy which pays equal attention at every point in time βlt = βrt = 1 for all t.

So far we argued that the agent can simultaneously minimize the posterior variance at every

point in time by equalizing the posterior variance on the two options. The last step is to show

that mimimizng the posterior variance at each time is optimal. Fix an attention strategy β

and denote by Eβ[·] the associated expectation operator, and by Eβ? [·] the expectation operator

associated with the limiting case where the agent switches attention instantaneously between

the two objects. The optimal stopping policy τ is a solution to

sup
τ

Eβ
[
max{X l

τ , X
r
τ} − cτ

]
= sup

τ
Eβ
[
max{X l

τ −Xr
τ , 0} − cτ

]
+Xr

0 (2)

By the Dambis, Dubins, Schwarz Theorem (see, e.g., Theorem 1.6, chapter V of Revuz and

Yor, 1999) there exists a Brownian motion (Bν)ν∈[0,σ2
0 ] such that X l

t −Xr
t = Bσ2

0−vt ; this a time

change where the new scale is the posterior variance. Furthermore, we can define the stochastic
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process φν := inf{t : σ2
0 − vt ≥ ν}. By eq. (2) the value of the agent is given by

sup
τ

Eβ
[
max{X l

τ −Xr
τ , 0} − cτ

]
+Xr

0 = sup
ν

E [max{Bν , 0} − c φν ] +Xr
0 .

Recall that we denoted by (ṽt)t≥0 the limiting posterior variance process if the agent quickly

switches attention constantly between the two signals. As the posterior variance vt is greater

than the posterior variance ṽt we have that φν ≥ φ̃ν := inf{t : σ2
0 − ṽt ≥ ν}. It follows from

φr ≥ φ̃r that the value when using the attention strategy β is smaller that the value achieved

in the limit when the agent constantly switches attention between the two signals

sup
τ

Eβ
[
max{X l

τ , X
r
τ} − cτ

]
= sup

ν
E [Bν − c φν ] +Xr

0 ≤ sup
ν

E
[
max{Bν , 0} − c φ̃ν

]
+Xr

0

= sup
τ

Eβ?
[
max{X l

τ , X
r
τ} − cτ

]
.

3 Proofs omitted in the main text

3.1 Proof of Lemma 4

To prove this Lemma we need the following result.

Lemma O.2.

V (0,xl, xr, cλ, σ0, α) =

= λ−1 sup
τ ′

E

[
max

{
λxl +

∫ τ ′

0

α−1

σ−2
0 + sλ−2α−2

dM l
s, λx

r +

∫ τ ′

0

α−1

σ−2
0 + sλ−2α−2

dM r
s

}
− cτ ′

]
,

where M i
t are Brownian motions.

Proof of Lemma O.2. By definition, V (0, xl, xr, cλ, σ0, α) equals

sup
τ

E
[
max

{
xl +

∫ τ

0

α−1

σ−2
0 + sα−2

dW l
s, x

r +

∫ τ

0

α−1

σ−2
0 + sα−2

dW r
s

}
− cλ τ

]
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and by simple algebra this equals

λ−1 sup
τ

E
[
max

{
λxl +

∫ τ

0

λα−1

σ−2
0 + sα−2

dW l
(sλ2)λ−2 , λxr +

∫ τ

0

λα−1

σ−2
0 + sα−2

dW r
(sλ2)λ−2

}
− cλ2 τ

]
.

We now change the speed of time and apply Proposition 1.4 of Chapter V of Revuz and Yor

(1999) with Cs := sλ−2and Hs := α−1λ
σ−2

0 +α−2λ−2s
(pathwise to the integrals with limits τ and τλ2)

to get

λ−1 sup
τ

E

[
max

{
λxl +

∫ τλ2

0

λα−1

σ−2
0 + sλ−2α−2

dW l
sλ−2 , λxr +

∫ τλ2

0

λα−1

σ−2
0 + sλ−2α−2

dW r
sλ−2

}
− cλ2 τ

]
.

In the next step we apply the time rescaling argument to conclude that M i
r := λW i

rλ−2 is

a Brownian motion, and τ ′ = τλ2 is a stopping time measurable in the natural filtration

generated by M . This yields

λ−1 sup
τ ′

E

[
max

{
λxl +

∫ τ ′

0

α−1

σ−2
0 + sλ−2α−2

dM l
s, λx

r +

∫ τ ′

0

α−1

σ−2
0 + sλ−2α−2

dM r
s

}
− cτ ′

]

Proof of (13)

By Lemma 2, part 7, V (t, xl, xr, c, σ0, α) = V (0, xl, xr, c, σt, α), so

k∗(t, c, σ0, α) = inf{x > 0: 0 = V (t, 0,−x, c, σ0, α)}

= inf{x > 0: 0 = V (0, 0,−x, c, σt, α)} = k(0, c, σt, α).
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Proof of (14)

By Lemma O.2, V (0, xl, xr, cλ, σ0, α) equals

λ−1 sup
τ ′

E

[
max

{
λxl +

∫ τ ′

0

α−1

σ−2
0 + sλ−2α−2

dM l
s, λx

r +

∫ τ ′

0

α−1

σ−2
0 + sλ−2α−2

dM r
s

}
− cτ ′

]

λ−1λ2 sup
τ ′

E

[
λ−2 max

{
λxl +

∫ τ ′

0

α−1

σ−2
0 + sλ−2α−2

dM l
s, λx

r +

∫ τ ′

0

α−1

σ−2
0 + sλ−2α−2

dM r
s

}
− cτ ′λ−2

]

= λ sup
τ ′

E

[
max

{
λ−1xl +

∫ τ ′

0

α−1

λ2σ−2
0 + sα−2

dM l
s, λx

r +

∫ τ ′

0

α−1

λ2σ−2
0 + sα−2

dM r
s

}
− cτ ′λ−2

]
= λV (0, x1λ

−1, x2λ
−1, cλ−2, σ0/λ, α).

By setting ĉ = cλ we have V (0, xl, xr, ĉ, σ0, α) = λV (0, x1λ
−1, x2λ

−1, ĉλ−3, σ0/λ, α), so

k∗(0, c, σ0, α) = inf{x > 0: 0 = V (0, 0,−x, c, σ0, α)}

= inf{x > 0: 0 = V (0, 0,−xλ−1, c λ−3, σ0/λ, α)}

= λ inf{y > 0: 0 = V (0, 0,−y, c λ−3, σ0/λ, α)} = λ k∗(0, c λ−3, σ0/λ, α).

Setting σ̃0 = σ0/λ gives the result.

Proof of (15)

First, observe that V (t, x1, x2, c, σ0, λα) equals

= sup
τ≥t

E
[
max

{
x1 +

∫ τ

t

λ−1α−1

σ−2
0 + λ−2α−2s

dW 1
s , x2 +

∫ τ

t

λ−1α−1

σ−2
0 + λ−2α−2s

dW 2
s

}
− c(τ − t)

]
= λ sup

τ≥t
E
[
max

{
λ−1x1 +

∫ τ

t

α−1

λ2σ−2
0 + α−2s

dW 1
s , λ

−1x2 +

∫ τ

t

α−1

λ2σ−2
0 + α−2s

dW 2
s

}
− (cλ−1)(τ − t)

]
= λV (t, λ−1x1, λ

−1x2, λ
−1c, λ−1σ0, α) .
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Thus,

k∗(t, c, σ0, λα) = inf{x > 0: 0 = V (t, 0,−x, c, σ0, λα)}

= inf{x > 0: 0 = V (t, 0,−λ−1x, λ−1c, λ−1σ0, α)}

= λ inf{y > 0: 0 = V (t, 0,−y, λ−1c, λ−1σ0, α)} = λ k∗(t, λ−1c, λ−1σ0, α).

Proof of (16)

By Lemma O.2, V (0, xl, xr, cλ, σ0, α) equals

λ−1 sup
τ ′

E

[
max

{
λxl +

∫ τ ′

0

α−1

σ−20 + sλ−2α−2
dM l

s, λx
r +

∫ τ ′

0

α−1

σ−20 + sλ−2α−2
dMr

s

}
− cτ ′

]

As observing a less noisy signal is always better, we have that for all λ > 1

V (0, xl, xr, cλ, σ0, α) ≥ λ−1 sup
τ

E
[
max

{
λxl +

∫ τ

0

α−1

σ−20 + sα−2
dM l

s, λx
r +

∫ τ

0

α−1

σ−20 + sα−2
dMr

s

}
− cτ

]
= λ−1V (0, λxl, λxr, c, σ0, α)

This implies that k∗(t, λc, σ0, α) ≥ λ−1k∗(t, c, σ0, α) for all λ > 1

k∗(t, λc, σ0, α) = inf{x > 0: 0 = V (t, 0,−x, λc, σ0, α)}

≥ inf{x > 0: 0 = V (t, 0,−xλ, c, σ0, α)}

= λ−1 inf{y > 0: 0 = V (0, 0,−y, c, σ0, α)} = λ−1k(t, c, σ0, α) .

3.1.1 Additional Results

Let

k̄(t, c, σ0, α) =
1

2cα2(σ−2
0 + α−2t)2

.

Lemma O.3. k̄ is the only function that satisfies (13)–(16) with equality, and b̄, defined above

Proposition 4, is the associated boundary in the signal space.

Proof of Lemma O.3: Notice that by equations (13), (15), (14), and (16), applied in that
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order, it follows that

k̄(t, c, σ0, α) = k̄(0, c, σt, α) = αk̄(0, α−1c, α−1σt, 1) = σtk̄(0, α2cσ−3
t , 1, 1)

= α−2c−1σ4
t k̄(0, 1, 1, 1) =

κ

cα2(σ−2
0 + α−2t)2

,

where κ = k̄(0, 1, 1, 1). Since b̄(t, c, σ0, α) = α2k̄(t, c, σ0, α)σ−2
t , it follows that b̄(t, c, σ0, α) =

κ
c(σ−2

0 +α−2t)
. The fact that κ = 1

2
follows from the proof of Proposition 4, as any other constant

would result in a contradiction as t→∞.

Remark 1. Proposition 4 says that k̄ is a good approximation of k∗ for large t. An intuition

for why this is true is as follows: Inequality (16) becomes an equality if additional information

does not have value, which is the case when the agent already learned a lot, which is the case

when t is large. Thus, for large t, k∗ almost satisfies (16) with equality, i.e., it is almost equal

to k̄.

3.2 Proof of Proposition 2

Let κ := E
[

max{θl, θr}
]

and fix a stopping time τ . To show that

E
[
−1{Xl

τ≥Xr
τ }(θ

r − θl)+ − 1{Xr
τ>X

l
τ}(θ

l − θr)+ − cτ
]

= E
[
max{X l

τ , X
r
τ} − cτ

]
− κ,

the cost terms can be dropped. Let D be the difference between the expected payoff from the op-

timal decision and the expected payoff from choosing the correct action, D := E
[

max{X l
τ , X

r
τ}
]
−

E
[

max{θl, θr}
]
. By decomposing the expectation into two events,

D = E
[
1{Xl

τ≤Xr
τ }(X

l
τ −max{θl, θr}) + 1{Xr

τ<X
l
τ}(X

r
τ −max{θl, θr})

]
.
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Plugging in the definition of X i
τ and using the law of iterated expectations, this equals

E
[
1{Xl

τ≤Xr
τ }(E[θl|Fτ ]−max{θl, θr}) + 1{Xr

τ<X
l
τ}(E[θr|Fτ ]−max{θl, θr})

]
= E

[
1{Xl

τ≤Xr
τ }(E[θl|Fτ ]− E[max{θl, θr}|Fτ ]) + 1{Xr

τ<X
l
τ}(E[θr|Fτ ]− E[max{θl, θr}|Fτ ])

]
= E

[
1{Xl

τ≤Xr
τ }E[−(θr − θl)+|Fτ ] + 1{Xr

τ<X
l
τ}E[−(θl − θr)+|Fτ ]

]
= E

[
− 1{Xl

τ≤Xr
τ }(θ

r − θl)+ − 1{Xr
τ<X

l
τ}(θ

l − θr)+

]
.

3.3 Proof of Proposition 4

We rely on Bather’s (1962) analysis of the Chernoff model, which by Proposition 2 applies to

our model. Bather studies a model with zero prior precision. Since such an agent never stops

instantaneously, all that matters is her beliefs at t > 0, which are well defined even in this case,

and given by X̂ i
t = t−1Zi

t and σ̂−2
t = tα−2. In Section 6, p. 619 Bather (1962) shows that

k∗
(
t, c,∞, 1√

2

)√
t =

1

4 c t3/2
+O

(
1

t3

)
.

which implies that

k∗
(
t, c,∞, 1√

2

)
=

1

4 c t2
+O

(
1

t7/2

)
.

Fix α > 0. By equation (15) we have k∗(t, c,∞, α) = α
√

2k∗(t, 1
α
√

2
c,∞, 1√

2
). Thus,

k∗
(
t, c,∞, α

)
=

1

2 cα−2 t2
+O

(
1

t7/2

)
.

This implies that there exists T, η > 0 such that for all t > T we have

∣∣∣∣k∗(t, c,∞, α)− 1

2 cα−2 t2

∣∣∣∣ ≤ η

t7/2
.

Fix σ0 > 0 and let s := t− α2σ−2
0 . This way, the agent who starts with zero prior precision

and waits t seconds has the same posterior precision as the agent who starts with σ2
0 and waits
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s seconds.1 Thus, by (13) we have k∗
(
t, c,∞, α

)
= k∗

(
s, c, σ0, α

)
, so

∣∣∣∣k∗(s, c, σ0, α
)
− 1

2 cα2 (α−2s+ σ−2
0 )2

∣∣∣∣ ≤ η

(s+ α2σ−2
0 )7/2

.

Finally, since b∗(s, c, σ0, α) = α2k∗(s, c, σ0, α)σ−2
s , we have

∣∣∣∣b∗(s, c, σ0, α
)
− 1

2 cα2 (α−2s+ σ−2
0 )

∣∣∣∣ ≤ η

(s+ α2σ−2
0 )5/2

.

3.4 Proof of Proposition 5

By Lemma 4 we have that k∗(0, c, λσ0, α) = λ k∗(0, cλ−3, σ0, α) for all λ > 0. Choosing λ = c1/3

and σ0 = σ̃0c
−1/3 yields k∗(0, c, σ̃0, α) = c1/3 k∗(0, 1, σ̃0c

−1/3, α). Thus for c > 1 by choosing

t = α2 σ̃−2
0

(
c2/3 − 1

)
, we have σ̃t = σ̃0c

−1/3 and using equation (13) yields

k∗(0, c, σ̃0, α) = c1/3 k∗(α2 σ̃−2
0 (c2/3 − 1), 1, σ̃0, α) .

Consider the difference between the correct barrier k∗ and the approximate barrier k̄

∣∣k∗(0, c, σ̃0, α)− k̄(0, c, σ̃0, α)
∣∣ = c1/3

∣∣k∗(α2 σ̃−2
0

{
c2/3 − 1

}
, 1, σ̃0, α)− k̄(α2 σ̃−2

0

{
c2/3 − 1

}
, 1, σ̃0, α)

∣∣
=
σ̃2

0

α2
c1/3

∣∣b∗(α2 σ̃−2
0

{
c2/3 − 1

}
, 1, σ̃0, α)− b̄(α2 σ̃−2

0

{
c2/3 − 1

}
, 1, σ̃0, α)

∣∣
Note that in the right-hand side above the barrier is only evaluated at cost equal to one. Hence,

by Proposition 4 we have that there exists constants η, c > 0 independent of c such that for all

c ≥ c

∣∣k∗(0, c, σ̃0, α)− k̄(0, c, σ̃0, α)
∣∣ ≤ σ̃2

0

α2
c1/3 η

(σ̃−2
0 + σ̃−2

0 {c2/3 − 1})5/2
=
σ̃7

0

α2
c1/3 η

c5/3
=
σ̃7

0

α2

η

c4/3
.

Multiplying the left and the right sides by α2σ−2
t gives

∣∣b∗(0, c, σ̃0, α)− 1
2 c

∣∣ ≤ σ̃5
0

η
c4/3

.

1To see this, observe that σ2
s = 1

σ−2
0 +α−2s2

= 1
α−2t = σ̂2

t .
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3.5 Proof of Theorem 6

Let G = {tn}Nn=1 be a finite set of times at which the agent is allowed to stop and denote by T

all stopping times τ such that τ ∈ G almost surely. As we restrict the agent to stopping times

in T , the stopping problem becomes a discrete time optimal stopping problem. By Doob’s

optional sampling theorem we have that

sup
τ

E
[
max{X l

τ , X
r
τ} − d(τ)

]
= sup

τ
E
[

1

2
max{X l

τ −Xr
τ , X

r
τ −X l

τ}+
1

2
(X l

τ +Xr
τ )− d(τ)

]
= sup

τ
E
[

1

2
|X l

τ −Xr
τ | − d(τ)

]
+

1

2
(X l

0 +Xr
0),

so any optimal stopping time also solves supτ E
[
|X l

τ −Xr
τ | − 2 d(τ)

]
. Define ∆n = |X l

tn −X
r
tn|

for all n = 1, . . . , N . Observe that (∆n)n=1,...,N is a one-dimensional discrete time Markov

process. To prove that for every barrier k in the posterior mean space (X) there exists a cost

function which generates k by Theorem 1 in Kruse and Strack (2015) it suffices to prove that:

1. there exists a constant C such that E[∆n+1|Ftn ] ≤ C(1 + ∆n).

2. ∆n+1 is increasing in ∆n in the sense of first order stochastic dominance.

3. z(n, y) = E[∆n+1 −∆n | ∆n = y] is strictly decreasing in y.

Condition 1 keeps the value of continuing from exploding, which would be inconsistent with

a finite boundary. Conditions 2 and 3 combined ensure that the optimal policy is a cut-off rule.

In both the certain- and uncertain-difference models the mapping between X and Z is

one-to-one and onto, so this implies the desired result for b.

3.5.1 Certain-Difference DDM

Set Zt = Z l
t − Zr

t = (θ′′ − θ′)t+
√

2αBt. Then

lt = log

(
P [θ = θl | Ft]
P [θ = θr | Ft]

)
= log

(
µ

1− µ

)
+ log

(
exp(−(4α2t)−1)(Zt − (θ′′ − θ′)t)2

exp(−(4α2t)−1)(Zt − (θ′ − θ′′)t)2

)
= log

(
µ

1− µ

)
+
Zt(θ

′′ − θ′)
α2

.

13



Denote by pn = P[θ = θl | Ftn ] the posterior probability that l is the better choice. The

expected absolute difference of the two choices satisfies

∆n = |X l
tn −X

r
tn| = |pn(θ′′ − θ′) + (1− pn)(θ′ − θ′′)|

= |(2pn − 1)(θ′′ − θ′)| = 2(θ′′ − θ′)
∣∣∣∣pn − 1

2

∣∣∣∣ .
Let ψn := [Z l

tn −Z
r
tn ]− [Z l

tn−1
−Zr

tn−1
] denote the change in the signal from tn−1 to tn. We have

that the log likelihood is given by ln+1 = ln + α−2(θ′′ − θ′)ψn+1. We thus have

∆n = 2(θ′′ − θ′)
∣∣∣∣ eln

1 + eln
− 1

2

∣∣∣∣ = 2(θ′′ − θ′)
(

e|ln|

1 + e|ln|
− 1

2

)
. (3)

(1): It is easily seen that E [∆n+1|Ftn ] ≤ (θ′′−θ′), so for C big enough, E[∆n+1|Ftn ] ≤ C(1+∆n).

(2): To simplify notation we introduce mn = |ln|. The process (mn)n=1,...,N is Markov. More

precisely, mn+1 = |mn+α−2(θ′′−θ′)ψn+1| is folded normal with mean of the underlying normal

distribution equal to

mn + α−2(θ′′ − θ′)E[ψn+1|ln] = |ln|+ α−2(θ′′ − θ′)∆n(tn+1 − tn)

= mn + α−2
( 2emn

1 + emn
− 1
)

(θ′′ − θ′)2(tn+1 − tn) (4)

and variance

V ar
[
mn + α−2(θ′′ − θ′)ψn+1

]
= α−4(θ′′ − θ′)2V ar [ψn+1]

= 2α−4(θ′′ − θ′)2(tn+1 − tn) .

As argued in part (2) of the uncertain difference case, a folded normal random variable in-

creases in the sense of first order stochastic dominance in the mean of the underlying normal

distribution. As (4) increases in mn it follows that mn+1 increases in mn in the sense of first

order stochastic dominance. By (3) mn = |ln| is increasing in ∆n and ∆n+1 is increasing in

mn+1 = |ln+1| this completes the argument.

(3): It remains to show that z(n,∆n) is decreasing in ∆n. As (pn)n=1,...,M is a martingale, and

14



moreover conditioning on p is equivalent to conditioning on 1− p, we have that

z(n,∆n) = E
[
∆n+1

∣∣∣ pn =
∆n

2(θ′′ − θ′)
+

1

2

]
−∆n

= 2(θ′′ − θ′)E
[
|pn+1 −

1

2
|
∣∣∣ pn =

∆n

2(θ′′ − θ′)
+

1

2

]
−∆n

= 2(θ′′ − θ′)E
[
pn+1 −

1

2

∣∣∣ pn =
∆n

2(θ′′ − θ′)
+

1

2

]
+ 2(θ”− θ′)E

[
2 max

{1

2
− pn+1, 0

} ∣∣∣ pn =
∆n

(θ′′ − θ′)
+

1

2

]
−∆n .

As p is a martingale we can replace pn+1 by pn

z(n,∆n) = 2(θ′′ − θ′)E
[
pn −

1

2

∣∣∣ pn =
∆n

2(θ′′ − θ′)
+

1

2

]
+ 2(θ′′ − θ′)E

[
2 max

{
1

2
− pn+1, 0

} ∣∣∣ pi =
∆n

2(θ′′ − θ′)
+

1

2

]
−∆n

= ∆n + 2(θ′′ − θ′))E
[
2 max

{
1

2
− pn+1, 0

} ∣∣∣ pn =
∆n

2(θ′′ − θ′)
+

1

2

]
−∆n

= 4(θ′′ − θ′)E
[
max

{
1

2
− pn+1, 0

} ∣∣∣ pn =
∆n

2(θ′′ − θ′)
+

1

2

]
.

The above term is strictly decreasing in ∆n as pn+1 increases in the sense of first order stochastic

dominance in pn and pn in the conditional expectation is increasing in ∆n.

3.5.2 Uncertain-Difference DDM

Let us further define β2
i = 2σ2

ti
− 2σ2

ti+1
. As X l

ti+1 −Xr
ti+1 is Normal distributed with variance

β2
i and mean ∆i we have that ∆i+1 is folded normal distributed with mean

Ei [∆i+1] = βi

√
2

π
e
− ∆2

i
2β2
i + ∆i(1− 2Φ(

−∆i

βi
)) ,

where Φ denotes the normal cdf. Thus, the expected change in delta is given by

z(i, y) = βi

√
2

π
e
− y2

2β2
i − 2 yΦ(

−∆i

βi
).
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(1): It is easily seen that Ei [∆i+1] ≤ βi

√
2
π

+ ∆i.

(2): As ∆i is folded normal distributed we have that

Pi(∆i+1 ≤ y) =
1

2

[
erf

(
y + ∆i

βi

)
+ erf

(
y −∆i

βi

)]
.

Taking derivatives gives that

∂

∂∆i

Pi(∆i+1 ≤ y) =
1

2

[
e
−
(
y+∆i
βi

)2

− e−
(
y−∆i
βi

)2
]

=
1

2
e
−
(
y−∆i
βi

)2 [
e
− 4∆iy

βi − 1
]
< 0 .

As ∆i = |X l
ti
−Xr

ti
| it follows that y ≥ 0 and hence, ∆i+1 is increasing in ∆i in the sense of

first order stochastic dominance.

(3): The derivative of the expected change of the process ∆ equals

∂

∂y
z(i, y) =

∂

∂y

(
βi

√
2

π
e
− y2

2β2
i − 2 yΦ

(
−∆i

βi

))
= −2Φ

(
−y
βi

)
< 0 .

Hence, z is strictly decreasing in y.

3.6 Proof of Proposition 6

Recall that the analyst observes a DDM P for some known value of δ. First, by equation (4)

in the paper we have pl(t)
pr(t)

= exp
(
δb(t)
α2

)
. Thus, b(t)

α2 is identified by

b(t)

α2
=

1

δ
log

(
pl(t)

pr(t)

)
(†)

Second, by equation (2) in the paper we have Zτ
α2 = sgn(Zτ )

b(τ)
α2 . By equation (1) in the

paper, Zτ
α2 = δ

α2 τ +
√

2
α
Bτ . Combining these two equations and taking expectations, it follows

from Doob’s optional sampling theorem that

δ

α2
E [τ ] = E

[
sgn(Zτ )

b(τ)

α2

]
(‡)
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Combining (†) and (‡) yields

α2 =
δE [τ ]

E
[
sgn(Zτ )

1
δ

log
(
pl(τ)
pr(τ)

)] =
δ2E [τ ]

E
[
sgn(Zτ ) log

(
pl(τ)
pr(τ)

)
)
] .

Note that as the agent’s decision is observable, the sign of Zτ is observable, so the right hand

side is uniquely pinned down from P . Thus we can identify α2. This immediately implies that

we can identify b(t), as

b(t) =
1

δ
log

(
pl(t)

pr(t)

)
δ2E [τ ]

E
[
sgn(Zτ ) log

(
pl(τ)
pr(τ)

)] =
δ log

(
pl(t)
pr(t)

)
E [τ ]

E
[
sgn(Zτ ) log

(
pl(τ)
pr(τ)

)] .
Proof of clause 1. Let b(t) = b̃(t; g, h) = 1

g+ht
. Suppose that b̃(t; g, h) = b̃(t; ĝ, ĥ) for all t.

Then by setting t = 0 we get g = ĝ and by setting t = 1 we get h = ĥ.

Proof of clause 2. Let b(t) = b̌(t; g, h) = g exp(−ht). Suppose that b̌(t; g, h) = b̌(t; ĝ, ĥ) for

all t. Then by setting t = 0 we get g = ĝ and by setting t = 1 we get h = ĥ.

Proof of clause 3. Let b(t) = b∗(t, c, σ0, α). Suppose that b∗(t, c, σ0, α) = b∗(t, ĉ, σ̂0, α) for all

t. Proposition 4, there exist η, η̂, T, T̂ such that

|b̄(t, c, σ0, α)− b∗(t, c, σ0, α)| ≤ η

(σ−2
0 + α−2t)5/2

for t > T and

|b̄(t, ĉ, σ̂0, α)− b∗(t, ĉ, σ̂0, α)| ≤ η̂

(σ̂−2
0 + α−2t)5/2

for t > T̂ . Thus, for t > T̄ := max{T, T̂} both of these inequalities hold, so

|b̄(t, c, σ0, α)− b̄(t, ĉ, σ̂0, α)| ≤ η

(σ−2
0 + α−2t)5/2

+
η̂

(σ̂−2
0 + α−2t)5/2

. (*)

17



Wlog, suppose that σ0 ≥ σ̂0. This implies that

η

(σ−2
0 + α−2t)5/2

+
η̂

(σ̂−2
0 + α−2t)5/2

≤ η + η̂

(σ−2
0 + α−2t)5/2

;

thus, (*) implies that

|b̄(t, c, σ0, α)− b̄(t, ĉ, σ̂0, α)| ≤ η̄

(σ−2
0 + α−2t)5/2

(**)

for all t > T̄ .

By plugging in the formulas for b̄, (**) becomes

∣∣∣∣ 1

2c(σ−2
0 + α−2t)

− 1

2ĉ(σ̂−2
0 + α−2t)

∣∣∣∣ ≤ η̄

(σ−2
0 + α−2t)5/2

for all t > T̄ . Rearranging terms yields

|ĉ(σ̂−2
0 + α−2t)− c(σ−2

0 + α−2t)|
cĉ(σ−2

0 + α−2t)(σ̂−2
0 + α−2t)

≤ 2η̄

(σ−2
0 + α−2t)5/2

.

Further rearranging yields

1

cĉ
|(ĉσ̂−2

0 − cσ−2
0 ) + α−2t(ĉ− c)| ≤ 2η̄(σ̂−2

0 + α−2t)

(σ−2
0 + α−2t)3/2

. (***)

Dividing both sides by t gives

1

cĉ

∣∣∣∣1t (ĉσ̂−2
0 − cσ−2

0 ) + α−2(ĉ− c)
∣∣∣∣ ≤ 2η̄(

σ̂−2
0

t
+ α−2)

(σ−2
0 + α−2t)3/2

.

Taking the limit t→∞, the LHS is α−2(ĉ−c)
cĉ

and the RHS is zero, which implies that ĉ = c.

Given that, (***) becomes

|σ̂−2
0 − σ−2

0 | ≤
2cη̄(σ̂−2

0 + α−2t)

(σ−2
0 + α−2t)3/2

. (***)

Taking the limit as t→∞ the RHS is zero (by de L’Hopital’s rule), which implies that σ̂0 = σ0.
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4 Numerical Methods

This section describes the details of the computation of the likelihood function. This is broken

into two steps. First, we compute the optimal boundary k∗(t, c, σ2
0, α). Second, given this

boundary we compute the decision probabilities (using equation (4) in the paper) and hitting

times (by simulation).

4.1 Computation of the optimal boundary k∗

To avoid unnecessary computations, we note that we without loss of generality we can fix

c = α = 1 and only vary σ0. The next lemma follows from Lemma 4.

Lemma O.4.

k(t, c, σ0, α) = α2/3c1/3h[(σ−2
0 + α−2t)−1/2α−2/3c−1/3],

where h(x) := k∗(0, 1, x, 1).

Proof. By Lemma 4 we have

k∗(t, c, σ0, α) = αk∗(t, α−1c, α−1σ0, 1)

= αk∗(0, α−1c, (α2σ−2
0 + t)−1/2, 1)

= αα−1/3c1/3k∗(0, 1, α1/3c−1/3(α2σ−2
0 + t)−1/2, 1)

= α2/3c1/3k∗(0, 1, α−2/3c−1/3(σ−2
0 + α−2t)−1/2, 1)

where the first equality follows from (13), the second one from (11), the third one from (12),

and the fourth one rearranges the terms.

Thus, we just need to compute the h function. To do this, we first use a time change as in

the proof of Lemma 2, part 6.

Lemma O.5.

V (t, x, 0, 1, σ0, 1) = sup
τ≥ψ(t)

E
[
max{Wτ , 0} − (q(τ)− q(ψ(t)) | Wψ(t) = x

]
, (5)
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where ψ(t) =
2σ2

0t

σ−2
0 +t

, q(s) = ψ−1(s) =
sσ−2

0

2σ2
0−s

and (Ws) = (Xq(s))s∈[0,2σ2
0 ] is a Brownian motion.

Now we consider an approximation of the original optimization problem of the agent. We

discretize both time and the posterior mean values and rely on a binomial approximation ws of

Ws. That is, ws+∆s takes values ws −∆w and ws + ∆w with equal probabilities. The discrete

time version of the optimization problem is:

v(s, w, 0, 1, σ0, 1) = max

{
max{w, 0}, 1

2
v(s+ ∆s, w + ∆w) +

1

2
v(s+ ∆s, w −∆w)− q′(s)∆s

}
(6)

The solution to (6) approaches the solution to (5) when ∆s,∆w → 0, as long as ∆s < ∆2
w.

Fix σ0 and let ǩ(s, 1, σ0, 1) for s ∈ [0, 2σ2
0] be the optimal boundary in the above transformed

problem. Then by equation (12) from Lemma 4 we have

h(x) = k∗(0, 1, x, 1) = k∗(x−2 − σ−2
0 , 1, σ0, 1) = ǩ(ψ(x−2 − σ−2

0 ), 1, σ0, 1)

= ǩ(2σ2
0 − 2x2, 1, σ0, 1)

The Matlab code solver new9.m solves for ǩ(s, 1, σ0, 1) and outputs the values of the h

function as a vector of prescribed length.

4.1.1 Robustness Checks

We implement two checks: first we verify if our solution is below the upper bound k̄. This is

indeed the case; moreover for values of σ0 lower than one, the two functions are close to each

other, so k̄ is a good approximation, see Figure 1.

Second, we verify that our solution is above the lower bound from Bather, given by his

implicit equation (6.4). Equation (6.4) of Bather gives the lower bound ρ as a solution to an

implicit equation

ct
3
2 =

(1 + ρ2)φ(ρ)− 2π−
1
2 e−

1
2
ρ2

ρ+ ψ(ρ)
ρ

where φ(s) = (2π)−
1
2

∫∞
s
e−

1
2
y2
dy and ψ(s) = se−

1
2
s2
∫ s

0
e

1
2
y2
dy.

Note that φ(s) = 1 − Φ(s), where Φ is the cdf of the standard Normal. Note also that
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Figure 1: The function ǩ computed for σ0 = 1 (blue) and the function k̄ (red).

ψ(s) = se−
1
2
s2
∫ s

0
e

1
2
y2
dy =

√
π
2
se−

1
2
s2erfi

(
s√
2

)
, where erfi is the imaginary error function. Both

of these functions are hard coded into Matlab, which makes things easier. Thus, we have

1

t
=

(1 + ρ2)(1− Φ(ρ))− 2π−
1
2 e−

1
2
ρ2

c
(
ρ+

√
π
2
e−

1
2
ρ2

erfi
(

ρ√
2

))
− 2

3

.

Bather uses a different parametrization, so we need to express his equation in terms of our

variables and solve it. We need to change variables from (t, ρ) to (s, x) in order to plot this

function against our bound. The first change of variables is: t = 1
σ2

0−0.5s
and gives us

s = 2σ2
0 − 2

(1 + ρ2)(1− Φ(ρ))− 2π−
1
2 e−

1
2
ρ2

c
(
ρ+

√
π
2
e−

1
2
ρ2

erfi
(

ρ√
2

))
− 2

3

.

The other change of variables we need to make is ρ = x
√

0.5t = x
√

1
2σ2

0−s
. This gives us:

s− 2σ2
0 + 2

(1 + x2

2σ2
0−s

)(1− Φ(x
√

1
2σ2

0−s
))− 2π−

1
2 e
− x2

4σ2
0−2s

c

(
x
√

1
2σ2

0−s
+
√

π
2
e
− 1

2
x2

2σ2
0−s erfi

(
x
√

1
4σ2

0−2s

))

− 2

3

= 0.
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Now, this relationship implicitly defines a function s 7→ x, which we need to solve for numerically

and plot against our bound, as in Figure 2.

Figure 2: The function ǩ computed for σ0 = 30 (blue) and the implicit function s 7→ x (red).

4.1.2 The function h used to compute the likelihood function

For any σ0 let hσ0(x) := k̂(2σ2
0−2x2, 1, σ0, 1), where k̂ is the boundary computed by invoking the

code solver.m with the value of σ0. Moreover, define the function h̄(x) := k̄(0, 1, x, 1) = 0.5x4.

We compute the function h by setting h(x) = h̄(x) if x ∈ [0, .469), h(x) = h1(x) if x ∈ [.469, 1),

h(x) = h2(x) if x ∈ [1, 2), h(x) = h5(x) if x ∈ [2, 5), h(x) = h10(x) if x ∈ [5, 10), h(x) =

h30(x) if x ∈ [10, 30), h(x) = h60(x) if x ∈ [30, 60), h(x) = h100(x) if x ∈ [60, 100), h(x) =

h136(x) if x ∈ [100, 136), h(x) = h280(x) if x ∈ [136, 280). This is done by the Mathematica code

patching.nb, see the README file.2 The graphs generated by the file patching-graphs.nb

show that the consecutive hσ0 functions lie pretty much on top of each other in the specified

ranges, which provides the justification for choosing the particular cutoffs used in the above

definition.

2We redefined the values manually at a couple of points to preserve monotnoncity, see the file patching.nb.
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4.2 Computation of the likelihood function

We compute the choice probabilities, plt, p
l
t, in closed form using equation (4) from our paper.

We then run Monte Carlo simulations to compute the distribution of hitting times F . More

precisely, we discretized at the level of decisecond (100 milliseconds). For every combination of

parameters we drew 1 million random paths of the discretized Brownian motion (Bt) and for

each time compute the first time Zt exceeds the barrier b∗ and the agent stops. From this we

obtain a discrete distribution over the times at which the agent stops.

Given plt, p
l
t, F we can compute the likelihood the DDM model assigns to an observation by

multiplying the probability of the observed stopping time with the probability of the observed

choice conditional on the stopping time.

5 Individual Level Results

5.1 Individual Level Analysis of the Slope of the Boundary

Table 1 lists the parameters (α∗, g∗, h∗) estimated for the unrestricted model b̃(t, g, h) = 1
g+ht

and

the parameters (α†, g†) estimated for the restricted model with h = 0. To test the hypothesis

H0 : (h = 0) versus H1 : (h > 0), we compute the statistic η = −2(O† − O∗), where O†

and O∗ are the objective empirical log-likelihoods of the restricted and unrestricted estimation.

According to Wilk’s Theorem, η ∼ χ2(1) is a chi-squared distributed variable with one degree

of freedom. We omit p-values lower than 0.0002.

Table 2 does the same for the model b̌(t, g, h) = g exp(−ht). In both cases, we used the

gradient ascent method. There are some entries in those tables in which the difference between

the objective values of the restricted and unrestricted models is reported as ”-0.0”. These

correspond to cases where the gradient ascent for the restricted model found a point with

larger log-likelihood than the unrestricted model.

Table 3 lists the log likelihoods of both models. Both were fit using the gradient ascent

method.
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5.2 Individual Level Analysis using the Exact Boundary

Table 4 lists the individual level estimates using a numerically computed b∗ function. The

95% confidence intervals are bootstrapped. Table 3 lists the log likelihoods for the optimal

boundary. We used the grid search method to estimate this model and for this reason they

are not directly comparable to the likelihoods of the approximate and exponential boundaries,

which were computed using gradient ascent.
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Subject ID α∗ g∗ h∗ Wilk’s Stat p-value
α† g† η Pr(χ2(1) ≥ η)

10 1.7 0.046 0.01297 32.0
num. obs: 91 3.2 0.148
11 13.6 0.011 0.00216 54.9
num. obs: 99 8.7 0.059
13 4.7 0.053 0.00043 5.2 0.0224
num. obs: 100 3.8 0.080
14 12.7 0.001 0.00253 101.3
num. obs: 88 8.1 0.064
16 12.4 0.018 0.00174 38.0
num. obs: 100 8.0 0.067
17 4.5 0.002 0.01227 116.8
num. obs: 100 3.5 0.165
18 4.8 0.060 0.00058 10.6 0.0011
num. obs: 100 3.9 0.089
19 12.6 0.001 0.00267 115.5
num. obs: 100 9.5 0.056
20 4.6 0.000 0.01021 98.5
num. obs: 100 3.2 0.172
22 13.3 0.003 0.00222 57.1
num. obs: 100 7.3 0.066
23 1.8 0.175 0.00014 1.6 0.2105
num. obs: 99 1.8 0.175
25 4.7 0.070 0.00037 124.4
num. obs: 99 3.6 0.060
26 1.6 0.196 0.00048 14.4
num. obs: 73 3.2 0.143
27 35.0 0.009 0.00012 10.8 0.0010
num. obs: 100 6.2 0.064
28 98.2 0.000 0.00042 79.5
num. obs: 97 8.0 0.070
29 4.8 0.059 0.00018 5.8 0.0161
num. obs: 100 9.0 0.037
30 4.7 0.002 0.00219 65.2
num. obs: 100 3.7 0.071
31 3.8 0.094 0.00010 −0.0 1.0000
num. obs: 99 3.8 0.094
32 36.2 0.007 0.00027 27.8
num. obs: 99 6.1 0.063

Table 1: Estimated values for the asymptotic boundary - part 1
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Subject ID α∗ g∗ h∗ Wilk’s Stat p-value
α† g† η Pr(χ2(1) ≥ η)

33 36.1 0.010 0.00045 12.3 0.0005
num. obs: 49 10.7 0.054
34 2.0 0.000 0.00743 90.6
num. obs: 100 1.6 0.143
35 4.6 0.000 0.00935 95.7
num. obs: 100 3.2 0.160
38 4.6 0.000 0.01265 118.1
num. obs: 100 3.3 0.180
39 13.4 0.000 0.00232 116.0
num. obs: 100 8.8 0.057
40 79.8 0.000 0.00053 113.0
num. obs: 100 10.6 0.052
41 4.7 0.060 0.00228 21.5
num. obs: 100 7.3 0.066
42 1.6 0.000 0.03928 103.1
num. obs: 100 1.3 0.347
44 36.8 0.002 0.00050 60.7
num. obs: 100 8.0 0.058
45 2.0 0.137 0.00006 −0.0 1.0000
num. obs: 100 2.0 0.137
46 4.5 0.047 0.00256 40.7
num. obs: 98 8.4 0.054
47 1.9 0.148 0.00511 47.5
num. obs: 100 3.2 0.148
48 4.7 0.045 0.00232 38.0
num. obs: 100 7.2 0.061
49 4.6 0.000 0.01113 115.9
num. obs: 100 3.5 0.160
51 12.5 0.002 0.00235 92.7
num. obs: 100 9.2 0.054
52 35.9 0.000 0.00197 97.5
num. obs: 100 3.4 0.195
53 14.6 0.010 0.00266 61.1
num. obs: 100 3.5 0.147
54 14.6 0.002 0.00259 82.8
num. obs: 100 7.7 0.069
55 4.4 0.051 0.00159 29.2
num. obs: 100 7.3 0.055
56 4.7 0.047 0.00289 44.4
num. obs: 100 7.6 0.064

Table 1: Estimated values for the asymptotic boundary - part 2
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Subject ID α∗ g∗ h∗ Wilk’s Stat p-value
α† g† η Pr(χ2(1) ≥ η)

10 1.7 4.842 0.00223 11.7 0.0006
num. obs: 91 3.2 6.755
11 4.8 16.370 0.33950 33.2
num. obs: 99 8.7 16.833
13 4.6 17.481 0.05060 5.3 0.0212
num. obs: 100 3.8 12.572
14 4.6 27.651 0.62590 101.4
num. obs: 88 8.1 15.649
16 4.7 13.643 0.26032 30.8
num. obs: 100 8.0 14.981
17 1.8 6.605 0.60431 82.9
num. obs: 100 3.5 6.048
18 4.5 14.667 0.05160 8.5 0.0035
num. obs: 100 3.9 11.226
19 4.5 29.620 0.72042 124.7
num. obs: 100 9.5 17.819
20 1.5 7.133 0.49684 83.1
num. obs: 100 3.2 5.803
22 4.5 18.921 0.38403 64.1
num. obs: 100 7.3 15.252
23 1.7 5.577 0.01864 3.3 0.0692
num. obs: 99 1.8 5.700
25 4.6 13.853 0.04496 123.6
num. obs: 99 3.6 16.681
26 1.5 4.655 0.00046 11.2 0.0008
num. obs: 73 3.2 7.004
27 5.0 15.008 0.05665 10.6 0.0011
num. obs: 100 6.2 15.512
28 4.6 17.427 0.47503 62.7
num. obs: 97 8.0 14.380
29 9.0 0.037 0.04543 −0.0 1.0000
num. obs: 100 9.0 26.785
30 22.3 132.591 0.23887 48.5
num. obs: 100 3.7 14.016
31 3.8 0.094 0.04666 −0.0 1.0000
num. obs: 99 3.8 10.629
32 4.6 14.060 0.05921 20.3
num. obs: 99 6.1 15.908

Table 2: Estimated values for the exponential boundary - part 1
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Subject ID α∗ g∗ h∗ Wilk’s Stat p-value
α† g† η Pr(χ2(1) ≥ η)

33 4.6 11.685 0.21512 11.2 0.0008
num. obs: 49 10.7 18.356
34 4.3 30.101 0.48226 69.4
num. obs: 100 1.6 7.006
35 1.9 5.033 0.05710 18.6
num. obs: 100 3.2 6.243
38 4.5 39.707 1.55251 149.9
num. obs: 100 3.3 5.546
39 4.6 31.002 0.65071 117.2
num. obs: 100 8.8 17.528
40 1.6 5.006 0.00046 21.4
num. obs: 100 10.6 19.402
41 4.7 14.995 0.23324 2.9 0.0895
num. obs: 100 7.3 15.101
42 4.6 24.848 1.51480 93.7
num. obs: 100 1.3 2.882
44 4.5 18.224 0.23016 45.0
num. obs: 100 8.0 17.353
45 2.0 0.137 0.05375 −0.0 1.0000
num. obs: 100 2.0 7.291
46 4.5 15.503 0.19851 35.2
num. obs: 98 8.4 18.422
47 4.6 14.300 0.33069 35.0
num. obs: 100 3.2 6.757
48 4.6 15.625 0.17315 31.4
num. obs: 100 7.2 16.324
49 4.5 34.380 1.25724 129.8
num. obs: 100 3.5 6.238
51 4.6 23.833 0.51900 87.6
num. obs: 100 9.2 18.577
52 21.4 96.043 1.05631 84.9
num. obs: 100 3.4 5.136
53 4.6 12.740 0.30209 37.2
num. obs: 100 3.5 6.818
54 4.7 16.586 0.34248 53.9
num. obs: 100 7.7 14.568
55 4.7 13.572 0.05377 18.9
num. obs: 100 7.3 18.178
56 4.6 15.662 0.23117 38.0
num. obs: 100 7.6 15.704

Table 2: Estimated values for the exponential boundary - part 2
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Subject ID O∗asym O∗exp O∗opt

10 −309.8423 −319.9846 −310.969
11 −331.1384 −342.0040 −254.803
13 −454.3407 −454.2937 −451.762
14 −276.5247 −276.4654 −307.022
16 −345.0759 −348.6462 −347.601
17 −276.0078 −292.9507 −309.468
18 −416.0104 −417.0699 −414.433
19 −310.0567 −305.4688 −344.884
20 −291.5485 −299.2674 −318.67
22 −351.0997 −347.6186 −360.005
23 −382.9425 −382.0749 −377.709
25 −423.7458 −424.1767 −415.441
26 −253.3470 −254.9518 −247.451
27 −420.2934 −420.3970 −417.718
28 −306.9961 −315.3583 −326.716
29 −450.1698 −453.0670 −447.866
30 −399.7588 −408.0832 −349.164
31 −411.3307 −411.3307 −403.622
32 −381.6903 −385.4122 −307.389
33 −165.9013 −166.4507 −149.061
34 −330.1436 −340.7326 −365.663
35 −292.3161 −330.8427 −320.064
38 −267.8982 −252.0136 −303.2
39 −318.1265 −317.4799 −354.198
40 −298.4855 −344.2907 −329.924
41 −371.1066 −380.4350 −369.735
42 −247.0126 −251.7067 −278.896
44 −367.3603 −375.1763 −381.01
45 −414.8559 −414.8559 −408.797
46 −367.4805 −370.2244 −370.454
47 −335.9341 −342.1610 −342.249
48 −383.0223 −386.3268 −385.92
49 −277.0366 −270.0774 −312.498
51 −333.0213 −335.5746 −358.194
52 −274.2847 −280.5827 −299.424
53 −317.7696 −329.7346 −331.691
54 −314.3696 −328.8399 −222.119
55 −397.8434 −402.9856 −395.557
56 −369.5025 −372.6943 −376.387

Table 3: Log likelihoods for the asymptotic and exponential models (using gradient ascent
method, columns 1 and 2) and for the optimal estimated boundary (using grid search method,
column 3).
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Subject ID α σ c
10 1.8 1.3 0.05
num. obs: 91 (1.6, 2.4) (0.5, 1.8) (0.02, 0.08)
11 5.2 4.8 0.37
num. obs: 76 (4, 6) (3.1, 8) (0.22, 0.6)
13 2.8 1.1 0.02
num. obs: 100 (2.4, 6) (0.6, 2.5) (0.01, 0.06)
14 5 4.7 0.3
num. obs: 88 (2.6, 6) (2.3, 6.8) (0.12, 0.39)
16 2.8 1.4 0.08
num. obs: 100 (2, 4.8) (1.1, 4) (0.05, 0.27)
17 5.6 8.1 0.77
num. obs: 100 (4.8, 6) (4.2, 9.9) (0.43, 0.89)
18 3.8 1.6 0.05
num. obs: 100 (2.4, 5.4) (0.7, 2.7) (0.02, 0.09)
19 4.4 4.3 0.27
num. obs: 100 (2.8, 6) (1.9, 7.1) (0.1, 0.43)
20 2 1.8 0.1
num. obs: 100 (1.4, 5.4) (0.7, 8.3) (0.03, 0.59)
22 3 2.3 0.1
num. obs: 100 (2.2, 5.4) (1.3, 4.9) (0.05, 0.27)
23 2 0.6 0.02
num. obs: 99 (1.4, 2.6) (0.4, 2.8) (0.01, 0.05)
25 4 0.5 0.01
num. obs: 99 (1.8, 6) (0.4, 1.1) (0.01, 0.03)
26 1.8 1.1 0.04
num. obs: 73 (1.4, 2.2) (0.7, 1.1) (0.02, 0.05)
27 5.6 2.5 0.1
num. obs: 100 (3, 6) (1.6, 6) (0.05, 0.15)
28 5.4 6.6 0.43
num. obs: 97 (3, 6) (2.4, 7.5) (0.15, 0.5)
29 3.8 0.9 0.02
num. obs: 100 (3.6, 6) (0.6, 2.7) (0.01, 0.05)
30 3.8 1.3 0.03
num. obs: 82 (2.6, 6) (1.2, 3.2) (0.02, 0.09)
31 2 1.4 0.02
num. obs: 99 (1.2, 2.2) (0.4, 2.3) (0.01, 0.02)
32 5 3.1 0.11
num. obs: 78 (2, 6) (1, 6.2) (0.02, 0.25)

Table 4: Estimated values for the exact boundary - part 1. The numbers in intervals are
bootstrapped 95% confidence intervals.
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Subject ID α σ c
33 3.4 2.6 0.14
num. obs: 44 (1.6, 5.8) (1, 6.7) (0.03, 0.52)
34 2.2 1 0.03
num. obs: 100 (1.6, 2.2) (0.5, 1) (0.01, 0.03)
35 2.2 1.7 0.09
num. obs: 100 (1.8, 4.4) (1.4, 4.5) (0.06, 0.41)
38 3.2 4.3 0.39
num. obs: 100 (1.6, 6) (1.1, 9.6) (0.07, 0.94)
39 5.8 5.8 0.32
num. obs: 100 (4.2, 6) (3.8, 8.1) (0.21, 0.41)
40 2.2 1.7 0.08
num. obs: 100 (1.8, 6) (0.9, 6.6) (0.03, 0.52)
41 3.4 1.5 0.07
num. obs: 100 (2.2, 5.4) (0.6, 3.6) (0.02, 0.21)
42 1.2 1.1 0.06
num. obs: 100 (1.2, 4.6) (0.9, 6.6) (0.06, 0.89)
44 5.4 3.8 0.19
num. obs: 100 (2, 6) (0.6, 4.5) (0.02, 0.24)
45 2 1.8 0.02
num. obs: 100 (1.6, 3) (0.5, 1.9) (0.01, 0.04)
46 3 2.1 0.08
num. obs: 98 (1.8, 5) (1.2, 2.7) (0.03, 0.13)
47 2 1 0.06
num. obs: 100 (1.4, 3) (0.8, 2.7) (0.04, 0.16)
48 3 2.1 0.08
num. obs: 100 (1.4, 3.8) (0.6, 2.5) (0.02, 0.12)
49 4.4 4.5 0.41
num. obs: 100 (1.4, 6) (0.7, 9.5) (0.03, 0.86)
51 6 5.5 0.32
num. obs: 100 (1.6, 6) (0.7, 5.5) (0.03, 0.32)
52 5.6 8.5 0.88
num. obs: 100 (1.6, 6) (1.7, 8.5) (0.11, 0.89)
53 5.8 5.1 0.44
num. obs: 100 (3, 6) (2.6, 8.4) (0.2, 0.68)
54 5.8 5.7 0.47
num. obs: 66 (3.2, 5.8) (1.5, 7) (0.09, 0.53)
55 2.4 1.1 0.03
num. obs: 100 (1.8, 3.4) (0.5, 2.3) (0.01, 0.06)
56 3.6 2.4 0.13
num. obs: 100 (1.6, 6) (0.04, 0.27) (0.8, 4.7)

Table 4: Estimated values for the exact boundary - part 2. The numbers in intervals are
bootstrapped 95% confidence intervals.
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Subject ID Correct Incorrect t-statistic p-value
10 17.79 16.67 0.46
11 16.38 17.69 −0.58
13 45.30 41.81 0.44
14 18.77 18.96 −0.17
16 17.06 18.41 −0.64
17 12.46 13.51 −1.38
18 30.37 41.37 −2.37 0.0237
19 17.86 18.77 −0.75
20 14.15 13.79 0.22
22 18.21 30.40 −4.75 0.0001
23 22.45 39.02 −1.84 0.0871
25 30.37 42.18 −1.28
26 14.69 29.86 −2.84 0.0132
27 32.10 31.40 0.17
28 16.24 15.08 0.75
29 39.76 60.30 −1.77 0.0990
30 36.79 43.22 −1.41
31 30.50 47.38 −2.02 0.0590
32 24.01 36.00 −2.73 0.0147
33 15.49 13.39 0.86
34 22.92 30.27 −2.78 0.0191
35 14.22 15.08 −0.61
38 11.70 14.69 −3.11 0.0058
39 18.69 22.10 −2.25 0.0312
40 15.15 18.19 −1.99 0.0573
41 18.71 28.72 −2.07 0.0522
42 9.57 9.58 −0.02
44 25.13 23.18 0.84
45 29.40 46.33 −2.10 0.0481
46 23.56 24.88 −0.24
47 16.56 20.58 −1.74 0.0915
48 24.84 30.00 −1.30
49 12.81 14.51 −1.44
51 19.00 25.81 −2.92 0.0084
52 10.44 15.10 −3.09 0.0058
53 14.10 18.83 −1.94 0.0665
54 14.58 20.53 −3.08 0.0043
55 27.02 36.81 −1.60
56 21.47 27.44 −2.05 0.0488

Table 5: Mean response times (0.1s) for correct and incorrect decisions. The third and fourth
columns test the null that the mean decision time for correct and incorrect are equal, using the
two-sample Welch t-test. p-values that exceeds 10% are left out.
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Figure 3: Estimated optimal boundaries for different subjects. Blue dots are correct decisions,
red dots are incorrect ones.
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