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1. A REVELATION PRINCIPLE FOR DETERMINISTIC DYNAMIC MECHANISMS

A deterministic mechanism M in our environment is simply a sequence of message spaces
M0, M1, . . . , MT (where we will let Mt := ×t

τ=0Mτ denote the set of period-t sequences of mes-
sages) and a decision rule x : MT × {h, l} → {0, 1}.

Given a mechanismM = (MT, x), the agent’s reporting strategy µ is a sequence of rules

µt : θ × St ×Mt−1 → ∆(Mt),

where we write
µt(mt|θ, s1, . . . , st, m0, m1, . . . , mt−1)

to denote the probability of sending message mt ∈ Mt when the agent’s private information is
(θ, st) and she has already sent messages mt−1. (Note that, as in any sequential game, the agent’s
strategy must specify the messages that she sends in some period t even after sequences of mes-
sages mt−1 that are not in the support of her strategy.)

A mechanism is a direct mechanism if M0 = Θ and Mt = S for all t = 1, . . . , T.

LEMMA. Consider an equilibrium µ of a game induced by a deterministic mechanismM = (MT, x). Then
there exists a deterministic direct mechanism M̂ = (θ× ST, χ) that induces an equilibrium µ̂ with truthful
revelation. Moreover, the principal’s expected payoff under µ̂ in M̂ is (weakly) greater than her expected
payoff under µ inM.1

PROOF. Consider a deterministic mechanismM = (MT, x) and equilibrium reporting strategy µ.
Fix an arbitrary period t ∈ {0, 1, . . . , T}, and let λt := (θ, st) denote the agent’s period-t (private)

history of type and signals. For each λt ∈ Λt := Θ× St and each mt−1 ∈ Mt−1, define

Mλt,mt−1

t :=
{

m ∈ MT|µt(mt|λt, mt−1) > 0
}

to be the set of equilibrium period-t messages sent by the agent with positive probability when
her private type is λt and she has already reported messages mt−1. Note that, by definition of
equilibrium, it must therefore be the case that
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∑
r∈{h,l}

sT
t+1∈ST−t

mT
t+1∈Mt+1×···×MT

Pr(r, sT
t+1|λt)


µt+1(mt+1|(λt, st+1), (mt−1, mt))

× · · · ×

µT(mT|(λt, sT
t+1), (m

t−1, mt, mT
t+1))

 x(mt−1, mt, mT
t+1, r)

≥ ∑
r∈{h,l}

sT
t+1∈ST−t

mT
t+1∈Mt+1×···×MT

Pr(r, sT
t+1|λt)


µt+1(mt+1|(λt, st+1), (mt−1, m′t))

× · · · ×

µT(mT|(λt, sT
t+1), (m

t−1, m′t, mT
t+1))

 x(mt−1, m′t, mT
t+1, r)

for all mt ∈ Mλt,mt−1

t and m′t ∈ Mt, and where the above holds with equality when m′t ∈ Mλt,mt−1

t .
So define M̂λt,mt−1

t to be the set of all messages that yield the principal her highest payoff from
type λt among the messages that are sent with positive probability in equilibrium; that is,

M̂λt,mt−1

t := argmax
m′t∈Mλt ,mt−1

t


∑

r∈{h,l}
sT

t+1∈ST−t

mT
t+1∈Mt+1×···×MT

Pr(r, sT
t+1|λt)


µt+1(mt+1|(λt, st+1), (mt−1, m′t))

× · · · ×

µT(mT|(λt, sT
t+1), (m

t−1, m′t, mT
t+1))


x(mt−1, m′t, mT

t+1, r)
[
1g(θ)− 1b(θ)

]


.

With this in hand, define the mechanismM′ := (M0, . . . , Mt−1, Λt, Mt+1, . . . , MT, x′), where for
all mt−1 ∈ Mt−1 and all λt ∈ Λt, we let

x′(mt−1, λt, mT
t+1, r) := x(mt−1, m̂λt,mt−1

t , mT
t+1, r) for an arbitrary m̂λt,mt−1

t ∈ M̂λt,mt−1

t .

Thus, the (also deterministic) mechanism M′ is identical to M in all periods except period t,
where the agent is asked to report her entire private history up to that point; the mechanism
then “translates” the reported private history into its corresponding principal-optimal period-t
message chosen by the equilibrium µ. Since µ is an equilibrium reporting strategy in mechanism
M, then the strategy µ′ defined by

µ′τ(mτ|θ, sτ, mτ−1) := µτ(mτ|θ, sτ, mτ−1) for all τ < t;

µ′t(λt|θ, st, mt−1) :=

1 if λt = (θ, st),

0 otherwise;
and

µ′τ(mτ|θ, sτ, (mt−1, λt, mτ
t+1)) := µτ(mτ|θ, sτ, (mt−1, m̂λt,mt−1

t , mτ
t+1)) for all τ > t,

is by construction an equilibrium reporting strategy in mechanismM′. (Note that µ′ is identical
to µ for all period τ < t; optimally reports the private history truthfully in period t, which cor-
responds to an optimal message from µ; and follows the equilibrium continuation play of µ after
any period-t report, truthful or otherwise.) Moreover, the agent’s expected payoff is unchanged,
while the principal’s payoff is (weakly) higher in the equilibrium µ′ of the new mechanismM′.

Note, however, that the period t that we chose above was entirely arbitrary. Therefore, we can
define a new (and still deterministic) mechanismM′′ := (Λ0, Λ1, . . . , ΛT, x′′) by iteratively apply-
ing the procedure above T + 1 times, starting in the final period T and working backwards until
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we reach period 0. Note, however, that the message spaces induced by this iterative procedure
contain some redundancy, in that the agent is asked to re-report her entire private history each pe-
riod. However, the procedure above also generates a truthful equilibrium µ′′ in which the agent
truthfully re-reports that history in each period; this implies that (in equilibrium) misreports occur
with zero probability.

Thus, we define a dynamic direct mechanism M̂ := (Θ, S, . . . , S, x̂) in which the agent is asked
to report only her new private information in each period and the decision rule x̂ is defined by

x̂(θ, sT, r) := x′′((θ), (θ, s1), (θ, s2), . . . , (θ, sT), r) for all (θ, sT) ∈ Θ× ST and r ∈ {h, l}.

Note that since the iterative procedure above preserves the deterministic nature of the decision
rule, M̂ is also deterministic; in addition, since the set of reporting strategies under M̂ is a subset
of those inM′′ (but still contains the equilibrium strategy of truthful reporting after all possible
histories), the new direct mechanism M̂ is incentive compatible. This also implies that the agent’s
payoff is the same as in the original mechanism M, while the principal’s payoff under M̂ is
(weakly) greater. �

2. OPTIMAL STATIC MECHANISM

PROOF OF THEOREM 8. Before proceeding, note that Lemma 1 applies immediately in this set-
ting with a single period-T report.

CLAIM. It is without loss of generality to consider contracts such that xr(sT) = xr(ŝT) for all sT, ŝT such
that ∑t 1h(st) = ∑t 1h(ŝt).

PROOF OF CLAIM. Suppose there exists some s̃T, ŝT ∈ {h, l}T with ∑t 1h(s̃t) = ∑t 1h(ŝt) but
xr(s̃T) 6= xr(ŝT) for some r ∈ {h, l}. Since signals are conditionally i.i.d., the agent has identi-
cal posterior beliefs qθ = Pr(ω = h|s̃T, θ) = Pr(ω = h|ŝT, θ) about the underlying state of the
world after observing s̃T or ŝT.

Since the contract must be incentive compatible for the type-g agent, he must prefer reporting
s̃T truthfully to misreporting s̃T as ŝT, implying

qg(γxh(s̃T) + (1− γ)xl(s̃T))

+ (1− qg)(γxl(s̃T) + (1− γ)xh(s̃T))
≥

qg(γxh(ŝT) + (1− γ)xl(ŝT))

+ (1− qg)(γxl(ŝT) + (1− γ)xh(ŝT)).

The agent must also prefer reporting ŝT truthfully to misreporting ŝT as s̃T, implying

qg(γxh(ŝT) + (1− γ)xl(ŝT))

+ (1− qg)(γxl(ŝT) + (1− γ)xh(ŝT))
≥

qg(γxh(s̃T) + (1− γ)xl(s̃T))

+ (1− qg)(γxl(s̃T) + (1− γ)xh(s̃T)).

Of course, these two inequalities jointly imply that the type-g agent with belief qg is indifferent
between reporting s̃T or ŝT.

So consider the alternative mechanism {x̂h(·), x̂l(·)} defined by, for r = h, l,

x̂r(sT) :=

xr(s̃T) if sT = ŝT

xr(sT) otherwise.
3
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Thus, {x̂h(·), x̂l(·)} simply “deletes” the option of reporting as ŝT and replaces it by the report of
s̃T. Since the original mechanism {xh(·), xl(·)} was incentive compatible for the type-g agent and
the type-g agent who observed ŝT was indifferent between the two reports, {x̂h(·), x̂l(·)} is also
incentive compatible for the type-g agent. Moreover, {x̂h(·), x̂l(·)} leaves the ex ante expected
payoff of the type-g agent unchanged.

Meanwhile, the type-b agent’s ex ante expected payoff is (weakly) lower under {x̂h(·), x̂l(·)}
than under {xh(·), xl(·)} since there is one fewer potential report available to him. Since the prin-
cipal’s payoff is increasing in Ug and decreasing in Ub, this implies that {x̂h(·), x̂l(·)} (weakly)
raises the principal’s expected payoff. ♦

With this property in hand, we abuse notation somewhat and write xr(n) to denote xr(sT),
where n = ∑t 1h(st). We also write qθ(n) to denote the associated posterior belief Pr(ω = h|sT, θ).

CLAIM. It is without loss of generality to consider symmetric contracts in which xh(n) = xl(T − n) for
all n = 0, 1, . . . , T.

PROOF OF CLAIM. Fix any contract {xh(·), xl(·)} that is incentive compatible for the type-g agent,
and define the alternative contract {x̂h(·), x̂l(·)} by

x̂h(n) := xl(T − n) and x̂l(n) := xh(T − n) for all n = 0, 1, . . . , T.

Then the expected utility of a type-θ agent who observes sT with ∑t 1h(st) = n but reports n′ is

Ûθ(n′|n) = qθ(n)(γx̂h(n′) + (1− γ)x̂l(n′)) + (1− qθ(n))(γx̂l(n′) + (1− γ)x̂h(n′))

= qθ(n)(γxl(T − n′) + (1− γ)xh(T − n′))

+ (1− qθ(n))(γxh(T − n′) + (1− γ)xl(T − n′))

= (1− qθ(T − n))(γxl(T − n′) + (1− γ)xh(T − n′))

+ qθ(T − n)(γxh(T − n′) + (1− γ)xl(T − n′))

= Uθ(T − n′|T − n).

Letting σθ(·) denote type-θ’s optimal strategy under the original mechanism {xh(·), xl(·)}, this
implies that type-θ’s optimal reporting strategy σ̂θ(·) under the new contract {x̂h(·), x̂l(·)} is

σ̂θ(n) = T − σθ(T − n).

In particular, the type-g incentive compatibility of the original mechanism (that is, σg(n) = n for
all n) implies that σ̂g(n) = n for all n. Moreover, the symmetry of the signal distributions implies
that the agent’s expected utility (conditional on quality) is the same across both mechanisms (that
is, Ûg = Ug and Ûb = Ub), so the principal’s expected payoff is

Π̂ :=
1
2

Ûg −
1
2

Ûb =
1
2

Ug −
1
2

Ub.

Now define the (symmetric) mechanism {xh(·), xl(·)} by

xr(n) :=
xr(n) + x̂r(n)

2
for all n.
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Then the expected utility of a type-θ agent who observes sT with ∑t 1h(st) = n but reports n′ is

Uθ(n′|n) = qθ(n)(γxh(n′) + (1− γ)xl(n′)) + (1− qθ(n))(γxl(n′) + (1− γ)xh(n′))

=
1
2

Uθ(n′|n) +
1
2

Ûθ(n′|n).

Since Ug(n|n) ≥ Ug(n′|n) and Ûg(n|n) ≥ Ûg(n′|n) for all n, n′ ∈ {0, 1, . . . , T}, it must also be
the case that Ug(n|n) ≥ Ug(n′|n) for all n and n′; that is, this new symmetric mechanism is type-g
incentive compatible. This also implies that the type-g expected utility is unchanged, so Ug = Ug.
On the other hand, note that

Ub := ∑
n

Pr(n|θ = b) sup
n′

{
Ub(n′|n)

}
= ∑

n
Pr(n|θ = b) sup

n′

{
1
2

Ub(n′|n) +
1
2

Ûb(n′|n)
}

≤∑
n

Pr(n|θ = b) sup
n′

{
1
2

Ub(n′|n)
}
+ ∑

n
Pr(n|θ = b) sup

n′

{
1
2

Ûb(n′|n)
}

=
1
2

Ub +
1
2

Ûb = Ub.

Thus, the new symmetric mechanism leaves the type-g agent’s expected utility unchanged while
decreasing that of the type-b agent, thereby increasing the principal’s payoff. ♦

We now move to an equivalent posterior-space setting where, instead of focusing on the signals
received by an agent, we consider the posterior beliefs induced by those signals. (Note that this is
equivalent due to the two lemmas above as well as the one-to-one mapping between the number
of h signals and the agent’s posterior belief.) We denote the agent’s posterior beliefs that the state
of the world is ω = h by q ∈ [0, 1], and let Fθ denote the distribution of type-θ’s posterior beliefs.

CLAIM. The distributions Fθ are symmetric about 1
2 ; that is, Fθ(q) = 1− Fθ(1− q) for all q ∈ [0, 1] and

θ ∈ {g, b}. In addition, the type-g agent puts more mass on extremal posteriors than the type-b agent, so
Fg(q) ≥ Fb(q) for all q ∈ (0, 1

2 ).

PROOF OF CLAIM. To see that the distributions are symmetric, note that the symmetry of the
signal-generating process implies that, for all n = 0, . . . , T, it is equally likely for the number
of h signals observed by the agent to equal n or to equal T − n; moreover, it is straightforward to
show that qθ(n) = 1− qθ(T − n).

To see that the second property holds, note that the probability an agent with signal precision α

observes signals sT with n ≤ ∑t 1h(st) ≤ T − n is

π(n, T, α) =
T−n

∑
k=n

(
T
k

) [
1
2

αk(1− α)T−k +
1
2

αT−k(1− α)k
]

=
1
2

T−n

∑
k=n

(
T
k

)
αk(1− α)T−k +

1
2

T−n

∑
k=n

(
T

T − k

)
αT−k(1− α)k =

T−n

∑
k=n

(
T
k

)
αk(1− α)T−k.
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Note that

∂π(n, T, α)

∂α
=

T−n

∑
k=n

(
T
k

)
αk−1(1− α)T−k−1(k− Tα)

=
T−n

∑
k=n

(
T
k

)
kαk−1(1− α)T−k−1 −

T−n

∑
k=n

(
T
k

)
Tαk(1− α)T−k−1

=
T−n

∑
k=n

(
T − 1
k− 1

)
Tαk−1(1− α)T−k−1 −

T−n

∑
k=n

(
T
k

)
Tαk(1− α)T−k−1

=
T

1− α

(
T−n

∑
k=n

(
T − 1
k− 1

)
αk−1(1− α)T−k −

T−n

∑
k=n

(
T
k

)
αk(1− α)T−k

)

=
T

1− α

(
T−n−1

∑
k=n−1

(
T − 1

k

)
αk(1− α)T−k−1 − π(n, T, α)

)
.

Now recall that π(n, T, α) is the probability of observing between n and T − n signals equal to h.
There are three possible ways in which this event can occur:

• ∑T−1
t=1 1h(st) = n− 1 and sT = h, occurring with probability α(T−1

n−1)α
n−1(1− α)T−n;

• n ≤ ∑T−1
t=1 1h(st) ≤ T − n− 1, occurring with probability ∑T−n−1

k=n (T−1
k )αk(1− α)T−k−1; or

• ∑T−1
t=1 1h(st) = T − n and sT = l, occurring with probability (1− α)(T−1

T−n)α
T−n(1− α)n−1.

Since π(n, T, α) is the sum of these three probabilities, we can rewrite the expression above as

∂π(n, T, α)

∂α
=

T
1− α

(
T−n−1

∑
k=n−1

(
T − 1

k

)
αk(1− α)T−k−1 − α

(
T − 1
n− 1

)
αn−1(1− α)T−n

−
T−n−1

∑
k=n

(
T − 1

k

)
αk(1− α)T−k−1 − (1− α)

(
T − 1
T − n

)
αT−n(1− α)n−1

)

=
T

1− α

(
(1− α)

(
T − 1
n− 1

)
αn−1(1− α)T−n − (1− α)

(
T − 1
T − n

)
αT−n(1− α)n−1

)
= T

(
T − 1
n− 1

)(
αn−1(1− α)T−n − αT−n(1− α)n−1

)
.

It is easy to see that this expression is negative whenever α ≥ 1
2 and n ≤ T

2 , thereby implying that
the type-g agent is less likely to observe an “intermediate” number of h signals than the type-b
agent; that is, since αg > αb, the type-g agent is more likely to observe extremal numbers of h
signals than the type-b agent.

Finally, note that qg(n) ≤ qb(n) for n ≤ T
2 and qg(n) ≥ qb(n) for n ≥ T

2 ; therefore, the posteriors
induced by these more extremal signals are themselves more extreme. This implies Fg(q) ≥ Fb(q)
for all q ∈ (0, 1

2 ) and Fg(q) ≤ Fb(q) for all q ∈ ( 1
2 , 1), as desired. ♦

So now consider the principal’s problem in this setting. Applying our results above and treating
the agent’s posterior as his type, the principal offers a mechanism {xh(q), xl(q)} that must be
incentive compatible for the type-g agent.
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With this in mind, let Uθ(q′|q) denote the expected payoff of an agent who is of type θ, has
posterior q, and reports q′:

Uθ(q′|q) := (γq + (1− γ)(1− q))xh(q′) + ((1− γ)q + γ(1− q))xh(1− q′).

Note that Uθ is, in fact, independent of the agent’s type θ; this implies that whenever the mech-
anism is incentive compatible for the type-g agent, it will also be incentive compatible for the
type-b agent. Combining this observation with the symmetry property derived above (which im-
plies xh(q) = xl(1− q) for all q), we write the agent’s (type-independent) indirect utility as

U(q′|q) = (γq + (1− γ)(1− q))xh(q′) + ((1− γ)q + γ(1− q))xh(1− q′)

= ((2γ− 1)q + (1− γ))xh(q′) + (γ− (2γ− 1)q)xh(1− q′)

= ((2γ− 1)q− γ)(xh(q′)− xh(1− q′)) + xh(q′).

The principal’s problem is then to

max
xh

{∫ 1

0
U(q|q)d[Fg(q)− Fb(q)]

}
s.t. U(q|q) ≥ U(q′|q) for all q, q′ ∈ [0, 1].

The incentive compatibility constraint implies that we must have both U(q|q) ≥ U(q′|q) and
U(q′|q′) ≥ U(q|q′) for all q, q′ ∈ [0, 1]. Summing these incentive constraints yields

(2γ− 1)(q− q′)
[
(xh(q)− xh(1− q))−

(
xh(q′)− xh(1− q′)

)]
≥ 0.

This implies that xh(q) − xh(1 − q) must be nondecreasing in q, which in addition implies that
xh(q)− xh(1− q) ≥ 0 for all q ≥ 1

2 .
The standard “sandwich” arguments can be used to further characterize incentive compatible

mechanisms. Letting U∗(q) := U(q|q) for all q, we have

U∗(q) ≥ U∗(q′) + (2γ− 1)(q− q′)(xh(q′)− xh(1− q′)).

Reversing the roles of q and q′ above and summing the resulting inequalities yields

(2γ− 1)(q− q′)(xh(q′)− xh(1− q′)) ≤ U∗(q)−U∗(q′) ≤ (2γ− 1)(q− q′)(xh(q)− xh(1− q)).

Since −1 ≤ xh(q)− xh(1− q) ≤ 1, U∗(q) is Lipschitz continuous. In addition, xh(q)− xh(1− q)
is monotone and therefore continuous almost everywhere, and so U∗(q) is differentiable almost
everywhere. Applying the Envelope Theorem,

dU∗(q)
dq

= (2γ− 1)(xh(q)− xh(1− q))

at every point of continuity of xh(q)− xh(1− q) (which is almost everywhere).
We now integrate the principal’s objective function by parts. (This is proper since U∗ is abso-

lutely continuous and the distribution functions Fθ are monotone.) Note that∫ 1

0
U∗(q)d[Fg(q)− Fb(q)] =

[
U∗(q)(Fg(q)− Fb(q))

]1
0 −

∫ 1

0

dU∗(q)
dq

(Fg(q)− Fb(q))dq

= −(2γ− 1)
∫ 1

0
(xh(q)− xh(1− q))(Fg(q)− Fb(q))dq

7
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= −2(2γ− 1)
∫ 1

1
2

(xh(q)− xh(1− q))(Fg(q)− Fb(q))dq,

where the final step follows from the symmetry of the distributions about 1
2 .

Recall that Fg(q) − Fb(q) ≤ 0 for all q ≥ 1
2 ; therefore, since xh(q) − xh(1 − q) is constrained

by feasibility to lie within [−1, 1], the objective function is easily maximized pointwise by setting
xh(q)− xh(1− q) = 1 for all q > 1

2 , yielding the solution

x∗h(q) = x∗l (1− q) =


0 if q < 1

2 ,
1
2 if q = 1

2 ,

1 if q > 1
2 .

It is easy to see (by observation) that this mechanism does indeed satisfy the full set of incentive
compatibility constraints, implying that it is indeed optimal. Of course, this is precisely equivalent
to a period-T prediction mechanism: after observing all T signals, the agent reports to the principal
whether they view state h or state l as more likely, and the agent is hired if (and only if) their
prediction matches the principal’s signal r ∈ {h, l}. �
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