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Additional Tables and Figures

Figure A1. : Judge Leniency versus Number of Cases Handled
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Notes: The figure plots judge allowance rate against the total number of cases handled by each

judge. There are 75 unique judges, and on average, each judge has handled a total of 325 cases.

Allowance rates are normalized by subtracting off year × department deviations from the overall

mean. Cases are restricted to claimants appealing their first denied case during the period 1994-

2005. Dot size is proportional to the number of cases a judge handles in the estimation sample

(which is weakly smaller than the number of cases they have ever handled, as plotted on the

x-axis).



Figure A2. : DI Awards and DI Exits in Norway and the U.S.
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Notes: The U.S. trends are based on Autor and Duggan (2006), while the Norwegian trends

are collected from various issues of the SSA Supplement. The graphs show award rates in the

insured population and exit rates from the DI program in both countries.

Figure A3. : DI Exits by Reason in Norway and the United States
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Notes: The U.S. trends are based on Autor and Duggan (2006), while the Norwegian trends

are collected from various issues of the SSA Supplement. The graphs show exit rates because of

death, retirement or other reasons (including eligibility-based exits).



Figure A4. : Potential Outcomes: Labor Earnings and DI benefits
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Notes: These figures display the decomposition of our LATE estimates into potential outcomes

for allowed and denied complier appellants (see Dahl, Kostøl and Mogstad 2014 for details).

Figure A5. : Potential Outcomes: Benefit Substitution
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Notes: These figures display the decomposition of our LATE estimates into potential outcomes

for allowed and denied complier appellants (see Dahl, Kostøl and Mogstad 2014 for details).



Figure A6. : Potential Outcomes: Married appellants and Spouses
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Notes: These figures display the decomposition of our LATE estimates into potential outcomes

for allowed and denied complier appellants (see Dahl, Kostøl and Mogstad (2014) for details).



Table A1—: Characteristics of DI recipients in Norway and the U.S.

Norway U.S.
Characteristic DI Recipients SSDI Recipients

Difficult to verify disorder (percent) 59.2 57.3
Age (at decision on initial application) 52.2 49.1
Prior earnings relative to the median (percent) 71.0 69.9

Notes: The U.S. numbers are from Maestas, Mullen and Strand (2013), and the Norwegian

numbers are drawn from the sample of DI applicants during the years 2000-2003. Difficult to

verify disorders include musculoskeletal and mental diagnoses. Prior earnings are measured in

years three through five prior to application or appeal.

Table A2—: Characteristics of DI Applicants and Appellants in Norway
and the U.S.

Norway U.S.

Characteristic Applicants Appellants Applicants Appellants

Difficult to verify disorder (percent) 60.9 69.7 58.5 62.2

Age (at decision on initial application) 51.1 47.1 47.1 46.1

Prior earnings relative to the median (percent) 66.5 50.4 60.5 56.3

Notes: This table reports the key characteristics of DI applicants and appellants discussed in

Section I. The U.S. numbers are from Maestas, Mullen and Strand (2013), and the Norwegian

numbers are drawn from the sample of DI applicants during the years 2000-2003. Difficult to

verify disorder comprise musculoskeletal and mental diagnoses. Prior earnings are measured

during years three through five prior to application or appeal.



Table A3—: Sub-Sample First Stage Estimates

Baseline instrument Reverse-sample instrument

(1) (2)

Dependent variable Pr(Allow) Pr(Allow)

Younger appellants (age≤ 48) 0.777 Dep. mean: 0.093 0.613 Dep. mean: 0.093

(0.077) N: 7,458 (.082) N: 7,392

Older appellants (age >48) 0.838 Dep. mean: 0.165 0.838 Dep. mean: 0.165

(0.106) N: 6,634 (.124) N: 6,563

Small households (N ≤ 3) 0.921 Dep. mean: 0.140 0.710 Dep. mean: 0.139

(0.091) N: 9,532 (.168) N: 9,329

Large households (N > 3) 0.589 Dep. mean: 0.100 0.474 Dep. mean: 0.099

(0.097) N: 4,560 (.090) N: 4,522

Female appellants 0.837 Dep. mean: 0.134 0.606 Dep. mean: 0.133

(0.083) N: 8,851 (.078) N: 8,700

Male appellants 0.774 Dep. mean: 0.115 0.668 Dep. mean: 0.115

(0.115) N: 5,241 (.139) N: 5,184

Married appellants 0.830 Dep. mean: 0.133 0.666 Dep. mean: 0.133

(.095) N: 8,061 (.096) N: 7,950

Unmarried and single appellants 0.775 Dep. mean: 0.119 0.685 Dep. mean: 0.118

(0.097) N: 6,031 (.091) N: 5,978

Foreign born 0.425 Dep. mean: 0.091 0.373 Dep. mean: 0.090

(.155) N: 2,534 (.141) N: 2,509

Less than high school degree 0.899 Dep. mean: 0.116 0.778 Dep. mean: 0.116

(0.089) N: 7,097 (.115) N: 7,044

At least a high school degree 0.725 Dep. mean: 0.139 0.547 Dep. mean: 0.137

(.092) N: 6,995 (.100) N: 6,897

At least one child below age 18 0.727 Dep. mean: 0.102 0.495 Dep. mean: 0.101

(0.062) N: 8,140 (.079) N: 8,029

No children below age 18 0.927 Dep. mean: 0.162 0.976 Dep. mean: 0.161

(0.105) N: 5,952 (.127) N: 5,888

Musculoskeletal disorders 0.823 Dep. mean: 0.118 0.732 Dep. mean: 0.118

(0.112) N: 6,149 (.119) N: 6,102

Mental disorders 0.810 Dep. mean: 0.134 0.605 Dep. mean: 0.133

(0.120) N: 3,666 (.125) N: 3,624

Circulatory system 0.754 Dep. mean: 0.150 0.829 Dep. mean: 0.150

(0.367) N: 512 (.347) N: 510

Standard errors (in parentheses) are clustered at the judge level.

Notes: This table reports heterogeneity in first stage estimates using the baseline instrument (1)

and the reverse-sample instrument (2). The first stage specification in (1) corresponds to panel

B in Table 3. The reverse-sample instrument (2) is constructed by calculating judge leniency

using all cases except for those in the specified subsample (e.g., judge leniency for the subsample

of older applicants is constructed using judges’ decisions for younger applicants). We exclude

appellants whose judges handled fewer than ten cases in the reverse sample.



Table A4—: Effect of DI Allowance on Earnings and Transfer Payments
Among Married and Unmarried

Years after decision

1 2 3 4

Panel A. Married appellant labor earnings ($1,000)

Allowed DI -5.042 -0.444 -4.426 -3.912

(3.461) (4.068) (3.993) (3.625)

Dependent mean 14.991 14.784 14.168 13.535

Panel B. Married appellant total transfers ($1,000)

Allowed DI 9.110 6.499 5.008 5.395

(4.000) (4.423) (3.703) (3.628)

Dependent mean 16.621 17.356 17.919 18.508

Observations 7,844 7,740 7,648 7,548

Panel C. Unmarried appellant labor earnings ($1,000)

Allowed DI -5.099 -10.939 -4.589 -6.475

(7.402) (6.932) (7.018) (5.686)

Dependent mean 13.279 13.646 13.34 12.883

Panel D. Unmarried appellant total transfers ($1,000)

Allowed DI 15.811 14.466 17.152 10.714

(5.054) (4.131) (4.497) (4.084)

Dependent mean 23.336 23.518 23.848 24.224

Observations 6,128 6,102 6,061 6,059

Standard errors (in parentheses) are clustered at the judge level.

Notes: This table reports the impact of DI allowance on earnings and total transfers among

married (panel A and B) and unmarried appellants (panel C and D). Baseline estimation sample

consists of unmarried DI applicants who appeal an initially denied DI claim during the period

1994-2005 (see Section II for further details). There are 75 unique judges. All regressions include

fully interacted year and department dummies, dummy variables for month of appeal, county

of residence, age at appeal, household size, gender, foreign born, marital status, children below

age 18, education, and number of medical diagnoses. All control variables are measured prior to

appeal.



Table A5—: Specification Checks

Dependent variable Died or Change in marital status In restricted

migrated Overall Initially Unmarried InitiallyMarried sample

Judge leniency 0.017 -0.045 -0.023 -0.030 -0.015

(0.048) (0.058) (0.074) (0.071) (0.020)

Dependent mean 0.092 0.141 0.166 0.109 0.981

Observations 14,359 14,092 6,031 8,061 14,092

Standard errors (in parentheses) are clustered at the judge level.

Notes: This table reports the impact of judge leniency on the probability of death or migration,

the probability of a change in marital status, or membership in the restricted sample. Baseline

estimation sample consists of individuals who appeal an initially denied DI claim during the

period 1994-2005 (see Section II for further details). The second to fourth columns exclude

those who die or migrate during the year of the appeal. The second column tests whether DI

allowance affects the likelihood of a change in marital status (married to non-married or vice

versa) for the baseline sample, and the third and fourth columns test whether DI allowance

affected marriage entry and exit rates respectively. There are 75 unique judges. All regressions

mirror the reduced form specification of Table 4.



Table A6—: Effect of DI Allowance on Types of Transfer Payments of
the Appellant

Years after decision

1 2 3 4 Average

Panel A. DI benefits ($1,000)

Allowed DI 16.240 12.596 10.203 8.167 11.883

(1.539) (1.696) (1.660) (1.567) (1.316)

Dependent mean 5.708 8.377 10.277 11.502 8.921

Panel B. Total transfers ($1,000)

Allowed DI 10.188 8.807 8.148 6.429 8.072

(2.736) (2.749) (2.433) (2.683) (2.499)

Dependent mean 19.567 20.072 20.54 21.053 20.305

Panel C. Non-DI transfers ($1,000)

Allowed DI -6.308 -3.744 -1.884 -1.611 -3.823

(3.273) (2.656) (2.062) (2.525) (2.298)

Dependent mean 14.009 11.839 10.398 9.666 11.521

Panel D. Social assistance ($1,000)

Allowed DI -1.524 -1.169 -1.315 -0.395 -0.964

(1.123) (1.031) (0.783) (0.677) (0.778)

Dependent mean 2.852 2.182 1.78 1.464 2.103

Observations 13,972 13,842 13,709 13,607 13,972

Standard errors (in parentheses) are clustered at the judge level.

Notes: This table reports instrumental variables estimates of the causal effect of receiving a DI

allowance at the appeal stage on DI participation (panel A), annual DI benefits (panel B), and

annual labor earnings (panel C), annual total transfers inclusive of DI benefits (panel D), and

annual transfers excluding DI benefits (panel E). Columns 1-4 report separate estimates for each

year, whereas column 5 reports estimates for the average outcome over the four year period.

The baseline sample consists of individuals who appeal an initially denied DI claim during the

period 1994-2005 (see Section II for further details). There are 75 unique judges. All regressions

include fully interacted year and department dummies, dummy variables for month of appeal,

county of residence, age at appeal, household size, gender, foreign born, marital status, children

below age 18, education, and a number of medical diagnoses. All control variables are measured

prior to appeal.



Figure A7. : Local Identification of Disutility Parameters
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(c) Married: Labor disutility, mid-severity
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(d) Unmarried: Labor disutility, mid-
severity
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(e) Married: Labor disutility, high-severity
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(f) Unmarried: Labor disutility, high-
severity
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(g) Married: Reapplication disutility
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Notes: These figures illustrate local identification of the six labor disutility param-
eters for appellants and two disutility parameters associated with reapplication.
In each figure, the x-axis is the parameter representing the disutility. The y-axis
is the corresponding moment, which is the average labor supply rate by sever-
ity type for labor disutility parameters and the average reapplication rate for
reapplication disutility parameters. The solid line indicates the observed value in
the data, while the dashed line indicates the value simulated from the estimated
model, holding all other parameters fixed to their estimated values. The disutility
is pinned down as the point on the x-axis that corresponds to the crossing of the
solid and dashed lines.



Figure A8. : Distribution of Standardized Deviations from Targeted Mo-
ments
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Notes: This figure displays the distribution of standardized deviations of each simulated moment

from its corresponding observed moment for the full set of targeted moments in the method of

simulated moments model estimation.



Table A7—: Model Parameters: Log Earnings Regressions

Main Estimation Robustness to Control Function

Single and Single and

Married Unmarried Married Unmarried

Appellant Spouse Appellant Appellant Spouse Appellant

Mid-severity of Disability -0.015 -0.000 -0.021 -0.012 0.002 -0.021

(0.008) (0.005) (0.002) (0.011) (0.006) (0.005)

High-severity of Disability -0.031 -0.032 -0.041 -0.045 -0.033 -0.027

(0.008) (0.005) (0.002) (0.012) (0.006) (0.010)

High School 0.096 0.072 0.145 0.180 0.086 0.100

(0.007) (0.005) (0.002) (0.040) (0.008) (0.030)

Some College 0.249 0.144 0.251 0.399 0.167 0.178

(0.010) (0.007) (0.002) (0.071) (0.013) (0.048)

Old Age -0.064 -0.066 0.117 -0.193 -0.105 0.176

(0.007) (0.005) (0.002) (0.061) (0.019) (0.038)

Pre-App. Earnings 0.847 0.947 1.003 0.991 0.993 0.934

(0.014) (0.009) (0.003) (0.069) (0.023) (0.046)

Pre-App. Earnings, Squared 0.112 0.056 -0.017 -0.202 0.045 0.027

(0.018) (0.009) (0.004) (0.147) (0.011) (0.030)

Pre-App. Earnings, Cubed 0.016 0.068 -0.029 0.046 0.085 -0.004

(0.029) (0.013) (0.006) (0.038) (0.015) (0.023)

Constant 10.133 10.773 10.186 9.790 10.731 10.375

(0.009) (0.006) (0.002) (0.158) (0.020) (0.122)

Inverse Mills 0.547 0.152 -0.161

(0.251) (0.069) (0.303)

Notes: This table presents estimated parameters from the post-application log earnings regres-

sion described in the text. “Pre-app. Earnings” refers to the average earnings constructed by

forming the individual-specific average log earnings over the 10 years prior to application and

residualizing on the other pre-application covariates.



Table A8—: Model Parameters: Calibrations and Labor Disutility Esti-
mates

Single and

Married Unmarried

Panel A. Externally set parameters

Interest rate: 0.016 0.016

Discount rate: 0.976 0.976

Coefficient of relative risk aversion: 1.5 1.5

Panel B. Estimated disutility parameters

Labor Disutility

Low-severity: 0.702 0.485

(0.014) (0.010)

Mid-severity: 0.781 0.877

(0.033) (0.011)

High-severity: 0.829 1.076

(0.007) (0.013)

Spouse: 0.792

(0.008)

Reapplication Disutility: 1.392 2.612

(0.008) (0.020)

Notes: This table summarizes the calibrated model parameters described in the text as well

as the estimated model parameters representing disutility. Inference is based on reestimating

the model on 20 block bootstrap replicates of the data (where the block corresponds to the

individual).



Table A9—: Simulated Labor Supply Elasticities

Main Estimation Robustness to Control Function

Own-wage Cross-wage Own-wage Cross-wage

Single Appellant: 0.201 0.184

Married Appellant: 0.349 -0.331 0.324 -0.299

Spouse: 0.358 -0.345 0.309 -0.319

Notes: This table compares labor supply elasticities for married households and single and

unmarried households by severity of disability. Because few appellants allowed DI are working,

we consider in the immediately following year the subsample initially denied DI. These are

Marshallian elasticities, that is, labor supply responses to permanent wage shocks. We compute

the elasticity using the finite-difference evaluated at a one standard deviation permanent shock

to the log wage.



Table A10—: Robustness of Willingness to Pay

Married Single and Unmarried

Control function: Test of equality: Control function: Test of equality:

With Without P-value With Without P-value

Panel A. Baseline: Average Willingness to Pay

Average 2.327 2.300 0.750 10.816 11.316 0.999

Panel B. Counterfactuals: Average Willingness to Pay

Constraining Spousal Labor Supply: 10.036 9.852 0.100

No Initial Savings Available: 3.349 3.319 0.750 13.247 13.740 0.999

No Reapplication Available: 15.589 15.506 0.200 19.085 19.490 0.999

Notes: This table shows estimates of the average welfare benefit ($1,000, per household member,

annuitized over the four years after initial DI allowance) of DI allowance at appeal for married

households and single and unmarried households. In the rows titled “Unconstrained”, we use the

estimated model to compute the welfare benefit of DI receipt. In the row titled, “Constrained

spousal labor,” we compute the willingness to pay for DI receipt while constraining the spousal

labor supply to the observed labor supply during the year before DI allowance is announced.

In the rows titled “No reapplication,” we compute the willingness to pay for DI receipt while

constraining denied appellants from reapplying for benefits by setting the probability of transi-

tioning into DI equal to zero. The hypotheses tests correspond to testing equality in the average

willingness with and without correcting for selectivity bias in the estimation of the earnings

processes. P-values are based on reestimating the model on 20 block bootstrap replicates of the

data (where the block corresponds to the individual).



Estimation and Computation Details

B1. Solving the Model, given a Discrete State Space

Here, we detail the algorithm used to compute the value function at each time
period for each type of household, given a discrete state space. In particular,
we present the algorithm for value functions after retirement (both single and
married households), before retirement with DI (for single households only), and
before retirement without DI (for single households only). The algorithms before
retirement for married households are identical to those for single households,
except that there is an additional choice (spousal labor supply) and an additional
source of uncertainty that must be integrated out (spousal wage shocks), so we
omit the algorithms for married households for brevity. The algorithms rely on a
discretized state space in the continuous state variables, savings St and log wages
logWt; denote the associated grids by S for savings and W for log wages.

Solution Algorithm after Retirement

We begin the solution method by solving for the value function at the years dur-
ing retirement, which is simpler than the working age model because it does not
involve labor supply (and the associated wage uncertain) or disability insurance
(and the associated reapplication process).

1) Year of death (t = T + 10, where T is retirement year). In the final year
of life, the household optimally consumes all remaining savings ST+10 plus
retirement benefits b, so consumption is optimally given by CT+10 = ST+10+
b. The value function is then VM,T+10 (ST+10) = 1

1−µM (ST+10 + b)1−µM , so

given parameters (b, µM ), VM,T+10 is known for all ST+10. We evaluate
VM,T+10 for all ST+10 ∈ S.

2) Year prior to death (t = T + 9): The value function is simply,
VM,T+9 (ST+9) = maxCT+9,ST+10

1
1−µM (CT+9)1−µM + ζVT+10 (ST+10) sub-

ject to the budget constraint ST+10 ≤ (1 + r) (ST+9 + b− CT+9). Given
(b, µM , r, ζ) and VM,T+10 from 1., we find ST+10 ∈ S such that VM,T+9 is
maximized, ruling out those ST+10 that do not satisfy the budget constraint.
This is done for each ST+9 ∈ S.

3) We then repeat the procedure in 2. for t = T + 8, t = T + 7, . . . , t = T + 1.
Note also that the terminal condition is always satisfied, since all remaining
savings are consumed at t = T + 10 and ST+11 = 0. Lifetime utility would
be infinitely negative if CT+10 = ST+10 + b were negative with positive
probability, so households will use precautionary savings across the lifecycle
to ensure that ST+10 ≥ −b.

This procedure yields VM,t (St) for each t = T + 1, . . . , T + 10, for each St in the
grid of possible values, given only the parameters (b, µM , r, ζ).



Solution Algorithm before Retirement for a Single Household with

Disability Insurance

A single household (M = 1) with DI (Dt = 1) chooses appellant labor sup-
ply (PA,t) and savings, which also determines consumption through the budget
constraint. This is only more complicated than the retired household’s problem
due to the need to account for the labor supply decision and associated wage
uncertainty, as well as the tax-transfer system that maps earnings, DI status, and
household characteristics into disposable income.

1) One year prior to retirement (t = T ): The household’s problem is,
V1,T (Dt = 1, logWA,T , ST ;O1)

= maxPA,T ,CT ,ST+1
1

1−µ1 (CT exp (−φ1,A,HPA,T ))1−µ1+ζVT+1 (ST+1) subject

to the budget constraint ST+1 ≤ (1 + r) (ST + IT − CT ). Note that we ex-
press the value function in terms of the observed log wage logWA,t rather
than the shock τA,t, as each is known from the other given O1 and t (see the
wage equation in the main text). Furthermore, disposable income is deter-

mined by IT = (1− Λ1,1,K,T ) (EA,t)
(1−Ψ1,1,K,T ) if PA,t = 1 and IT = Φ1,1,K,T

if PA,T = 0, where ET = WA,TPA,T is earnings. Recall that VM,T+1 is known
from the retirement solution. Given V1,T+1 (ST+1), we evaluate the objec-

tive 1
1−µ1 (CT exp (−φ1,A,HPA,T ))1−µ1+ζVT+1 (ST+1) for each PA,T ∈ {0, 1},

ST+1 ∈ S, choosing the objective-maximizing combination as the optimal
household solution, which yields V1,T (Dt = 1, logWA,T , ST ;O1), given each
state space combination ST ∈ S, logWT ∈ W, O1.

2) Two years prior to retirement (t = T − 1): The household’s problem is
V1,T−1 (DT−1 = 1, logWA,T−1, ST−1;O1)

= maxPA,T−1,CT−1,ST
1

1−µ1 (CT−1 exp (−φ1,A,HPA,T−1))1−µ1

+ζEV1,T (DT = 1, ·, ST ;O1). Since we know from 1. how to compute
V1,T (Dt = 1, logWA,t, ST ;O1) for each logWA,T ∈ W, we can integrate
across the distribution of logWA,T to compute the expectation
EV1,T (DT = 1, ·, ST ;O1). In particular, since we have assumed logWA,t fol-
lows a random walk process, then logWA,T is Normally distributed with
mean logWA,T−1, so we can use Gaussian quadrature to approximate the
integral numerically. Given EV1,T (DT = 1, ·, ST ;O1), we evaluate the objec-

tive 1
1−µ1 (CT−1 exp (−φ1,A,HPA,T−1))1−µ1 + ζEV1,T (DT = 1, ·, ST ;O1) for

each PA,T−1 ∈ {0, 1}, ST ∈ S, choosing the objective-maximizing combina-
tion as the optimal household solution, which yields
V1,T−1 (DT−1 = 1, logWA,T−1, ST−1;O1), given each state space combina-
tion ST−1 ∈ S, logWT−1 ∈ W, O1.

3) We then repeat the procedure in 2. for t = T − 2, t = T − 3, . . . , t = 1.
Recall that T = 27 for single households that are young at the time of



appeal and T = 11 for households that are old at the time of appeal, so we
must compute the algorithm separately for young and old households.

This procedure yields V1,t (Dt = 1, τA,t, St;O1) for each t = 1, . . . , T , for each
discretized (St, logWA,t, O1) combination, given the model parameters.

Solution Algorithm before Retirement for a Single Household without

Disability Insurance

A single household without DI chooses appellant labor supply, reapplication
(Rt), and savings, which also determines consumption through the budget con-
straint. This is only more complicated than the solution algorithm with DI be-
cause the household must choose DI reapplication and we must account for the
probability of receiving DI approval in the next period.

1) Year prior to retirement (t = T ): The household’s problem is,
V1,T (Dt = 0, logWA,T , ST ;O1)

= maxPA,T ,CT ,RT ,ST+1
1

1−µ1 (CT exp (−φ1,A,HPA,T )−RT exp (ω1))1−µ1

+ζVT+1 (ST+1) subject to the budget constraint
ST+1 ≤ (1 + r) (ST + IT − CT ), where earnings and disposable income are
determined analogously to the case with DI. Recall that VM,T+1 is known
from the retirement solution, so for each O1, we can directly compute the
objective 1

1−µ1 (CT exp (−φ1,A,HPA,T ))1−µ1 + ζVT+1 (ST+1) for each combi-

nation of PA,T ∈ {0, 1}, RT ∈ {0, 1}, ST+1 ∈ S, logWT ∈ W , choosing the
maximizing combination as the optimal household solution, which yields
V1,T (Dt = 1, logWA,T , ST ;O1), given each state space combination ST−1 ∈
S, logWT−1 ∈ W, O1. Note that RT = 0 is always optimal, since reappli-
cation incurs a cost but no benefits are received due to retirement in the
next period.

2) One year earlier (t = T − 1): The household’s problem is
V1,T−1 (DT−1 = 0, logWA,T−1, ST−1;O1) = maxPA,T−1,RT−1,CT−1,ST

1
1−µ1 (CT−1 exp (−φ1,A,HPA,T−1)−RT−1 exp (ω1))1−µ1+ζEV1,T (·, ·, ST ;O1).
Note that we can write,
EV1,T (·, ·, ST ;O1) = (1− π1,H,T−1)EV1,T (DT = 0, ·, ST ;O1)
+π1,H,T−1EV1,T (DT = 1, ·, ST ;O1) using the DI approval rate π1,H,T−1. Since
we know from 1. how to compute V1,T (Dt = 0, logWA,t, ST ;O1) for each
logWA,T ∈ W, we can integrate across the distribution of logWA,T to com-
pute the expectation EV1,T (DT = 0, ·, ST ;O1). Given
EV1,T (DT = 1, ·, ST ;O1) and EV1,T (DT = 0, ·, ST ;O1), we evaluate the ob-
jective of V1,T−1 (DT−1 = 1, logWA,T−1, ST−1;O1) at each combination of
PA,T−1 ∈ {0, 1}, RT−1 ∈ {0, 1}, ST ∈ S, choosing the objective-maximizing
combination as the optimal household solution, which yields
V1,T−1 (Dt = 1, logWA,T−1, ST−1;O1), given each state space combination
ST−1 ∈ S, logWT−1 ∈ W, O1.



3) We then repeat the procedure in 2. for t = T−2, t = T−3, . . . , t = 1. Again,
we must compute the algorithm separately for young and old households.

This procedure yields V1,t (Dt = 0, τA,t, St;O1) for each t = 1, . . . , T , for each
discretized (St, logWA,t, O1) combination, given the model parameters.

Feasible Discretization of the State Space

The algorithms described above rely on the discretized state spaces S and
W. We construct a grid in each using equally spaced quantiles of the observed
marginal distributions of savings and wages, respectively. In practice, we use ten
points to represent the state space for St and ten points to represent the state
space for logWt. We investigate the robustness of the model results to this ap-
proximation for single households by allowing for 100 points in the state space for
St and 100 points in the state space for logWA,t, so that there are 100 times as
many grid points and the model requires approximately 100 times longer to com-
pute. We find that the model fit is similar, suggesting that the model solution is
not very sensitive to additional fineness of the grid. When integrating across the
distribution of logWA,t, we construct the 10 × 10 transition matrix representing
the probability of transitioning to any point on the grid from any other point on
the grid using the conditional Normal probability distribution function evaluated
at each point.

The implied computational burden is substantial. For single households before
retirement without DI that are young at the time of appeal, one simulation of
the model requires millions of distinct numerical evaluations, with even more for
married households.1 We must then also perform these evaluations for young sin-
gle and married households with DI, old single and married households without
DI, and old single and married households with DI, as well as compute the sin-
gle and married household value functions after retirement. As discussed below,
estimating the unknown model parameters will require that we repeat these so-
lution algorithms thousands of times, while bootstrapping the estimates requires
thousands more times.

One other point to note: This approach does not simulate or approximate the
initial distribution of the state space. Instead, it uses the exact observed values.
That is, for each household, our approach computes its predicted optimal choice
variables conditional on its observed characteristics, preserving the exact initial
distribution of observed characteristics.

1This is because we must evaluate the value function objective at (10 current savings state points) ×
(10 next period savings choice points) × (10 current appellant wage state points) × (2 appellant labor
supply choice points) × (2 DI reapplication choice points) × (12 static household types) × (27 time
periods), for a total of over a million distinct numerical evaluations. For married households, there are
also 10 current spouse wage states and 2 spousal labor supply choice points to consider, for a total of
over 20 million distinct numerical evaluations.



B2. Interpolating the Discretized Model to a Continuous State Space and Simulating

Sample Moments

Our aim is to use the value functions to infer optimal choices of consumption,
labor supply, and DI reapplication for the households in our sample, given the
model parameters. The computational algorithms described above provide an
approximate mapping from the state space to the value function for a discrete
grid of points in the state space. For example, for single households, it provides
a numerical solution to the value function, V1,t, when given a time period t, the
vector of static household characteristics O1, and the current values of savings in
S and log wages in W. However, it does not provide the value function V1,t or
associated optimal choices for St /∈ S or logWt /∈ W, which is nearly the entire
sample of households.

In order to approximate optimal household choices (i.e., consumption, labor
supply, and DI reapplication) for all (St,WA,t) pairs in the observed sample, we
use interpolation. In particular, for each of the choice outcomes, interpolation
uses the state space points for which we know the optimal choices, S × W, to
approximate the optimal choices for other state spaces. Our chosen interpolation
method is cubic spline interpolation in the consumption choice and cubic spline
interpolation of the underlying index functions for labor supply and DI reappli-
cation choices. This is implemented using the “gam” function from the published
R package mgcv, version 1.8-12. To allow full flexibility in the discrete compo-
nents of the state space, we interpolate separately for each (observed time period
t = 1, 2, 3, 4) × (current DI state 0 or 1) × (household static characteristic OM ) ×
(marital status M). This way, the interpolation method only requires smoothing
approximations on the continuous components of the state space (St,WA,t), but
is unrestricted across discrete components of the state space.

For each individual in our sample at each time period, the interpolation fit on
the discretized model provides a prediction of consumption, labor supply, and DI
reapplication at times t = 1, 2, 3, 4. Using these predictions, we then construct the
simulated moments from these predictions. For example, average spousal labor
supply is simulated as the mean predicted labor supply of spouses provided by
the interpolation.

Figure 1 (of this appendix) demonstrates the performance of the interpolation
in out-of-grid prediction for the value function as well as the optimal choice of
consumption. In particular, we first compute V1,t (Dt, logWA,t, St;O1) for t = 1
on the grid G = S × W, separately for each of the 12 O1 types. Second, we
also compute V1,t (Dt, logWA,t, St;O1) for an alternate grid H, where G ∩H = ∅.
We then interpolate V1,t (Dt, logWA,t, St;O1) computed on G onto the points H,
which is an out-of-grid prediction. We choose the points in H to be particularly
difficult to match by selecting the midpoints between any two grid points in G
(midpoints maximize the distance between H points and G points within the same
interval).

The figure shows the out-of-grid prediction of H as triangles, and the in-grid



prediction of H from directly-computing V1,t (Dt, logWA,t, St;O1) on H as circles,
where each is formed from averaging across the 12 O1 types. Visually, the goal
of the interpolation is to approximate the circles with the triangles. This allows
us to approximate the value function and optimal choices at thousands of out-
of-grid points in the sample using only a small grid. We see that the out-of-grid
interpolation predictions track the in-grid directly-computed circles. It performs
especially well across the savings grid and at interior values of the log wage grid.
The approximation is less precise at the end points of the log wages grid, but
these points represent only a small sample of outlier observations in the data.
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Figure B1. : Interpolation Fit for Out-of-Grid State Space Values

Notes: This figure demonstrates the performance of the interpolation in out-of-grid prediction

for the value function as well as the optimal choice of consumption. In particular, we first

compute V1,t (Dt, logWA,t, St;O1) for t = 1 on the grid G = S × W, separately for each of

the 12 O1 types. Second, we also compute V1,t (Dt, logWA,t, St;O1) for an alternate grid H,

where G ∩H = ∅. We then interpolate V1,t (Dt, logWA,t, St;O1) computed on G onto the points

H, which is an out-of-grid prediction. We choose the points in H to be particularly difficult

to match by selecting the midpoints between any two grid points in G (midpoints maximize

the distance between H points and G points within the same interval). The figure shows the

out-of-grid prediction of H as triangles, and the in-grid prediction of H from directly-computing

V1,t (Dt, logWA,t, St;O1) on H as circles, where each is formed from averaging across the 12 O1

types.

B3. Solving for the Optimal Parameters

We choose two sets of moments to match. The first set consists of raw data mo-
ments, chosen based on the identification arguments in the text. These moments
are mean log disposable income and expected log disposable income conditional
on log earnings among households that supply labor, mean disposable income
among households that do not supply labor, and employment rates and reappli-
cation rates among those not receiving DI. Each of these moments is matched



conditional on observable types over which the parameters vary in order to pin
down all of the type-specific model parameters. The second set of moments is
the IV results for consumption, disposable income, and earnings among appel-
lants and spouses, included to discipline the model to recover our estimates of the
causal effects of DI allowance.

To simulate the moments, we solve the value function, estimate the interpolation
splines and predict the choice of each household, then compute the moment on
the predicted household choices. We compare each simulated moment to the same
moment computed on the observed household choices from the data. We form the
objective function by forming the difference between the observed and simulated
moment, and divide by the standard deviation corresponding to the observed
moment. This weighting is equivalent to using the diagonal weighting matrix
to form the objective function, as in Equation (13) of Blundell, et al. (2016)
and motivated by the finding of Altonji and Segal (1996) that the asymptotically
efficient weighting matrix has poor small-sample properties. We weight up the
IV moments so that the sum of their weights is equal to that of the raw data
moments.

We solve numerically for the parameters that minimize this objective func-
tion. For each vector of candidate parameters, we compute the value function on
the discrete state space conditional on these parameters, interpolate to form the
model prediction of optimal choices for each household, then evaluate the objec-
tive function for the simulated moments. To minimize the objective function, we
apply two approaches. First, we use a particle swarm optimization algorithm to
search for the globally optimal parameter vector, utilizing the “psoptim” func-
tion from the published R package psoptim, version 1.0. Second, we use the
standard BFGS optimization algorithm, initialized at the optimal parameters
found by psoptim, to verify that psoptim has found the locally optimal parame-
ters. Together, these optimization algorithms require over a thousand complete
evaluations of the model. We perform inference using the block bootstrap, where
each bootstrap also requires estimation using these optimization algorithms. In
particular, we randomly draw block replicates of the sample, where each “block”
is a household’s four-year history, then repeat the approach described above to
find the optimal parameter vector for this replication sample. The distribution
of each parameter across replication samples is then used to compute block boot-
strap p-values for inference.

B4. Extracting Willingness to Pay

Once the optimal parameter estimates are obtained, we can use the estimated
model to perform counterfactual exercises. The counterfactual exercise of in-
terest is to solve for the amount of income a household would be willing to
give up each year across the remainder of the working life in order to be ini-
tially approved for DI. In particular, for single households, we parameterize
this by modifying the budget constraint to include a Cost parameter: St+1 ≤



(1 + r) (St + It − Cost − Ct). Denote the value function with this budget con-
straint by V1,t (Dt, logWA,t, St;O1,Cost). Then, the willingness to pay from time
t = 1, denoted WTP , solves this equation:

V1,1 (D1 = 0, logWA,t, St;O1,Cost = 0)

= V1,1 (D1 = 1, logWA,t, St;O1,Cost = WTP)

In words, WTP is the value of Cost that makes the household indifferent between
being initially denied DI (D1 = 0) but paying Cost = 0, and being initially
approved DI (D1 = 1) but paying Cost = WTP annually.

In practice, we cannot solve the above equation exactly because we do not have
a closed-form representation for V1,1, so we instead use numerical optimization.
For each household in our sample, we express WTP as the solution to a one-
dimensional optimization problem in which we search for the value of Cost that
minimizes the squared deviation from the above equality:

WTP = arg min
c

{
V1,1 (D1 = 0, logWA,t, St;O1,Cost = 0)

− V1,1 (D1 = 1, logWA,t, St;O1,Cost = c)
}2

We then report the average WTP across the sample of single households, and
perform the analogous procedure for married households.

*
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