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by Simone Galperti

B1. Lemma 1

Lemma 1. V ⇤ = V (�). In (2), it su�ces to restrict attention to ⌧s with |supp ⌧ | 
|⌦|.
Proof. For q 2 �(⌦), we have v̂(q) > �1 by continuity of v and compactness of
A. For all q 2 R|⌦|�1 \ �(⌦), define v̂(q) = �1. By Carathéodory’s Theorem
(see Rockafellar (1997), Corollary 17.1.5),

V (�) = sup
T�

X

i

⌧iv̂(qi),

where

T� =

(
(q1, ⌧1; . . . ; q|⌦|, ⌧|⌦|) :

P|⌦|
i=1 ⌧iqi = �,

P|⌦|
i=1 ⌧i = 1, ⌧i � 0,

and qi 2 �(⌦) for all i

)
.

Since T� ✓ T , it follows that V (�)  V ⇤. By definition of V ⇤, for every � > 0 there
exists ⌧� 2 T such that E⌧� [v̂(q)] � V ⇤ � �. However, E⌧� [v̂(q)] 2 {⇠ : (�, ⇠) 2
co(hyp v)}, and hence E⌧� [v̂(q)]  V (�). Thus, for every � > 0, V (�) � V ⇤ � �,
which implies that V (�) � V ⇤.

B2. Lemma 2

Lemma 2. If V c(�) < V (�), there exists ⌧ 2 T such that E⌧ [v̂(q)] > V c(�).
Moreover, if E⌧ [v̂(q)] > V c(�), then the probability of disproving ⇢ is strictly
positive.

Proof. The first part follows from Lemma 1. For the second part, note that by
the same argument as in the proof of Lemma 1,

V c(�) = sup
T c
�

X

i

⌧iv̂(qi),

where

T c
� =

(
(q1, ⌧1; . . . ; qN , ⌧N ) :

N � 1,
PN

i=1 ⌧iqi = �,
PN

i=1 ⌧i = 1, ⌧i � 0,

and qi 2 C" for all i

)
.

Suppose E⌧ [v̂(q)] > V c(�), but the probability of disproving Receiver is zero.
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Since ⌧ 2 T , |supp ⌧ | = N for some finite N , and hence supp ⌧ \ D = ?.
Therefore, ⌧ 2 T c

� , and hence E⌧ [v̂(q)]  V c(�), a contradiction.

B3. Introduction Example with Common Priors

Consider the example in the Introduction, with the only di↵erence that both
Sender and Receiver have prior � as in Table 1 and Receiver is Bayesian as in
KG. Proposition 2 in KG implies that ⇡KG is fully uninformative if x > 2 and at
least partially informative if 1 < x < 2. Focusing on the latter case, the following
claims establish that the optimal ⇡KG satisfies

⇡KG(s|!) sT sH

h 4
7

3
7

H 0 1

T 8.7
9

0.3
9

Claim 7. If ⇡ is optimal, then ⇡(sH |H) = 1, ⇡(sH |T ) = 0.3
9 , and ⇡(sH |h) = 3

7 ,
where sH induces aH .

Proof. We know that we can focus on ⇡s which produce at most three signals.
Suppose no signal induces aH . Then, in state H, ⇡ must always produce some

s such that ⇡(s|!)�(!)
⇡(s|H)�(H) � 1 for ! 6= H. Given this, consider a new ⇡0 with the

properties that ⇡0(·|!) = ⇡(·|!) for all ! 6= H, ⇡0(s|H) = 0 if ⇡(s|H) > 0, and
⇡0(s0|H) = 1 where ⇡(s0|!) = 0 for all other !. Then, ⇡0 strictly dominates ⇡.
First, for every ! 6= H, the signal produced by ! under ⇡0 induces the same action
as the signal produced by ! under ⇡ and with the same probabilities as before.
This is because, given ! 6= H, if ⇡(s|!)�(!)

⇡(s|!0)�(!0) � 1 for every !0, then by construction
⇡0(s|!)�(!)
⇡0(s|!0)�(!0) � 1 for every !0, since ⇡0 removes the probability ⇡(s|H). Second,

⇡0 induces aH and payo↵ 2 with strictly higher probability than does ⇡. This
argument also implies that ⇡(sH |H) < 1 cannot be optimal.
For the second part, by Proposition 5 in KG, Receiver must be indi↵erent be-

tween aH and another action when choosing aH . This means that p(H|sH ,⇡) =
p(!0|sH ,⇡) for some !0 6= H. Since ⇡(sH |H) = 1, in order to have this, we need

⇡(sH |!0)�(!0)

�(H)
= 1

and hence �(!0) � �(H). Given �, this is possible for both !0 = h and !0 = T .

Thus, we get that ⇡(sH |h) = �(H)
�(h) = 3

7 and ⇡(sH |T ) = �(H)
�(T ) = 0.3

9 .

Claim 8. If ⇡ is optimal, then ⇡(sT |T ) > 0, where sT induces aT .
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Proof. We know that ⇡(sH |H) = 1, ⇡(sH |T ) < 1, and ⇡(sH |h) < 1. Suppose ⇡
does not induce aT . Without loss of generality, ⇡ must then induce at most one
signal s0 other than sH given �. But, in this case, we have

p(h|s0,⇡)
p(T |s0,⇡) =

4/7

8.7/9
⇥ �(h)

�(T )
=

4/7

8.7/9
⇥ 0.07

0.9
=

0.04

0.87
< 1.

Therefore, s0 would induce aT , a contradiction.

Claim 9. It ⇡ is optimal, then ⇡(sT |T ) = 8.7
9 and ⇡(sT |h) = 4

7 .

Proof. To be optimal, ⇡ cannot induce ah. Suppose that this is not true and let sh
induces ah. By Proposition 4 in KG, ⇡(sh|h) > 0 and ⇡(sh|!) = 0 for ! = T,H.
This already implies that ⇡(sT |T ) = 8.7

9 . Given the previous claims, modify ⇡

by removing sh and shifting ⇡(sh|h) to increase ⇡(sT |h). Even if ⇡(sT |h) = 4
7 ,

given �, the signal sT will still induce Receiver to choose aT , but now with higher
ex-ante probability. Receiver’s choices for the other signals do not change. Hence,
Sender’s payo↵ is strictly higher.

B4. Multiple Alternative Worldviews

This section extends the baseline model in the main paper by letting Receiver
adopt di↵erent worldviews after unexpected evidence. It shows that multiple
alternative worldviews can help Sender, but can also hurt her. Besides this, the
main message of the paper does not change.

Lexicographic Belief Systems. One way to model a Receiver who may adopt
alternative worldviews is to borrow Kreps and Wilson’s (1982) idea of a “sequence
of hypotheses.” Imagine that Receiver treats ⇢0 = ⇢" as his “primary” worldview,
which he always tries to apply first in order to process evidence. If he deems the
evidence unexpected under ⇢0, he tries a second worldview, ⇢1, then a third, ⇢2,
and so on, stopping at the first in the sequence for which the evidence is no longer
unexpected.29

To formalize this, we can let each hypothesis ⇢i assign some small probability
"i � 0 to a subset of states and adopt across hypotheses the same definition of
unexpected evidence as in Definition 1. We will focus on the case of "i = 0.

Assumption 4 (A4: Lexicographic-Belief-System (LBS) Model). Receiver is de-
scribed by a finite sequence ⇢0, ⇢1, ..., ⇢N 2 �(⌦) such that supp ⇢i 6⇢ supp ⇢j

if i > j, and for each ! 2 ⌦, ⇢i(!) > 0 for some i 2 {0, . . . , N}. Given (s,⇡), he
computes p(·|s,⇡) by applying Bayes’ rule to the ⇢i of lowest index i that satisfiesP

!2⌦ ⇡(s|!)⇢i(!) > 0.

29The lexicographic belief systems in Blume et al. (1991a; 1991b) work in a fundamentally di↵erent
way: The agent always takes into account, though lexicographically, all the beliefs of his system.
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With regard to the feasible distributions over posteriors, a new function pL

maps Sender’s posterior to Receiver’s posterior, which generalizes p in Propo-
sition 1 while maintaining its key properties in Corollary 1. This involves two
changes. First, the function r is replaced by a new function rL that, given LBS
(⇢0, . . . , ⇢N ), says which prior Receiver updates for every q 2 �(⌦). By A4, for
every (s,⇡) this is the ⇢i with lowest index that satisfies ⇢i(supp q(·|s,⇡)) > 0;
therefore, for every q 2 �(⌦),

rL(q) = ⇢i(q), where i(q) = min{i : ⇢i(supp q) > 0}.

The second change is in the range of Receiver’s feasible posteriors, which shrinks
even further: pL(�(⌦)) ( p(�(⌦)). To describe this, for i = 1, . . . , N let P i

contain all the states which are deemed possible by ⇢i but impossible by all ⇢j of
lower index:

P i = supp ⇢i \ ([j<i supp ⇢j).

Also, let R = [N
i=0�(P i), where P0 = P. Then, under A4, the new function pL

from Sender’s to Receiver’s posterior has range R rather than �(P) [�(I). To
see this, note first that if rL(q) = ⇢i, then supp q \ ([j<i supp ⇢j) = ?, and
hence suppp(q) = supp q \ supp rL(q) ✓ P i. Conversely, for any i 2 {0, . . . , N}
and q 2 �(P i), we have rL(q) = ⇢i, and hence for all ! 2 P i,

pL(!; q) = q(!)
⇢i(!|P i)

�(!|P i)

2

4
X

!02Pi

q(!0)
⇢i(!0|P i)

�(!0|P i)

3

5
�1

.

Then Proposition 1 applied to priors ⇢i(!|P i) and �(!|P i) implies that by varying
q 2 �(P i) we obtain every p 2 �(P i). The function pL continues to have the
three key properties highlighted after Proposition 1, which drive the analysis in
Section III.

With regard to optimal experiments, consider any LBS (⇢0, . . . , ⇢N ) withN � 2.
For every ! 2 I, let i(!) = max{i : ! /2 supp ⇢i}. Then for every i  i(!)
Sender can conceal ! in any q that satisfies rL(q) = ⇢i. Since the range of pL is
R = [N

i=0�(P i), for i = 0, . . . , N let Ai be the set of all actions Receiver could
choose if he applied ⇢i; that is, Ai = [p2�(Pi){argmaxa2A Ep[u(a,!)]}. Sender’s
best payo↵ from concealing each ! 2 I across all ways allowed by Receiver’s LBS
is then

k⇤(!) = max
a2[i(!)

i=0 A
i

v(a,!).

Her expected payo↵ from concealment is given by the function k̂⇤ : D ! R that
satisfies

k̂⇤(q) = Eq[k⇤(!)], q 2 D.

Now define m̂⇤ : D ! R by m̂⇤ = max{v̂⇤, k̂⇤}, where v̂⇤ : D ! R is the smallest
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upper-semicontinuous (u.s.c.) function that satisfies v̂⇤(q) � v̂(q) for all q 2 D.30

Let V⇤ and M⇤ denote the concavifications of v̂⇤ and m̂⇤, respectively. The reason
for this slight modification of v̂ is that, if v̂ is u.s.c. over D, then V is continuous
over D—by Lemma 3 below—and V (q) is achieved for all q 2 D. But v̂ can fail
to be u.s.c. when pL is discontinuous on D. However, we can render v̂ u.s.c. over
D using v̂⇤ without loss of generality (see the next result).
The next result characterizes the payo↵ from an optimal ⇡ that possibly exploits

Receiver’s multiple worldviews.

Proposition 8. Sender’s expected payo↵ for I-states—M(�(·|I)) in (5)—satisfies

(B1) M(�(·|I)) = M⇤(�(·|I)) = max
↵,qh,qs

{↵k̂⇤(qh) + (1� ↵)V⇤(q
s)},

subject to ↵ 2 [0, 1], qh, qs 2 D, and ↵qh + (1� ↵)qs = �(·|I). Given an optimal
↵⇤, Sender conceals states with ex-ante probability ↵⇤�(I).

Proof of Proposition 8. We first need to establish the following lemma.

Lemma 3. The function V⇤ : D ! R has the following properties:
(i) For every q 2 D, there exists ⌧ 2 �(D) such that V⇤(q) = E⌧ [v̂⇤(q0)], where
q = E⌧ [q0] and |supp ⌧ |  |I|.
(ii) V  V⇤ over D, with equality over intD.
(iii) V⇤ = clV⇤ and hence is continuous.

Proof. Part (i): By Corollary 17.1.5 in Rockafellar (1997),

V⇤(q) = sup
T (q)

|I|X

i=1

v̂⇤(qi)⌧i,

where

T (q) =

(
(q1, ⌧1; . . . ; q|I|, ⌧|I|) :

P|I|
i=1 qi⌧i = q,

P|I|
i=1 ⌧i = 1, ⌧i � 0,

and qi 2 �(I) for all i

)
.

Since v̂⇤ is u.s.c. and T (q) is compact, by standard arguments V⇤(q) is achieved
for every q 2 D.
Part (ii): Given a function f : D ! R, let hypf be the hypograph of f : hypf =
{(q, ⇠) : q 2 D, ⇠ 2 R, ⇠  f(q)}. Note that hyp v̂⇤ = hyp v̂ for v̂ restricted to D.
Therefore, for all q 2 D,

V (q) = sup{⇠ : (q, ⇠) 2 co(hyp v̂)}  sup{⇠ : (q, ⇠) 2 co(hyp v̂)} = V⇤(q).

30Note that v̂ is always u.s.c. over D for LBSs with only one alternative prior as in the baseline model.
Also, since v̂⇤ and k̂⇤ are u.s.c., so is m̂⇤. Indeed, a function is u.s.c. if and only if its hypograph is closed
(Theorem 7.1, Rockafellar [1997]). In our case, hyp m̂⇤ = hyp k̂⇤ [ hyp v̂⇤.
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Now consider the closure of V over D, clV , which is the unique continuous exten-
sion of V to D by Theorem 10.3 in Rockafellar (1997), is concave, and satisfies
clV � V � v̂ over D. Thus, for every q 2 D,

v̂⇤(q) = lim sup
q0!q

v̂(q0)  lim sup
q0!q

clV (q0) = clV (q).

Hence, clV is a concave function majorizing v̂⇤. Since V⇤ is the smallest of such
functions, clV � V⇤. Finally, since clV = V over intD, property (ii) follows.

Part (iii): We already know that V⇤ = clV⇤ over intD. By definition, hyp clV⇤ =
hypV⇤. If hypV⇤ is closed, then hypV⇤ = hyp clV⇤ and we are done. Indeed, by
definition, V⇤  clV⇤, so suppose there exists q 2 @D such that V⇤(q) < clV⇤(q).
Then there exists ⇠ 2 R such that V⇤(q) < ⇠  clV⇤, which is a contradiction.
Hence, all that remains is to prove that hypV⇤ is closed.

First, for every q 2 D, by property (i) we have V⇤(q) = max{⇠ : (q, ⇠) 2
co(hyp v̂⇤)}, and therefore hypV⇤ = co(hyp v̂⇤). Second, define v⇤ = infq2D v̂⇤(q),
so that we can express hyp v̂⇤ as G [H, where

G = {(q, ⇠) : q 2 D, v⇤ � 1  ⇠  v̂⇤(q)} and H = {(q, ⇠) : q 2 D, ⇠  v⇤ � 1}.

Now we will show that co(hyp v̂⇤) = (coG) [ (coH) = (coG) [ H. The inclusion
from right to left is trivial, so consider (q, ⇠) 2 co(hyp v̂⇤). Then, by Theorem 2.3
in Rockafellar (1997), (q, ⇠) is a convex combination of points (qn, ⇠n) in hyp v̂⇤.
Therefore, q 2 D, as the latter is a convex set, and ⇠ =

P
n ↵n⇠n  P

n ↵nv̂⇤(qn)
since ↵n � 0 for all n. But (coG) [H contains all convex combinations of points
in hyp v̂⇤ that satisfy this property, proving the inclusion from left to right. Fi-
nally, note that H is closed, and that G is bounded and closed, since v̂⇤ is upper
semicontinuous. Therefore, co(G) is also closed by Theorem 17.2 in Rockafellar
(1997). We conclude that co(hyp v̂⇤) = (coG) [H is closed, as desired.

Using the properties of V⇤ in Lemma 3, one can extend the proof of the expression
for V (�) in Proposition 4 to the present case. We then show that M(�(·|I)) =
M⇤(�(·|I))—the second equality in (B1) follows from the definition of M⇤(�(·|I)).
Since k⇤ � k and hence m̂⇤ � m̂, it su�ces to show that M⇤(�(·|I))  M(�(·|I)).
Recall that

M(�(·|I)) � sup
{⌧ :E⌧ [q]=�(·|I)}

E⌧ [max{k̂(q), v̂(q)}].

By the same logic as in the proof of Proposition 2, without loss of generality
each q 2 D conceals at most one ! 2 I and hence can be written as q = (1 �
q(!))q(·|P i) + q(!)�!, where P i = supp q \ supp rL(q); moreover, Sender can
always conceal ! in some q 2 D that satisfies v(a(pL(q)),!) = k⇤(!). Let T h

�(·|I)
be the subset of {⌧ : E⌧ [q] = �(·|I)} that contains only the ⌧ 2 �(D) for which
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she conceals states in this way. Then for every ⌧ 2 T h
�(·|I),

E⌧ [max{k̂(q), v̂(q)}] = E⌧ [max{k̂(q), (1� q(!))v̂(q(·|P i)) + q(!)�!k̂⇤(�!)}]
= E⌧ 0 [max{k̂⇤(q0), v̂(q0)}]

for some ⌧ 0 2 {⌧ : E⌧ [q] = �(·|I)}. It follows that

M(�(·|I)) � sup
{⌧ :E⌧ [q]=�(·|I)}

E⌧ [max{k̂⇤(q), v̂(q)}].

Now let m̂d = max{k̂⇤, v̂} over D. Note that m̂d  max{k̂⇤, v̂⇤} = m̂⇤ by the
definition of v̂⇤, and that m̂⇤ is the smallest u.s.c. function that pointwise domi-
nates m̂d. Therefore, Md  M⇤; moreover, by the same logic as in the proof of
Lemma 3, we must have Md(�(·|I)) = M⇤(�(·|I)) because �(·|I) 2 intD. This
implies that M(�(·|I)) � M⇤(�(·|I)) and completes the proof.

In Proposition 8, supp qh tells us which states are concealed, while k⇤(!) tells us
which evidence and worldview are used to conceal !—hence, how deeply Receiver
is induced to think. Similarly, if ! 2 supp qs \P i, it means that he is induced to
think up to (at least) level i in his LBS. Proposition 8 also allows us to identify
which states Sender will conceal, before characterizing her entire experiment.

Corollary 4. Fix ! 2 I. If v̂(�!) � k⇤(!), then Sender never conceals !, that
is, ! /2 supp qh in (B1). If v̂(�!) < k⇤(!) and v̂ is convex over D, then Sender
always conceals !, that is, ! /2 supp qs in (B1).31

Even if v̂(�!) � k⇤(!), Sender need not fully reveal !. If v̂ is not convex, even if
v̂(�!) < k⇤(!), she may reveal ! 2 I with positive probability (even whenever !
occurs).
To conclude, the next example illustrates the new constraints and opportunities

introduced by a multiplicity of Receiver’s worldviews, and why they may help or
hurt Sender.

Example 4. Modify Example 3 by letting Rick have an intermediate worldview
which rules out t or T . That is, LBST = (⇢0, ⇢̂1,�) and LBSt = (⇢0, ⇢̃1,�), where
⇢0 = �(·|P) and ⇢̂1(T ) = ⇢̃1(t) = 0.
Under LBST , Susan can conceal T in two ways. The first uses evidence con-

firming ⇢0 and induces aH ; the second uses evidence disproving ⇢0 but consistent
with !t and hence ⇢̂1, so that Rick assigns to !t probability 1 and chooses at.
Since Susan prefers aT to aH , she never conceals T as before. However, she can no
longer pool t and T in the same evidence to raise her chances of getting aT—any
such evidence would result in at. Therefore, she always conceals t, inducing aH .
Figure B1 shows the optimal ⇡ for t and T . Relative to the original example,

31The proof of Corollary 4 follows the same logic as that of Corollary 2 and is therefore omitted.
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Rick’s reluctance to conceive the good state for Susan, T , causes her to conceal
the bad state, t, with higher probability; it is easy to see that this harms her
expected profits relative to the original example.
Under LBSt, Susan can conceal t in two ways. The first is as before and induces

aH ; the second uses evidence disproving ⇢0 but consistent with T and hence ⇢̃1,
so that Rick chooses aT . Concealing t is now even more attractive. Also, if Susan
pools T and t in the same evidence, Rick is surprised, but thinks that T obtained
and always chooses aT . Therefore, now she always conceals t and induces aT ,
which leads to higher expected profits than in the original example. Figure B2
shows the optimal ⇡ for LBSt and LBST .

1.5

2

3

0 14
9

q(T |I)

k̂⇤

v̂

M(�(·|I))

V

M

Figure B1. Concealing with LBST

1.5

2

3

0 14
9

q(T |I)

v̂

M(�(·|I))

V = k̂⇤ = M

Figure B2. Concealing with LBSt

Consistent with Kreps and Wilson (1982), one interpretation of A4 is that
Receiver has a “meta-prior” over worldviews which assigns to higher-ranked el-
ements of his LBS a higher likelihood of being correct. Receiver always adopts
the worldview with highest likelihood under his meta-prior, after removing those
disproven by the evidence. That is, the ranking of surviving worldviews is never
updated. The next model relaxes this property.

Ortoleva’s (2012) Model of Worldview Change. Ortoleva (2012) o↵ers an-
other way to model a Receiver with multiple alternative worldviews. Unlike in
the LBS model, now he fully updates his meta-prior before adopting a new world-
view. This model results from behavior-based notions of coherence and dynamic
consistency—besides standard axioms of subjective expected utility. Coherence
says that Receiver should have the same posterior after seeing pieces of evidence
with the same content. Dynamic consistency is self-explanatory.
Formally, let µ 2 �(�(⌦)) be such that suppµ is finite, ⇢" = argmax⇢ µ(⇢),

and for every ! 2 ⌦ there exists ⇢ 2 supp µ with ⇢(!) > 0. For every (s,⇡), let

(B2) µ0(⇢|s,⇡) =
⇥P

!2⌦ ⇡(s|!)⇢(!)⇤µ(⇢)
P

⇢̃2supp µ

⇥P
!2⌦ ⇡(s|!)⇢̃(!)⇤µ(⇢̃) , ⇢ 2 �(⌦).
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Since the maximizer of µ0(·|s,⇡) need not be unique, following Ortoleva (2012)
we endow Receiver with a strict linear order � over priors, which he applies when
the maximum-likelihood criterion is inconclusive.

Assumption 5 (A5: Hypothesis-Testing Model). Receiver’s initial prior is ⇢".
If (s,⇡) is expected, he updates ⇢" via Bayes’ rule; otherwise, he updates ⇢(s,⇡)
via Bayes’ rule, where ⇢(s,⇡) is �-maximal in argmax⇢ µ0(⇢|s,⇡).32

The notion of (un)expected evidence in A5 is as in Definition 1.
Under A5, the characterization of feasible posteriors is similar to Proposition 6.

Sender’s q again pins down which prior Receiver updates, denoted by rµ(q). If
q 2 C", rµ(q) = ⇢". If q 2 D", express ⇡(s|!) in terms of q(!|s,⇡) using AC’s
logic and write (B2) as

µ0(⇢; q) =

hP
!2⌦ q(!) ⇢(!)�(!)

i
µ(⇢)

P
⇢̃2supp µ

hP
!2⌦ q(!) ⇢̃(!)�(!)

i
µ(⇢̃)

, ⇢ 2 �(⌦).

Then, rµ(q) equals the �-maximal element in argmax⇢ µ0(⇢; q). For all q and
rµ(q), we get Receiver’s posterior using again AC’s logic, thereby obtaining a new
function pµ : �(⌦) ! �(⌦). This function retains the properties in Corollary 1.
Depending on µ, pµ can allow Sender to conceal states after disproving ⇢" as
under A4 (see below).
Given pµ, the insights of Section III remain valid. Under A5, finding the con-

cealment payo↵ for I-states can be more intricate: Now Receiver may discard a
new ⇢0 that deems ! impossible for one that does not when the evidence is su�-
ciently against ⇢0. Given those payo↵s, the characterization of optimal persuasion
for the LBS model applies unchanged.

Example 5 (Discontinuity of Receiver’s Posterior over D under A5). Let " = 0.
Given ⌦ = {!1,!2,!3,!4} and � = (14 ,

1
4 ,

1
4 ,

1
4), let supp µ = (⇢0, ⇢1, ⇢2) with

µ(⇢0) = 1
2 , µ(⇢

1) = µ(⇢2) = 1
4 , P = {!1}, ⇢1 = (14 ,

1
4 ,

1
2 , 0), and ⇢2 = �. Consider

Sender’s posterior qz = (0, 1�z
2 , 1�z

2 , z) 2 D for z 2 (0, 1). Then

µ0(⇢1; qz) =

P
!2⌦ qz(!)⇢1(!)P

!2⌦ qz(!)⇢1(!) +
P

!2⌦ qz(!)⇢2(!)
=

1

1 + 2
3(1�z)

,

and
µ0(⇢2; qz) = 1� µ0(⇢1; qz).

Hence, µ0(⇢1; qz) � µ0(⇢2; qz) if and only if z  1
3 . For z = 1

3 , Receiver will choose
either ⇢1 or ⇢2, depending on how he ranks them under �.

32The analysis does not change if Receiver chooses worldviews using any other criterion that continues
to rely only on the priors µ and µ0. For example, he may minimize the expectation under µ (resp. µ0)
of some loss function that depends on his choice and the “true” ⇢.
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Using AC’s logic, we can compute Receiver’s posteriors, starting with ⇢1 and
⇢2, when Sender has posterior qz. Focusing on !3, we have

p1(!3; qz) =
(1� z)12

(1� z)12 + (1� z)14
=

2

3
,

p2(!3; qz) =
(1� z)14

(1� z)14 + (1� z)14 + 2z 1
4

=
1� z

2
.

Thus, Receiver’s posterior must vary discontinuously in qz at z = 1
3 . Note also

that for z with 0 < z < 1
3 we have p1(!4; qz) = 0, even though qz(!4) > 0.

Therefore, Sender is hiding !4 in posterior qz after disproving ⇢0.

B5. Is this Model Just the Limit of a Standard Model?

Let ⌦ = {!1,!2}, � = (12 ,
1
2), and ⇢ = (1 � ", ") for " > 0. Let A = {a, b, c},

and let the payo↵ functions be

v a b c

!1 1 0 �1
!2 1 0 �1

u a b c

!1 1 2 �1
!2 1 �1 2

Abusing notation, let p and q be the posterior probabilities Receiver and Sender
assign to !2, so that b(q) = q"

q"+(1�q)(1�") . She can induce him to choose a if

p 2 [13 ,
2
3 ]; he will choose b if p < 1

3 and c if p > 2
3 . Note that b(q) 2 [13 ,

2
3 ] if

and only if q 2 [q
"
, q"], where q

"
= 1�"

1+" and q" = 2(1�")
2�" . Also, q

"
and q" satisfy

0 < q
"
< q" < 1, are strictly decreasing, and converge to 1 as " ! 0. Therefore,

no matter how small " is, Sender can always persuade Receiver to choose a with
positive probability. Focusing on the case of q

"
> 1

2 , it is easy to check that her

optimal ⌧ generates two posteriors, q = 0 and q = q
"
, with ⌧(q

"
) = 1

2q
"
. This

⌧ always induces Receiver to choose both a and b with positive probability and
yields expected payo↵ 1

2q
"
, which converges to 1

2 as " ! 0. When " reaches 0, we

obtain a case of " = 0 and P = {!1} in the baseline model of Section I. Now
Sender cannot induce any p 2 [13 ,

2
3 ] and hence action a. Since she strictly prefers

b to c, her best experiment is fully uninformative (⌧ = ��), yielding payo↵ 0.
Proposition 7 confirms that this substantive di↵erence between the two models
extends beyond the case of " = 0.
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B6. Omitted Proofs

Proof of Proposition 5

First, let’s derive the function v̂(q) = Eq[v(Ep(q)[!],!)]:

v̂(q) = �(Ep(q)[!])
2 + 2Ep(q)[!]Eq[!] + 2b(Ep(q)[!]� Eq[!])� 2Eq[!

2]� b2.

To apply Proposition 4, we only need v̂(q) for q 2 �(P) and q 2 D = �(I). Since
⇢ = �(·|P) and ⇢1 = �, we have p(q) = q for every q 2 �(P) [ �(I).33 This
yields

v̂(q) = (2� 1)(Eq[!])
2 + 2b(1� )Eq[!]� 2Eq[!

2]� b2, q 2 �(P) [�(I),

which is strictly convex (concave) if and only if  > (<) 1
2 . If  � 1

2 , V (�(·|P))
and V (�(·|I)) are then achieved with a fully informative ⇡ (uniquely if  > 1

2); if
 < 1

2 , they are achieved only with a fully uninformative ⇡. Note that the range
of policies Receiver can be induced to choose under his worldview is Ac = [!n,!n],
and that for every ! 2 I,

k(!) =

8
><

>:

�(!n � �(!))2 if �(!) > !n

�(!n � �(!))2 if �(!) < !n

0 if !n  �(!)  !n.

Case 1:  � 1
2 . The properties stated in the proposition follows from the next

claim.

Claim 10. If  � 1
2 , Sender’s optimal ⇡ has the following properties:

• ⇡ fully reveals !i for all i  n;
• there exist b⇤()  0 and i⇤(b,) such that, if b � b⇤(), ⇡ fully reveals all
• states, while if b < b⇤(), ⇡ always conceals !i if n < i < i⇤(b,) and
• fully reveals !i if i � i⇤(b,);
• b⇤() decreases in  (strictly if negative) and i⇤(b,) decreases in  and b.

Proof. We already know that the lobbyist fully reveals every !  !n. For i >
n, since v̂ is convex over D, by Corollary 2 we have that !i is concealed with
probability 1 if v̂(�!i) < k̂(�!i) and is never concealed otherwise. So fix i > n.
For each value of  there exists a value bi() such that v̂(�!i) � k̂(�!i) if and only
if b � bi(): This threshold is given by

bi() = min

⇢✓
1

2
� 

◆
!i +

1

2
!n, 0

�
.

33More generally, one could apply the techniques developed by AC for cases with di↵erent common-
support priors to characterize V (�(·|P)) and M(�(·|I)).
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Each bi() is decreasing in  (strictly when negative), and bi+1()  bi() (with <
if either threshold is negative). If b � b⇤() ⌘ bn+1(), we have that V (�(·|I)) =
M(�(·|I)), and hence ⌧d = �(I) by Proposition 4. On the other hand, if b < b⇤(),
let i⇤(b,) = min{i > n : b � bi()}, which is non-increasing in both  and b.
Thus it is optimal to conceal with probability 1 every !i with n < i < i⇤(b,)
and to fully reveal all other states in I.

Case 2:  < 1
2 . The properties stated in the proposition follows from the next

claim.

Claim 11. If  < 1
2 , Sender’s expected payo↵ from her optimal ⇡ equals

�⌧dEqd(a
d � !)2 + (1� ⌧d)

X

!>!n

k(!)qc(!)�
X

!2P
(E�[!|P]� !)2�(!),

where ⌧d > 0, ⌧dqd + (1 � ⌧d)qc = �, and ad = Eqd [!]. Either E�[!|! < !n] 
ad < !n or ad > !n. If E�[!|I]  !n, ⇡ conceals some ! > !n with positive
probability and ad < !n.

Proof. By Proposition 5, M(�(·|I)) is given by

max
�2[0,1],q1,q22D

�
�Eq1 [k(!)] + (1� �)Eq2 [�(Eq2 [!]� �(!))2]

 
,

subject to �q1 + (1� �)q2 = �(·|I). By continuity of k̂ and v̂ over D, a solution
(�, q1, q2) to this problem exists. Recall that !i /2 supp q1 for all i < n. Suppose
that (�, q1, q2) implies !n  Eq2 [!]  !n. We will show that there exists a feasible
(�0, q01, q

0
2) which strictly dominates (�, q1, q2). Since � is strictly increasing, we

must have !j 2 supp q2 for some j > n. Suppose first that �(!) > !n for some
! > !n. Then, for any ⇠ 2 [!n,!n],

�Eq2 [(⇠ � !)2] < �Eq2 [(!n � �(!))21{�(!) < !n}]
�Eq2 [(!n � �(!))21{�(!) > !n}]

= Eq2 [k(!)].

This means that �0 = 1 and q01 = �(·|I) strictly dominates (�, q1, q2). Now,
suppose that �(!)  !n for all ! > !n. If !n < Eq2 [!]  !n, then again
�0 = 1 and q01 = �(·|I) strictly dominates (�, q1, q2). If Eq2 [!] = !n, then

M(�(·|I)) = k̂(�(·|I)). But we know that always concealing all states in I is
not optimal: V (�) > V c(�) since v̂(�!1) > k̂(�!1). Therefore, (�, q1, q2) is again
strictly dominated.
Finally, if � is such that !n  E�(·|I)[!]  !n, then ⌧d = �(I) implies that

qd = �(·|I), and hence !n  Eqd [!]  !n, which cannot be optimal as we have
just argued. Moreover, concealing can occur only for ! > !n and never occurs
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for ! < !n, so Eqd [!] must be lower than !n. A fortiori, the same holds if
E�(·|I)[!] < !n.

Proof of Proposition 6

Since supp ⇢" = supp�, by AC logic there exists an homeomorphism from
Sender’s to Receiver’s posteriors that describes the Bayes’ updating of ⇢" cor-
responding to the (s,⇡) inducing each q. Since the condition p"(I|q) � ✓(") par-
titions the set of Receiver’s posteriors �(⌦), it implies (via the homeomorphism)
the partition of Sender’s posterior given by

D" = {q : p"(I|q) � ✓(")} and C" = {q : p"(I|q) < ✓(")} = �(⌦) \ D".

As " falls, D" shrinks in the sense of set inclusion. Indeed,

p"(I|q) =
P

!2I
q(!)
�(!)⇢"(!)

P
!02⌦

q(!0)
�(!0)⇢"(!

0)
� ✓(") i↵

P
!2P

q(!)
�(!)

⇢"(!)
⇢"(P)

P
!02I

q(!0)
�(!0)

⇢"(!0)
⇢"(I)

 "(1� ✓("))

✓(")(1� ")
;

also, by A1 the left-hand side of the second inequality is independent of ", and
by A2 the right-hand side decreases to zero as " ! 0. Using continuity of p"(I|q)
in q, we get D"0 ⇢ D" for all "0 < ". In the limit q 2 �(I) if and only if
q(!) = 0 for all ! 2 P. Hence, lim"!0D" = \"�0D" = �(I). Finally, since
C" = �(⌦)\D", C" grows in the sense of set inclusion as " falls. Also, lim"!0 C" =
�(⌦) \ (lim"!0D") = �(⌦) \�(I). The rest of the result follows immediately.

Proof of Corollary 3

Part (1): Note that D" is closed. Let q̂ 2 D" \ clC", where clC" is the closure
of C". Let {qn} ⇢ C" be any sequence that satisfies qn ! q̂ as n ! 1. For all
! 2 ⌦,

lim
n!1

p"(!; q
n) =

q̂(!)
�(!)⇢"(!)

P
!02⌦

q̂(!0)
�(!0)⇢"(!

0)
and p"(!; q̂) =

q̂(!)
�(!)⇢

1(!)
P

!02⌦
q̂(!0)
�(!0)⇢

1(!0)
.

Since at q̂ we have

P
!2P

q̂(!)
�(!)

⇢"(!)
⇢"(P)

P
!02I

q̂(!0)
�(!0)

⇢"(!0)
⇢"(I)

=
"(1� ✓("))

✓(")(1� ")
> 0,

it follows that (supp q̂) \ P ⌘ Pq̂ 6= ? and (supp q̂) \ I ⌘ Iq̂ 6= ?. Thus, for all
!̂, !0 2 Pq̂ [ Iq̂, the following quantities are well defined:

lim
n!1

p"(!̂; qn)

p"(!0; qn)
=

q̂(!̂)
�(!̂)⇢"(!̂)

q̂(!0)
�(!0)⇢"(!

0)
and

p"(!̂; q̂)

p"(!0; q̂)
=

q̂(!̂)
�(!̂)⇢

1(!̂)

q̂(!0)
�(!0)⇢

1(!0)
.
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If p" is continuous, the limit on the left must equal the quantity on the right for

all pairs of states in Pq̂ [ Iq̂. This implies ⇢1(!) = ⇢1(!0)
⇢"(!0)⇢"(!) for all ! 2 Pq̂ [ Iq̂

and some fixed !0 2 Pq̂ [ Iq̂. Using this, we get

⇢1(Pq̂)

⇢1(Iq̂) =
⇢"(Pq̂)

⇢"(Iq̂) =
⇢"(Pq̂)/⇢"(P)

⇢"(Iq̂)/⇢"(I) ⇥ 1� "

"
.

By A1,
⇢"(Pq̂)/⇢"(P)
⇢"(Iq̂)/⇢"(I) is independent of " and can only take finitely many, strictly

positive, values, since ⌦ is finite. Also, the properties of ⇢1 imply that
⇢1(Pq̂)
⇢1(Iq̂) 

1�⇢1

⇢1
for q̂ 2 D" \ clC". Thus, there exists " > 0 such that, if " < ", then

⇢1(Pq̂)
⇢1(Iq̂) <

⇢"(Pq̂)
⇢"(Iq̂) for all q̂ 2 D" \ clC" and hence p" cannot be continuous over this

set.

Part (2): Consider p"(C"). This set contains p if and only if p results from
expected evidence, that is, p(I) < ✓("). By A2, this condition becomes more
stringent as " decreases. As a result, p"(C") shrinks, which also implies that
sup{p(I) : p 2 p"(C")} decreases. By A2, lim"!0 ✓(") = 0. Therefore, p 2
lim"!0 p"(C") = \"�0p"(C") implies that p(I) = 0, which means that p 2 �(P).
Now suppose p0 2 �(P). Since p0(I) = 0, the evidence inducing p0 rules out all
! 2 I and is therefore expected. Since ✓(") > ", we have that p0(I) < ✓(") for all
" � 0. Therefore, p0 2 \"�0p"(C"). This proves that \"�0p"(C") = �(P).

Now consider p"(D"). Each p in this set satisfies

p"(!; q) =
q(!)⇢

1(!)
�(!)

P
!02⌦ q(!0)⇢

1(!0)
�(!0)

, ! 2 ⌦.

Since supp ⇢1 = ⌦, viewed as a function over the entire set �(⌦), this function
is an homeomorphism (see Corollary 1). Therefore, since D" ⇢ D"0 for " < "0,
we have p"(D") ( p"(D"0) and hence sup{p(P) : p 2 p"(D")} decreases as "
decreases. Moreover, lim"!0 p"(D") = \"�0p"(D") = p0(�(I)). Restricted to
�(I), p0 can be written as

p0(!; q) =
q(!)⇢

1(!|I)
�(!|I)

P
!02I q(!

0)⇢
1(!0|I)
�(!0|I)

, ! 2 I.

Applying the first part of Corollary 1 for priors ⇢1(·|I) and �(·|I), we conclude
that p0 : �(I) ! �(I) is onto and hence p0(�(I)) = �(I).
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Part (3): Given q⌘ and the corresponding q0 2 �(P) and !̂ 2 I, we have

1� p"(I|q⌘)
p"(I|q⌘) =

(1� ⌘)
P

!2P
q0(!)
�(!) ⇢"(!)

⌘ ⇢"(!̂)
�(!̂)

=
(1� ⌘)(1� ")

⌘"
⇥

1
�(P)

P
!2P

q0(!)
�(!|P)⇢"(!|P)

⇢"(!̂|I)
�(!̂)

� (1� ⌘)(1� ")

⌘"
⇥ min!2I �(!)

�(P)
,

where the inequality uses
P

!2P
q0(!)
�(!|P)⇢"(!|P) = 1 for q0 2 �(P). By A1, the

quantity multiplying (1�⌘)(1�")
⌘" is independent of ". Thus, for all " > 0, p"(I|q⌘) <

✓(") for all q0 and !̂ if and only if ⌘ < ⌘" for some unique ⌘" < 1. Since "(1�✓("))
✓(")(1�") !

0 monotonically by A2, ⌘" increases monotonically to 1.

Now suppose q̂, q̃ 2 C" satisfy q̂(·|P) = q̃(·|P) = q0. We can write q̂ = (1 �
q̂(I))q0 + q̂(I)q̂0 and q̃ = (1 � q̃(I))q0 + q̃(I)q̃0, where q̂0, q̃0 2 �(I). Letting
p̂ = p"(q̂) and p̃ = p"(q̃), we have

||p̂� p̃||2 =
X

!2⌦
[p̂(P)p̂(!|P) + p̂(I)p̂(!|I)� p̃(P)p̃(!|P)� p̃(I)p̃(!|I)]2

=
X

!2P
[p̂(P)p̂(!|P)� p̃(P)p̃(!|P)]2 +

X

!2I
[p̂(I)p̂(!|I)� p̃(I)p̃(!|I)]2

=
X

!2P
[p0(!|P)]2 [p̂(I)� p̃(I)]2 +

X

!2I
[p̂(I)p̂(!|I)� p̃(I)p̃(!|I)]2

 |P| [p̂(I)� p̃(I)]2 + 2|I| [max{p̂(I), p̃(I)}]2

where the third step uses the fact that, for all ! 2 P,

p0(!|P) ⌘
q0(!)⇢"(!)�(!)

P
!02P q0(!0)⇢"(!

0)
�(!0)

=
p̂(!)

p̂(P)
=

p̃(!)

p̃(P)
,

and therefore p̂(!|P) = p̃(!|P). Since sup{p(I) : p 2 p"(C")} ! 0 as " ! 0 by
Part (2), max{p̂(I), p̃(I)} ! 0 and |p̂(I)� p̃(I)| ! 0.

Proof of Proposition 7

Part I: lim"!0 V
c
" (�) = V c

0 (�). The proof consists of the following three claims.

Claim 12. There exists " > 0 such that, if " < ", then a(p"(q)) 2 Ac for all q 2 C".
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Proof. For every p 2 �(⌦), let a(p) 2 argmaxa2A Ep[u(a,!)]. Also, define

⇣ = max
a/2Ac,â2Ac

⇢
max
!2I

u(a,!)�min
!2I

u(â,!)

�
,

which is bounded by finiteness of I and A, and

� = max
p2�(P)

⇢
max
ã/2Ac

Ep[u(ã,!)]� Ep[u(a(p),!)]

�
,

which is strictly negative because A is finite. Indeed, otherwise, there would be
p 2 �(P) and ã /2 Ac such that Ep[u(ã,!)] = Ep[u(a(p),!)], which contradicts
the premise that ã /2 Ac. Consider any a0 /2 Ac and p 2 p"(C"). We have

Ep[u(a
0,!)] = Ep[u(a(p(·|P)),!)]

+p(P)
�
Ep(·|P)[u(a

0,!)]� Ep(·|P)[u(a(p(·|P)),!)]
 

+p(I)�Ep(·|I)[u(a
0,!)]� Ep(·|I)[u(a(p(·|P)),!)]

 

 Ep[u(a(p(·|P)),!)]

+p(P)
�
Ep(·|P)[u(a

0,!)]� Ep(·|P)[u(a(p(·|P)),!)]
 

+p(I)
⇢
max
!2I

u(a0,!)�min
!2I

u(a(p(·|P)),!)

�

 Ep[u(a(p(·|P)),!)]

+p(P)
�
Ep(·|P)[u(a

0,!)]� Ep(·|P)[u(a(p(·|P)),!)]
 
+ p(I)⇣

 Ep[u(a(p(·|P)),!)]

+p(P)

⇢
max
ã/2Ac

Ep(·|P)[u(ã,!)]� Ep(·|P)[u(a(p(·|P)),!)]

�
+ p(I)⇣

 Ep[u(a(p(·|P)),!)] + �+ p(I)[⇣ � �],

Now recall that supp2p"(C") p(I) ! 0 as " ! 0 by Corollary 3. Thus, there
exists "a0 > 0 so that if " < "a0 , then Ep[u(a0,!)] < Ep[u(a(p(·|P)),!)] for every
p 2 p"(C"). Let " = mina02Ac "a0 > 0. It follows that, if " < ", then Ep[u(a0,!)] <
Ep[u(a(p(·|P)),!)] for every a /2 Ac and p 2 p"(C").
By A3, if a 2 Ac, there exists pa 2 �(P) such that Epa [u(a,!)] � � �

Epa [u(a
0,!)] for some � > 0 and all other a0 2 Ac. Since supp2p"(C") p(I) ! 0

as " ! 0, it follows that if p 2 �(⌦) is such that p(·|P) = pa, then a =
argmaxa02A Ep[u(a0,!)] for " small enough. If we let a! be a best action in
Ac for ! 2 I, then any p 2 �(⌦) that satisfies p(·|P) = pa! guarantees that
Receiver chooses a! provided that " is smaller than some "a! . Since I is finite,
if we let " = min!2I "a! , then the previous conclusions holds for every ! 2 I
provided that " < ". Hereafter, " < ".

Claim 13. lim inf"!0 V
c
" (�) � V c

0 (�).
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Proof. Consider any ⌧ 2 T that satisfies properties (1)–(3) of Proposition 2 and
supp ⌧ ✓ C". Then, for every q! 2 supp ⌧ that conceals an ! 2 I, we can write
q! as

q! = (1� q!(!))pa! + q!(!)�!,

letting q!(!) = 1
1+"⌘" for all ! 2 I, where ⌘" is as in Corollary 3. It is also the

case that q!(!)⌧(q!) = �(!). So, by the same argument as in Part IV of the
proof of Proposition 2,

E⌧ [v̂"(q)]  �(P)V"(�(·|P)) +
X

!2I
k(!)�(!) = V c

0 (�),

where the equality follows from observing p" is independent of " for all q 2 �(P):
Indeed, for q 2 �(P),

p"(!; q) =

q(!)
�(!)⇢"(!)

P
!02P

q(!0)
�(!0)⇢"(!

0)
=

q(!)
�(!|P)⇢"(!|P)

P
!02P

q(!0)
�(!0|P)⇢"(!

0|P)
,

which does not depend on " by A1. This implies that

V"(�(·|P)) = sup
{⌧ :E⌧ [q]=�(·|P)}

E⌧ [Eq[v(a(p"(q)),!)]]

= sup
{⌧ :E⌧ [q]=�(·|P)}

E⌧ [Eq[v(a(p0(q)),!)]] = V0(�(·|P)).

Now note that by the same observation

E⌧ [v̂"(q)] = �(P)E⌧�(P)
[v̂0(q)] +

X

!2I
k(!)�(!),

where ⌧�(P) is the restriction of ⌧ to �(P) which belongs to the set {⌧ : E⌧ [q] =
�(·|P)}. Thus, if we construct ⌧ so that E⌧�(P)

[v̂0(q)] ! V0(�(·|P)) as in Part IV
of the proof of Proposition 2, we get that E⌧ [v̂"(q)] ! V0(�) from below.
We conclude that, for every sequence {"n} converging to 0, we can construct a

sequence {⌧"n} such that each ⌧"n 2 T and satisfies supp ⌧"n ✓ C"n , E⌧"n [v̂"n(q)] 
V c
"n(�) (by definition), E⌧"n [v̂"n(q)]  V c

0 (�) (by construction), and E⌧"n [v̂"n(q)] !
V c
0 (�). The claim follows.

Claim 14. lim sup"!0 V
c
" (�)  V c

0 (�).

Proof. The proof is by contradiction. Suppose lim sup"!0 V
c
" (�) = V > V c

0 (�).
Fix � > 0 so that V �� > V c

0 (�). There must exists a sequence {"n} with "n ! 0
and a corresponding sequence {⌧"n} with each ⌧"n 2 T satisfying supp ⌧"n ✓ C"n
such that E⌧"n [v̂"n(q)] 2 [V � �, V + �] for all n � N su�ciently large.
Note that without loss of generality we can assume that, for every ⌧"n in the

sequence, there must exists q 2 supp ⌧"n such that a(p"n(q)) /2 A(p"n(q(·|P)))—
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otherwise, we would have E⌧"n [v̂"n(q)]  V c
0 (�). To see this, fix "n and note

that

E⌧"n [v̂"n(q)] =
X

q2supp ⌧"n

"
X

!2P
v(a(p"n(q)),!)q(!)

+
X

!2I
v(a(p"n(q)),!)q(!)

#
⌧"n(q)


X

q2supp ⌧"n

"
X

!2P
v(a(p"n(q)),!)q(!) +

X

!2I
k(!)q(!)

#
⌧"n(q)

=
X

q2supp ⌧"n

"
X

!2P
v(a(p"n(q)),!)q(!)

#
⌧"n(q)

+
X

q2supp ⌧"n

"
X

!2I
k(!)q(!)

#
⌧"n(q)

= �(P)
X

q2supp ⌧"n

"
X

!2P
v(a(p"n(q)),!)q(!|P)

#
q(P)⌧"n(q)

�(P)

+
X

!2I
k(!)�(!),

where we used that
P

q2supp ⌧"n
q(!)⌧(q) = �(!) for every ! 2 ⌦. If we define

⌧ 0(q(·|P)) = q(P)⌧"n (q)
�(P) for every q(·|P) corresponding to a q 2 supp ⌧"n , then ⌧ 0

defines a distribution over �(P) with

E⌧ 0 [q(!)] =
1

�(P)

X

q2supp ⌧"n

q(!)⌧"n(q) = �(!|P), ! 2 P.

Recall that for " small enough, a(p"n(q)) 2 Ac for all q 2 supp ⌧ . Hence, if
a(p"n(q)) 2 A(p"n(q(·|P))) for all q 2 supp ⌧ 0, we would have

X

q2supp ⌧ 0

"
X

!2P
v(a(p"n(q)),!)q(!|P)

#
⌧ 0(q(·|P)) 

X

q2supp ⌧ 0

v̂"n(q(·|P))⌧ 0(q(·|P))

 V"n(�(·|P)) = V0(�(·|P)).

We will proceed by constructing for every ⌧"n as ‘twin’ distribution ⌧̂"n and by
showing that limn!1

��E⌧"n [v̂"n(q)]� E⌧̂"n [v̂"n(q)]
�� = 0 and limn!1 E⌧̂"n [v̂"n(q)] 

V c
0 (�), which delivers the desired contradiction.

Focussing on qs such that a(p"n(q)) /2 A(p"n(q(·|P))), consider the following ob-
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servations. By optimality a(p"n(q)) of for Receiver,
p"n (I;q)
p"n (P;q)Ep"n (·|I;q)[u(a(p"n(q)),!)�

u(a(p"n(q(·|P))),!)] must exceed Ep"n (q(·|P))[u(a(p"n(q(·|P))),!)�u(a(p"n(q)),!)],
where we used

p"n(!|P; q) =

q(!)
�(!)⇢o(!)

P
!02P

q(!0)
�(!0)⇢o(!

0)
=

q(!|P)
�(!) ⇢o(!)

P
!02P

q(!0|P)
�(!0) ⇢o(!0)

= p"n(!; q(·|P)).

Letting M = max!2I [maxa2A u(a,!)�mina2A u(a,!)] > 0, which is bounded, it
follows that

B"n = M sup
p2p"n (C"n )

p(I)
1� p(I)

� Ep"n (q(·|P))[u(a(p"n(q(·|P)),!)� u(a(p"n(q)),!)] > 0.

Recall that supp2p"n (C"n )
p(I)

1�p(I) ! 0 as "n ! 0. Therefore, for every "n and
q 2 C"n , there is a uniform upper abound B"n > 0 in the payo↵ di↵erence for
Receiver between a(p"n(q(·|P))) and a(p"n(q)), which both belong to Ac, and
B"n ! 0 as "n ! 0.

Next, for every a 2 Ac, let �a(P) = {p 2 �(P) : a 2 argmaxa2A Ep[u(a,!)]}.
Clearly, �a(P) is closed and convex and int�a(P) 6= ? for every a 2 Ac by A3.
Therefore, if for every a 2 Ac we fix pa 2 int�a(P) so that mina02A Epa [u(a,!)�
u(a0,!)] > 0 and define

p�(a(p"n(q))) = �p"n(q(·|P)) + (1� �)pa(p"n (q)),

then there exists a �̃"n(a(p"n(q))) < 1 such that Ep�(a(p"n (q)))
[u(a(p"n(q(·|P)),!)�

u(a(p"n(q)),!)] � 0 if and only if � � �̃"n and with equality if and only if � = �̃"n .
Note that, by definition,

�̃"n(a(p"n(q)))

1� �̃"n(a(p"n(q)))
=

Epa(p"n (q))
[u(a(p"n(q)),!)� u(a(p"n(q(·|P)),!)]

Ep"n (q(·|P))[u(a(p"n(q(·|P)),!)� u(a(p"n(q)),!)]
.

�
mina2A Epa(p"n (q))

[u(a(p"n(q)),!)� u(a,!)]

B"n

� K

B"n

where K = mina02Ac

�
mina2A Epa0 [u(a

0,!)� u(a,!)]
 
> 0. This implies that

�̃"n(a(p"n(q))) �
K

K +B"n

.

Now let �"n(a(p"n(q))) =
K

(1+"n)(K+B"n )
. By construction,

||p"n(q(·|P))� p�"n (a(p"n (q)))(a(p"n(q)))||(B3)
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= (1� �"n(a(p"n(q)))||p"n(q(·|P))� pa(p"n (q))||



1� K

(1 + "n)(K +B"n)

�
|⌦|.(B4)

Since p"n is an homeomorphism independent of "n when restricted to �(P),
there exists a unique q0(a(p"n(q))) 2 �(P) such that

p"n(q
0(a(p"n(q)))) = p�"n (a(p"n (q)))(a(p"n(q))).

Using q0(a(p"n(q))), it is possible to construct q̂(a(p"n(q))) 2 �(⌦) in the form
q̂(a(p"n(q))) = q(P)q0(a(p"n(q))) + (1� q(P))q(·|I). Now, note that

p"n(·|I; q̂(a(p"n(q)))) = p"n(·|I; q)

by A1 and
p"n(P; q̂)

p"n(I; q̂)
=

p"n(P; q)

p"n(I; q)
.

It follows that a(p"n(q)) = argmaxa2A Ep"n (q̂)[u(a,!)] and q̂(a(p"n(q))) 2 C"n .
This is because Receiver’s expected payo↵ conditional on I is the same for
a(p"n(q)) and every other strictly worse action under both p"n(q) and p"n(q̂),
his expected payo↵ conditional on P strictly favors a(p"n(q)) to every other ac-
tion under p"n(q̂) compared to under p"n(q), and the relative likelihood of P and
I is the same under both beliefs.

We can now construct a twin distribution ⌧̂"n for every ⌧"n in the sequence as
follows. For every q 2 supp ⌧"n such that a(p"n(q)) /2 A(p"n(q(·|P))), construct
q̂(a(p"n(q))) as before and assign to it probability ⌧̂"n = ⌧"n(q); if a(p"n(q)) 2
A(p"n(q(·|P))), simply let q̂(a(p"n(q))) = q and assign to it probability ⌧̂"n =
⌧"n(q). In general, E⌧̂"n [q̂] 6= �. As we will show shortly, however, E⌧̂"n [q̂] ! �
as n ! 1. Thus, since � 2 int�(⌦) and E⌧̂"n [q̂] 2 �(⌦) for every "n, we can
always augment each ⌧̂"n by adding a realization q̃ 2 �(⌦) so that q̃⌧̂"n(q̃) + (1�
⌧̂"n(q̃))E⌧̂"n [q̂] = � and choose q̃ so that ⌧̂"n(q̃) ! 0 as n ! 1.

Now,
��E⌧"n [v̂"n(q)]� E⌧̂"n [v̂"n(q)]

�� is bounded above by

������

X

q2supp ⌧"n

2

4
X

!2P
v(a(p"n (q)),!)[q(!|P)� (1� ⌧̂"n (q̃))q

0(!; a(p"n (q)))]

3

5 q(P)⌧"n (q)

������

+ ⌧̂"n (q̃)

������

X

q2supp ⌧"n

2

4
X

!2I
v(a(p"n (q)),!)q(!|I)

3

5 q(I)⌧"n (q̂)�
X

!2⌦

v(a(p"n (q̃)),!)q̃(!)

������


X

q2supp ⌧"n

2

4M 0
X

!2P

��q(!|P)� (1� ⌧̂"n (q̃))q
0(!; a(p"n (q)))

��

3

5 q(P)⌧"n (q) + ⌧̂"n (q̃)M
00
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M

8
<

:
X

q2supp ⌧"n

X

!2P

⇥��q(!|P)� q0(!; a(p"n (q)))
��+ ⌧̂"n (q̃)q

0(!; a(p"n (q)))
⇤
q(P)⌧"n (q) + ⌧̂"n (q̃)

9
=

;

M

8
<

:
X

q2supp ⌧"n


max
!2P

��q(!|P)� q0(!; a(p"n (q)))
�� q(P)⌧"n (q)

�
+ ⌧̂"n (q̃)[�(P) + 1]

9
=

;

M

⇢
max

q2supp ⌧"n


max
!2P

��q(!|P)� q0(!; a(p"n (q)))
��
�
+ ⌧̂"n (q̃)[�(P) + 1]

�
,

where M = max{M 0,M 00} is bounded. Given this, consider the program

�"n = max
q2supp ⌧"n

max
!2P

��q(!|P)� q0(!; a(p"n(q)))
��

subject to

||p0(q(·|P))� p0(q
0(a(p"n(q)))|| 


1� K

(1 + "n)(K +B"n)

�
|⌦|,

where we replaced p"n with p0 because q0(a(p"n(q))) 2 �(P) for all considered
qs. For each "n, we have �"n  �̂"n , where

�̂"n = max
q,q02�(P)

max
!2P

��q(!)� q0(!)
��

subject to

||p0(q)� p0(q
0)|| 


1� K

(1 + "n)(K +B"n)

�
|⌦|.

By continuity of p0 and (B4), it follows that �̂"n ! 0 as "n ! 0 and hence
�"n ! 0.

Finally, note that

E⌧̂"n [v̂"n(q)] = (1� ⌧̂"n(q̃))
X

q2supp ⌧"n

"
X

!2P
v(a(p"n(q̂)),!)q̂(!|P)

#
q(P)⌧"n(q̂)

+(1� ⌧̂"n(q̃))
X

q2supp ⌧"n

"
X

!2I
v(a(p"n(q̂)),!)q̂(!|I)

#
q(I)⌧"n(q̂)

+⌧̂"n(q̃)
X

!2⌦
v(a(p"n(q̃)),!)q̃(!)

 (1� ⌧̂"n(q̃))
X

q2supp ⌧"n

"
X

!2P
v(a(p"n(q̂)),!)q̂(!|P)

#
q(P)⌧"n(q̂)

+(1� ⌧̂"n(q̃))
X

!2I
k(!)�(!)
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+⌧̂"n(q̃)
X

!2⌦
v(a(p"n(q̃)),!)q̃(!).

Thus, in order to show that limn!1 E⌧̂"n [v̂"n(q)]  V c
0 (�), it remains to argue

that

X

q2supp ⌧"n

"
X

!2P
v(a(p"n(q)),!)q

0(!; a(p"n(q)))

#
(1� ⌧̂"n(q̃))q(P)⌧"n(q)

! V  V0(�(·|P)).

Note that
P

q2supp ⌧"n
(1 � ⌧̂"n(q̃))q(P)⌧"n(q) = (1 � ⌧̂"n(q̃))�(P) and there-

fore, if we define ⌧ 0"n by ⌧ 0"n(q) = (1�⌧̂"n (q̃))q(P)⌧"n (q)
(1�⌧̂"n (q̃))�(P) , we have that ⌧ 0"n is a dis-

tribution over �(P). Define µ"n = E⌧ 0"n
[q]. Then, recalling that a(p"n(q)) =

a(p"n(q
0(!; a(p"n(q))))), we have

X

q2supp ⌧"n

v̂0(q
0(!; a(p"n(q)))

q(P)⌧"n(q)

�(P)
 V0(µ"n).

If we prove that µ"n ! �(·|P), we are done.34 For every ! 2 P, we have

|E⌧ 0"n
[q0(!)]� �(!|P)| =

������

X

q2supp ⌧"n

[q0(!; a(p"n(q)))� q(!|P)]
q(P)⌧"n(q)

�(P)

������
 �"n ,

which converges to zero as "n ! 0 as we saw before.
To conclude, we show that E⌧̂"n [q̂] ! � as n ! 1. Note that, for every ! 2 ⌦,

E⌧̂"n [q̂(!)] =
X

q2supp ⌧"n

[q(P)q0(!; a(p"n(q))) + q(I)q(!|I)]⌧"n(q)

=
X

q2supp ⌧"n

q0(!; a(p"n(q)))q(P)⌧"n(q)

+
X

q2supp ⌧"n

q(!|I)q(I)⌧"n(q)

= �(P)µ"n(!) + �(I)�(!|I).

Since we established that µ"n(!) ! �(!|P) for every ! 2 P, it follows that
E⌧̂"n [q̂(!)] ! �(!) for every ! 2 ⌦.
Part II: lim"!0 V"(�) = V0(�).

Claim 15. lim inf"!0 V"(�) � V0(�).

34Continuity of V0 over �(P) can be established along the lines of Lemma 3 in Online Appendix B.B4.
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Proof. By Claim 5, we can write V (�) = ⌧ cV c(qc) + (1� ⌧ c)V (qd), where qc 2 C,
qd 2 D, �(P)  ⌧ c  1, and � = ⌧ cqc + (1� ⌧ c)qd. Also, since ⌧ c 2 [�(P), 1], we
must have qc(!) = 1

⌧c�(!) � �(!) for all ! 2 P. This implies that for every ",

p"(P; qc) =
X

!2P
p"(!; q

c) =

P
!2P

qc(!)
�(!) ⇢0(!)

P
!02⌦

qc(!0)
�(!0) ⇢0(!

0)
� ⇢0(P)
P

!02⌦
qc(!0)
�(!0) ⇢0(!

0)
� ⇢0(P),

because
P

!02⌦
qc(!0)
�(!0) ⇢0(!

0)  1. It follows that p"(I; qc)  ⇢0(I)  " < ✓("). We
conclude that qc 2 C" for all ".
Therefore, for the distribution ⌧ 2 T defined by ⌧ c, qc, and qd, for all " we have

that

E⌧ [v̂"(q)] = ⌧ cv̂(qc) + (1� ⌧ c)v̂(qd)  ⌧ cV c
" (q

c) + (1� ⌧ c)V"(q
d)  V"(�).

Since qd 2 �(I) ✓ D" for all ", V"(qd) = V0(qd) for all ". Now consider V c
" (q

c).
If qc 2 �(P), then qc = �(·|P) and hence V c

" (q
c) = V"(�(·|P)) = V0(�(·|P)). If

instead qc /2 �(P), then supp qc \ I 6= ?. Letting ⌦0 = supp qc, �0 = qc, and
⇢00 = ⇢0(·|⌦0), we obtain a fictitious model equivalent to the main model, except
for being characterized by "0(") < " for every " with "0(") ! 0 as " ! 0. Therefore,
V c
" (q

c) = V c
"0(")(q

c) for all ". Since V c
"0(")(q

c) must satisfy lim"!0 V
c
"0(")(q

c) = V c
0 (q

c)

in the fictitious model with Sender’s prior qc, we have that lim"!0 V
c
" (q

c) =
V c
0 (q

c).
Given this, we have

lim inf
"!0

V"(�) � lim inf
"!0

[⌧ cV c
" (q

c) + (1� ⌧ c)V"(q
d)]

= ⌧ c lim
"!0

V c
" (q

c) + (1� ⌧ c)V0(q
d) = V0(�).

Claim 16. lim sup"!0 V"(�)  V0(�).

Proof. The proof is by contradiction. Suppose that lim sup"!0 V"(�) = V >
V0(�). Fix � > 0 so that V � � > V c

0 (�). There must exists a sequence {"n}
with "n ! 0 and a corresponding sequence {⌧"n} with each ⌧"n 2 T |⌦| satisfying
E⌧"n [v̂"n(q)] 2 [V ��, V +�] for all n � N su�ciently large, where T |⌦| = {⌧ 2 T :
|supp ⌧"n | = |⌦|} (see Lemma 1). Since limn!1 V c

"n(�) = V c
0 (�)  V0(�). There

exists N 0 such that V c
"n(�) < E⌧"n [v̂"n(q)]  V"n(�) for all n � N 0. Therefore, for

all n � N 0, ⌧"n involves disproving ⇢0 and supn�N 0 ⌧ c"n = ⌧ c < 1.
For every "n we can write

E⌧"n [v̂"n(q)] = ⌧ c"nE⌧"n (·|C⌧"n )[v̂"n(q)] + (1� ⌧ c"n)E⌧"n (·|D⌧"n )[v̂"n(q)],

where C⌧"n = C"n \ supp ⌧"n and D⌧"n = D"n \ supp ⌧"n , which is non-empty for
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all n � N 0. Let qc"n = E⌧"n (·|C⌧"n )[q] and qd"n = E⌧"n (·|D⌧"n )[q]. Therefore, for all
"n, we have

E⌧"n [v̂"n(q)]  ⌧ c"nE⌧"n (·|C⌧"n )[v̂"n(q)] + (1� ⌧ c"n)V"n(q
d
"n),

where
V"n(q

d
"n) = max

{⌧ :E⌧ [q]=qd"n ,supp ⌧✓D"n}
E⌧ [v̂"n(q)].

Note that in the last expression v̂"n(·) is independent of "n (since Receiver always
updates ⇢1 for all q 2 D"n and all "n) and u.s.c. (which explains the “max”). In
particular, for every "n, we can replace v̂"n with the u.s.c. function ŵ defined by

ŵ(q) = max
a2A(p⇤(q))

Eq[v(a,!)], q 2 �(⌦),

where p⇤ is the function in Proposition 1 with priors � and ⇢1.
Since T |⌦| is compact, {⌧"n} must have a converging subsequence. To avoid

complicating notation, we will continue to use {⌧"n} for the subsequence. Denote
its limit by ⌧1 with the corresponding objects ⌧ c1, qc1, and qd1. Note that ⌧ c1 
⌧ c < 1, qd1 2 �(I), and qc1 2 �(⌦) \�(I). The latter property holds because, if
qc1 2 �(I), then ⌧ c1qc1 + (1� ⌧ c1)qd1 6= �.
Consider the sequence of values V"n(q

d
"n). For every n,

V"n(q
d
"n)  max

{⌧ :E⌧ [q]=qd"n ,supp ⌧✓�(⌦)}
E⌧ [ŵ(q)] = W (qd"n).

By an argument similar to that establishing Lemma 3, one can conclude that W
is continuous. Thus, limn!1W (qd"n) = W (qd1). But since qd1 2 �(I), we have
W (qd1) = V0(qd1).
Now consider the sequence of values E⌧"n (·|C⌧"n )[v̂"n(q)]. Using an argument sim-

ilar to that establishing Claim 14, we can construct a ‘twin’ sequence {⌧ 0"n}, where
supp ⌧ 0"n ✓ C"n for all n, which satisfies limn!1

���E⌧"n (·|C⌧"n )[v̂"n(q)]� E⌧ 0"n
[v̂"n(q)]

��� =
0 and limn!1 E⌧ 0"n

[v̂"n(q)]  V c
0 (q

c
1).

Combining these observations, we have that

lim
n!1

E⌧"n [v̂"n(q)]  ⌧ c1V c
0 (q

c
1) + (1� ⌧ c1)V0(q

d
1)  V0(�),

which delivers the desired contradiction.


