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A Introduction

Section B of this web appendix contains the proofs of the propositions in the paper, additional technical

derivations of results reported in the paper, and further supplementary material for the quantitative analysis

of the model. Section C includes additional empirical results and robustness tests. Section D presents

further information about the data definitions and sources.

B Quantitative Model Appendix

The first seven sections of this quantitative part of the web appendix present additional derivations for

the main paper. Section B.1 reports the derivations of expected utility and the commuting probabilities.

Section B.2 shows how the equilibrium conditions of the model can be used to undertake counterfactuals

using the observed values of variables in the initial equilibrium. Section B.3 provides conditions for the

existence and uniqueness of the general equilibrium. Section B.4 derives isomorphisms to other trade

models with commuting and external economies of scale. Section B.5 shows that unobserved productivity

can be uniquely determined from the observed variables and reports additional evidence on gravity in

goods trade. Section B.6 shows that unobserved amenities can be uniquely recovered from the observed

data and reports additional evidence on gravity in commuting. Section B.7 uses the commuter market

clearing condition to show the relationship between different measures of the openness of the local labor

market to commuting.

The remaining sections comprise supplementary material and extensions. Section B.8 reports the

derivation of the partial equilibrium local employment elasticities discussed in the main paper. Section B.9

shows that the class of models consistent with a gravity equation for commuting flows implies heterogeneous

local employment elasticities. Section B.10 introduces multiple worker types. Section B.11 introduces
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congestion in commuting. Section B.12 develops an extension of the baseline model to incorporate non-

traded consumption goods. Section B.13 considers the case where landlords use residential land. Section

B.14 generalizes the production technology to incorporate intermediate inputs, commercial land use and

capital. Section B.15 introduces heterogeneity in effective units of labor. Section B.16 considers the case

where commuting costs are incurred in effective units of labor rather than in utility. Finally, Section

B.17 considers a robustness test in which land is partially-owned locally and partially-owned by a national

portfolio, where these ownership shares are chosen to rationalize measured trade deficits.

B.1 Commuting Decisions

We begin by reporting additional results for the characterization of worker commuting decisions.

B.1.1 Distribution of Utility

From all possible pairs of residence and employment locations, each worker chooses the bilateral commute

that offers the maximum utility. Since the maximum of a sequence of Fréchet distributed random variables

is itself Fréchet distributed, the distribution of utility across all possible pairs of residence and employment

locations is:

1−G(u) = 1−
S∏
r=1

S∏
s=1

e−Ψrsu−ε ,

where the left-hand side is the probability that a worker has a utility greater than u, and the right-hand

side is one minus the probability that the worker has a utility less than u for all possible pairs of residence

and employment locations. Therefore we have:

G(u) = e−Φu−ε , Ψ =
S∑
r=1

S∑
s=1

Ψrs. (B.1)

Given this Fréchet distribution for utility, expected utility is:

E [u] =

∫ ∞
0

εΨu−εe−Ψu−εdu. (B.2)

Now define the following change of variables:

y = Φu−ε, dy = −εΨu−(ε+1)du. (B.3)

Using this change of variables, expected utility can be written as:

E [u] =

∫ ∞
0

Ψ1/εy−1/εe−ydy, (B.4)

which can be in turn written as:

E [u] = δΨ1/ε, δ = Γ

(
ε− 1

ε

)
, (B.5)
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where Γ(·) is the Gamma function. Therefore we have the expression in the paper:

E [u] = δΨ1/ε = δ

[
S∑
r=1

S∑
s=1

Brs
(
κrsP

α
r Q

1−α
r

)−ε
wεs

]1/ε

. (B.6)

B.1.2 Residence and Workplace Choices

Using the distribution of utility for pairs of residence and employment locations, the probability that a

worker chooses the bilateral commute from n to i out of all possible bilateral commutes is:

πni = Pr [uni ≥ max{urs};∀r, s] ,

=

∫ ∞
0

∏
s6=i

Gns(u)

∏
r 6=n

∏
s

Grs(u)

 gni(u)du,

=

∫ ∞
0

S∏
r=1

S∏
s=1

εΨniu
−(ε+1)e−Ψrsu−εdu.

=

∫ ∞
0

εΨniu
−(ε+1)e−Ψu−εdu.

Note that:
d

du

[
− 1

Ψ
e−Ψu−ε

]
= εu−(ε+1)e−Ψu−ε . (B.7)

Using this result to evaluate the integral above, the probability that the worker chooses to live in location

n and commute to work in location i is:

λni =
Ψni

Ψ
=

Bni
(
κniP

α
nQ

1−α
n

)−ε
(wi)

ε∑S
r=1

∑S
s=1Brs

(
κrsPαr Q

1−α
r

)−ε
(ws)

ε
. (B.8)

Summing across all possible workplaces s, we obtain the probability that a worker chooses to live in location

n out of all possible locations is:

λRn =
Rn
L̄

=
Ψn

Ψ
=

∑S
s=1Bns

(
κnsP

α
nQ

1−α
n

)−ε
(ws)

ε∑S
r=1

∑S
s=1Brs

(
κrsPαr Q

1−α
r

)−ε
(ws)

ε
. (B.9)

Similarly, summing across all possible residence locations r, we obtain the probability that a worker chooses

to work in location i out of all possible locations is:

λLi =
Li
L̄

=
Ψi

Ψ
=

∑S
r=1Bri

(
κriP

α
r Q

1−α
r

)−ε
(wi)

ε∑S
r=1

∑S
s=1Brs

(
κrsPαr Q

1−α
r

)−ε
(ws)

ε
. (B.10)
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For the measure of workers in location i (Li), we can evaluate the conditional probability that they commute

from location n (conditional on having chosen to work in location i):

λLni|i ≡
λni

λLi
= Pr [uni ≥ max{uri}; ∀r] ,

=

∫ ∞
0

∏
r 6=n

Gri(u)gni(u)du,

=

∫ ∞
0

e−Ψiu
−ε
εΨniu

−(ε+1)du.

Using the result (B.7) to evaluate the integral above, the probability that a worker commutes from location

n conditional on having chosen to work in location i is:

λLni|i =
Bni

(
κniP

α
nQ

1−α
n

)−ε
(wi)

ε∑S
r=1Bri

(
κriPαr Q

1−α
r

)−ε
(wi)

ε
,

which simplifies to:

λLni|i =
Bni

(
κniP

α
nQ

1−α
n

)−ε∑S
r=1Bri

(
κriPαr Q

1−α
r

)−ε . (B.11)

For the measure of residents of location n (Rn), we can evaluate the conditional probability that they

commute to location i (conditional on having chosen to live in location n):

λRni|n ≡
λni

λRn
= Pr [uni ≥ max{uns};∀s] ,

=

∫ ∞
0

∏
s 6=i

Gns(u)gni(u)du,

=

∫ ∞
0

e−Ψnu−εεΨniu
−(ε+1)du.

Using the result (B.7) to evaluate the integral above, the probability that a worker commutes to location

i conditional on having chosen to live in location n is:

λRni|n =
Ψni

Ψn
=

Bni
(
κniP

α
nQ

1−α
n

)−ε
(wi)

ε∑S
s=1Bns

(
κnsPαnQ

1−α
n

)−ε
(ws)

ε
,

which simplifies to:

λRni|n =
Bni (wi/κni)

ε∑S
s=1Bns (ws/κns)

ε
. (B.12)

These conditional commuting probabilities provide microeconomic foundations for the reduced-form

gravity equations estimated in the empirical literature on commuting patterns.1 The probability that a

resident of location n commutes to location i depends on the wage at i and the amenities and commuting

costs from living in n and working in i in the numerator (“bilateral resistance”). But it also depends on

the wage at all other workplaces s and the amenities and commuting costs from living in n and commuting

1See also McFadden (1974). For reduced-form evidence of the explanatory power of a gravity equation for commuting flows,
see for example Erlander and Stewart (1990) and Sen and Smith (1995).
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to all other workplaces s in the denominator (“multilateral resistance”).

Commuter market clearing requires that the measure of workers employed in each location i (Li) equals

the sum across all locations n of their measures of residents (Rn) times their conditional probabilities of

commuting to i (λRni|n):

Li =
S∑
n=1

λRni|nRn (B.13)

=
S∑
n=1

Bni (wi/κni)
ε∑S

s=1Bns (ws/κns)
ε
Rn,

where, since there is a continuous measure of workers residing in each location, there is no uncertainty in

the supply of workers to each employment location.

Expected worker income conditional on living in location n equals the wages in all possible workplace

locations weighted by the probabilities of commuting to those locations conditional on living in n:

v̄n = E [w|n] (B.14)

=
S∑
i=1

λRni|nwi,

=
S∑
i=1

Bni (wi/κni)
ε∑S

s=1Bns (ws/κns)
ε
wi,

where E denotes the expectations operator and the expectation is taken over the distribution for idiosyn-
cratic amenities. Intuitively, expected worker income is high in locations that have low commuting costs

(low κns) to high-wage employment locations.

Finally, another implication of the Fréchet distribution of utility is that the distribution of utility

conditional on residing in location n and commuting to location i is the same across all bilateral pairs of

locations with positive residents and employment, and is equal to the distribution of utility for the economy

as a whole. To establish this result, note that the distribution of utility conditional on residing in location

n and commuting to location i is given by:

=
1

λni

∫ u

0

∏
s 6=i

Gns(u)

∏
r 6=n

∏
s

Grs(u)

 gni(u)du, (B.15)

=
1

λni

∫ u

0

[
S∏
r=1

S∏
s=1

e−Ψrsu−ε

]
εΨniu

−(ε+1)du,

=
Ψ

Ψni

∫ u

0
e−Ψu−εεΨniu

−(ε+1)du,

= e−Ψuε .

On the one hand, lower land prices in location n or a higher wage in location i raise the utility of a worker

with a given realization of idiosyncratic amenities b, and hence increase the expected utility of residing
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in n and working in i. On the other hand, lower land prices or a higher wage induce workers with lower

realizations of idiosyncratic amenities b to reside in n and work in i, which reduces the expected utility of

residing in n and working in i. With a Fréchet distribution of utility, these two effects exactly offset one

another. Pairs of residence and employment locations with more attractive characteristics attract more

commuters on the extensive margin until expected utility is the same across all pairs of residence and

employment locations within the economy.

B.2 Computing Counterfactuals Using Changes

We now use the structure of the model to solve for a counterfactual equilibrium using the observed values

of variables in an initial equilibrium. We denote the value of variables in the counterfactual equilibrium by

a prime (x′) and the relative change of a variable between the initial and the counterfactual equilibrium

by a hat (x̂ = x′/x). Given the model’s parameters {α, σ, ε, δ, κ} and counterfactual changes in the

model’s exogenous variables {Ân, B̂n, κ̂ni, d̂ni}, we can solve for the counterfactual changes in the model’s

endogenous variables {ŵn, ̂̄vn, Q̂n, π̂ni, λ̂ni, P̂n, R̂n, L̂n} from the following system of eight equations

(using the iterative algorithm outlined below):

ŵiL̂iwiLi =
∑
n∈N

πniπ̂nî̄vnR̂nv̄nRn, (B.16)

̂̄vnv̄n =
∑
i∈N

λniB̂ni (ŵi/κ̂ni)
ε∑

s∈N λnsB̂ns (ŵs/κ̂ns)
ε
ŵiwi, (B.17)

Q̂n = v̂nR̂n, (B.18)

π̂niπni =
πniL̂i

(
d̂niŵi/Âi

)1−σ

∑
k∈N πnkL̂k

(
d̂nkŵk/Âk

)1−σ , (B.19)

λ̂niλni =
λniB̂ni

(
P̂αn Q̂

1−α
n

)−ε
(ŵi/κ̂ni)

ε

∑
r∈N

∑
s∈N λrsB̂rs

(
P̂αr Q̂

1−α
r

)−ε
(ŵs/κ̂rs)

ε
, (B.20)

P̂n =

(
L̂n
π̂nn

) 1
1−σ d̂nnŵn

Ân
, (B.21)

R̂n =
L̄

Rn

∑
i

λniλ̂ni, (B.22)

L̂i =
L̄

Li

∑
n

λniλ̂ni, (B.23)

where these equations correspond to the equality between income and expenditure (B.16), expected worker

income (B.17), land market clearing (B.18), trade shares (B.19), commuting probabilities (B.20), price

indices (B.21), residential choice probabilities (B.22) and workplace choice probabilities (B.23).

We solve this system of equations using the following iterative algorithm for the counterfactual equilib-
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rium. Given the model’s parameters {α, σ, ε, δ, κ} and changes in the exogenous variables of the model

{Ân, B̂n, κ̂ni, d̂ni}, we can solve for the resulting counterfactual changes in the endogenous variables of

the model {ŵn, ̂̄vn, Q̂n, π̂ni, λ̂ni, P̂n, R̂n, L̂n} from the system of eight equations (B.16)-(B.23). We solve

this system of equations using the following iterative algorithm. We first conjecture changes in workplace

wages and commuting probabilities at iteration t, ŵ(t)
i and λ̂

(t)

ni .We next update these conjectures to ŵ
(t+1)
i

and λ̂
(t+1)

ni using the current guesses and data. We start by computing:

v̂
(t)
n =

1

vn

∑
i∈N

B̂niλni

(
ŵ

(t)
i /κ̂ni

)ε
∑

s∈N B̂nsλns
(
ŵ

(t)
s /κ̂ns

)ε ŵ(t)
i wi, (B.24)

L̂
(t)
i =

L̄

Li

∑
n

λniλ̂
(t)

ni , (B.25)

R̂(t)
n =

L̄

Rn

∑
i

λniλ̂
(t)

ni , (B.26)

which are only a function of data and current guesses. We use (B.24) and (B.26) in (B.18) to compute:

Q̂(t)
n = v̂

(t)
n R̂

(t)
n . (B.27)

We use (B.25) and (B.19) to compute:

π̂
(t)
ni =

L̂
(t)
i

(
d̂niŵ

(t)
i /Âi

)1−σ

∑
k∈N πnkL̂

(t)
k

(
d̂nkŵ

(t)
k /Âk

)1−σ . (B.28)

We use (B.25), (B.28) and (B.21) to compute:

P̂ (t)
n =

(
L̂

(t)
n

π̂(t)
nn

) 1
1−σ ŵ

(t)
n

Ân
. (B.29)

We use (B.24)-(B.29) to rewrite (B.16) and (B.20) as:

w̃
(t+1)
i =

1

YiL̂
(t)
i

∑
n∈N

πniπ̂
(t)
ni v̂

(t)
n R̂

(t)
n Yn, (B.30)

λ̃
(t+1)
ni =

B̂ni

(
P̂

(t)α
n Q̂

(t)1−α
n

)−ε (
ŵ

(t)
i /κ̂ni

)ε
∑

r∈N
∑

s∈N B̂rsλrs
(
P̂

(t)α
r Q̂

(t)1−α
r

)−ε (
ŵ

(t)
s /κ̂rs

)ε . (B.31)

Finally, we update our conjectures for wages and commuting probabilities using:

ŵ
(t+1)
i = ζŵ

(t)
i + (1− ζ) w̃

(t+1)
i , (B.32)

λ̂
(t+1)

i = ζλ̂
(t)

i + (1− ζ) λ̃
(t+1)
i , (B.33)

where ζ ∈ (0, 1) is an adjustment factor.
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In Section B.3 below, we provide conditions under which the counterfactual equilibrium of this economy

is unique.

B.3 Existence and Uniqueness

We now provide conditions for the existence and uniqueness of a general equilibrium of this economy.

B.3.1 Workplace and Residence Income

From the commuting probabilities in equation (10) in the paper, the labor income received by commuters

from residence n to workplace i is:

wiλniL̄ =

(
Ū

δ

)−ε
L̄Bniκ

−ε
ni

(
PαnQ

1−α
n

)−ε
w1+ε
i . (B.34)

Summing across residences n, total workplace income in location i is:

Yi =
∑
n∈N

wiλniL̄ =

(
Ū

δ

)−ε
L̄w1+ε

i

∑
n∈N

Bniκ
−ε
ni

(
PαnQ

1−α
n

)−ε
, (B.35)

Summing across workplaces i, total residence income in location n (equals total expenditure in residence

n) is given by:

Xn =
∑
i∈N

wiλniL̄ =

(
Ū

δ

)−ε
L̄
(
PαnQ

1−α
n

)−ε∑
i∈N

Bniκ
−ε
ni w

1+ε
i . (B.36)

Now note that land market clearing in equation (5) in the paper can be written as:

Qn = (1− α)
Xn

Hn
. (B.37)

Using land market clearing (B.37), total workplace income in location i (B.35) can be re-written as:

Yi =

(
Ū

δ

)−ε
L̄ (1− α)−(1−α)εw1+ε

i

∑
n∈N

Bniκ
−ε
ni P

−αε
n X−(1−α)ε

n . (B.38)

Using land market clearing (B.37), total residence income in location n (B.35) can be re-written as:

Xn =

(
Ū

δ

)−ε
L̄ (1− α)−(1−α)εH(1−α)ε

n P−αεn X−ε(1−α)
n

∑
i∈N

Bniκ
−ε
ni w

1+ε
i . (B.39)

B.3.2 Price Index and Goods Market Clearing

Using Yi = wiLi, the price index in equation (8) in the paper can be re-written as:

P 1−σ
n =

(
σ

σ − 1

)1−σ 1

σF

[∑
i∈N

Yi

(
dni
Ai

)1−σ
w−σi

]
. (B.40)
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Similarly, using Yi = wiLi and Xn = v̄nRn, the goods market clearing condition in equation (7) in the

paper can be re-written as:

Yi =
∑
n∈N

Yi
σF

(
σ

σ − 1

)1−σ (dni
Ai

)1−σ
w−σi P σ−1

n Xn,

which simplifies to:

wσi =
∑
n∈N

1

σF

(
σ

σ − 1

)1−σ (dni
Ai

)1−σ
P σ−1
n Xn. (B.41)

B.3.3 System of Equations

Combining workplace income (B.38), residence income (B.39), the price index (B.40), and goods market

clearing (B.41), we obtain the following system of equations:

P 1−σ
n = ξP

∑
i∈N
KPniYiw−σi , (B.42)

wσn = ξw
∑
i∈N
KwniP σ−1

i Xi, (B.43)

Ynw
−(1+ε)
n = ξY

∑
i∈N
KYniP−αεi X

−(1−α)ε
i , (B.44)

X1+ε(1−α)
n Pαεn = ξX

∑
i∈N
KXniw1+ε

i , (B.45)

where we have assumed symmetric trade costs (dni = din) and commuting costs (Bniκ−εni = Binκ
−ε
in ); we

have defined the following scalars:

ξP ≡
(

σ

σ − 1

)1−σ 1

σF
,

ξw ≡ 1

σF

(
σ

σ − 1

)1−σ
,

ξY ≡
(
Ū

δ

)−ε
L̄ (1− α)−(1−α)ε ,

ξX ≡
(
Ū

δ

)−ε
L̄ (1− α)−(1−α)ε ;

and we have defined the following kernels:

KPni ≡
(
dni
Ai

)1−σ
,

Kwni ≡
(
dni
Ai

)1−σ
,

KYni ≡ Bniκ−εniH
(1−α)ε
n ,
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KXni ≡ Bniκ−εniH
(1−α)ε
n .

Note that equations (B.42)-(B.45) take the same form as the class of gravity equation models considered

in Allen, Arkolakis and Li (2016). In particular, there are H vectors of endogenous variables xh ∈ <N , h =

1, . . . ,H, and each vector, xh, contains the endogenous variables for the I locations, xhi ∈ <, i = 1, . . . , I.

Using this notation, and denoting the corresponding sets of endogenous variables and locations by ΩH and

ΩN respectively, the system of equations (B.42)-(B.45) can be written as:

H∏
h=1

(
xhi

)βkh
= ξk

I∑
n=1

Kkni

[
H∏
h=1

(
xhn

)γkh]
, i ∈ ΩN , k, h ∈ ΩH ,

where the characteristic values ξk ∈ < are endogenous scalars that balance the overall level of the two sides
of the equations; the parameters are βkh, γkh ∈ <; and Kkni is the kernel that regulates interactions across
locations, variables and equations.

We denote B and Γ as the H × H matrices, whose elements (B)kh = βkh and (Γ)kh = γkh are the

parameters from the left and right-hand sides of these equations, respectively. From equations (B.42)-

(B.45), we have:

B =


1− σ 0 0 0

0 σ 0 0

0 − (1 + ε) 1 0

αε 0 0 1 + (1− α) ε

 ,

Γ =


0 −σ 1 0

σ − 1 0 0 1

−αε 0 0 − (1− α) ε

0 1 + ε 0 0

 .
Note that all elements of the kernel Kkni are strictly positive. Additionally, both B and Γ are invertible,

and we denote A as the following composite matrix:

A = ΓB−1 =


0 1

σ (ε+ 1)− 1 1 0

α ε
(σ−1)(ε−αε+1) − 1 0 0 1

ε−αε+1

α ε
σ−1 + αε2 α−1

(σ−1)(ε−αε+1) 0 0 ε α−1
ε−αε+1

0 1
σ (ε+ 1) 0 0

 .

We also denote Ap as the matrix whose elements equal the absolute value of the elements of A, such that

(Ap)kh = |(A)kh|, and define ρ (Ap) as the largest eigenvalue of Ap. Applying Theorem 3 of Allen, Arkolakis

and Li (2016), a suffi cient condition for the equilibrium of the economy to be unique is ρ (Ap) ≤ 1. Having

pinned down unique equilibrium values of {Pn, wn, Yn, Xn}, all other endogenous variables of the model

can be uniquely determined.
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B.4 Isomorphisms

B.4.1 New Economic Geography Model with Commuting

We begin by considering our new economic geography model with agglomeration forces through love of

variety and increasing returns to scale. The general equilibrium vector {wn, v̄n, Qn, Ln, Rn, Pn} and

scalar Ū solve the following system of equations. First, income equals expenditure on goods produced in

each location:

wiLi =
∑
n∈N

Li (dniwi/Ai)
1−σ∑

k∈N Lk (dnkwk/Ak)
1−σ v̄nRn. (B.46)

Second, expected worker income depends on wages:

v̄n =
∑
i∈N

Bni (wi/κni)
ε∑

s∈N Bns (ws/κns)
εwi. (B.47)

Third, land prices depend on expected worker income and the measure of residents:

Qn = (1− α)
v̄nRn
Hn

. (B.48)

Fourth, workplace choice probabilities solve:

Ln
L̄

=

∑
r∈N Brn

(
κrnP

α
r Q

1−α
r

)−ε
wεn∑

r∈N
∑

s∈N Brs
(
κrsPαr Q

1−α
r

)−ε
wεs
. (B.49)

Fifth, residential choice probabilities solve:

Rn
L̄

=

∑
s∈N Bns

(
κnsP

α
nQ

1−α
n

)−ε
wεs∑

r∈N
∑

s∈N Brs
(
κrsPαr Q

1−α
r

)−ε
wεs
. (B.50)

Sixth, price indices solve:

Pn =
σ

σ − 1

(
1

σF

) 1
1−σ

[∑
i∈N

Li (dniwi/Ai)
1−σ
] 1
1−σ

. (B.51)

Seventh, expected utility satisfies:

Ū = δ

[∑
r∈N

∑
s∈N

Brs
(
κrsP

α
r Q

1−α
r

)−ε
wεs

] 1
ε

, (B.52)

where δ = Γ
(
ε−1
ε

)
and Γ (·) is the Gamma function.

B.4.2 Eaton and Kortum (2002) with External Economies of Scale and Commuting

We consider an Eaton and Kortum (2002) with external economies of scale augmented to incorporate

heterogeneity in worker preferences over workplace and residence locations. Utility remains as specified in

equation (1) in the paper, except that the consumption index (Cn) is defined over a fixed interval of goods

11



j ∈ [0, 1]:

Cn =

[∫ 1

0
cn (j)ρ dj

] 1
ρ

.

Productivity for each good j in each location i is drawn from an independent Fréchet distribution:

Fi (z) = e−Aiz
−θ
, Ai = ÃiL

η
i , θ > 1,

where the scale parameter of this distribution (Ai) depends on the measure of workers (Li) and η para-

meterizes the strength of external economies of scale. The general equilibrium vector {wn, v̄n, Qn, Ln,

Rn, Pn} and scalar Ū solve the following system of equations. First, income equals expenditure on goods

produced in each location:

wiLi =
∑
n∈N

ÃiL
η
i (dniwi)

−θ∑
k∈N ÃkL

η
k (dnkwk)

−θ v̄nRn. (B.53)

Second, expected worker income depends on wages:

v̄n =
∑
i∈N

Bni (wi/κni)
ε∑

s∈N Bns (ws/κns)
εwi. (B.54)

Third, land prices depend on expected worker income and the measure of residents:

Qn = (1− α)
v̄nRn
Hn

. (B.55)

Fourth, workplace choice probabilities solve:

Ln
L̄

=

∑
r∈N Brn

(
κrnP

α
r Q

1−α
r

)−ε
wεn∑

r∈N
∑

s∈N Brs
(
κrsPαr Q

1−α
r

)−ε
wεs
. (B.56)

Fifth, residential choice probabilities solve:

Rn
L̄

=

∑
s∈N Bns

(
κnsP

α
nQ

1−α
n

)−ε
wεs∑

r∈N
∑

s∈N Brs
(
κrsPαr Q

1−α
r

)−ε
wεs
. (B.57)

Sixth, price indices solve:

Pn = γ

[∑
i∈N

ÃiL
η
i (dniwi)

−θ
]− 1

θ

, (B.58)

where γ =
[
Γ
(
θ−(σ−1)

θ

)] 1
1−σ

and Γ (·) denotes the Gamma function. Seventh, expected utility satisfies:

Ū = δ

[∑
r∈N

∑
s∈N

Brs
(
κrsP

α
r Q

1−α
r

)−ε
wεs

] 1
ε

. (B.59)
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The system of equations (B.53)-(B.59) is isomorphic to the system of equations (B.46)-(B.52) under the

following parameter restrictions:

θEK = σNEG − 1,

ηEK = 1,

AEKi =
(
ANEGi

)σNEG−1
,

γEK =
σNEG

σNEG − 1

(
1

σNEGFNEG

) 1

1−σNEG
.

Under these parameter restrictions, both models generate the same general equilibrium vector {wn, v̄n,

Qn, Ln, Rn, Pn} and scalar Ū .

B.4.3 Armington (1969) with External Economies of Scale and Commuting

We consider an Armington (1969) model with external economies of scale augmented to incorporate het-

erogeneity in worker preferences over workplace and residence locations. Utility remains as specified in

equation (1) in the paper, except that the consumption index (Cn) is defined over goods that are horizon-

tally differentiated by location of origin:

Cn =

[∑
i∈N

Cρi

] 1
ρ

.

The goods supplied by each location are produced under conditions of perfect competition and external

economies of scale such that the “cost inclusive of freight”(cif) price of a good produced in location i and

consumed in location n is:

Pni =
dniwi
Ai

, Ai = ÃiL
η
i .

The general equilibrium vector {wn, v̄n, Qn, Ln, Rn, Pn} and scalar Ū solve the following system of

equations. First, income equals expenditure on goods produced in each location:

wiLi =
∑
n∈N

Aσ−1
i L

η(σ−1)
i (dniwi)

1−σ∑
k∈N A

σ−1
k L

η(σ−1)
k (dnkwk)

1−σ v̄nRn. (B.60)

Second, expected worker income depends on wages:

v̄n =
∑
i∈N

Bni (wi/κni)
ε∑

s∈N Bns (ws/κns)
εwi. (B.61)

Third, land prices depend on expected worker income and the measure of residents:

Qn = (1− α)
v̄nRn
Hn

. (B.62)
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Fourth, workplace choice probabilities solve:

Ln
L̄

=

∑
r∈N Brn

(
κrnP

α
r Q

1−α
r

)−ε
wεn∑

r∈N
∑

s∈N Brs
(
κrsPαr Q

1−α
r

)−ε
wεs
. (B.63)

Fifth, residential choice probabilities solve:

Rn
L̄

=

∑
s∈N Bns

(
κnsP

α
nQ

1−α
n

)−ε
wεs∑

r∈N
∑

s∈N Brs
(
κrsPαr Q

1−α
r

)−ε
wεs
. (B.64)

Sixth, price indices solve:

Pn =

[∑
i∈N

Aσ−1
i L

η(σ−1)
i (dniwi)

1−σ
] 1
1−σ

. (B.65)

Seventh, expected utility satisfies:

Ū = δ

[∑
r∈N

∑
s∈N

Brs
(
κrsP

α
r Q

1−α
r

)−ε
wεs

] 1
ε

. (B.66)

The system of equations (B.60)-(B.66) is isomorphic to the system of equations (B.46)-(B.52) under the

following parameter restrictions:

σAR = σNEG,

ηAR =
1

σNEG − 1
,

AARi = ANEGi ,

1 =
σNEG

σNEG − 1

(
1

σNEGFNEG

) 1

1−σNEG
.

Under these parameter restrictions, both models generate the same general equilibrium vector {wn, v̄n,

Qn, Ln, Rn, Pn} and scalar Ū .

B.5 Gravity in Goods Trade

As discussed in Section 3.1 of the paper, we use the equality between income and expenditure in equation

(7) in the paper to solve for unobserved county productivities (Ai):

wiLi −
∑
n∈N

Li (dniwi/Ai)
1−σ∑

k∈N Lk (dnkwk/Ak)
1−σ [v̄nRn +Dn] = 0, (B.67)

where we observe (or have solved for) wages (wi), employment (Li), average residential income (v̄i), resi-

dents (Ri) and trade deficits (Di).

Given the elasticity of substitution (σ), our measures for (wi, Li, v̄i, Ri, Di) and a parameterization

of trade costs (d1−σ
ni ), equation (B.67) provides a system of N equations that can be solved for a unique

vector of N unobserved productivities (Ai), as summarized in the following proposition.
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Proposition B.1 (Productivity Inversion) Given the elasticity of substitution (σ), our measures of

wages, employment, average residential income, residents and trade deficits {wi, Li, v̄i, Ri, Di}, and a

parameterization of trade costs (d1−σ
ni ), there exist unique values of the unobserved productivities (Ai) for

each location i that are consistent with the data being an equilibrium of the model.

Proof. Note that the goods market clearing condition (B.67) can be written as the following excess demand

system:

Di(Ã) = wiLi −
∑
n∈N

ÃiLi (dniwi)
1−σ∑

k∈N ÃkLk (dnkwk)
1−σ [v̄nRn +Dn] = 0, (B.68)

where Ãi = Aσ−1
i ; {wi, Li, v̄n, Rn, dni} have already been determined from the observed data or our

parameterization of trade costs; and
∑

n∈N Dn = 0. This excess demand system exhibits the following

properties in Ãi:

Property (i): D(Ã) is continuous, as follows immediately from inspection of (B.68).

Property (ii): D(Ã) is homogenous of degree zero, as follows immediately from inspection of (B.68).

Property (iii):
∑

i∈N Di
(
Ã
)

= 0 for all Ã ∈ <N+ . This property can be established by noting:

∑
i∈N

Di
(
Ã
)

=
∑
i∈N

wiLi −
∑
n∈N

∑
i∈N ÃiLi (dniwi)

1−σ∑
k∈N ÃkLk (dnkwk)

1−σ [v̄nRn +Dn] ,

=
∑
i∈N

wiLi −
∑
n∈N

[v̄nRn +Dn] ,

= 0.

Property (iv): D(Ã) exhibits gross substitution:

∂Di
(
Ã
)

∂Ãr
> 0 for all i, r, 6= i, for all Ã ∈ <N+ ,

∂Di
(
Ã
)

∂Ãi
< 0 for all i, for all Ã ∈ <N+ .

This property can be established by noting:

∂Di
(
Ã
)

∂Ãr
=
∑
n∈N

Lr (dnrwr)
1−σ ÃiLi (dniwi)

1−σ[∑
k∈N ÃkLk (dnkwk)

1−σ
]2 [v̄nRn +Dn] > 0.

and using homogeneity of degree zero, which implies:

∇D
(
Ã
)
Ã = 0,

and hence:
∂Di

(
Ã
)

∂Ãi
< 0 for all Ã ∈ <N+ .

Therefore we have established gross substitution. We now use these five properties to establish that
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the system of equations (B.68) has at most one (normalized) solution. Gross substitution implies that

D
(
Ã
)

= D
(
Ã′
)
cannot occur whenever Ã and Ã′ are two technology vectors that are not colinear. By

homogeneity of degree zero, we can assume Ã′ ≥ Ã and Ãi = Ã′i for some i. Now consider altering the

productivity vector Ã′ to obtain the productivity vector Ã in N − 1 steps, lowering (or keeping unaltered)

the productivity of all the other N − 1 locations n 6= i one at a time. By gross substitution, the excess

demand in location i cannot decrease in any step, and because Ã 6= Ã′, it will actually increase in at least

one step. Hence D
(
Ã
)
> D

(
Ã′
)
and we have a contradiction.

We next establish that there exists a productivity vector Ã∗ ∈ <N+ such that D(Ã∗) = 0. By homo-

geneity of degree zero, we can restrict our search for this productivity vector to the unit simplex

∆ =
{
Ã ∈ <N+ :

∑
i∈N Ãi = 1

}
. Define on ∆ the function D+ (·) by D+

i

(
Ã
)

= max
{
Di
(
Ã
)
, 0
}
. Note

that D+ (·) is continuous. Denote α
(
Ã
)

=
∑

i∈N

[
Ãi + D+

i

(
Ãi

)]
. We have α

(
Ã
)
≥ 1 for all Ã.

Define a continuous function f (·) from the closed convex set ∆ into itself by:

f
(
Ã
)

=
[
1/α

(
Ã
)] [

Ã+ D+
(
Ã
)]
.

Note that this fixed-point function tends to increase the productivities of locations with excess demand.

By Brouwer’s Fixed-point Theorem, there exists Ã∗ ∈ ∆ such that Ã∗ = f
(
Ã∗
)
.

Since
∑

i∈N Di
(
Ã
)

= 0, it cannot be the case that Di
(
Ã
)
> 0 for all i ∈ N or Di

(
Ã
)
< 0 for all

i ∈ N . Additionally, if Di
(
Ã
)
> 0 for some i and Dr

(
Ã
)
< 0 for some r 6= i, Ã 6= f

(
Ã
)
. It follows that

at the fixed point for productivity, Ã∗ = f
(
Ã∗
)
, and Di

(
Ã∗
)

= 0 for all i. It follows that there exists a

unique vector of unobserved productivities (Ã) that solves the excess demand system (B.68).

The resulting solutions for productivities (Ai) capture characteristics (e.g. natural resources) that make

a location more or less attractive for employment conditional on the observed data and the parameterized

values of trade costs. These characteristics include access to international markets. To the extent that

such international market access raises employment (Li), and international trade flows are not captured in

the CFS, this will be reflected in the model in higher productivity (Ai) to rationalize the higher observed

employment. Having recovered these unique unobserved productivities (Ai), we can solve for the implied

bilateral trade flows between counties (Xni) using equation (6) and Xni = πniv̄nRn. We use these solutions

for bilateral trade between counties in our counterfactuals for changes in the model’s exogenous variables,

as discussed in the paper.

To parameterize trade costs (d1−σ
ni ), we assume a central value for the elasticity of substitution between

varieties from the existing empirical literature of σ = 4, which is in line with the estimates of this parameter

using price and expenditure data in Broda and Weinstein (2006).2 We model bilateral trade costs (dni)

as a function of distance. For bilateral pairs with positive trade, we assume that bilateral trade costs are

a constant elasticity function of distance and a stochastic error (dni = distψniẽni). For bilateral pairs with

zero trade, the model implies prohibitive trade costs (dni →∞).3 Taking logarithms in the trade share in
2This assumed value implies an elasticity of trade with respect to trade costs of −(σ− 1) = 3, which is close to the central

estimate of this parameter of 4.12 in Simonovska and Waugh (2014).
3One interpretation is that trade requires prior investments in transport infrastructure that are not modeled here. For

bilateral pairs for which these investments have been made, trade can occur subject to finite costs. For other bilateral pairs

16



-5
0

5
10

Lo
g 

Tr
ad

e 
Fl

ow
s 

(R
es

id
ua

ls
)

-8 -6 -4 -2 0 2
Log Distance (Residuals)

Dashed line: linear fit; slope: -1.29

Figure B.1: Gravity in Goods Trade Between CFS Regions

equation (6) in the paper for pairs with positive trade, the value of bilateral trade between source i and

destination n (Xni) can be expressed as

logXni = ζn + χi − (σ − 1)ψ log distni + log eni, (B.69)

where the source fixed effect (χi) controls for employment, wages and productivity (Li, wi, Ai); the

destination fixed effect (ζn) controls for average income, v̄n, residents, Rn, and multilateral resistance (as

captured in the denominator of equation (6) in the paper); and log eni = (1− σ) log ẽni.

Estimating the gravity equation (B.69) for all bilateral pairs with positive trade using OLS, we find a

regression R-squared of 0.83. In Figure B.1, we display the conditional relationship between the log value

of trade and log distance, after removing source and destination fixed effects from both log trade and log

distance. Consistent with the existing empirical trade literature, we find that the log linear functional form

provides a good approximation to the data, with a tight and approximately linear relationship between the

two variables. We estimate a coeffi cient on log distance of − (σ − 1)ψ = −1.29. For our assumed value

of σ = 4, this implies an elasticity of trade costs with respect to distance of ψ = 0.43. The tight linear

relationship in Figure B.1, makes us confident in this parametrization of trade costs as d1−σ
ni = dist−1.29

ni as

a way of using equation (B.67) to solve for unobserved productivities (Ai).

To provide an alternative check on our specification, we aggregate the model’s predictions for trade

between counties within pairs of CFS regions, and compare these predictions to the data in Figure B.2. The

only way in which we used the data on trade between CFS regions was to estimate the distance elasticity

− (σ − 1)ψ = −1.29. Given this distance elasticity, we use the goods market clearing condition (B.67)

to solve for productivities and generate predictions for bilateral trade between counties and hence CFS

regions, as discussed above. Therefore, the model’s predictions and the data can differ from one another.

Nonetheless, we find a strong and approximately log linear relationship between the model’s predictions

for which they have not been made, trade is prohibitively costly. We adopt our specification for tractability, but other
rationalizations for zero trade flows include non-CES preferences or granularity.
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Figure B.2: Bilateral Trade Shares in the Model and Data

and the data, which is tighter for the larger trade values that account for most of aggregate trade.

B.6 Magnitude and Gravity of Commuting Flows

In this subsection of the web appendix, we provide additional evidence on the relevance of commuting as

a source of spatial linkages between counties and CZs. In Figure 1 in the paper, we display unweighted

kernel densities of the share of residents that work in the same county where they live (the “residence

own commuting share”) over time. We focus on these unweighted kernel densities to capture heterogeneity

across geographical locations (counties). As a robustness check, Figure B.3 in this web appendix displays

analogous kernel densities that are weighted by the number of residents in each county. Therefore these

weighted kernel densities capture heterogeneity across residents. As apparent from the two figures, we find

a similar pattern of results whether we use the weighted or unweighted kernel densities. In both cases, we

find a marked shift in density towards lower values of the residence own commuting share.

In Table 1 of the paper, we report unweighted descriptive statistics on commuting flows between

counties and CZs from 2006-10. As a robustness check, Table B.1 in this web appendix displays reports

analogous statistics that are weighted by the number of residents (or workers) in each county. Again the

unweighted results capture heterogeneity across counties, while the weighted results capture heterogeneity

across people. Whether we use the weighted or unweighted statistics, we find that commuting beyond

county boundaries is both substantial and heterogeneous. For example, using the unweighted results, we

find that for the median county around 27 percent of its residents work outside the county and around 20

percent of its workers live outside the county. By comparison, using the weighted results, we find that for

the median county around 19 percent of its residents work outside the county and around 22 percent of its

workers live outside the county.

In Section 3.2 of the paper, we discuss that these differences across counties in openness to commuting

generate substantial variation in the ratio of employment to residents (Li/Ri). In Table B.2 below, we

show that this ratio of employment to residents is not only heterogeneous across counties, but is also hard
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Figure B.3: Kernel densities of the share of residents that work in the county where they live (weighted
by county residents)

Min p5 p10 p25 p50 p75 p90 p95 Max Mean N
Commuters from Residence County 0.00 0.00 0.04 0.08 0.19 0.38 0.51 0.56 0.82 0.24 3,111
Commuters to Workplace County 0.00 0.01 0.04 0.14 0.22 0.33 0.43 0.52 0.81 0.24 3,111
County Employment/Residents 0.26 0.64 0.73 0.88 1.00 1.10 1.21 1.30 3.88 1.00 3,111

Commuters from Residence CZ 0.00 0.00 0.00 0.02 0.03 0.07 0.14 0.18 0.49 0.06 709
Commuters to Employment CZ 0.00 0.00 0.00 0.02 0.05 0.08 0.11 0.13 0.25 0.06 709
CZ Employment/Residents 0.63 0.91 0.94 0.99 1.00 1.02 1.05 1.07 1.12 1.00 709

Tabulations on 3,111 counties and 709 commuting zones. The first row shows the fraction of residents that work outside the

county. The second row shows the fraction of workers who live outside the county. The third row shows the ratio of county

employment to county residents. The fourth row shows the fraction of a CZ’s residents that work outside the CZ. The fifth

row shows the fraction of a CZ’s workers that live outside the CZ. The sixth row shows the ratio of CZ employment to CZ

residents across all 709 CZs. p5, p10 etc refer to the 5th, 10th etc percentiles of the distribution. Results for commuters

from residence are weighted by the number of residents. Results for commuters to workplace are weighted by the number of

workers.

Table B.1: Commuting Across Counties and Commuting Zones (Weighted)

to explain with the standard empirical controls used in the local labor markets literature (such as various

measures of size, area, income and housing supply elasticities). Therefore these results establish that this

role of the initial ratio of employment to residents in understanding the effects of changes in commuting

costs cannot be easily proxied for by these other controls.

In particular, Table B.2 reports the results of regressing log employment (logLi), log residents (logRi),

and the ratio of employment to residents (Li/Ri) on a number of standard empirical controls from the

local labor markets literature. The first four columns show that the levels of either employment (logLi)

or residents (logRi) are strongly related to these standard empirical controls. The first column shows that

one can account for most of the variation in county employment using the number of residents and wages.

Column (2) shows a similar result for the number of residents and Columns (3) and (4) show that the
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results are not affected when we add land area, developed-land supply elasticities, employment and wages

in surrounding counties. In contrast, the remaining four columns demonstrate that it is hard to explain

the ratio of employment to residents (Li/Ri) using these same empirical controls. The level of residents,

wages, land area, developed-land supply elasticities, employment, and measures of economic activity in

surrounding counties, do a poor job in accounting for the variation in this ratio. None of the R-squared’s

in the last four columns of Table B.2 amounts to more than one third. Taken together, these results confirm

that the ratio of employment to residents (Li/Ri) cannot be easily proxied for by the standard empirical

controls used in the local labor markets literature.

To examine the extent to which bilateral commuting flows are one-way versus two-way, we use the

Grubel and Lloyd (1971) index from the international trade literature. In the context of commuting, this

Grubel-Lloyd index captures the extent there is (i) one-way commuting, in which counties either only

export or only import commuters, versus (ii) two-way commuting, in which counties simultaneously export

and import commuters. Specifically, the Grubel-Lloyd index for county i is defined as

GLi = 1−

∣∣∣∑n 6=i Lin −
∑

n6=i Lni

∣∣∣∑
n 6=i Lin +

∑
n6=i Lni

, (B.70)

where the first subscript is the county of residence and the second subscript is the county of workplace.

Therefore,
∑

n6=i Lin is county i’s total exports of commuters to workplaces in other counties n 6= i and∑
n 6=i Lni is county i’s total imports of commuters from residences in other counties n 6= i. If there is only

one-way commuting, GLn = 0. In contrast, if there is perfect two-way commuting, with county i’s exports

of commuters equal to its imports, GLn = 1.

In Table B.3, we report the mean and percentiles of the distribution of the Grubel-Lloyd index from

equation (B.70) across counties. We find pervasive two-way commuting, with the mean and median values

of the Grubel-Lloyd index closer to perfect two-way commuting than to only one-way commuting. This

pattern of results is consistent with the predictions of the model, in which workers’idiosyncratic preferences

between pairs of residence and workplace in general induce two-way commuting. As discussed in Subsection

3.2 of the paper, the model rationalizes zero commuting flows from residence n to workplace i in terms

of negligible amenities (Bni → 0) and/or prohibitive commuting costs (κni → ∞), which can be used to
explain one-way commuting.

20



1 2 3 4 5 6 7 8 9 10 11 12

Dep. Variable: logLi logRi logLi logRi Li/Ri Li/Ri Li/Ri Li/Ri Li/Ri Li/Ri Li/Ri Li/Ri

logRi 0.974** 1.001** -0.000 0.020 0.064** 0.050**
(0.005) (0.009) (0.010) (0.016) (0.012) (0.013)

logwi 0.460** 0.480** 0.341** 0.331** 0.468** 0.479**
(0.038) (0.036) (0.025) (0.026) (0.046) (0.054)

logLi 0.957** 0.922** -0.001 0.028* 0.044** 0.049**
(0.013) (0.015) (0.007) (0.012) (0.006) (0.006)

log v̄i 0.066 0.019 0.171** 0.239** 0.287** 0.273**
(0.051) (0.049) (0.033) (0.041) (0.100) (0.092)

logHi 0.015 0.037** -0.022 -0.011 -0.055** -0.067** -0.058** -0.059**
(0.010) (0.012) (0.011) (0.013) (0.012) (0.020) (0.013) (0.019)

logR,−i -0.020* 0.389* 0.609** 0.396 0.677 0.391 0.679
(0.008) (0.160) (0.171) (0.407) (0.524) (0.406) (0.516)

log w̄−i -0.330** 0.070 0.247 -1.843 -2.619 -1.797 -2.654
(0.036) (0.324) (0.364) (1.326) (1.668) (1.308) (1.678)

logL,−i 0.084** -0.435** -0.654** -0.405 -0.694 -0.401 -0.691
(0.011) (0.155) (0.166) (0.408) (0.525) (0.408) (0.518)

log v̄−i 0.044 -0.238 -0.347 1.523 2.410 1.482 2.431
(0.038) (0.315) (0.360) (1.310) (1.640) (1.292) (1.648)

Saiz elasticity 0.010 -0.022*
(0.008) (0.010)

Constant -4.667** -0.165 -1.485** -1.199* -2.647** -0.881** -0.262 -0.057 -0.636 0.000 -0.839 0.373
(0.413) (0.431) (0.323) (0.473) (0.282) (0.285) (0.422) (0.500) (0.560) (1.010) (0.588) (0.966)

R2 0.98 0.98 0.99 0.98 0.16 0.03 0.30 0.15 0.68 0.53 0.68 0.54
N 3,111 3,111 3,081 3,081 3,111 3,111 3,081 3,081 457 457 457 457

Note: L,−i ≡
∑
n:dni≤120,n6=i Ln is the total employment in i neighbors whose centroid is no more than 120km away; w̄−i ≡∑

n:dni≤120,n6=i
Ln
L,−i

wn is the weighted average of their workplace wage. Analogous definitions apply to R,−i and v̄−i. Columns
1-8 use the whole sample of counties. Columns 9 and 10 repeat the most complete specifications in columns 7 and 8 only for
the subsample of counties where we have data on land supply elasticity. Columns 11 and 12 repeat columns 7 and 8 adding
the Saiz land supply elasticity as a regressor. Standard errors are clustered by state. ∗ denotes significance at the 5 percent
level; ∗∗ denotes significance at the 1 percent level.

Table B.2: Explaining employment (Li), residents (Ri), and the ratio of employment to residents (Li/Ri)

Statistic Grubel-Lloyd Index
for Commuting

p5 0.342
p10 0.414
p25 0.537
p50 0.696
p75 0.843
p90 0.937
p95 0.968
Mean 0.681

Mean and percentiles of the distribution of the Grubel-Lloyd index from equation (B.70) across counties.

Table B.3: Grubel-Lloyd Index for Commuting
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Figure B.4: Kernel densities of the share of residents that work in the CZ where they live

Additionally, to provide a point of comparison to Figure 1 in the paper for counties, Figure B.4 shows

kernel densities of the share of residents that work in the same CZ where they live for 1990 and 2000. We

construct these measures for CZs from the matrices of bilateral commuting probabilities between counties,

which are only reported in the Population Census from 1990 onwards. We find the same pattern of an

increase in commuting openness over time, with the increase between 1990 and 2000 for CZs in Figure B.4

larger than the increase over the same period for counties in Figure 1 in the paper.

As discussed in Section 3.2 of the paper, the gravity equation for the commuting probability in equation

(10) in the paper can be written as

λni −
Bni

(
Ln
πnn

)− αε
σ−1

Aαεn w
−αε
n v̄

−ε(1−α)
n

(
Rn
Hn

)−ε(1−α)
wεi∑

r∈N
∑

s∈N Brs
(
Lr
πrr

)− αε
σ−1

Aαεr w
−αε
r v̄

−ε(1−α)
r

(
Rr
Hr

)−ε(1−α)
wεs

= 0, (B.71)

where Bni ≡ Bniκ
−ε
ni is a composite parameter that captures the ease of commuting. The commuting

probabilities (B.71) provide a system of N ×N equations that can be solved for a unique matrix of N ×N
values of the ease of commuting (Bni), as summarized in the following proposition.

Proposition B.2 (Amenities Inversion) Given the share of consumption goods in expenditure (α), the

heterogeneity in location preferences (ε), the observed data on wages, employment, trade shares, average

residential income, residents and land area {wi, Li, πii, v̄i, Ri, Hi}, there exist unique values of the ease

of commuting (Bni ≡ Bniκ−εni ) for each pair of locations n and i that are consistent with the data being an
equilibrium of the model.

Proof. Note that the commuting probability (B.71) can be written as the following excess demand system:

Di(B) = λni −
Bni

(
Ln
πnn

)− αε
σ−1

Aαεn w
−αε
n v̄

−ε(1−α)
n

(
Rn
Hn

)−ε(1−α)
wεi∑

r∈N
∑

s∈N Brs
(
Lr
πrr

)− αε
σ−1

Aαεr w
−αε
r v̄

−ε(1−α)
r

(
Rr
Hr

)−ε(1−α)
wεs

= 0, (B.72)
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where {wi, Li, v̄n, Rn, πnn, An, Hn} have already been determined from the observed data or our parame-

terization of commuting costs. Note that the excess demand system (B.72) exhibits the same properties

in B as the excess demand system (B.68) exhibits in Ã. It follows that there exists a unique vector of

unobserved values of the ease of commuting (B) that solves the excess demand system (B.72).

The resulting solutions for the ease of commuting (Bni) capture all factors that make a pair of residence
and workplace locations more or less attractive conditional on the observed wages, employment, trade

shares, average residential income, residents and land area (e.g. attractive scenery, distance and transport

infrastructure). Together productivity (Ai) and the ease of commuting (Bni) correspond to structural
residuals that ensure that the model exactly replicates the observed data given the parameters.

To estimate the heterogeneity in location preferences (ε), we model the determinants of the bilateral ease

of commuting. For bilateral pairs with positive commuting flows, we partition the ease of commuting (Bni)
into four components: (i) a residence component (Bn), (ii) a workplace component (Bi), (iii) a component
that is related to distance (dist−φni ), and (iv) an orthogonal component (Bni)

logBni ≡ log(Bniκ
−ε
ni ) = logBn + logBi − φ log (distni) + logBni. (B.73)

We can always undertake this statistical decomposition of the ease of commuting (logBni), where the
error term (logBni) is orthogonal to distance by construction, because the reduced-form coeffi cient on

log distance (−φ) captures any correlation of either log bilateral amenities (logBni) and/or log bilateral

commuting costs (log(κ−εni )) with log distance. For bilateral pairs with zero commuting, the model implies

negligible amenities (Bni → 0) and/or prohibitive commuting costs (κni →∞).4

In the first step of our gravity equation estimation, we use this decomposition (B.73) and our expression

for commuting flows (10) to estimate the reduced-form distance coeffi cient (−φ):

log λni = g0 + ηn + µi − φ log distni + logBni, (B.74)

where the residence fixed effect (ηn) captures the consumption goods price index (Pn), the price of resi-

dential land (Qn), and the residence component of the ease of commuting (Bn); the workplace fixed effect
(µi) captures the wage (wi) and the workplace component of the ease of commuting (Bi); the constant
g0 captures the denominator of λni and is separately identified because we normalize the residence and

workplace fixed effects to sum to zero; and the error term (logBni) is orthogonal to log distance, because
all effects of log distance on the composite ease of commuting are captured in the reduced-form distance

coeffi cient (−φ).5

Estimating the gravity equation (B.74) for all bilateral pairs with positive commuters using OLS, we

find a regression R-squared of 0.80. In Figure B.5, we display the conditional relationship between log

commuters and log distance, after removing residence and workplace fixed effects from both log commuters

4As for goods trade above, one interpretation is that commuting requires prior investments in transport infrastructure that
are not modeled here. We adopt our specification for tractability, but other explanations for zero commuting flows include a
support for the distribution of idiosyncratic preferences that is bounded from above or granularity.

5 In Subsection B.11 of this web appendix, we generalize this specification to introduce congestion that is a power function
of the volume of commuters. We show that this generalization affects the interpretation of the estimated coeffi cients in the
gravity equation, but leaves the model’s prediction of heterogeneous local employment elasticities unchanged.

23



-5
0

5
10

Lo
g 

C
om

m
ut

in
g 

Fl
ow

s 
(R

es
id

ua
ls

)

-2 -1 0 1
Log Distance (Residuals)

Dashed line: linear fit; slope: -4.43

Figure B.5: Gravity in Commuting Between Counties

and log distance. Consistent with the existing empirical literature on commuting, we find that the log

linear functional form provides a good approximation to the data, with a tight and approximately linear

relationship between the two variables, and an estimated coeffi cient on log distance of −φ = −4.43.

This estimated coeffi cient is substantially larger than the corresponding coeffi cient for trade in goods of

− (σ − 1)ψ = −1.29, which is consistent with the view that transporting people is considerably more costly

than transporting goods, in line with the substantial opportunity cost of time spent commuting.

To identify the Fréchet shape parameter (ε), the second step of our gravity equation estimation uses

additional structure from the model, which implies that the workplace fixed effects µi depend on wages

(wi) and the workplace component of the ease of commuting (Bi):

log λni = g0 + ηn + ε logwi − φ log distni + log uni, (B.75)

where the error term is given by log uni ≡ logBi + logBni.
We estimate the gravity equation (B.75) imposing φ = 4.43 from our estimates above and identify ε

from the coeffi cient on wages. Estimating (B.75) using OLS is potentially problematic, because workplace

wages (wi) depend on the supply of commuters, which in turn depends on amenities that appear in the

error term (log uni). Therefore we instrument logwi with the log productivities logAi that we recovered

from the condition (16) equating income and expenditure above, using the fact that the model implies that

productivity satisfies the exclusion restriction of only affecting commuting flows through wages. Our Two-

Stage-Least-Squares estimate of the Fréchet shape parameter for the heterogeneity of worker preferences is

ε = 3.30.6 The tight fit shown in Figure B.5 makes us confident that our parametrization of the composite

6We find that the Two-Stage-Least-Squares estimates are larger than the OLS estimates, consistent with the idea that
bilateral commutes with attractive amenities have a higher supply of commuters and hence lower wages. The p-value for the
first-stage F-Statistic for productivity is zero, confirming that productivity is a powerful instrument for wages. Note that
one could have estimated jointly φ and ε from the restricted equation (B.75) directly. Our approach, however, imposes only
the minimal set of necessary restrictions at every step: we estimate a flexible gravity structure to identify φ in (B.74), and a
slightly less general specification (where workplace fixed effects are restricted to capture only variation in workplace wages) to
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ease of commuting in terms of distance fits the data quite well.

B.7 Openness of the Local Labor Market to Commuting

In this section of the web appendix, we use the commuter market clearing condition to derive reduced-form

measures of the openness of the local labor market to commuting. We show that the share of residents who

work where they live (the “residence own commuting share,”λRii|i), the share of workers who live where

they work (the “workplace own commuting share,”λLii|i), and the ratio of workers to residents (Li/Ri) are

all closely related to one another through the commuter market clearing condition.

Re-writing the commuter market clearing condition in equation (13) in the paper, we obtain

Li = λRii|iRi +
∑
n6=i

λRni|nRn. (B.76)

Rearranging this commuter market clearing condition, the importance of commuting from other locations

as a source of employment for location i can be written as∑
n6=i λ

R
ni|nRn

Li
= 1−

λRii|iRi

Li
. (B.77)

We now use the definition of the conditional commuting probabilities (λLni|i and λ
R
ni|n) in equations (B.11)

and (B.12), which imply

λRii|i =
λii
Ri/L̄

=
Li
Ri

λii
Li/L̄

=
Li
Ri
λLii|i. (B.78)

Combining equations (B.77) and (B.78), we obtain:∑
n 6=i λ

R
ni|nRn

Li
= 1− λLii|i, (B.79)

where higher values of the workplace own commuting share (λLii|i) imply a local labor market that is more

closed to commuting. Alternatively, the commuter market clearing condition can be written equivalently

as

Ri = λLii|iLi +
∑
n6=i

λLni|nLn. (B.80)

Rearranging this expression, the importance of commuting from other locations as a source of residents for

location i can be written as ∑
n6=i λ

L
ni|nLn

Ri
= 1−

λLii|iLi

Ri
. (B.81)

Combining equations (B.77) and (B.81), we obtain∑
n6=i λ

L
ni|nLn

Ri
= 1− λRii|i, (B.82)

where higher values of the residence own commuting share (λRii|i) again imply a local labor market that is

identify ε. Estimating the restricted equation (B.75) directly would yield very similar results: we find ε = 3.19 and φ = 4.09.

25



more closed to commuting.

Together, the residence and workplace own commuting shares (λRii|i and λ
L
ii|i respectively) are suffi cient

to recover the ratio of employment to residents (Li/Ri). From equation (B.78), we have:

λRii|i

λLii|i
=
Li
Ri
. (B.83)

Therefore, knowing whether the minimum value of these two measures is equal to the residence commuting

share (λRii|i) or the workplace commuting share (λ
L
ii|i) reveals whether a location is a net importer or net

exporter of commuters:
λRii|i > λLii|i, ⇔ Li > Ri,

λRii|i < λLii|i, ⇔ Li < Ri.
(B.84)

We find that the residence and workplace own commuting shares (λRii|i and λ
L
ii|i respectively) are strongly

positively correlated with one another, with a correlation of 0.60 from 2006-10 that is statistically significant

at the 1 percent level. This positive correlation reflects in part the fact that gross commuting flows are large

relative to net commuting flows, as explained by idiosyncratic preference draws in our model. We choose

the residence own commuting share (λRii|i) as our baseline measure, because it is both model consistent and

reported in the population census back to 1960. But we show that our results are robust to using either

the residence or workplace commuting share or the average or minimum of these two measures.

B.8 Partial Equilibrium Elasticities

In this section of the web appendix, we use the model to derive partial equilibrium elasticities that capture

the direct effect of a productivity shock on wages, employment and residents in the treated location, holding

constant all other endogenous variables at their values in the initial equilibrium. Although these partial

equilibrium elasticities do not incorporate the full set of interactions between locations that are captured

in the general equilibrium elasticities in Figure 2 in the paper, we show in Section 4.1 of the paper that

they explain some of the observed variation in these general equilibrium elasticities across locations.

We now derive these partial equilibrium elasticities of the endogenous variables of the model with

respect to a productivity shock.

Wage Elasticity: Totally differentiating the goods market clearing condition in equation (7) in the paper,

we have:

dwi
wi
wiLi + dLi

Li
wiLi =

∑
r∈N (1− πri)πriv̄rRr dLiLi −

∑
r∈N

∑
s∈N πrsπriv̄rRr

dLs
Ls

− (σ − 1)
∑

r∈N (1− πri)πriv̄rRr dwnwn
+ (σ − 1)

∑
r∈N

∑
s∈N πrsπrnv̄rRr

dws
ws

+ (σ − 1)
∑

r∈N (1− πri)πriv̄rRr dAiAi
− (σ − 1)

∑
r∈N

∑
s∈N πrsπriv̄rRr

dAs
As

+
∑

r∈N πriv̄rRr
dv̄r
v̄r

+
∑

r∈N πriv̄rRr
dRr
Rr
.

To consider the direct effect of a productivity shock in location i on wages, employment and residents in

that location, holding constant all other endogenous variables at their values in the initial equilibrium, we
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set dAs = dws = dLs = dRs = 0 for s 6= i and dv̄r = 0 for all r, which yields:

dwi
wi
wiLi + dLi

Li
wiLi =

∑
r∈N (1− πri)πriv̄rRr dLiLi − (σ − 1)

∑
r∈N (1− πri)πriv̄rRr dwiwi

+ (σ − 1)
∑

r∈N (1− πri)πriv̄rRr dAnAn
+ πiiv̄iRi

dRi
Ri
.

This implies:

dwi
dAi

Ai
wi

+ dLi
dAi

Ai
Li

=
∑

r∈N (1− πri) πriv̄rRrwiLi

(
dLi
dAi

Ai
Li

)
− (σ − 1)

∑
r∈N (1− πri) πriv̄rRrwiLi

(
dwi
dAi

Ai
wi

)
+ (σ − 1)

∑
r∈N (1− πri) πriv̄rRrwiLi

+ πiiv̄iRi
wiLi

(
dRi
dAi

Ai
Ri

)
,

which can be re-written as:

dwi
dAi

Ai
wi

+
(
dLi
dwi

wi
Li

)(
dwi
dAi

Ai
wi

)
=
∑

r∈N (1− πri) πriv̄rRrwiLi

(
dLi
dwi

wi
Li

)(
dwi
dAi

Ai
wi

)
− (σ − 1)

∑
r∈N (1− πri) πriv̄rRrwiLi

(
dwi
dAi

Ai
wi

)
+ (σ − 1)

∑
r∈N (1− πri) πriv̄rRrwiLi

+πiiv̄iRi
wiLi

(
dRi
dwi

wi
Ri

)(
dwi
dAi

Ai
wi

)
,

where we have used the fact that productivity does not directly enter the commuter market clearing

condition in equation (13) in the paper and the residential choice probabilities in equation (11) in the

paper, and hence employment and residents only change to the extent that wages change as a result of the

productivity shock. Rearranging this expression, we obtain the following partial equilibrium elasticity:

∂wi
∂Ai

Ai
wi

=
(σ − 1)

∑
r∈N (1− πri) ξri[

1 + (σ − 1)
∑

r∈N (1− πri) ξri
]

+
[
1−

∑
r∈N (1− πri) ξri

]
dLi
dwi

wi
Li
− ξii dRidwi

wi
Ri

, (B.85)

where ξri = πriv̄rRr/wiLi is the share of location i’s revenue from market r and we use the partial derivative

symbol to clarify that this derivative is not the full general equilibrium one.

Employment Elasticity: Totally differentiating the commuter market clearing condition in equation (13)

in the paper, we have:

dLi
Li

= ε
∑
r∈N

(
1− λRri|r

) dwi
wi

λRri|rRr

Ln
− ε

∑
r∈N

∑
s 6=n

λRrs|r
dws
ws

Lri
Li

+
∑
r

dRr
Rr

Lri
Li
.

To consider the direct effect of a productivity shock in location i on its employment and residents through

a higher wage in that location, holding constant all other endogenous variables at their values in the initial

equilibrium, we set dws = dLs = dRs = 0 for s 6= i, which yields:

dLi
Li

= ε
∑
r∈N

(
1− λRri|r

) λRri|rRr
Li

dwi
wi

+
λRii|iRi

Li

dRi
Ri

.

Rearranging this expression, we obtain the following partial equilibrium elasticity:

∂Li
∂wi

wi
Li

= ε
∑
r∈N

(
1− λRri|r

)
ϑri + ϑii

(
dRi
dwi

wi
Ri

)
, (B.86)
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where ϑri = λRri|rRr/Li is the share of commuters from residence r in workplace i’s employment and we

use the partial derivative symbol to clarify that this derivative is not the full general equilibrium one.

Residents Elasticity: Totally differentiating the residential choice probability (λRn in equation (11) in

the paper), we have:

dRi
Ri

Ri
L̄

= −εα
(
1− λRi

)
λRi

dPi
Pi

+ εα
∑
r 6=i

λRr λ
R
i

dPr
Pr

−ε (1− α)
(
1− λRi

)
λRi

dQi
Qi

+ ε (1− α)
∑
r 6=i

λRr λ
R
i

dQr
Qr

+ελii
dwi
wi
− ελLi λRi

dwi
wi
− ε
∑
s 6=i

λLs λ
R
i

dws
ws

.

To consider the direct effect of a productivity shock in location i on its residents through a higher wage in

that location, holding constant all other endogenous variables at their values in the initial equilibrium, we

set ∂Pr = ∂Qr = 0 for all r and ∂ws = 0 for s 6= i, which yields:

∂Ri
Ri

Ri
L̄

= ε
(
λii − λLi λRi

) ∂wi
wi

.

This implies the following partial equilibrium elasticity:

∂Ri
∂wi

wi
Ri

= ε

(
λii

λRi
− λLi

)
, (B.87)

where we use the partial derivative symbol to clarify that this derivative is not the full general equilibrium

elasticity. Using the residents elasticity (B.87) in the employment elasticity (B.86), and using the residents

and employment elasticities ((B.87) and (B.86) respectively) in the wage elasticity (B.85), we obtain the

following partial equilibrium elasticities for the productivity shock,

∂Ri
∂wi

wi
Ri

= ε
(
λRrs|r

λii
λRi
− λLi

)
,

∂Li
∂wi

wi
Li

= ε
∑

r∈N

(
1− λRri|r

)
ϑri + ϑiiε

(
λii
λRi
− λLi

)
,

∂wi
∂Ai

Ai
wi

=
(σ−1)

∑
r∈N (1−πri)ξri

[1+(σ−1)
∑
r∈N (1−πri)ξri]+[1−

∑
r∈N (1−πri)ξri]

[
ε
∑
r∈N

(
1−λRri|r

)
ϑri+εϑii

(
λii
λR
i

−λLi
)]
−ξiiε

(
λii
λR
i

−λLi
) .

B.9 Gravity and Local Employment Elasticities

We now show that the class of models consistent with a gravity equation for commuting implies heteroge-

neous local employment elasticities. Assume that commuting flows satisfy the following gravity equation:

Lni = RnBniWi, (B.88)

where Lni are commuting flows from residence n to workplace i; Rn is a residence fixed effect; Wi is a

workplace fixed effect; and Bni is a measure of the ease of commuting (an inverse measure of bilateral
commuting costs). This gravity equation (B.88) implies that the unconditional probability that a worker

28



commutes from residence n to workplace i is:

λni =
Lni∑

r∈N
∑

s∈N Lrs
=

RnBniWi∑
r∈N

∑
s∈N RrBrsWs

. (B.89)

The corresponding probability of working in location i is:

λLi =

∑
r∈N Lri∑

r∈N
∑

s∈N Lrs
=

∑
r∈N RrBriWi∑

r∈N
∑

s∈N RrBrsWs
, (B.90)

and the probability of residing in location n is:

λRn =

∑
s∈N Lns∑

r∈N
∑

s∈N Lrs
=

∑
s∈N RnBnsWs∑

r∈N
∑

s∈N RrBrsWs
, (B.91)

From equations (B.89) and (B.91), the probability of commuting from residence n to workplace i conditional

on residing in n is:

λRni|n =
λni

λRn
=

RnBniWi∑
s∈N RnBnsWs

=
BniWi∑
s∈N BnsWs

. (B.92)

Using this conditional probability (B.92), the commuter market clearing condition can be written as:

Li =
∑
n∈N

λRni|nRn =
∑
n∈N

BniWi∑
s∈N BnsWs

Rn. (B.93)

Totally differentiating this commuter market clearing condition (B.93) for a given commuting technology

Bni, we have:

dLi
Li

=
∑
r∈N

(
1− λRri|r

) dWi

Wi

λRri|rRr

Li
−
∑
r∈N

∑
s 6=i

λRrs|r
dWs

Ws

λRri|rRr

Li
(B.94)

+
∑
r∈N

dRr
Rr

λRri|rRr

Li
. (B.95)

Now consider the direct effect of a shock to the workplace fixed effect for location i (∂Wi 6= 0) evaluated

at the values of the variables for all other locations from the initial equilibrium (∂Wr = ∂Lr = ∂Rr = 0

for r 6= i):

∂Li
Li

=
∑
r∈N

(
1− λRri|r

) λRri|rRr
Li

∂Wi

Wi
+
λRii|iRi

Li

∂Ri
Ri

. (B.96)

Rearranging this expression, we obtain the following partial equilibrium local employment elasticity:

∂Li
∂Wi

Wi

Li
=
∑
r∈N

(
1− λRri|r

)
ϑri︸ ︷︷ ︸

commuting

+ ϑii

(
∂Ri
∂Wi

Wi

Ri

)
︸ ︷︷ ︸

migration

, (B.97)

where ϑri = λRri|rRr/Li is the share of commuters from residence r in workplace i’s employment and we

use the partial derivative symbol to clarify that this derivative is not the full general equilibrium one. The

first term on the right-hand side of equation (B.97) captures the impact of the shock to the workplace
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fixed effect (Wi) on employment in location i through commuting. The second term on the right-hand side

captures its impact on employment in location i through migration.

This partial equilibrium local employment elasticity (B.97) takes the same form as in the paper (and

in the previous section of this web appendix above), where in our model the shock to the workplace fixed

effect for location i (Wi) corresponds to a shock to the wage at that workplace, which in turn depends on

the shock to productivity at that workplace. Therefore our result of a variable local employment elasticity

that depends on access to commuters in surrounding locations is a generic feature of the class of models

that are consistent with a gravity equation for commuting. We show in the main paper that observed

commuting flows are characterized by a strong gravity equation relationship.

To show empirically that the heterogeneity in local employment elasticities is a generic implication of

the gravity equation, we compute the first term on the right-hand side of equation (B.97) that captures

commuting. This first term depends solely on observed variables in the initial equilibrium: (i) the prob-

ability of commuting to workplace i conditional on living in residence r and (ii) the share of commuters

from residence r in workplace i’s employment. In Figure B.6, we show the estimated kernel density of the

commuting component of the partial employment elasticity (black line) for counties, and the 95 percent

confidence intervals (gray shading). As apparent from comparing Figure B.6 to Figure 2 in the paper, the

heterogeneity in county local employment elasticities largely reflects the heterogeneity in this first commut-

ing term, as confirmed in the regressions in Table 2 in the paper. Figure B.7 shows the same commuting

component of the partial employment elasticity, but for CZs rather than counties. Comparing Figure B.7

to Figure C.13 in this web appendix, we find that the heterogeneity in CZ local employment elasticities

also largely reflects the heterogeneity in this first commuting term.
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Figure B.6: Commuting component of partial employment elasticity for counties

B.10 Commuting with Multiple Worker Types

In this section of the web appendix, we consider a generalization of our model to allow for multiple worker

types, which differ in their valuation of amenities and the variance of their idiosyncratic preferences. These
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Figure B.7: Commuting component of partial employment elasticity for commuting zones (CZs)

differences in variance in turn imply that the multiple types differ in the responsiveness of their migration

and commuting decisions to economic characteristics of locations (such as wages). This extension of our

Fréchet model to multiple worker types is analogous to the extension of the logit model to multiple types

in the mixed logit model (see for example McFadden and Train 2000), which is in turn closely related

to the random coeffi cients model of Berry, Levinsohn and Pakes (1995). We show that our prediction of

heterogeneous local employment elasticities across locations is robust to this extension and that there is

now an additional source of heterogeneity relative to our baseline specification.

In particular, suppose that there are multiple types of workers (e.g. skilled versus unskilled) indexed

by z = 1, . . . , Z. There is a separate labor market and a separate wage for each type of worker z in each

workplace i (wzi ). Workers of a given type have idiosyncratic preferences over workplace and residence

locations. However, the distributions of these idiosyncratic preferences differ across types, in terms of both

their average preferences for the amenities for each bilateral commute (as determined by Bz
ni) and the

variance of their idiosyncratic preferences across these bilateral commutes (as determined by εz):

Gzni (b) = e−B
z
nib
−εz
. (B.98)

B.10.1 Commuting Decisions for Each Worker Type

Under these assumptions, commuting decisions for each worker type are characterized by a gravity equation,

which is analogous to that in our baseline specification with a single worker type. The probability that

workers of type z choose to work in location i conditional on living in location n is:

πzni|n =
Bz
ni (wzi /κ

z
ni)

εz∑
s∈N B

z
ns (wzs/κ

z
ns)

εz . (B.99)
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The corresponding commuter market clearing condition for workers of type z is:

Lzi =
∑
r∈N

Bz
ri (wzi /κ

z
ri)

εz∑
s∈N B

z
rs (wzs/κ

z
rs)

εzR
z
r , (B.100)

which yields a partial elasticity of employment for workers of type z with respect to their wage that takes

a similar form as for our baseline specification with a single worker type:

∂Lzi
∂wzi

wzi
Lzi

= εz
∑
r∈N

(
1− λRzri|r

)
ϑzri + ϑzii

(
∂Rzi
∂wzi

wzi
Rzi

)
, (B.101)

where ϑzri = λRzri|rR
z
r/L

z
i is the share of commuters from residence r in workplace i’s employment for workers

of type z.

B.10.2 Aggregate Commuting Decisions

Aggregating commuting decisions across worker types, the total number of workers that choose to work in

location i is:

Li =
Z∑
z=1

Lzi . (B.102)

Now consider the elasticity of total employment in location i (Li) with respect to a common increase in

the wages of all worker types in that location:

dwzi = dwki = dwi > 0, ∀z, k. (B.103)

Differentiating with respect to wages in equation (B.102), we have:

dLi =

Z∑
z=1

∂Lzi
∂wzi

dwzi , (B.104)

which for a common change in wages in equation (B.103) can be re-written as:

dLi
dwi

=
Z∑
z=1

∂Lzi
∂wzi

, (B.105)

which can be further re-written as:

dLi
dwi

wi
Li

=

Z∑
z=1

(
∂Lzi
∂wzi

wzi
Lzi

)(
Lzi /Li
wzi /wi

)
. (B.106)

Combining equations (B.101) and (B.106), the local employment elasticity for each location is a weighted

average of the local employment elasticities for each worker type for that location, where the weights

depend on employment shares and relative wages. Therefore, local employment elasticities continue to be

heterogeneous across locations in this extension of the model to incorporate multiple worker types, but

there is now an additional source of heterogeneity relative to our baseline specification. First, the local
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employment elasticity for a given worker type is heterogeneous across locations depending on commuting

networks for that worker type (equation (B.101)). This first source of heterogeneity is analogous to that

in our baseline specification with a single worker type. Second, the composition of worker types and their

relative wages can differ across locations, which provides an additional source of heterogeneity in local

employment elasticities that is not present in our baseline specification (as in equation (B.106)). Taken

together, this extension further reinforces our point that the local employment elasticity is not a structural

parameter.

B.11 Congestion in Commuting

In this section of the web appendix, we generalize our baseline specification to allow for congestion in

commuting. Assuming that congestion costs are a power function of the volume of commuters, we show

that congestion affects the interpretation of the estimated parameters in our commuting gravity equation,

but leaves the model’s prediction of heterogeneous employment elasticities across locations unchanged. In

particular, we assume that each worker draws idiosyncratic preferences for each pair of residence n and

workplace i from the following distribution:

Gni (b) = e−BniL
χ
nib
−ε
, (B.107)

where the scale parameter of this distribution (BniL
χ
ni) is a power function of the volume of commuters.

Our baseline specification corresponds to the special case in which χ = 0; χ < 0 corresponds to congestion

in commuting decisions, such that the attractiveness of commuting from residence n to workplace i depends

negatively on the volume of commuters. Under these assumptions, the probability that a worker commutes

from residence n to workplace i is:

λni =
Lni
L̄

=
BniL

χ
ni

(
κniP

α
nQ

1−α
n

)−ε
wεi∑

r∈N
∑

s∈N BrsL
χ
rs

(
κrsPαr Q

1−α
r

)−ε
wεs
, (B.108)

and expected utility conditional on choosing a given bilateral commute (which is the across all bilateral

commutes) is equal to:

Ū = E [Uniω] = Γ

(
ε− 1

ε

)[∑
r∈N

∑
s∈N

BrsL
χ
rs

(
κrsP

α
r Q

1−α
r

)−ε
wεs

] 1
ε

all n, i ∈ N. (B.109)

Combining equations (B.108) and (B.109), the flow of workers that choose to commute from residence n

to workplace i can be written as:

Lni =

(
Ū

Γ

)−ε
BniL

χ
ni

(
κniP

α
nQ

1−α
n

)−ε
wεi L̄, (B.110)

which can be in turn re-written as:

Lni =

(
Ū

Γ

)− ε
1−χ

B
1

1−χ
ni

(
κniP

α
nQ

1−α
n

)− ε
1−χ w

ε
1−χ
i L̄

1
1−χ . (B.111)
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Dividing equation (B.111) by its sum across all bilateral pairs, the probability that a worker commutes

from residence n to workplace i can be equivalently expressed as:

λni =
Lni∑

r∈N
∑

s∈N Lrs
=
Lni
L̄

=
B

1
1−χ
ni

(
κniP

α
nQ

1−α
n

)− ε
1−χ w

ε
1−χ
i∑

r∈N
∑

s∈N B
1

1−χ
rs

(
κrsPαr Q

1−α
r

)− ε
1−χ w

ε
1−χ
s

, (B.112)

which takes exactly the same form as in our baseline specification, except that the exponent on wages,

which we interpret as ε in our baseline specification, should be interpreted as ε/(1 − χ) in this extended

specification. Similarly, the exponents on commuting costs (κni), consumption goods price indices (Pn) and

land prices (Qn) are all now multiplied by 1/(1− χ). Finally, the values of bilateral amenities implied by

this commuting probability, which we interpret as Bni in our baseline specification, should be interpreted

as B1/(1−χ)
ni in this extended specification.

Using the unconditional commuting probabilities (B.112), we can also solve for the probability of

commuting to workplace i conditional on living in residence n:

λRni|n =
B

1
1−χ
ni (wi/κni)

ε
1−χ∑

s∈N B
1

1−χ
ns (ws/κns)

ε
1−χ

. (B.113)

The corresponding commuter market clearing condition is:

Li =
∑
r∈N

B
1

1−χ
ri (wi/κri)

ε
1−χ∑

s∈N B
1

1−χ
rs (ws/κrs)

ε
1−χ

Rr, (B.114)

which yields a partial elasticity of employment with respect to the wage that takes a similar form as in our

baseline specification:
∂Li
∂wi

wi
Li

=
ε

1− χ
∑
r∈N

(
1− λRri|r

)
ϑri + ϑii

(
∂Ri
∂wi

wi
Ri

)
, (B.115)

where ϑri = λRri|rRr/Li is the share of commuters from residence r in workplace i’s employment. In this

extended specification (B.115), the estimated coeffi cient on the first term on the right-hand side is again

the exponent on wages from the gravity equation for commuting (B.112), but this estimated coeffi cient is

now interpreted as ε/(1− χ) rather than as ε.

Therefore, taking the results of this section together, the introduction of congestion costs that are

a power function of the volume of commuters affects the interpretation of the estimated parameters in

our gravity equation for commuting, but leaves the model’s prediction of heterogeneous elasticities of

employment with respect to wages across locations unchanged.

B.12 Non-traded Goods

In the baseline version of the model in the paper, we introduce commuting into a canonical new economic

geography model with a single tradable consumption goods sector and land as the only non-traded good.

We focus on the implications of introducing commuting into this canonical model for the elasticity of local

employment with respect to local labor demand shocks. In this section of the web appendix, we generalize
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our analysis to incorporate non-traded consumption goods. We show that the commuter market clearing

condition and the local elasticity of employment with respect to wages take the same form as in our baseline

specification without non-traded goods.

The consumption index for worker ω residing at location n and working at location i is now assumed

to take the following form:

Uniω =
bniω
κni

(
CNnω
αN

)αN (CTnω
αT

)αT ( Hnω

1− αN − αT

)1−αN−αT
, (B.116)

αN , αT > 0, 0 < αN + αT < 1,

where CNnω is consumption of the non-traded good; CTnω is consumption of the traded good; and all other

terms are defined in the same way as in our baseline specification. As in our baseline specification, land is

owned by immobile landlords, who receive worker expenditure on residential land as income, and consume

only goods where they live. Therefore, total expenditure on consumption goods (traded plus non-traded)

equals the fraction αN + αT of the total income of residents plus the entire income of landlords (which

equals the fraction 1− αN − αT ) of the total income of residents):

PnCn = (αN + αT )v̄nRn + (1− αN − αT )v̄nRn = v̄nRn. (B.117)

Utility maximization implies that a constant fraction αN/(αN + αT ) of total expenditure on consumption

goods is allocated to the non-traded sector:

PNnCNn =
αN

αN + αT
PnCn =

αN
αN + αT

v̄nRn, (B.118)

and the remaining fraction is allocated to the traded sector:

PTnCTn =
αT

αN + αT
PnCn =

αT
αN + αT

v̄nRn, (B.119)

The non-traded good is assumed to be produced under conditions of perfect competition and according to

a constant returns to scale technology with a unit labor requirement:

YNn = LNn, (B.120)

where YNn is output of the non-traded good in location n and LNn is employment in the non-traded sector

in that location. Perfect competition and constant returns to scale imply that the price of the non-traded

good is equal to the wage:

PNn = wn. (B.121)

Combining this result with utility maximization (B.118), and using goods market clearing for the non-

traded good (CNn = YNn) and the production technology (B.120), we find that the wage bill in the

non-traded sector is a constant share of residential income:

wnLNn =
αN

αN + αT
v̄nRn. (B.122)
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Using utility maximization and goods market clearing for tradeables, the wage bill in the traded sector is

fraction of residential income across all locations:

wnLTn =
αT

αN + αT

∑
r∈N

πrnv̄rRr. (B.123)

Total employment equals the sum of employment in the non-traded and traded sectors:

Ln = LTn + LNn =
αN

αN + αT

v̄nRn
wn

+
αT

αN + αT

∑
r∈N

πrnv̄rRr
wn

. (B.124)

The commuter market clearing condition requires that total employment in each location equals the measure

of workers that choose to commute to that location and takes the same form as in our baseline specification

without the non-traded sector:

Ln =
∑
r∈N

Brn (wn/κrn)ε∑
s∈N Brs (ws/κrs)

εRr. (B.125)

Given the same commuter market clearing condition, the partial elasticity of employment with respect to

the wage takes the same form as in our baseline specification:

∂Ln
∂wn

wn
Ln

= ε
∑
r∈N

(
1− λRrn|r

)
ϑrn + ϑnn

(
∂Rn
∂wn

wn
Rn

)
, (B.126)

where ϑrn = λRrn|rRr/Ln is the share of commuters from residence r in workplace n’s employment.

Therefore, although the presence of non-traded goods can affect the elasticity of wages with respect to

productivity, it leaves unchanged the model’s prediction of heterogeneous local employment elasticities with

respect to wages. Intuitively, when deciding where to work, workers care about the wage, and not whether

this wage is paid in the traded or non-traded sector. Therefore, the gravity equation for commuting takes

the same form as in our baseline specification without the non-traded sector, which in turn implies that the

elasticity of local employment with respect to wages takes the same form as in our baseline specification

without the non-traded sector.

B.13 Landlords Consume Residential Land

In this subsection of the web appendix, we show that allowing landlords to consume residential land in

addition to consumption goods is straightforward, and merely results in less elegant expressions. Under

this alternative assumption, consumption goods expenditure that was previously given by equation (4) in

the paper is now instead given by:

PnCn = α [1 + (1− α)] v̄nRn. (B.127)

Using this relationship, the equality between income and expenditure that was previously given by equation

(7) in the paper is now instead given by:

wiLi = α [1 + (1− α)]
∑
n∈N

πniv̄nRn, (B.128)
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and the land market clearing condition that was previously given by equation (5) in the paper is now

instead given by:

Qn = (1− α) [1 + (1− α)]
v̄nRn
Hn

. (B.129)

As in our baseline specification in which landlords consume only consumption goods, the general equilibrium

of the model can be referenced by the following vector of six variables {wn, v̄n, Qn, Ln, Rn, Pn}Nn=1

and a scalar Ū . Given this equilibrium vector and scalar, all other endogenous variables of the model

can be determined. This equilibrium vector solves the following six sets of equations: income equals

expenditure (B.128), land market clearing (B.129), expected labor income (which remains as in equation

(14) in the paper), workplace choice probabilities (which continue to equal equation (11) in the paper for

Ln), residence choice probabilities (which are still equal to equation (11) in the paper for Rn), price indices

(again equal to equation (8) in the paper), and the labor market clearing condition (which remains the

same as L̄ =
∑

n∈N Rn =
∑

n∈N Ln). This system of equations for general equilibrium is exactly the same

as in our baseline specification in which landlords consume only consumption goods, except for the terms

in α that appear in equations (B.128) and (B.129). Therefore the properties of this version of the model in

which landlords consume residential land as well as consumption goods are similar to those in our baseline

specification. In particular, the model continues to predict heterogeneous local employment elasticities

across locations.

B.14 Alternative Production Technology

In this subsection of the web appendix, we show how the production technology can be generalized to

introduce intermediate inputs, commercial land use and physical capital. We show that the model contin-

ues to imply a gravity equation for commuting flows and hence continues to predict heterogeneous local

employment elasticities. In our baseline specification in the paper, we assume the following total cost

function for tradeable varieties:

Λi(j) = li(j)wi =

(
F +

xi(j)

Ai

)
wi. (B.130)

We now consider a generalization of this production technology, in which total costs are a Cobb-Douglas

function of labor (with wage wi), intermediate inputs (with price Pi), commercial land (with rental rate

Qi) and physical capital (with common rental rate R). We follow Krugman and Venables (1995) and Eaton
and Kortum (2002) in assuming that intermediate inputs enter the total cost function through the same

CES aggregator as for final consumption. Perfect capital mobility ensures that the capital rental rate is

the same for all locations (Ri = R for all i). Therefore the total cost function now becomes:

Λi(j) =

(
F +

xi(j)

Ai

)
w
βL
i Q

βQ
i RβRP 1−βL−βQ−βR

i . (B.131)

The probability that a worker chooses to live in location n and work in location i remains the same as

in equation (10) in the paper, which in turn implies that the commuter market clearing condition takes
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exactly the same form as in our baseline specification:

Ln =
∑
r∈N

Brn (wn/κrn)ε∑
s∈N Brs (ws/κrs)

εRr. (B.132)

Given the same commuter market clearing condition, the partial elasticity of employment with respect to

the wage takes the same form as for our baseline specification:

∂Ln
∂wn

wn
Ln

= ε
∑
r∈N

(
1− λRrn|r

)
ϑrn + ϑnn

(
∂Rn
∂wn

wn
Rn

)
, (B.133)

where ϑrn = λRrn|rRr/Ln is the share of commuters from residence r in workplace n’s employment.

In general, incorporating additional factors of production affects the partial elasticity of wages with

respect to productivity, but it leaves the partial elasticity of employment with respect to wages in equation

(B.133) unchanged. The reason is that the model’s prediction of heterogeneous local employment elasticities

with respect wages is a generic implication of a gravity equation for commuting.

B.15 Heterogeneity in Effective Units of labor

In this section of the web appendix, we consider an alternative specification of the model, with an idio-

syncratic draw to effective units of labor instead of amenities. Under this alternative specification, the

idiosyncratic draw (bniω) no longer enters the direct utility function, which is now:

Uniω =
1

κni

(
Cnω
α

)α( Hnω

1− α

)1−α
. (B.134)

However, the idiosyncratic draw continues to enter the indirect utility function in exactly the same form

as in our baseline specification, because worker income now depends on the wage per effective unit of labor

(wi) times the realization for effective units of labor (bniω):

Uniω =
bniωwi

κniPαnQ
1−α
n

. (B.135)

Therefore the probability that a worker chooses to live in location n and work in location i takes exactly

the same form as in our baseline specification:

λni =
Bni

(
κniP

α
nQ

1−α
n

)−ε
wεi∑

r∈N
∑

s∈N Brs
(
κrsPαr Q

1−α
r

)−ε
wεs
. (B.136)

The main difference between our baseline specification and this alternative specification is the interpretation

of wages in the data. In our baseline specification in terms of amenities, the observed wage for each

workplace in the data corresponds directly to the wage in the model, and worker mobility ensures that

expected utility is equalized across all workplace-residence pairs (but real wages without taking into account

amenities differ). In contrast, in this alternative specification in terms of effective units of labor, the

observed wage for each workplace in the data corresponds to the wage per effective unit of labor times

average effective units of labor conditional on choosing that workplace, and worker mobility ensures that
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expected real earnings after taking into account average effective units of labor are equalized across all

workplace-residence pairs.

B.16 Commuting Costs in Terms of Labor

In this section of the web appendix, we consider an alternative specification of the model, in which com-

muting costs are modeled as a reduction in effective units of labor instead of as a reduction in utility.

Under this alternative specification, the iceberg commuting cost (κni) no longer enters the direct utility

function, which is now:

Uniω = bniω

(
Cnω
α

)α( Hnω

1− α

)1−α
. (B.137)

However, the iceberg commuting cost continues to enter the indirect utility function in exactly the same

form as in our baseline specification, because worker income now depends on the wage per effective unit

of labor (wi) times effective units of labor net of commuting (1/κni):

Uniω =
bniωwi

κniPαnQ
1−α
n

. (B.138)

Therefore the probability that a worker chooses to live in location n and work in location i takes exactly

the same form as in our baseline specification:

λni =
Bni

(
κniP

α
nQ

1−α
n

)−ε
wεi∑

r∈N
∑

s∈N Brs
(
κrsPαr Q

1−α
r

)−ε
wεs
. (B.139)

The main difference between our baseline specification and this alternative specification is whether com-

muting reduces utility or the labor available for production. One way of interpreting this difference is

whether workers absorb the commuting cost through reduced leisure or work time.

B.17 Partial Local and National Ownership of Land

In our baseline specification in the paper, we assume that land is owned by immobile landlords, who

receive worker expenditure on residential land as income, and consume only goods where they live. This

assumption allows us to incorporate general equilibrium effects from changes in the value of land, without

introducing an externality into workers’location decisions from the local redistribution of land rents. In

this section of the web appendix, we report a robustness test, in which we instead allow for partial local

distribution of land rents (as in Caliendo et al. 2014). In particular, we assume that the share (1− ιn) of

expenditure on residential land is redistributed lump sum to local residents, while the remaining share (ιn)

is paid into a national portfolio owned in equal shares by residents throughout the economy. We choose

the land ownership share (ιn) to rationalize the trade deficit for each county in the data. We show that our

findings for heterogeneous local employment elasticities are robust to these alternative assumptions about

the ownership of land.
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B.17.1 Expenditure and Income

Let Xn denote the total expenditure of residents in location n. A fraction (1− α) of this expenditure is

allocated to land. Of this expenditure on land, we assume that a fraction (1− ιn) is redistributed lump

sum to local residents, while the remaining fraction ιn is paid into a national portfolio owned in equal

shares by residents throughout the economy. The per capita return from the national land portfolio is

given by

ξ ≡
∑

i∈N ιi (1− α)Xi∑
iRi

. (B.140)

Using this definition, expenditure in location n can be written as the sum of residential income, nationally-

redistributed land rent, and locally-redistributed land rent

Xn = v̄nRn + ξRn + (1− ιn) (1− α)Xn, (B.141)

and the trade deficit (equal to expenditure minus income) for each location can be expressed as

Dn ≡ Xn − (v̄nRn +QnHn) = ξRn − ιi (1− α)Xi. (B.142)

Using equation (B.142) to substitute for ξRn in equation (B.141), expenditure in location n can be equiv-

alently written as

Xn =
v̄nRn +Dn

α
. (B.143)

B.17.2 Calibrating ι to Rationalize the Observed Trade Deficits

We calibrate the land ownership shares (ιn) for each location n to rationalize the observed trade deficits for

each location in the initial equilibrium in the data. Using expenditure (B.141), and denoting the population

share of each location in the initial equilibrium by ρn ≡ Rn/
∑

iRi, we have

Xn = v̄nRn + ρn
∑
i∈N

ιi (1− α)Xi + (1− ιn) (1− α)Xn. (B.144)

Using equations (B.143) and (B.144), we have

Dn = αXn − v̄nRn = ρn
∑
i∈N

ιi (1− α)Xi − ιn (1− α)Xn, (B.145)

which provides a linear system of equations for each location that can be solved for the unique values of

ιn that rationalize the observed trade deficits as an initial equilibrium of the model.

B.17.3 General Equilibrium

We now examine the implications of these alternative assumptions about land ownership for the system of

equations that determines general equilibrium. First, workplace-residence choice probabilities (λni) take a
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similar form as in our baseline specification in the paper

λni =
Bni

(
κniP

α
nQ

1−α
n

)−ε
wεi∑

r∈N
∑

s∈N Brs
(
κrsPαr Q

1−α
r

)−ε
wεs
. (B.146)

Therefore the expressions for the number of residents (Rn) and workers (Li) in each location take the same

form as in our baseline specification in the paper

Rn = L̄
∑
i∈N

λni, (B.147)

Li = L̄
∑
n∈N

λni. (B.148)

Residential expenditure and income are related through equation (B.141), as reproduced here

Xn = v̄nRn + ξRn + (1− ιn) (1− α)Xn, (B.149)

where expected residential income (v̄n) is given by

v̄n =
∑
i∈N

λRni|nwi. (B.150)

and nationally-redistributed rent per capita (ξ) in equation (B.140) can be written as

ξ =

∑
i∈N ιi (1− α)Xi

L̄
. (B.151)

Workplace income equals expenditure on goods produced in that location

wiLi =
∑
n∈N

πniαXn, (B.152)

where the bilateral trade shares (πni) are given by

πni =
Li (dniwi/Ai)

1−σ∑
k∈N Lk (dnkwk/Ak)

1−σ . (B.153)

Finally, the land rent (Qn) and price index for tradeables (Pn) are given by

Qn = (1− α)
Xn

Hn
, (B.154)

Pn =
σ

σ − 1

(
Ln

σFπnn

) 1
1−σ dnnwn

An
. (B.155)

B.17.4 Computational Algorithm for Counterfactual Changes

We now discuss the computational algorithm that we use to solve this system of equations for a counter-

factual equilibrium given the model’s parameters {α, σ, ε, δ, κ}, our calibrated land ownership shares ιn,
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and assumed changes in the exogenous variables of the model {Ân, B̂n, κ̂ni, d̂ni}. We start with initial

guesses for the proportional changes in commuting probabilities, wages and expenditure: {λ̂ni, ŵi, X̂i}.

Using these initial guesses in the system of equations for general equilibrium, we compute the following

proportional changes in the endogenous variables of the model

v̂
(t)
n =

1

vn

∑
i∈N

B̂niλni

(
ŵ

(t)
i /κ̂ni

)ε
∑

s∈N B̂nsλns
(
ŵ

(t)
s /κ̂ns

)ε ŵ(t)
i wi, (B.156)

L̂
(t)
i =

L̄

Li

∑
n

λniλ̂
(t)

ni , (B.157)

R̂(t)
n =

L̄

Rn

∑
i

λniλ̂
(t)

ni , (B.158)

which are functions of the observed values of variables in the initial equilibrium and our guesses. From

the land market clearing condition (B.154), the proportional change in land rents equals our guess for the

proportional change in expenditure

Q̂(t)
n = X̂(t)

n . (B.159)

Using the proportional change in employment from equation (B.157) and our guess for the proportional

change in wages, we can solve for the proportional change in trade shares from equation (B.153)

π̂
(t)
ni =

L̂
(t)
i

(
d̂niŵ

(t)
i /Âi

)1−σ

∑
k∈N πnkL̂

(t)
k

(
d̂nkŵ

(t)
k /Âk

)1−σ . (B.160)

Using the proportional change in employment from equation (B.157), the proportional change in trade

shares from equation (B.160) and our guess for the proportional change in wages, we can solve for the

proportional change in the tradeables price index from equation (B.155)

P̂ (t)
n =

(
L̂

(t)
n

π̂(t)
nn

) 1
1−σ ŵ

(t)
n

Ân
. (B.161)

Using our guess for the proportional change in expenditure (X̂(t)
i ), we can also compute the counterfactual

change in nationally-redistributed rent per capita from equation (B.151)

ξ̂
(t)

=
1

ξ

∑
i∈N ιi (1− α)XiX̂i

L̄
. (B.162)

Finally, we use (B.156)-(B.162) in the equality between income and expenditure (B.152), the workplace-

residence choice probabilities (B.146) and expenditure (B.149) to solve for the implied proportional changes

42



in wages, commuting probabilities and expenditure as

w̃
(t+1)
i =

1

wiLiL̂
(t)
i

∑
n∈N

απniπ̂
(t)
niXnX̂

(t)
n , (B.163)

λ̃
(t+1)
ni =

B̂ni

(
P̂

(t)α
n Q̂

(t)1−α
n

)−ε (
ŵ

(t)
i /κ̂ni

)ε
∑

r∈N
∑

s∈N B̂rsλrs
(
P̂

(t)α
r Q̂

(t)1−α
r

)−ε (
ŵ

(t)
s /κ̂rs

)ε , (B.164)

X̃(t+1)
n =

v̄nRnv̂nR̂n + ξRnξ̂
(t)
R̂

(t)
n + (1− ιn) (1− α) X̂

(t)
n

Xn
. (B.165)

Using these solutions, we update our guesses for wages, commuting probabilities, and expenditures as

ŵ
(t+1)
i = ζŵ

(t)
i + (1− ζ) w̃

(t+1)
i , (B.166)

λ̂
(t+1)

i = ζλ̂
(t)

i + (1− ζ) λ̃
(t+1)
i , (B.167)

X̂
(t+1)
i = ζX̂

(t)
i + (1− ζ) X̃(t+1)

n , (B.168)

where ζ ∈ (0, 1) is an adjustment factor.

B.17.5 Local Employment Elasticities

As in Section 4 in the paper, we compute 3,111 counterfactual exercises where we shock each county with

a 5 percent productivity shock (holding productivity in all other counties and holding all other exogenous

variables constant). Figure B.8 shows the estimated kernel densities for the distributions of the general

equilibrium elasticities of employment (solid blue line) and residents (dashed red line) with respect to the

productivity shock across these treated counties. We also show the 95 percent confidence intervals around

these estimated kernel densities (gray shading). This figure is analogous to Figure 2 in the paper, but

reports results for this robustness specification, in which the local rents from land are partially redistributed

locally and partially contributed to a global portfolio. We continue to find substantial heterogeneity in local

employment elasticities that is around the same magnitude as in our baseline specification. This pattern

of results is consistent with the heterogeneity in local employment elasticities being a generic prediction

of a gravity equation for commuting flows. As a result, our findings of heterogeneous local employment

elasticities are robust across different assumptions about the ownership of land.

C Additional Empirical Results

In this part of the web appendix, we report additional empirical results and robustness tests. Subsection

C.1 shows that the model’s predictions for land prices are strongly positively correlated with median house

prices in the data. Subsection C.2 reports standardized coeffi cients for the regressions examining the

determinants of the local employment elasticity in Table 2 in the paper.

Subsection C.3 reports additional results from estimating “difference-in-differences” regressions using

the counterfactuals from the model, as discussed in Subsection 4.1 of the paper. We show that the model-

suggested controls are more successful in explaining the heterogeneous treatment effects than the standard
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Figure B.8: Kernel density for the distribution of employment and residents elasticities in response to a
productivity shock across counties (partial local and national ownership of land)

empirical controls from the local labor markets literature. Subsection C.4 shows that the heterogeneity in

local employment elasticities remains if we shock counties with spatially-correlated shocks reproducing the

industrial composition of the U.S. economy.

Subsection C.5 reports additional results from the extension of the model to incorporate heterogeneous

positive supply elasticities for developed land following Saiz (2010), as considered in Subsection 4.2 of

the paper. Subsection C.6 provides further evidence on the role of commuting in generating heterogene-

ity in local employment elasticities in our quantitative model. We show that there is substantially less

heterogeneity in these elasticities in a counterfactual world with no commuting between counties.

Subsection C.7 reports additional results for the MDP experiment from Section 5 of the paper. Sub-

section C.8 reports the shift-share decompositions of cross-section and time-series variation in employment

discussed in Section 5 of the paper.

Subsection C.10 reports counterfactuals for a 20 percent reduction in the costs of trading costs, both

starting from the initial equilibrium in the data with commuting, and starting from a counterfactual

equilibrium with no commuting. Subsection C.11 shows that we continue to find substantial heterogeneity

in local employment elasticities when we replicate our entire quantitative analysis for commuting zones

(CZs) rather than for counties.
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C.1 Land Prices

In this subsection of the web appendix, we show that the model’s predictions for land prices are strongly

positively correlated with observed median house prices. In our baseline specification, we assume Cobb-

Douglas utility and interpret land area as geographical land area. In Figure C.1, we show the predictions

for land prices from this baseline specification against median house prices in the data. We find a strong

and approximately log linear relationship, with a regression slope coeffi cient of 2.04 and R-squared of 0.26.

Therefore, although our model is necessarily an abstraction, and there are a number of potential sources of

differences between land prices in the model and median house prices in the data, we find that the model

has strong predictive power. In Section 4.2 of the paper, we generalize this baseline specification to allow

for a positive supply elasticity for developed land that is heterogeneous across locations.
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Figure C.1: Land Prices in the Model and House Prices in the Data
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C.2 Standardized Employment Elasticities Regression

Table C.1 reports the estimated coeffi cients from the same set of regressions presented in Table 2 in the

paper, after standardizing all variables to make their means zero and standard deviations one. Hence,

all coeffi cients can be interpreted as the fraction of standard deviations by which the dependent variable

changes with a one standard deviation change in each independent variable.

1 2 3 4 5 6 7 8 9

Dependent Variable: Elasticity of Employment

logLi -0.012 0.036 -0.217** 0.147** 0.132**
(0.056) (0.046) (0.025) (0.018) (0.017)

logwi -0.126** -0.100** -0.162** -0.166**
(0.037) (0.024) (0.010) (0.010)

logHi -0.621** -0.372** 0.007 0.020
(0.045) (0.033) (0.020) (0.020)

logL,−i 0.429** -0.097** -0.097**
(0.061) (0.032) (0.033)

log w̄−i 0.090* 0.072** 0.091**
(0.037) (0.016) (0.017)

λRii|i -0.945**
(0.019)∑

n∈N (1− λRni)ϑni 1.462** 1.343**
(0.101) (0.093)

ϑii
(
λii
λRi
− λLi

)
0.487** 0.322**

(0.112) (0.093)
∂wi
∂Ai

Ai
wi

-0.110** -0.090**
(0.013) (0.016)

∂wi
∂Ai

Ai
wi
·
∑
r∈N

(
1− λrn|r

)
ϑrn 0.544** 0.576**

(0.047) (0.048)
∂wi
∂Ai

Ai
wi
· ϑii

(
λii
λRi
− λLi

)
-0.428** -0.444**

(0.051) (0.048)

Constant -0.000 -0.000 0.000 0.000 -0.000 0.000 -0.000 -0.006 -0.006
(0.090) (0.090) (0.046) (0.036) (0.031) (0.028) (0.029) (0.026) (0.026)

R2 0.00 0.00 0.40 0.51 0.89 0.93 0.93 0.95 0.95
N 3,111 3,111 3,111 3,081 3,111 3,111 3,111 3,081 3,081

Note: L,−n ≡
∑
r:drn≤120,r 6=n Lr is the total employment in n neighbors whose centroid is no more than 120km away;

w̄−n ≡
∑
r:drn≤120,r 6=n

Lr
L,−n

wr is the weighted average of their workplace wage. All variables are standardized. Standard

errors are clustered by state. ∗ denotes significance at the 5 percent level; ∗∗ denotes significance at the 1 percent level.

Table C.1: Explaining the general equilibrium local employment elasticities to a 5 percent productivity
shock (standardized regression)
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C.3 Additional Treatment Heterogeneity Results

In this subsection of the web appendix, we supplement the results reported in Subsection 4.1 of the

paper, and provide further evidence that the model-suggested controls are more successful in explaining

the heterogeneity in treatment effects in our quantitative model than the standard empirical controls from

the local labor markets literature. We compute the deviation between the general equilibrium elasticity

in the model and the predicted elasticity from the reduced-form regression for each of the control groups

(i)-(v) discussed in the paper

βi =
a1 + a3Xit

0.05
− dLi
dAi

Ai
Li
,

where we scale the regression estimates by size of the productivity shock.

In Figure C.2, we show that this deviation between the general equilibrium elasticity and the “differences-

in-differences”prediction is systematically related to the size of the general equilibrium employment elas-

ticity in the model. For the specifications using reduced-form controls (left panel) and model-generated

controls (right panel), we display the results of locally-linear weighted least squares regressions of the de-

viation term βi against the general equilibrium employment elasticity dLi
dAi

Ai
Li
, along with 95% confidence

intervals. In each panel, we show the results of these regressions for each group of control counties, where

the results using random county ((i) above), non-neighbors ((iv) above) and all counties ((v) above) are

visually indistinguishable.

Using reduced-form controls (left panel) and all definitions of the control group except for the closest

county (red line), we find that low elasticities are substantially over-estimated, while high elasticities are

substantially under-estimated. This pattern of results is intuitive: low and high elasticities occur where

commuting linkages are weak and strong respectively. A reduced-form specification that ignores commuting

linkages cannot capture this variation and hence tends to overpredict for low elasticities and underpredict

for high elasticities. This effect is still present for the closest county control group (red line), as reflected

in the downward-sloping relationship between the deviation term and the general equilibrium elasticity.

However, the closest county tends to be negatively affected by the productivity shock, which shifts the

distribution of predicted treatment effects (and hence the distribution of the deviation term) upwards.

Using model-suggested controls (right panel) and all definitions of the control group except for the

closest county (red line), we find that the deviation term for the “difference-in-differences”predictions is

close to zero and has a much weaker downward-sloping relationship with the general equilibrium elasticity

in the model. The exception is the deviation term using the closest-county as a control, which has an

upward-sloping relationship with the general equilibrium elasticity in the model and becomes large for

high values of this elasticity. The reason is that the productivity shock to treated counties has larger

negative effects on the closest county for higher values of the general equilibrium elasticity in the model,

which leads to a larger upward shift in the distribution of the deviation term. This pattern of results again

highlights the potentially large discrepancies from the general equilibrium elasticity from using contiguous

locations as controls in the presence of spatial linkages in goods and factor markets.
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Figure C.2: Average deviation term βi vs. general equilibrium employment elasticity

C.4 Spatially Correlated Productivity Shocks

In this section of the web appendix, we show that the heterogeneity in local employment elasticities remains

if we shock counties with spatially-correlated productivity shocks reproducing the industrial composition

of the US economy. We construct these spatially-correlated shocks using aggregate productivity growth

in manufacturing and non-manufacturing and the observed shares of these sectors within each county’s

employment. In particular, we proceed as follows. Data from BLS shows that between 2004 and 2010 TFP

grew 6.2% for the manufacturing sector and 3.4% for the overall private business sector. Given a U.S.

employment share in manufacturing of about 11% in 2007 (computed from County Business Patterns; see

Data Appendix below), we infer a growth in the non-manufacturing sector’s TFP of 3.1%. We use the

County Business Patterns 2007 data to also compute the share of each county’s manufacturing employment

over total employment. Figure C.3 shows a map of these shares across the United States.

We first show the consequences of a spatially correlated shock to manufacturing. We compute the

equilibrium change in employment and residents in a single counterfactual exercise where each county’s

productivity is changed by 6.1% times the share of manufacturing employment in that county: hence, the

spatial correlation in manufacturing shares induces a spatial correlation in productivity shocks. Figure C.4

shows the resulting distribution of elasticities of employment and residents.

Figure C.5 shows an analogous exercise for a shock to the non-manufacturing sector. Finally, Figure C.6

shows the same elasticities when both sectors are shocked: in this case, each county’s shock is a weighted

average of the national increase in TFP in the manufacturing and non-manufacturing sectors, where the

weights are the corresponding employment shares in the county. Across all of these specifications, we

continue to find substantial heterogeneity in local employment elasticities.
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Figure C.3: U.S. counties’share of employment in manufacturing, 2007.
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Figure C.4: Kernel density for the distribution of employment and residents elasticities in response to a
spatially correlated productivity shock in the manufacturing sector
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Figure C.5: Kernel density for the distribution of employment and residents elasticities in response to a
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C.5 Positive Developed Land Elasticities

In Subsection 4.2 of the paper, we develop an extension of the model in which we interpret the non-traded

amenity as developed land and allow for a positive developed land supply elasticity that can differ across

locations. In this subsection of the web appendix, we provide further details on this robustness check. We

introduce a positive developed land supply elasticity by following Saiz (2010) in assuming that the supply

of land (Hn) for each residence n depends on the endogenous price of land (Qn) as well as on the exogenous

characteristics of locations (H̄n):

Hn = H̄nQ
ηn
n , (C.1)

where ηn ≥ 0 is the developed land supply elasticity, which we allow to vary across locations; ηn = 0 is

our baseline specification of a perfectly inelastic land supply; and ηn →∞ is the special case of a perfectly

elastic land supply.

Introducing a positive and heterogeneous developed land supply elasticity only affects one of the con-

ditions for general equilibrium in the model, namely, the land market clearing condition. The rest of the

model remains identical. Using the supply function for land (C.1) in the land market clearing condition

(5), we obtain the following generalization of our earlier expression for the equilibrium price of land (Qn):

Qn =

(
(1− α)

v̄nRn
H̄n

) 1
1+ηn

. (C.2)

We now show that our finding that commuting linkages are important for explaining differences in

local employment elasticities is robust to controlling for variable housing supply elasticities. As in the

main body of the paper, we focus on the subset of counties for which an estimate of the housing supply

elasticity is available from Saiz (2010) and no imputation is required. We undertake counterfactuals

for productivity shocks for these counties and undertake a horse race, in which we regress the general

equilibrium employment elasticities in the model on our measures of commuting linkages, the Saiz housing

supply elasticities, and other controls.

In Table C.2, we report the results from these regressions. In Columns 1-6, we begin by replicating

the specifications from Table 2 in the paper for the subsample of counties for which Saiz housing supply

elasticities are available. We find a similar pattern of results as for the full sample of counties in Table

2 in the paper. In particular, Column 2 shows that the residence own commuting share (λRii|i) alone

explains 63 percent of the variation in local employment elasticities (compared with 89 percent for the

full sample). Columns 7-12 of Table C.2 augment the specifications in Columns 1-6 with the Saiz housing

supply elasticity. We find that both the estimated coeffi cient and statistical significance of our commuting

measure are robust to the inclusion of the Saiz housing supply elasticity. The Saiz housing supply elasticity

is statistically significant across specifications but contributes only to a minority of the explanatory power

of the regression. This pattern of results in consistent with Figure 3 in the paper, where we show that

introducing differences in housing supply elasticities increases the heterogeneity in the elasticity of residents

with respect to the productivity shock, but has relatively little impact on the heterogeneity in the elasticity

of employment with respect to the productivity shock.

This pattern of results is also consistent with existing research on housing supply elasticities. This
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existing research has typically not distinguished between employment and residents (often focusing on

population) and has typically been concerned on metropolitan statistical areas (MSAs) rather than counties.

Therefore, the housing supply elasticity can be important for the response of the overall population of

metropolitan areas to local labor demand shocks, but there can be considerable variation in the response of

employment relative to residents across counties within these metropolitan areas. An important implication

is that improvements in commuting technologies provide an alternative approach to relaxing housing supply

elasticities in enabling individuals to access high productivity locations. While this possibility has been

informally discussed in the existing literature on housing supply elasticities (as for example in Hsieh and

Moretti 2017), our paper is the first study of which we are aware to provide quantitative empirical evidence

on the relevance of commuting for local employment elasticities.
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C.6 Additional Results with No Commuting Between Counties

In this subsection of the web appendix, we provide further evidence that the heterogeneity in local employ-

ment elasticities is driven by commuting, by reporting local employment elasticities for a counterfactual

world with no commuting between counties. As in our counterfactuals in Section 4 in the paper, we start

with the initial equilibrium in the observed data. We first undertake a counterfactual for prohibitive com-

muting costs between counties (κni →∞ for n 6= i) and solve for the new spatial equilibrium distribution

of economic activity. Starting from this counterfactual world with no commuting between counties, we

next compute 3,111 counterfactual exercises where we shock each county with a 5 percent productivity

shock (holding productivity in all other counties and holding all other exogenous variables constant).

Figure C.7 shows the estimated kernel density for the distribution of the general equilibrium elasticity

of employment with respect to the productivity shock across the treated counties (red dashed line). In

this counterfactual world with no commuting, the employment and residents elasticity are equal to one

another. To provide a point of comparison, the figure also displays the estimated kernel density for the

general equilibrium employment elasticity from our baseline specification in the paper with commuting

between counties (blue solid line). Even in the absence of commuting between counties, we expect local

employment elasticities to be heterogeneous, because counties differ substantially from one another in terms

of their initial shares of U.S. employment. Consistent with this, we find that local employment elasticities

in the world with no commuting between counties range from around 0.5 to 1. However, this variation

is substantially less than in our baseline specification with commuting between counties, where the local

employment elasticities range from around 0.5 to 2.5. Therefore, these results provide further evidence

that commuting indeed plays a central role in generating the heterogeneity in local employment elasticities.

Comparing the two specifications in Figure C.7, local employment elasticities are also larger on average with

commuting than in the counterfactual world without commuting. This pattern of results is consistent with

commuting weakening congestion forces in the model. As a county experiences an increase in productivity,

commuting enables it to increase employment by drawing residents from surrounding counties, thereby

bidding up land prices less than otherwise would be the case in a world without commuting between

counties.
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Figure C.7: Kernel density for the distribution of employment and resident elasticities in response to a
productivity shock across counties (with and without commuting between counties)
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C.7 Million Dollar Plants Natural Experiment

In this section of the web appendix, we report additional results for the MDP experiment from Section

5 of the paper.7 First, we report a balance table that compares the observed characteristics of winner

and runner-up counties before a MDP announcement for the full set of 82 cases. Second, we consider the

non-parametric specification that estimates separate treatment effects for each MDP case from equation

(22) in the paper.

First, we compare the observed characteristics of winner and runner-up counties before a MDP an-

nouncement. Table C.3 reports the mean and standard error of the mean for employment, wages, land

area and population density five years before a MDP announcement for these two groups of counties for

the full set of 82 MDPs. We also report the same statistics for workplace and residence own commuting

shares in 1990 as the closest Census year.8 We find that winner counties have somewhat lower prior val-

ues of levels of employment, wages, population and population density than runner-up counties. We also

find that they have somewhat more open local labor markets in terms of workplace and residence own

commuting shares. Despite these differences in individual observed characteristics, the fact that the firms

selected these counties as winners and runners-up suggests that they have similar implied profitability for

plant location. As a check on the identifying assumption that the losers form a valid counterfactual for the

winners, we report an event-study specification following GHM in Section 5 of the paper.

Variable Winner Runners-up
Log employment 11.122 11.660

(0.176) (0.116)
Log wages 2.758 2.802

(0.032) (0.023)
Log land area 14.213 14.152

(0.085) (0.063)
Log Population 11.999 12.446

(0.153) (0.100)
Log population density -2.214 -1.706

(0.153) (0.115)
Workplace own commuting share 0.742 0.764

(0.015) (0.011)
Residence own commuting share 0.737 0.786

(0.020) (0.015)

Means and standard errors of the mean of observed characteristics; standard errors of the means are in parentheses; employ-
ment, wages, land area, population and population density for winner and runner-up counties in each case are measured five
years before the MDP announcement; workplace and residence commuting shares are measured in 1990.

Table C.3: Characteristics of Winner and Runner-up Counties Before a MDP Annoucement

Second, we turn to the heterogeneous treatment effects specification from equation (22) in the paper,

which estimates a separate treatment effect for each of the 82 MDP cases. These heterogeneous treatment

effects are identified as the mean change in employment in winner counties relative to control counties

for each case (the excluded category is the runner-up counties for each case). In Figure C.8 below, we

display these estimated treatment effects for each case. As apparent from the figure, we find substantial

heterogeneity in these estimated treatment effects, which range from less than zero to just below one.

7See Section D.2 of this web appendix for further discussion of the data sources for this section.
8The MDP treatment years range from 1982 to 1993 with a median of 1989.
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Therefore, although the average estimated treatment effect is positive, there is substantial variation around

this average. We reject the null hypothesis that these estimated treatment effects all take the same value

at conventional levels of statistical significance (p-value 0.000).
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Note: Heterogeneous treatment effects for 82 cases. Specification includes county, case and year fixed effects, a post-MDP

announcement dummy, interaction terms between the dummy for winner county and treatment year, interaction terms between

commuting openness and treatment year, and three-way interaction terms between the winner dummy, commuting openness

and treatment year (equation (22) in the paper).

Figure C.8: Heterogeneous Treatment Effects Across MDPs
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C.8 Shift-Share Decomposition

In this subsection of the web appendix, we provide further evidence on the importance of commuting

for employment changes using shift-share decompositions, as discussed in the paper. We undertake these

decompositions for both cross-section and time-series variation in employment.

C.8.1 Cross-section Decomposition

We begin with our cross-section decomposition. We use the accounting identity provided by the commuter

market clearing condition, which requires that employment in each county i equals the sum of commuting

flows from all counties:

Lit =
∑
n∈N

λRni|ntRnt. (C.3)

Separating these commuting flows into those from the own county and those from other counties, this

commuter market clearing condition can be re-written as:

Lit = λRii|itRit︸ ︷︷ ︸
(a) own residents

+
∑
n6=i

λRni|ntRnt︸ ︷︷ ︸
(b) commuters

. (C.4)

The same accounting also holds for the county with the median level of employment m:

Lmt = λRmm|mtRmt︸ ︷︷ ︸
(a) own residents

+
∑
n 6=m

λRnm|ntRnt︸ ︷︷ ︸
(b) commuters

. (C.5)

Taking differences between equations (C.4) and (C.5), we obtain:

∆ILit =
[
λRii|itRit − λ

R
mm|mtRmt

]
+

∑
n6=i

λRni|ntRnt −
∑
n6=m

λRnm|ntRnt

 , (C.6)

where ∆I is the cross-section difference operator between an individual county i and the county with the

median level of employment m (such that ∆ILit = Lit − Lmt). Subtracting and adding λRii|itRmt from
the first term in square parentheses, and subtracting and adding

∑
n6=m λ

R
ni|ntRnt from the second term in

square parentheses, we have:

∆ILit = λRii|itRit − λ
R
ii|itRmt − λ

R
ii|mtRmt + λRii|itRmt (C.7)

+
∑
n6=i

λRni|ntRnt −
∑
n6=m

λRni|ntRnt −
∑
n6=m

λRnm|ntRnt +
∑
n6=m

λRni|ntRnt.
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which can be re-written as:

∆Lit = λRii|it∆
IRit︸ ︷︷ ︸

(i) own residents

+ Rmt∆
IλRii|it︸ ︷︷ ︸

(ii) own commuting shares

+

∑
n6=i

λRni|ntRnt −
∑
n 6=m

λRni|ntRnt


︸ ︷︷ ︸

(iii) other residents

+
∑
n6=m

(
λRni|nt − λ

R
nm|nt

)
Rnt︸ ︷︷ ︸

(iv) other commuting shares

.

(C.8)

We thus obtain a decomposition of cross-section differences in employment between counties into the

following four contributions: (i) differences in own residents holding own commuting shares constant; (ii)

differences in own commuting shares holding own residents constant; (iii) differences in other residents

holding other commuting shares constant; and (iv) differences in other commuting shares holding other

residents constant. In the other residents term (iii), the only thing that varies between the two components

of the term is the lower limit of the summation, which captures differences in the sets of other counties n 6= i

and n 6= m. In the other commuting term (iv), the only thing that varies between the two components

of the term is the commuting shares with other counties: λRni|nt 6= λRnm|nt for i 6= m. All four terms are

equal to zero for the county m with median employment, we report the distribution of results for all other

counties i 6= m.

In interpreting this decomposition, several points are worth bearing in mind. First, we interpret any

term involving workers commuting across county borders as capturing commuting, which implies that

we view terms (ii), (iii) and (iv) as capturing commuting. In the special case of no commuting between

counties, these final three terms are all necessarily equal to zero, because in this special case λRii|it = 1

and λRni|nt = λRnm|nt = 0 for n 6= i and n 6= m. Nevertheless, we acknowledge that other interpretations

are possible, such as only viewing terms involving variation in commuting shares (λRni|nt) as capturing

commuting (terms (ii) and (iv)). Second, we note that counties with similar total residents to the median

county might have very different commuting links with other counties. We intentionally capture this

variation in our decomposition, but we acknowledge that the importance of these commuting links can be

affected by many idiosyncratic factors, such as the drawing of county boundaries.

Third, in principle, the relative importance of the different terms in the cross-section decomposition in

equation (C.8) can vary depending on which county is chosen as the base. However, in practice, we find a

similar qualitative and quantitative pattern of results for alternative choices of the base county other than

the county with median employment. Fourth, we recognize that total employment and total residents are

still strongly positively correlated across counties, because of third factors that affect both employment

and residents (e.g. productivity and climate).

In Table C.4, we report the results of this cross-section decomposition (C.8) using our bilateral com-

muting data for 2006-10. As all four terms are equal to zero for the county with median employment, we

report the distribution of results across all other counties. For each individual county, the four terms add

up to the total difference in employment, which in turn implies that the mean of the four terms adds up

to the mean total difference in employment (bottom row), because the mean is a linear operator. The

same need not be true for the percentiles of the distribution of each contribution (other rows), because the

county at a given percentile for one contribution may be different from the county at the same percentile for

another contribution. Each individual term in the decomposition can be positive or negative, as reflected
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in the negative values in a number of cells in the table.

As apparent from the table, we find substantial contributions from all four terms of the decomposition.

On average, we find a difference in employment from the median county of 45,211, where the fact that this

difference is positive reflects the fact that the distribution of employment across counties is skewed. Of

this 45,211, we find that own residents contribute 32,712 (bottom row, second column), own commuting is

responsible for 2,712 (bottom row, third column), other residents make a negative contribution of -44,119

(bottom row, fourth column), and other commuting accounts for the remaining 53,906 (bottom row, fifth

column). We also find substantial heterogeneity across counties in the relative importance of these four

terms. Between the 10th and 90th percentiles, these contributions range from -10,048 to 73,406 for own

residents (second column), -1,145 to 6,350 for own commuting (third column), -86,445 to -2,063 for other

residents (fourth column), and -1,339 to 108,003 for other commuting (fifth column).

Although the individual terms in these shift-share decompositions can be interpreted in different ways,

we view these results as supporting the idea that commuting patterns are a quantitatively relevant margin

for accounting for cross-sectional differences in employment across counties. In Figure 1 and Table 1 in the

paper, we report results using a simpler and more intuitive measure of the relevance of commuting, given

by the share of residents who work in the county where they live.

2006-10 (i) Changes Own (ii) Changes Own (iii) Changes Other (iv) Changes Other Sum (i)-(iv)
Residents, Constant Commuting, Constant Residents, Constant Commuting, Constant
Own Commuting Own Residents Other Commuting Other Residents

10th percentile -10,048 -1,145 -86,445 -1,339 −
25th percentile -6,242 613 -26,593 1,372 −
50th percentile -1,077 2,917 -9,822.9 8,693 −
75th percentile 14,744 4,999 -4,157.7 30,616 −
90th percentile 73,406 6,350 -2,063 108,003 −
Mean 32,712 2,712 -44,119 53,906 45,211

Mean and percentiles of the distribution of the contributions to cross-section differences in employment between each county
and the median county for 2006-10. The four terms are differences in (i) the number of residents holding own commuting
shares constant; (ii) own commuting shares holding own residents constant; (iii) other residents holding other commuting
shares constant; and (iv) other commuting shares holding other residents constant.

Table C.4: Cross-section Decomposition of Employment Differences across Counties for 2006-10

C.8.2 Time-series Decomposition

We next consider our time-series decomposition. Taking differences between equation (C.4) for time t and

the analogous equation for time t− 1, we obtain:

∆TLit = λRii|itRit − λ
R
ii|it−1Rit−1 +

∑
n6=i

λRni|ntRnt −
∑
n6=i

λRni|nt−1Rnt−1, (C.9)

where ∆T is the time-series difference operator such that ∆TLit = Lit − Lit−1. Subtracting and adding

λRii|itRit−1 from the first term in parentheses, and subtracting and adding
∑

n6=i λ
R
ni|ntRnt−1 from the second
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term in parentheses, we obtain:

∆TLit = λRii|itRit − λ
R
ii|itRit−1 − λRii|it−1Rit−1 + λRii|itRit−1 (C.10)

+
∑
n6=i

λRni|ntRnt −
∑
n6=i

λRni|ntRnt−1 −
∑
n6=i

λRni|nt−1Rnt−1 +
∑
n 6=i

λRni|ntRnt−1.

which can be re-written as:

∆TLit = λRii|it∆
TRit︸ ︷︷ ︸

(i) own residents

+ Rit−1∆TλRii|it︸ ︷︷ ︸
(ii) own commuting shares

+
∑
n6=i

λRni|nt∆
TRnt︸ ︷︷ ︸

(iii) other residents

+
∑
n6=i

Rnt−1∆TλRni|nt︸ ︷︷ ︸
(iv) other commuting shares

. (C.11)

In interpreting this decomposition, we again view any term involving workers commuting across county

borders as capturing commuting (terms (ii), (iii) and (iv)). In the special case of no commuting between

counties, the first term for changes in own residents (λRii|it∆
TRit) is the only source of employment changes,

because in this special case λRii|it = 1, λRni|nt = 0 for n 6= i, and ∆TλRni|nt = 0 for all n, i, which implies

that the final three terms are necessarily all equal to zero. But we acknowledge that other interpretations

are possible, such as only viewing terms that involve variation in commuting shares (λRni|nt) as capturing

commuting (terms (ii) and (iv)).

In Table C.5, we report the results of this time-series decomposition (C.11) using the change in the

bilateral commuting probabilities between 1990 and 2006-2010. As for our cross-section decomposition

above, the four terms add up to the total change in employment for an individual county. However, the

same need not be true for the percentiles of the distribution of each contribution (other rows), because the

county at a given percentile for one contribution may be different from the county at the same percentile for

another contribution. Each individual term in the decomposition can be positive or negative, as reflected

in the negative values in a number of cells in the table.

1990 to 2006-10 (i) Changes Own (ii) Changes Own (iii) Changes Other (iv) Changes Other
Residents, Constant Commuting, Constant Residents, Constant Commuting, Constant
Own Commuting Own Residents Other Commuting Other Residents

10th percentile 23 -2,619 28 -184
25th percentile 474 -1,155 130 32
50th percentile 1,728 -457 447 335
75th percentile 6,094 -82 1,517 1,109
90th percentile 21,170 181 5,626 3,268

Mean and percentiles of the distribution of the contributions to time-series changes in employment between 1990 and 2006-10
from (i) the number of residents holding own commuting shares constant; (ii) own commuting shares holding own residents
constant; (iii) other residents holding other commuting shares constant; and (iv) other commuting shares holding other
residents constant.

Table C.5: Time-series Decomposition of County Employment Changes between 1990 and 2006-10

We again find quantitatively relevant contributions from all four terms in the decomposition. For

the median county, we find a change in employment of 1,981, of which own residents contribute 1,728

(fourth row, second column), own commuting is responsible for -457 (fourth row, third column), other

residents make a contribution of 447 (fourth row, fourth column), and other commuting accounts for the

remaining 335 (fourth row, fifth column). We also find substantial heterogeneity across counties in the
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relative importance of these four terms. Between the 10th and 90th percentiles, these contributions range

from 23 to 21,170 for own residents (second column), -2,619 to 181 for own commuting (third column), 28

to 5,626 for other residents (fourth column), and -184 to 3,268 for other commuting (fifth column).

In both the cross-section and over time, variation in county employment is ultimately driven by variation

in productivity and other county characteristics. Therefore, notwithstanding the caveats discussed above,

we view the findings of these cross-section and time-series decompositions as supporting the idea that

response of employment to such county characteristics is shaped by heterogeneous patterns of commuting

flows.

C.9 Changes in Commuting Costs

Figure C.9 presents the changes in local employment against the initial labor to resident ratio (Li/Ri) for

the counterfactual in which we reduce commuting cost by the median change between 1990 and 2010, as

discussed in Section 6 of the paper.
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Figure C.9: Counterfactual relative change in county employment (L̂) for median decrease in commuting
costs throughout U.S. against initial employment to residents ratio (L/R).
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C.10 Interaction Between Trade and Commuting Costs

In this subsection of the web appendix, we examine the extent to which trade and commuting costs interact

in the model, as discussed in Section 6 of the paper. To provide evidence on this interaction, we compare

the effects of reductions in trade costs, both with and without commuting between counties. To do so,

we first undertake a counterfactual for a 20 percent reduction in trade costs between locations (d̂ni = 0.8

for n 6= i and d̂nn = 1) starting from the observed initial equilibrium with commuting between counties

(using the observed bilateral commuting shares to implicitly reveal the magnitude of bilateral commuting

costs). We next undertake a counterfactual for the same 20 percent reduction in trade costs between

locations from a counterfactual equilibrium with no commuting between counties. That is, starting from

the observed equilibrium, we first undertake a counterfactual for prohibitive commuting costs between

counties (κni →∞ for n 6= i), before then undertaking the counterfactual for the reduction in trade costs.

We find that commuting between counties has a relatively small impact on the welfare gains from trade

cost reductions. Starting from the observed equilibrium, we find aggregate welfare gains from the trade cost

reduction of 11.66 percent. In contrast, starting from the counterfactual equilibrium without commuting

between counties, we find aggregate welfare gains from the same trade cost reduction of 11.56 percent.

However, we find that commuting between counties plays a major role in influencing the impact of trade

cost reductions on the spatial distribution of economic activity. Figure C.10 shows the relative change

in employment from a 20 percent reduction in trade costs in the New York region (without commuting

in the left panel and with commuting in the right panel). In general, reductions in trade costs lead to a

more dispersed spatial distribution of economic activity in the model. But this dispersal is smaller with

commuting between counties than without it. As trade costs fall, commuting increases the ability of the

most productive locations to serve the national market by drawing workers from a suburban hinterland,

without bidding up land prices as much as would otherwise occur.

Intuitively, lower trade costs and higher commuting costs are both forces for the dispersion of economic

activity in the model. On the one hand, lower trade costs weaken agglomeration forces by reducing the

incentive for firms and workers to locate close to one another. On the other hand, higher commuting costs

increase congestion forces by forcing workers to live where they work, thereby bidding up land prices in

congested locations. These two sets of forces interact with one another, so that the impact of a reduction

in trade costs depends on the level of commuting costs. While lower trade costs necessarily redistribute

employment away from the most congested locations, this redistribution is smaller with commuting between

counties than without it.
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Figure C.10: Relative change in employment (L̂) from a 20 percent reduction in trade costs (with and
without commuting between counties) in the New York area

This exercise also illustrates more generally the role of commuting linkages in shaping the consequences

of a reduction in trade costs. Figure C.11 shows changes in county employment and real income following a

reduction in trade costs in an economy without commuting (vertical axis) and with commuting (horizontal

axis), alongside a 45-degree line. We find a relatively low correlation between changes in employment with

and without commuting between counties. In particular, commuting and trade tend to be complements

in expanding areas: whenever employment increases with the reduction in trade costs, the commuting

technology allows a larger expansion because it alleviates the increase in congestion (employment changes

are below the diagonal in the left panel of Figure C.11). But trade and commuting tend to be local

substitutes from the perspective of real income: whenever real income increases with trade, the increase is

larger without commuting because production is more spatially dispersed without commuting (real income

changes are above the diagonal in the right panel of Figure C.11). These results further underscore the

prominence of commuting linkages in shaping the equilibrium spatial distribution of economic activity, and

the necessity of incorporating them in models of economic geography.
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Figure C.11: Relative change in employment (L̂) and real income (̂̄vn/(P̂αn Q̂1−α
n

)
) from a 20 percent

reduction in trade costs across all counties (with and without commuting between counties)

C.11 Commuting Zones (CZs)

As discussed in the paper, previous research has often worked at relatively high levels of spatial aggre-

gation (e.g. commuting zones (CZs)) to reduce commuting flows. In contrast, we explicitly model the

spatial interactions between locations in goods and commuting markets, thereby providing a framework

for examining the local impact of labor demand shocks at alternative spatial scales, including those finer

than CZs.

In our baseline specification in the paper, we report results for counties, because this is the finest level

of geographical detail at which commuting data are reported for the entire United States in the American

Community Survey (ACS) and Census of Population, and a number of influential papers in the local

labor markets literature have used county data (such as Greenstone, Hornbeck and Moretti 2010). In this

section of the web appendix, we report the results of a robustness check, in which we replicate our entire

analysis for Commuting Zones (CZs) (aggregations of counties). This replication involves undertaking

the full quantitative analysis of the model at this higher level of spatial aggregation. First, we aggregate

our employment and wage to the CZ level. Second, we aggregate our bilateral commuting data between

pairs of counties to construct bilateral commuting flows between pairs of CZs. Third, we use our data on

bilateral trade between CFS regions to solve for implied CZ productivity (Ai) and bilateral trade between

CZs (πni), using the same approach as for counties in our baseline specification in Section 3.1 of the paper

and Section B.5 of this web appendix. Fourth, we use our data on bilateral commuting between pairs

of CZs to solve for implied bilateral amenities (Bni), using the same approach as in Section 3.2 of the

paper and Section B.6 of this web appendix. In Figure C.12, we show the conditional relationship between

the log value of commuting flows and log distance between pairs of CZs, after removing workplace and

residence fixed effects. This figure is analogous to Figure B.5 in this web appendix, but uses CZs rather

than counties. Again we find that the gravity equation provides a good approximation to the data, with a

tight and approximately log linear relationship between the two variables.
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Figure C.12: Gravity in Commuting Between Commuting Zones (CZs)

Having calibrated the model to match the initial equilibrium in the observed data at the CZ level,

we next shock each of the 709 CZs with a 5 percent productivity shock, following the same approach as

for counties in Section 4 of the paper. Figure C.13 shows the estimated kernel density for the general

equilibrium elasticities of employment and residents with respect to the productivity shock across the

treated CZs (blue solid and red dashed lines). We also show the 95 percent confidence intervals around

these estimated kernel densities (gray shading). As CZs are aggregations of counties, there is necessarily less

commuting between pairs of CZs than between pairs of counties. Nonetheless, CZs differ substantially in

the extent to which their boundaries capture commuting linkages. Therefore we find that there is suffi cient

variation in the importance of commuting networks across CZs to generate substantial heterogeneity in

the local employment elasticity, which ranges from just above 0.5 to just over 2.5, a similar range as for

the employment elasticity distribution across counties. Again we find substantial differences between the

employment and residents elasticities, with the residents elasticity having less dispersion. Since employment

and residents can only differ through commuting, these findings reinforce the importance of commuting in

understanding the local response to local economic shocks, even at the more aggregated level of CZs.

In Table C.6, we provide further evidence on the role of commuting linkages in explaining the hetero-

geneity in employment elasticities across CZs. This table is analogous to Table 2 in the paper, but reports

results for CZs rather than for counties. In Columns (1)-(4), we regress the local employment elasticity

on standard empirical controls from the local labor markets literature. Although some of these controls

are statistically significant, we find that they are not particularly successful in explaining the variation in

employment elasticities. Adding a constant and all these controls yields an R-squared of only just over
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Figure C.13: Kernel density for the distribution of employment and residents elasticities in response to a
productivity shock across CZs

one quarter in Column (4). Therefore there is considerable variation in local employment elasticities not

explained by these standard empirical controls. In contrast, when we include the share of workers that

work in i conditional on living in i (λRii|i) in Column (5) as as summary statistic for openness to commut-

ing, we find that this variable is highly statistically significant, and results in an R-squared of over one

half. Including the partial equilibrium elasticities that capture commuting linkages in the model further

increases the R-squared to around 0.60, more than double that using the standard controls in Column (4).

In the last two columns, we combine these partial equilibrium elasticities with the standard controls used

in the first four columns. Although some of these standard controls are statistically significant, we find

that they add little once we control for the partial equilibrium elasticities.

Taken together, these results confirm that the use of CZs is an imperfect control for commuting. There

remains substantial heterogeneity in employment elasticities across CZs, because they differ in the extent to

which their boundaries are successful in capturing commuting patterns. This heterogeneity in employment

elasticities across CZs is not well explained by standard controls from the local labor markets literature.

In contrast, consistent with our results for counties above, we find that adding a summary statistic of

commuting, or the partial equilibrium elasticities from the model, can go a long way in explaining the

heterogeneous responses of CZs to productivity shocks.

We next examine the impact of reductions in the costs of commuting between CZs on the spatial

distribution of economic activity. We undertake a counterfactual in which we reduce commuting costs

between CZs by the same proportional amount as for counties in our central exercise in Section 6 of the
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1 2 3 4 5 6 7 8 9

Dependent Variable: Elasticity of Employment

logLi 0.025* 0.044 0.002 0.057** 0.055**
(0.011) (0.022) (0.018) (0.017) (0.017)

logwi -0.037 -0.168 -0.002 -0.020
(0.176) (0.136) (0.088) (0.089)

logHi -0.166** -0.087 -0.010 -0.011
(0.042) (0.049) (0.023) (0.023)

logL,−i 0.081** -0.038* -0.040*
(0.023) (0.015) (0.016)

log w̄−i 0.107 0.012 0.036
(0.146) (0.107) (0.108)

λRii|i -3.434**
(0.216)∑

n∈N (1− λRni)ϑni 8.815** 9.936*
(2.887) (3.868)

ϑii
(
λii
λRi
− λLi

)
6.044* 6.670

(2.916) (3.836)
∂wi
∂Ai

Ai
wi

-1.624** -0.997**
(0.194) (0.333)

∂wi
∂Ai

Ai
wi
·
∑
r∈N

(
1− λrn|r

)
ϑrn 1.345** 2.546**

(0.210) (0.323)
∂wi
∂Ai

Ai
wi
· ϑii

(
λii
λRi
− λLi

)
-1.391** -0.680*

(0.196) (0.307)

Constant 1.376** 1.098** 2.779 1.747 4.522** -3.459 2.347** -4.959 1.387
(0.031) (0.142) (1.810) (1.698) (0.194) (2.824) (0.185) (3.920) (1.321)

R2 0.00 0.01 0.15 0.27 0.54 0.60 0.59 0.69 0.68
N 709 709 709 636 709 709 709 636 636

Note: L,−i ≡
∑
n:dni≤120,n6=i Ln is the total employment in i neighbors whose centroid is no more than 120km away; w̄−i ≡∑

n:dni≤120,n6=i
Ln
L,−i

wn is the weighted average of their workplace wage. Standard errors are clustered by state; when a CZ

overlaps different states, the state that accounts for most of the CZ population is assigned. ∗ denotes significance at the 5
percent level; ∗∗ denotes significance at the 1 percent level.

Table C.6: Explaining the general equilibrium local employment elasticities to a 5 percent productivity
shock for commuting zones (CZs)

paper (B̂ni = 0.88). In Figure C.14, we show the proportional change in employment for each CZ against its

initial commuting intensity (Li/Ri), where Li/Ri > 1 implies that a CZ is a net importer of commuters and

Li/Ri < 1 implies that a CZ is a net exporter of commuters. We find substantial changes in employment for

individual CZs, which range from increases of 10 percent to reductions of 20 percent. Furthermore, these

changes in the distribution of employment across CZs are well explained by initial commuting intensity.

In contrast, in Figure C.15, we show the same proportionate change in employment for each CZ against

its initial employment size. We find little relationship between the impact of the reduction in commuting

costs on employment and initial CZ size. Therefore, these results confirm our findings for counties that

the importance of commuting is by no means restricted to large cities.

More generally, in Table C.7, we show that it is not easy to proxy for CZ commuting intensity (Li/Ri)

using standard empirical controls from the local labor markets literature. This table is analogous to Table
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Figure C.14: Counterfactual relative change in commuting zone (CZ) employment (L̂) from median
proportional reduction in commuting costs (B̂ni = 0.88) and initial dependence on commuting
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Figure C.15: Counterfactual relative change in commuting zone (CZ) employment (L̂) from median
proportional reduction in commuting costs (B̂ni = 0.88) and initial employment size

B.2 earlier in this web appendix, but reports results for CZs rather than for counties. The first four

columns show that the levels of either employment (logLi) or residents (logRi) are strongly related to

these standard empirical controls. The first column shows that one can account for most of the variation

in CZ employment using the number of residents and wages. Column (2) shows a similar result for the

number of residents and Columns (3) and (4) show that the results are not affected when we add land area,

developed-land supply elasticities, employment and wages in surrounding CZs. In contrast, the remaining

four columns demonstrate that it is hard to explain the ratio of employment to residents (Li/Ri) using

these same empirical controls. The level of residents, wages, land area, developed-land supply elasticities,

employment, and measures of economic activity in surrounding CZs, do a poor job in accounting for the
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variation in this ratio. None of the R-squared’s in the last four columns of Table C.7 amounts to more than

one third. Therefore, as with our earlier results for counties, we find that there is substantial additional

information in patterns of commuting that is not captured by the standard empirical controls from the

local labor markets literature.

1 2 3 4 5 6 7 8 9 10 11 12

Dep. Variable: logLi logRi logLi logRi Li/Ri Li/Ri Li/Ri Li/Ri Li/Ri Li/Ri Li/Ri Li/Ri

logRi 0.991** 0.992** -0.004** 0.001 0.049** 0.048**
(0.002) (0.003) (0.001) (0.002) (0.010) (0.015)

logwi 0.116** 0.161** 0.099** 0.123** 0.195* 0.196*
(0.024) (0.027) (0.020) (0.022) (0.074) (0.074)

logLi 1.001** 0.993** -0.006** -0.002 0.025** 0.029**
(0.001) (0.003) (0.002) (0.002) (0.008) (0.009)

log v̄i -0.042** -0.057* 0.057** 0.078** 0.014 0.014
(0.015) (0.028) (0.014) (0.022) (0.058) (0.058)

logHi 0.006 0.005 -0.001 0.001 -0.005 -0.014 -0.009 -0.014
(0.007) (0.007) (0.006) (0.006) (0.011) (0.015) (0.013) (0.018)

logR,−i -0.001 0.638** 0.693** 0.428* 0.499* 0.443* 0.497*
(0.003) (0.107) (0.113) (0.168) (0.196) (0.188) (0.195)

log w̄−i -0.149** 1.007** 1.017** 0.934 0.890 0.963 0.887
(0.028) (0.219) (0.222) (0.502) (0.489) (0.559) (0.520)

logL,−i 0.010** -0.644** -0.700** -0.414* -0.489* -0.431* -0.488*
(0.003) (0.107) (0.114) (0.168) (0.195) (0.190) (0.193)

log v̄−i 0.106** -1.119** -1.111** -1.176* -1.097* -1.207* -1.093*
(0.029) (0.226) (0.230) (0.517) (0.500) (0.574) (0.535)

Saiz elasticity 0.005 -0.000
(0.008) (0.008)

Constant -1.146** 0.450** -0.095 -0.591** 0.007 0.425** 0.974** 1.227** 0.993 2.389** 0.993 2.388**
(0.237) (0.154) (0.159) (0.183) (0.202) (0.147) (0.191) (0.199) (0.637) (0.529) (0.646) (0.532)

R2 1.00 1.00 1.00 1.00 0.07 0.02 0.31 0.26 0.61 0.52 0.61 0.52
N 709 709 636 636 709 709 636 636 110 110 110 110

Note: L,−i ≡
∑
n:dni≤120,n6=i Ln is the total employment in i neighbors whose centroid is no more than 120km away; w̄−i ≡∑

n:dni≤120,n6=i
Ln
L,−i

wn is the weighted average of their workplace wage. Analogous definitions apply to R,−i and v̄−i. Columns
1-8 are unweighted regressions. Columns 9 and 10 repeat the most complete specifications in columns 7 and 8 giving to each
CZ a weight proportional to the fraction of the CZ’s population living in counties where we have data on land supply elasticity;
this process excludes from the regressions CZ for which no county has data on land supply elasticity. Columns 11 and 12 then
repeat columns 9 and 10 adding the Saiz land supply elasticity as a regressor. Land supply elasticity for a CZ is the population-
weighted average of its counties’land supply elasticities. Standard errors are clustered by state. ∗ denotes significance at the
5 percent level; ∗∗ denotes significance at the 1 percent level.

Table C.7: Explaining employment levels and commuting intensity for commuting zones (CZs)

Taking the results of this section as a whole, we find that the heterogeneity in commuting linkages across

commuting zones (CZs) is suffi cient to generate substantial heterogeneity in local employment elasticities,

in response to either productivity shocks or reductions in commuting costs. This heterogeneity is hard to

explain with the standard empirical controls from the local labor markets literature, but is well explained by

measures of commuting linkages, highlighting the importance of incorporating this commuting information

into the analysis of regional economies.
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D Data Appendix

This section of the web appendix contains further information on the data sources and definitions, as well

as additional details about the construction of figures and tables. In Section D.1, we discuss the data used

for the quantitative analysis of the model in Sections 3-4 of the paper. In Section D.2, we discuss the data

used to provide independent evidence in support of the model’s predictions in Section 5 of the paper and

Sections C.7 and C.8 of this web appendix.

D.1 Quantitative Analysis of the Model (Sections 3-4 of the paper)

D.1.1 Data Sources and Definitions

In what follows we list the sources and the variable definitions that we use. We consider them understood

in the following section on data processing.

Earnings by Place of Work. This data is taken from the Bureau of Economic Analysis (BEA)

website, under Regional Data, Economic Profiles for all U.S. counties. The BEA defines this variable

as "the sum of Wages and Salaries, supplements to wages and salaries and proprietors’ income. [...]

Proprietor’s income [...] is the current-production income (including income in kind) of sole proprietorships

and partnerships and of tax-exempt cooperatives. Corporate directors’ fees are included in proprietors’

income, but the imputed net rental income of owner-occupants of all dwellings is included in rental income

of persons. Proprietors’income excludes dividends and monetary interest received by nonfinancial business

and rental incomes received by persons not primarily engaged in the real estate business." The BEA states

that earnings by place of work "can be used in the analyses of regional economies as a proxy for the income

that is generated from participation in current production". We use the year 2007.

Total Full-Time and Part-Time Employment (Number of Jobs). This data is taken from the

BEA website, under Regional Data, Economic Profiles for all U.S. counties. The BEA defines this series

as an estimate "of the number of jobs, full-time plus part-time, by place of work. Full-time and part-time

jobs are counted at equal weight. Employees, sole proprietors, and active partners are included, but unpaid

family workers and volunteers are not included. Proprietors employment consists of the number of sole

proprietorships and the number of partners in partnerships. [...] The proprietors employment portion of

the series [...] is more nearly by place of residence because, for nonfarm sole proprietorships, the estimates

are based on IRS tax data that reflect the address from which the proprietor’s individual tax return is filed,

which is usually the proprietor’s residence. The nonfarm partnership portion of the proprietors employment

series reflects the tax-filing address of the partnership, which may be either the residence of one of the

partners or the business address of the partnership." We use the year 2007.

County-to-County Worker Flows. This data contains county-level tabulations of the workforce

"residence-to-workplace" commuting flows from the American Community Survey (ACS) 2006-2010 5-year

file. The ACS asks respondents in the workforce about their principal workplace location during the

reference week. People who worked at more than one location are asked to report the location at which

they worked the greatest number of hours. We use data for all the 50 States and the District of Columbia.

County Land Area, County Centroids. This data comes from the 2010 Census Gazetteer Files.

Land area is geographical land area. When we need to aggregate counties (see below), the geographical
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land area is the sum of that for the aggregated counties, and the centroid of the new county formed by

the aggregation is computed using spatial analysis software. In Subsection 4.2 of the paper, we develop an

extension to allow for a heterogeneous positive supply elasticity for developed land following Saiz (2010).

County Median Housing Values. This data reports the county’s median value of owner-occupied

housing units from the American Community Survey 2009-2013 5-year file.

Commodity Flows among CFS Area. We use the 2007 Origin-Destination Files of the Commodity

Flow Survey for internal trade flows of all merchandise among the 123 Commodity Flow Survey areas in

the United States.

Share of county employment in manufacturing. We use the County Business Pattern file for the

year 2007. We use the information on total employment, and employment in manufacturing only. For some

counties, employment is suppressed to preserve non-disclosure of individual information, and employment

is only reported as a range. In those cases, we proceed as follow. We first use the information on the

firm-size distribution, reported for all cases, to narrow the plausible employment range in the cell. We run

these regressions separately for employment in manufacturing and total employment. We then use this

estimated relationship to predict the employment level where the data only reports information on the firm

size-distribution. Whenever the predicted employment lies outside the range identified above, we use the

employment at the relevant corner of the range.

D.1.2 Initial Data Processing

We start by assigning to each workplace county in the County-to-County Worker Flows data, information

on the Earnings by Place of Work and the Number of Jobs. Note that the commuting data contains 3,143

counties while the BEA data contains 3,111 counties. This happens because, for example, some independent

cities in Virginia for which we have separate data on commuting are included in the surrounding county

in the BEA data. We make the two sources consistent by aggregating the relevant commuting flows by

origin-destination, and so we always work with 3,111 counties.

The ACS data reports some unrealistically long commutes, which arise for example for itinerant pro-

fessions. We call these flows "business trips" and we remove them as follow. We measure the distance

between counties as the distance between their centroids computed using the Haversine formula. We start

by assuming that no commute can be longer than 120km: hence, flows with distances longer than 120km

are assumed to only be business trips, while flows with distances less than or equal to 120km are a mix

business trips and actual commuting. We choose the 120km threshold based on a change in slope of the

relationship between log commuters and log distance at this distance threshold. To split total travellers

into commuters and business travellers, we write the identity λ̃ij = ψBij λ̃
B
ij ,where λ̃ij is total travellers, λ̃

B
ij

is business travellers, λ̃
C
ij is commuters, and ψij is defined as an identity as the ratio of total travellers to

business travellers:

ψij =
λ̃
C
ij + λ̃

B
ij

λ̃
B
ij

.

We assume that business travel follows the gravity equation λ̃
B
ij = SiMjdistδ

B

ij uij ,where Si is a residence

fixed effect, Mj is a workplace fixed effect, distij is bilateral distance, and uij is a stochastic error. We

72



assume that ψij takes the following form:

ψij =

{
1 distij > d̄

γdistδ
C

ij distij ≤ d̄
,

where we expect γ > 1 and δC < 0. Therefore we have the following gravity equation for total travellers:

ln λ̃ij = lnSi + lnMj + γIij + (δB + δCIij) lndistij + uij , (D.1)

where Iij is an indicator variable that is one if distij ≤ d̄ and zero otherwise. Estimating the above equation
for total travellers, we can generate the predicted share of commuters as:

ŝCij = 1−
̂̃
λ
B

iĵ̃
λij

= 1−
ŜiM̂jdist

δ̂B
iĵ̃

λij

,

where ̂̃λij = exp
(

ln
̂̃
λij

)
are the fitted values from gravity (D.1). Note that this predicted share satisfies

the requirements that (a) commuters are zero beyond the threshold d̄, (b) the predicted share of commuters

always lies in between zero and one, (c) commuters, business travellers and total travellers all satisfy gravity.

Note also that since the regression cannot be run on flows internal to a county λ̃ii, we set ŝCii = 1 (i.e.,

flows of agents who live and work in the same county are assumed to contain no business trips). Therefore

we can construct commuting flows as: ̂̃
λ
C

ij = ŝCij λ̃ij .

The total business trips originating from residence i are then
∑

j

(
1− ŝCij

)
λ̃ij . For any residence i, we

reimpute these business trips across destinations j in proportion to the estimated workplace composition of

the residence i, ̂̃λCij/∑i
̂̃
λ
C

ij . The total employment (and average wage) in a county in the initial equilibrium

is taken from the BEA, while total residents (and average residential income) in a county are reconstructed

using the estimated residence composition of each workplace. Table 1, Figure 3, and all the results in the

paper are based on these “cleaned”commuting flows and initial equilibrium values.

Whenever necessary, we allow for expenditure imbalances across counties. We compute these imbalances

as follows. We start from the CFS trade flows. The total sales of a CFS area anywhere must correspond,

in a model with only labor (such as the one in this paper), to total payments to workers employed in

the area. We rescale the total sales from a CFS area to the value of the total wage bill from the BEA

data.9 For any origin CFS, we keep the destination composition of sales as implied by the CFS bilateral

flows. This procedure gives us, for any CFS, total expenditures and total sales consistent with the total

labor payments in the economy. We compute the deficit of any CFS area by subtracting total sales from

total expenditure. We apportion this deficit across all the counties in the CFS in proportion to the total

residential income of the county, as computed above. The total expenditure of the county in the initial

equilibrium is always total residential income plus deficit. In any counterfactual equilibrium, the dollar

value of the deficit is kept fixed.

9For this step, we need a correspondence between CFS areas and counties that is provided by the Census at
http://www.census.gov/econ/census/help/geography/cfs_areas.html.
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D.1.3 Further Information on Figures and Tables

We now report additional technical details related to the data sources and manipulation for some of the

tables and figures in the paper or this web appendix.

Table 1. The table reports statistics on the out-degree distribution (first and third row) and in-degree

distribution of the fraction of commuters across counties. Commuting flows are cleaned with the procedure

described above. The correspondence between counties and commuting zones is taken from the Economic

Research Service of the United States Department of Agriculture.10

Figure 1. This figure reports kernel densities of the distribution of the share of a county’s residents

working in their county of residence for 4 decades. Data on the share of residents working in the county

are constructed from the ICPSR Study 773611, and the 1983, 1994 and 2000 editions of the “County and

City Data Book”published by the U.S. Department of Commerce.

Figure B.1. This figure reports a scatterplot of the log trade flows among CFS areas against log

distance between these areas, after removing origin and destination fixed effects. The distance between

CFS areas is the average distance travelled by shipments, computed dividing the total ton-miles travelled

by the total tons shipped, as reported in the CFS data. Whenever this distance cannot be computed

(in about 1/3 of the flows) we supplement it with an estimated distance as follows. We compute the

centroids of CFS areas using the Freight Analysis Framework Regions shape-files provided by the Bureau

of Transportation Statistics12 and bilateral distances among these centroids using the Haversine formula.

We then regress the actual distance shipped on these centroid-based distances, in logs, and find strong

predictive power (slope of 1.012, R2 = 0.95). We use the predicted distances from this regression for flows

where the average distance shipped cannot be computed. If we restrict our sample to only flows for which

the distance can be computed directly, we find a slope of -1.23, and R2 of 0.82 (similar to the ones used in

the paper of -1.29 and 0.83, respectively).

Figure B.2. This figure reports a scatterplot of expenditure shares across CFS areas in the data and

the model-implied expenditure shares after recovering the productivity of each county, with the procedure

described in Section 3.1 of the paper. Both the estimated productivities and the implied trade shares are

calculated using the expenditure of a county allowing for deficits computed as above.

Figure B.3. This figure reports kernel densities analogous to Figure 1 that are weighted by the number

of residents in each county, and it shares with that Figure the data source.

Figure B.5. This figure reports a scatterplot of log commuting flows against log distance between

county’s centroids after removing residence and workplace fixed effects. The commuting flows used in the

regression are cleaned of the business trips as described above.

Figure C.1. This figure reports a scatterplot of log of land price, as computed from the model, and the

County Median Housing Value from the ACS. To compute the price of land in the model we use residents’

expenditure allowing for trade deficits. For counties that are aggregated at the BEA level (see above), we

10See http://www.ers.usda.gov/data-products/commuting-zones-and-labor-market-areas.aspx.
11United States Department of Commerce. Bureau of the Census. County and City Data Book [United States] Consolidated

File: County Data, Bibliographic Citation: 1947-1977. ICPSR07736-v2. Ann Arbor, MI: Inter-university Consortium for
Political and Social Research [distributor], 2012-09-18. http://doi.org/10.3886/ICPSR07736.v2
12See http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_atlas_database/2013

/polygon.html
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compute the population weighted average of the median values.

D.2 Additional Empirical Evidence

We now discuss the data sources and definitions for the independent evidence in support of the predictions

of the model in Section 5 of the paper and Sections C.7 and C.8 of this web appendix.

Commuting Data (Section 5 of the paper and Sections C.7 and C.8 of this web appendix).

We construct three bilateral commuting matrices for 1990, 2000 and 2006-2010. We use these matrices

for both Section 5 of the paper and C.8 of this web appendix. Our bilateral commuting data comes from

the County-to-County Worker Flows tabulation files based on the U.S. Census (for years 1990 and 2000)

and American Community Survey (for 2006-2010). We construct commuting flows following the same

procedure indicated in Section D.1.2 for the contiguous United States. We compute distances between

county centroids using the coordinates provided in the corresponding years of the Census Gazetteer files.

To construct a balanced panel of counties over time, some aggregation of counties is needed, and we end

up with a cross-section of 3,108 spatial units for all three years.

Million Dollar Plants (Section 5 of the paper and Section C.7 of this web appendix). We use the

full list of 82 plants openings gathered by Greenstone and Moretti (2004) from the Journal Site Selection.

For each county, yearly workplace employment is taken from the Bureau of Economic Analysis, County

Economic Profiles (Table CA30). In particular, we use the measure of Wage and Salary Employment (data

line 250). This measure includes “All jobs for which wages and salaries are paid are counted”, which cover

all industries covered by Unemployment Insurance, plus adjustments for industries not fully covered by

Unemployment Insurance as detailed in the “Local Area Personal Income Methodology”(November 2016)

from the BEA. In weighted regressions, the population at the beginning of the sample for each county also

comes from the same BEA source (line 100). For each county, the measured own commuting share is for

the closest available year to the plant opening date from the commuting data discussed at the beginning of

this subsection. For all 82 plant openings, the closest available year is 1990. To control for industry-year

fixed effects, we assign industries to cases using the reported industry for each case from Appendix Table 2

in Greenstone and Moretti (2004). Cases are classified into 5 broad industries: Manufacturing (63 cases),

Financial (1 case), Services (6 cases), Trade (4 cases), Transportation and Utilities (8 cases).

Shift-share Decompositions (Section C.8 of this web appendix). We use the bilateral matrix for

2006-2010 for the cross-section decomposition and the bilateral matrices for 1990 and 2006-2010 for the

time-series decomposition.
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