
Online Appendix for A Single-Judge Solution to Beauty Contests

By Zhen Huo and Marcelo Pedroni∗

This appendix contains all proofs not included in the main text. To facilitate reading we include
Appendices A and B which can also be found in the main text with the exception of the proof of
Proposition 1.

Appendix A: Proof of Theorem 1

The proof is presented as a series of lemmas and propositions. In Section A1 we show that the
forecasting problem set up in Section II is equivalent to a limit of a truncated version of it. Section
A2 sets up and solves a static forecasting problem equivalent to the truncated version. Section A3
presents and solves the associated fixed point problem that gives the equilibrium of a beauty-contest
problem; in it, we also establish the existence, uniqueness, and linearity of the equilibrium. Section
A4 describes the α-modified signal process and Section A5 proves the equivalence between the policy
function of the solution to the static version of the forecasting problem with the α-modified signal
process and the solution to the fixed point problem.

A1. Limit of Truncated Forecasting Problem

Fix t. Section II sets up the problem of forecasting θt given xt
i ≡ {xit,xit−1, . . .}. For ease of

notation, we define

ϑ ≡ θt =

∞∑
k=0

ϕkηt−k, and x ≡ xt
i.

Notice that each element of ϑ and x can be represented as an MA(∞) process and that there is an
infinite history of signals.

Consider a truncated version of this problem.1 Let ϑq be the MA(q) truncation of ϑ, that is,

ϑq =

q∑
k=0

ϕkηt−k.

Let x(N)
p ≡ {xp,it, . . . ,xp,it−N} where xp,it−k is the MA(p) truncation of xit−k. The next proposition

shows that the limit as q, p, and N go to infinity of the forecast of ϑq given x
(N)
p is equivalent to the

forecast of ϑ given x. Throughout, the concept of convergence between random variables is mean
square. For example, we can say that limq→∞ ϑq = ϑ, since

lim
q→∞

E
[
(ϑ− ϑq)

2
]
= lim

q→∞
E

(ϑ−
q∑

k=0

ϕkηt−k

)2
 = lim

q→∞

∞∑
k=q+1

ϕkE[η2
t−k]ϕ

′
k = 0,

where the last equality is due to the assumption that ϕ(L) is square summable and that E[η2
t−k] is

finite.

PROPOSITION 1: E [ϑ | x] = limp,q,N→∞ E
[
ϑq | x(N)

p

]
.

PROOF:
∗ Huo: Yale University, 28 Hillhouse Ave, New Haven, CT 06510, zhen.huo@yale.edu. Pedroni: University of Amsterdam,

Roetersstraat 11, Amsterdam, 1018WB, m.pedroni@uva.nl.
1Note that in this truncation, we do not assume shocks become public after a certain number of periods, differently from the

common assumption made in the literature (e.g. Townsend (1983)).
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The strategy is to establish the following equalities

E [ϑ | x] [3]= lim
p→∞

E [ϑ | xp]
[2]
= lim

p→∞
lim

N→∞
E
[
ϑ | x(N)

p

]
[1]
= lim

p→∞
lim

N→∞
lim
q→∞

E
[
ϑq | x(N)

p

]
.

We start from the last and move to the first.

[1]: To show that
E
[
ϑ | x(N)

p

]
= lim

q→∞
E
[
ϑq | x(N)

p

]
,

note that there exists K large enough such that, for any k > K,

E
[
ηt−k | x(N)

p

]
= 0.

It follows that

E
[
ϑ | x(N)

p

]
= E

[
K∑
k=0

ϕkηt−k +
∞∑

k=K+1

ϕkηt−k | x(N)
p

]
= E

[
K∑
k=0

ϕkηt−k | x(N)
p

]
= E

[
ϑK | x(N)

p

]
,

and

lim
q→∞

E
[
ϑq | x(N)

p

]
= lim

q→∞
E

[
K∑
k=0

ϕkε−k +

q∑
k=K+1

ϕkε−k | x(N)
p

]
= lim

q→∞
E
[
ϑK | x(N)

p

]
= E

[
ϑK | x(N)

p

]
.

[2]: Next, to show that
E[ϑ | xp] = lim

N→∞
E
[
ϑ | x(N)

p

]
,

we simply need to establish that the limit on the right hand side exists. First notice that forecast
errors are decreasing in the number of signals and that the stationarity of ϑ guarantees that the
mean squared error is well defined, which implies that

0 ≤ E
[(
ϑ− E

[
ϑ | x(N+1)

p

])2]
≤ E

[(
ϑ− E

[
ϑ | x(N)

p

])2]
.

Therefore, there exists σ2 such that

lim
N→∞

E
[(
ϑ− E

[
ϑ | x(N)

p

])2]
= σ2.

Moreover, for any N1, N2,

E


ϑ−

E
[
ϑ | x(N1)

p

]
+ E

[
ϑ | x(N2)

p

]
2

2
 ≥ σ2.

It follows that

E
[(

E
[
ϑ | x(N1)

p

]
− E

[
ϑ | x(N2)

p

])2]

= 2E
[(
ϑ− E

[
ϑ | x(N1)

p

])2]
+ 2E

[(
ϑ− E

[
ϑ | x(N2)

p

])2]
− 4E


ϑ−

E
[
ϑ | x(N1)

p

]
+ E

[
ϑ | x(N2)

p

]
2

2




≤ 2E
[(
ϑ− E

[
ϑ | x(N1)

p

])2]
+ 2E

[(
ϑ− E

[
ϑ | x(N2)

p

])2]
− 4σ2.

In the limit, the right-hand side converges to zero, and therefore

lim
N→∞

E
[
ϑ | x(N)

p

]
is indeed well defined.

[3]: Recall that from equation (11),
xit = Mt(L)εit.

Let Mp,t be the MA (p) truncation of Mt(L), so that

xp,it = Mp,t(L)εit.

To obtain a formula for the forecast conditional on infinite signals, we use the Wiener-Hopf prediction
formula (Whittle, 1963), which leads to2

E[ϑ | x] = [ϕ(L)M′
t(L

−1)B′(L−1)−1]+B(L)−1xit ≡ D(L)εit,

E[ϑ | xp] = [ϕ(L)M′
p,t(L

−1)B′
p(L

−1)−1]+Bp(L)
−1xp,it ≡ Dp(L)εit,(A1)

where B(z) and Bp(z) are the corresponding fundamental representations of Mt(z) and Mp,t(z),
respectively. The mean-squared difference between these forecasts is

E
[
(E[ϑ | x]− E[ϑ | xp])

2
]
=

∞∑
k=0

(Dt−k −Dp,t−k)Σ
2(Dt−k −Dp,t−k)

′.

It is, therefore, sufficient to show that limp→∞Dp(z) = D(z), since it then follows that

lim
p→∞

E
[
(E[ϑ | x]− E[ϑ | xp])

2
]
= 0,

which establishes the result. To see that this is the case, notice that, given a signal process Mp,t(z),
its corresponding fundamental representation of Bp(z) is uniquely determined when the covariance
matrix of the fundamental innovation is normalized, and satisfies

Bp(z)B
′
p(z

−1) = Mp,t(z)M
′
p,t(z

−1).

As a result, since by construction we have that

Mt(z) = lim
p→∞

p∑
k=0

Mk,tz
k = lim

p→∞
Mp,t(z),

it follows that
B(z) = lim

p→∞
Bp(z).

Finally, by continuity of the annihilation operator, [ · ]+, in equation (A1), we obtain

lim
p→∞

Dp(z) = D(z).

2Notice that, if we use the standard prediction formula (used in Section A2 below), the forecast conditional on the infinite
history of signals x would involve the product of infinitely dimensional matrices.



A2. Static Forecasting Problem

We now consider the truncated problem of forecasting ϑq conditional on x
(N)
p , which can be viewed

as a static problem. Again, to ease notation, define

η ≡

 ηt
...

ηt−T

 , νi ≡

 νit
...

νit−T

 , and εi ≡
[
η
νi

]
,

where T ≡ max{q, p + N}. Notice that, there exists a vector a with length U ≡ u(T + 1), and a
matrix B with dimensions r(N + 1)×M , where M ≡ m(T + 1), such that the forecasting problem
at time t becomes that of forecasting

θ ≡ ϑq =
[
a′ 0′

]
εi = a′η, given xi ≡

 xp,it
...

xp,it−N

 = Bεi = B

[
η
νi

]
.

Let Ω2 denote the covariance matrix of εi, let A ≡
[
a′ 0′

]′, and let Λ be the M ×M matrix given
by

Λ ≡
[
IU 0
0 0

]
.

It follows that
E[θ | xi] = A′ΩΛΩB′ (BΩ2B′)−1

xi.

It is convenient for what follows to write the forecast in this way. To obtain this formula we use, in
particular, the fact that A′ = A′Λ and that ΛΩ = ΩΛ.

A3. Fixed Point Problem

Suppose we also want to forecast y. We do not know the stochastic process for y, so let h denote
the agent’s equilibrium policy function, i.e. yi = h′xi, then

y =

∫
h′xi = h′BΛεi.

Then, the forecast of y is given by

E[y | xi] = h′BΩΛΩB′ (BΩ2B′)−1
xi.

In equilibrium, we have that

yi = (1− α)E[θ | xi] + αE[y | xi],

and, therefore

h′xi =
[
(1− α)A′ΩΛΩB′ (BΩ2B′)−1

+ αh′BΩΛΩB′ (BΩ2B′)−1
]
xi.

It follows from the fact that equation above holds for any xi that

(A2) h = C−1d,



where

C ≡ I− α
(
BΩ2B′)−1

BΩΛΩB′,(A3)

d ≡ (1− α)
(
BΩ2B′)−1

BΩΛΩA.(A4)

LEMMA A.1: C is invertible.

PROOF:
We start by showing that Y ≡

(
BΩ2B′)−1

BΩΛΩB′ has real eigenvalues in [0, 1]. First notice
that Y has real, non-negative eigenvalues since it is similar to

(BΩ2B′)1/2Y(BΩ2B′)−1/2 = (BΩ2B′)1/2(BΩ2B′)−1(BΩΛΩB′)(BΩ2B′)−1/2

= (BΩ2B′)−1/2(BΩΛΩB′)(BΩ2B′)−1/2

which is positive semidefinite. On the other hand,

I−Y =
(
BΩ2B′)−1

BΩ(I−Λ)ΩB′,

which, analogously to Y, is also similar to a positive semidefinite matrix. If λ is an eigenvalue of
Y, then 1 − λ is an eigenvalue of I − Y. Therefore, the fact that the eigenvalues of I − Y are
positive implies that the eigenvalues of Y must be less than or equal to 1, as desired. It follows
that S ≡

∑∞
j=0(αY)j converges, and S (I− αY) = I.

In particular, it follows from this lemma that there exists a unique equilibrium to the beauty-
contest model. It also follows that the equilibrium actions of an agent are linear functions of their
signals.3

A4. α-Modified Signal Process and Prediction Formula

Define Γ to be the M ×M matrix given by

Γ ≡
[
IU 0
0 1√

1−α
IM−U

]
,

and suppose that the signals observed by agent i are a α-modified version of xi given by

x̃i = Bε̃i, with ε̃i ≡ Γεi.

It follows that

(A5) Ẽ[θ | x̃i] = A′ΩΛΩB′ (BΩΓ2ΩB′)−1
x̃i.

A5. Equivalence Result

Proposition 2 establishes that the right hand side of equation terms in equation (A2) is to the
right hand side of equation (A5), which completes the proof of Theorem 1.

PROPOSITION 2: Using the definitions above, it follows that

C−1d =
(
BΩΓ2ΩB′)−1

BΩΛΩA.

3In the arguments made above we have implicitly used the well known result that the optimal forecast for Gaussian processes
is linear, see Hamilton (1994) Section 4.6 for a formal proof.



PROOF:
From the definition of C, equation (A3), we obtain

C = I− α
(
BΩ2B′)−1

BΩΛΩB′

=
(
BΩ2B′)−1

BΩ(I− αΛ)ΩB′.

Thus, since
I− αΛ = (1− α)Γ2,

it follows that
C = (1− α)

(
BΩ2B′)−1

BΩΓ2ΩB′.

Finally, using Lemma A.1 and equation (A4),

C−1d =
[
(1− α)

(
BΩ2B′)−1

BΩΓ2ΩB′
]−1

(1− α)
(
BΩ2B′)−1

BΩΛΩA

= (BΩΓ2ΩB′)−1
(
BΩ2B′) (BΩ2B′)−1

BΩΛΩA

= (BΩΓ2ΩB′)−1BΩΛΩA.

Remark

It is crucial for the proof to work that the matrix I−αΛ is real, symmetric and positive semidefinite
so that it can be interpreted as a covariance matrix. When there are forward-looking or backward-
looking strategic complementarities this is in general not the case. This does not mean that a
transformation to the information structure that yields an equivalence result cannot exist with
dynamic complementarities, but simply that this particular proof strategy is not suitable in those
cases. See, for instance, Proposition 8.



Appendix B: Proofs for Generalized Best Response and Multiple Actions

This appendix contains the proofs for the extensions to generalized best responses and multiple
actions from Section III.C.

B1. Proof of Proposition 3

PROOF:
Iterating on the best response function in equation (17) we obtain

yit = γ(φt + ξit) + αγ

∞∑
k=0

αk Eit

[
Ek
t

[
φt

]]
.

By Corollary 2, the infinite sum of higher-order expectations can be rewritten as a first-order
expectation

yit = γ(φt + ξit) +
αγ

1− α
h′
t(L)xit.

B2. Proof of Proposition 4

PROOF:
Iterating on equation (18) leads to

yit =
∞∑
k=0

AkEit

[
Ek
t [θt]

]
.

Then, notice that for any k ∈ {0, 1, 2, . . .},

Ak = Qdiag(α1, α2, . . . , αn)
kQ−1 =

n∑
j=1

Qeje
′
jQ

−1αk
j .

Therefore, yit can be written as

yit =
n∑

j=1

Qeje
′
jQ

−1
∞∑
k=0

αk
jEit

[
Ek
t [θt]

]
.

From Corollary 2 we have that each row of
∑∞

k=0 α
k
jEit

[
Ek
t [θt]

]
is equal to the corresponding row

of (1− αj)
−1g′

jt(L)xit and it follows that

yit =

n∑
j=1

Qeje
′
j(1− αj)

−1Q−1g′
jt(L)xit =

n∑
j=1

Qeje
′
j (I− diag(α1, α2, . . . , αn))

−1Q−1g′
jt(L)xit,

and the fact that (I− diag(α1, α2, . . . , αn))
−1Q−1 = Q−1 (I−A)−1 concludes the proof.



Appendix C: Proof of Proposition 5

PROOF:
By Proposition 2, the individual action can be written as

yit = Gzit,

where

zit = (I−KH)Fzit−1 +Kxit = (I− (F−KHF)L)−1Kxit,

and K is the steady state Kalman gain matrix with α-modified signals. Note that by Cramer’s rule,

(I− (F−KHF)L)−1 =
adj(I− (F−KHF)L)

det(I− (F−KHF)L)
=

adj(I− (F−KHF)L)

Πℓ
k=1(1− λkL)

,

where {λk}ℓk=1 are non-zero eigenvalues of (F −KHF). Let r denote the dimension of F, the last
equality follows from the fact that

det (I− (F−KHF)L) = Lr det
(
IL−1 − (F−KHF)

)
= LrL−(r−ℓ)

ℓ∏
k=1

(L−1 − λk) =

ℓ∏
k=1

(1− λkL).

The aggregate outcome yt then follows

yt =

∫
yit = C(L)

∫
xit = C(L)

(
Aθt +B(L)vt

)
.



Appendix D: Variance and Covariance of Average Forecast

The following proof makes use of the same limiting arguments used in Appendix A1, which allows
us to focus on the truncated static problem. Let Ω = diag(σ1, . . . , σM ), and I ≡ {U + 1, . . . ,M}
be the σ-indexes associated with the idiosyncratic shocks νi. Also, let ej be the j-th column of the
M ×M identity matrix and let E[θ] ≡

∫
E[θ | xi].

Increasing the variance of any element of νi does not affect θ, but makes the signals xi noisier
which, in turn, makes the forecast less accurate. This implies that the forecast reacts less to signals
and, as a result, it is less volatile. It also implies that it is less correlated with the actual θ. This
motivates the following lemmas.

LEMMA D.1: The variance Var(E[θ]) is decreasing in how noisy the signals are,

∂Var(E[θ])
∂σ2j

≤ 0, for j ∈ I.

PROOF:
First notice that

Var(E[θ]) = A′Ω2B′ (BΩ2B′)−1
BΩΛΩB′ (BΩ2B′)−1

BΩ2A.

For any j ∈ I, A′Ω2 and ΩΛΩ do not depend on σ2j , and therefore, taking derivatives yields

∂Var(E[θ])
∂σ2j

=−A′Ω2B′ (BΩ2B′)−1
[ (

Beje
′
jB

′) (BΩ2B′)−1
BΩΛΩB′+

+BΩΛΩB′ (BΩ2B′)−1 (
Beje

′
jB

′) ] (BΩ2B′)−1
BΩ2A.

The matrix in the inner bracket is symmetric, so let LL′ denote its Cholesky decomposition. Then,
letting z ≡ A′Ω2B′ (BΩ2B′)−1

L, the right hand side is equal to −σ2j zz′, which is less than or equal
to 0.

LEMMA D.2: The covariance Cov(θ,E[θ]) is decreasing in how noisy the signals are,

∂Cov(θ,E[θ])
∂σ2j

≤ 0, for j ∈ I.

PROOF:
First notice that

Cov(θ,E[θ]) = A′ΩΛΩB′ (BΩ2B′)−1
BΩ2A.

For any j ∈ I, A′Ω2 does not depend on σ2j , and A′ΩΛΩ = A′Ω2, therefore

∂Cov(θ,E[θ])
∂σ2j

= −A′Ω2B′ (BΩ2B′)−1 (
Beje

′
jB

′) (BΩ2B′)−1
BΩ2A.

Finally, letting z ≡ A′Ω2B′ (BΩ2B′)−1
Bej , the right hand side of this equation can be written as

−zz′ which is less than or equal to 0.
For the following proofs we denote Ẽ[θ] ≡

∫
E[θ | x̃i], where x̃i is the modified signal defined in

Section A4.



D1. Proof of Proposition 6 for the Common-Value Best Response

PROOF:
In the static version of the problem, under Assumptions 1-3 and with the best response given by

yi = (1− α)Ei[θ] + αEi[y],

it follows from Corollary 1 that
y = Ẽ[θ],

which is equivalent to E[θ] with the variance of the idiosyncratic shocks discounted by α, that is with
σ̃2j = σ2j /(1 − α) for all j ∈ I. Hence, an increase in α is equivalent to an increase in the variance
of all the idiosyncratic shocks. Thus, Part 1 in Proposition 6 for the CVBR follows from Lemmas
D.1 and D.2. Part 2 follows directly from Lemma D.1 and the fact that y = E[θ] when α = 0.
Finally, it follows from Proposition 1 that these results generalize to the setting in Proposition 6 by
a continuity argument.

D2. Proof of Proposition 6 for the Independent-Value Best Response

PROOF:
With the best response given by

yi = (1− α)θi + αEi[y],

it follows from Proposition 3 that
y = (1− α)θ + αẼ[θ].

Notice that
Var(y) = (1− α)2Var(θ) + α2Var(Ẽ[θ]) + 2α(1− α)Cov(θ, Ẽ[θ]).

Then, using the law of total variance and Lemmas D.1 and D.2, it follows that, if α > 0,

∂Var(y)

∂α
=− 2(1− α)Var(θ) + 2αVar(Ẽ[θ]) + 2(1− 2α)Cov(θ, Ẽ[θ])

+ α2∂Var(Ẽ[θ])
∂α

+ 2α(1− α)
∂Cov(θ, Ẽ[θ])

∂α
≤− 2(1− α)Var(θ) + 2αVar(θ) + 2(1− 2α)Var(θ) = 0.

Similarly,
Cov(y, θ) = (1− α)Var(θ) + αCov(θ, Ẽ[θ]),

and if α > 0,

∂Cov(y, θ)

∂α
= −Var(θ) + Cov(θ, Ẽ[θ]) + α

∂Cov(θ, Ẽ[θ])
∂α

≤ −Var(θ) + Var(θ) = 0.

This establishes Part 1 for IVBR. Part 3 for α > 0 follows from the fact that yt = θt when α = 0
and the result in Part 1. Finally, we can also write the aggregate action y as

y = θ + α(Ẽ[θ]− θ).

and it follows that

Var(y) = Var(θ) + α2Var(Ẽ[θ]− θ) + 2αCov(θ, Ẽ[θ]− θ).



To show that, for α < 0, Var(y) ≥ Var(θ), it is sufficient to show that Cov(θ, Ẽ[θ] − θ) ≤ 0. Note
that

Cov(θ, Ẽ[θ]− θ) = Cov(θ, Ẽ[θ])−Var(θ) ≤ 0.

Proposition 1 implies that these results generalize to the setting in Proposition 6 by continuity.



Appendix E: Example Economies

In this appendix, we describe two different economic environments that have equilibria that can
be summarized by a system of equations with a best response equation and an aggregation equation
of the kind we work with in the paper.

E1. Monetary Model with Dispersed Information

In this section, we describe a simple monetary model with information frictions; it is a version of
the model in Woodford (2002). A representative household has period utility given by

U(Ct, Nt) =
C1−σ
t

1− σ
− χ

N1+κ
t

1 + κ

where Nt denotes their labor supply and Ct is their consumption of a composite good defined to be
the CES aggregator of a continuum of differentiated goods,

Ct =

(∫
C

η−1
η

it

) η
η−1

.

The demand for good i and supply of labor in period t are given by

Cit =

(
Pit

Pt

)−η

Ct, and Nt =

(
Wt

χPtCσ
t

) 1
κ

, with Pt ≡
(∫

P 1−η
it

) 1
1−η

,

and where Wt denotes the wage. There is continuum of firms, each producing one of the differenti-
ated goods with the following production function,

Cit = AN ε
it.

Firms have private information about the state of the world and, in period t, solve

max
Pit,Cit,Nit

Eit[PitCit −WtNit], subject to Cit =

(
Pit

Pt

)−η

Ct, and Cit = AtN
ε
it.

It follows that

Pit =
η

η − 1

Eit

[
WtC

1−ε
ε

it

]
εA

1
ε

.

Nominal GDP is determined exogenously by a monetary shock, Θt, so that

PtCt = Θt.

Using this equation and the household’s optimality conditions we obtain

Pit =

(
χη

A
1
ε ε (η − 1)

) ε
η+ε(1−η)

Eit

[
Θ

(σ−1)ε+1
η+ε(1−η)

t P
1− (σ−1)ε+1

η+ε(1−η)

t N
κε

η+ε(1−η)

t

]
.

Let lower-case variables denote log-deviations from steady state. Integrating the production function
we obtain as first order approximation (which is exact if all shocks are log-normal) that ct = εnt,
and it follows that

pit = (1− α)Eit[θt] + αEit[pt], with pt =

∫
pit,



and the degree of strategic complementarity given by

α ≡ (1− ε) (η − 1) + ε (1− σ)− κ

η + ε(1− η)
.

E2. Business Cycles Model

In this section, we describe a stylized real business cycle model with information frictions, a
simplified version of the model in Angeletos and La’O (2010).

Environment

There is a continuum of islands indexed by i in the economy. In each island lives a representative
agent who specializes in producing differentiated good i. Each period, agent i consumes Cijt of the
good produced on island j, and Cit is the CES aggregator of agent i’s consumption of all goods,

Cit =

(∫
j
C

η−1
η

ijt

) η
η−1

.

The production technology is
Yit = ΘitN

ε
it,

where ηit is the productivity level on island i in period t, and Nit denotes the labor input by agent
i. The period utility of agent i is given by

U(Cit, Nit) =
C1−σ
it

1− σ
−
N1+κ

it

1 + κ
.

Each period has two stages: In the first stage, agents decide how much to produce, that is, choose
Nit which determines Yit, conditional on their information about the island-specific productivity
and aggregate output. In the second stage, taking prices and Yit as given, they choose how much
to consume of each good, i.e., (Cijt)j , subject to the budget constraint∫

j
PjtCijt = PitYit,

where Pjt is the price of the good produced on island j. Trading, in this second stage, occurs in a
centralized market. In the first stage, agents have to decide how much to produce before the goods
market opens, and therefore they have to forecast aggregate output to infer the price of their own
goods. We allow agents to have different information sets which include their own productivity Θit,
but otherwise, we remain agnostic about the information structure.

Equilibrium Characterization

Beginning with second stage, the optimal demand of the representative agent i for the good from
island j whose price is Pjt is given by

Cijt = Cit

(
Pjt

Pt

)−η

, where Pt ≡
(∫

P 1−η
jt

) 1
1−η

.

Together with the budget constraint and market clearing condition
∫
iCijt = Yjt, it follows that

Cit = Y
1
η

t Y
η−1
η

it where Yt ≡
(∫

Y
η−1
η

jt

) η
η−1

,



that is, the consumption of island i is a weighted geometric mean of the aggregate output and
the output produced in the island. Using this equation and the production function the first-stage
problem becomes

max
Yit

Eit

[
1

1− σ

(
Y

1
η

t Y
η−1
η

it

)1−σ

− 1

1 + κ

(
Yit
Θit

) 1+κ
ε

]
.

which implies

Yit =

(
ε
η − 1

η
Θ

1+κ
ε

it Eit

[
Y

1−σ
η

t

]) εη
η(1+κ)+ε(1−η)(1−σ)

.

Letting lower-case letters denote log-deviations from steady state, it follows that

yit = γθit + αEit[yt], with yt =

∫
yit,

and the following definitions

α ≡ ε (1− σ)

η (1 + κ) + ε (1− η) (1− σ)
, and γ ≡ α

η(1 + κ)

ε(1− σ)
.

This type of best response function is analyzed in Section III.C.



Appendix F: Proof of Theorem 2

The proof is presented as a series of lemmas and propositions. An analogous argument to the
one made in Section A1 holds so that, if we prove the result for an arbitrary static information
structure, the result follows. Section F1 sets up and solves the aforementioned arbitrary static
forecasting problem. Section F2 presents and solves the associated fixed point problem that gives
the equilibrium of a beauty-contest problem. Section F3 describes the modified signal process and
Section F4 proves the equivalence between the policy function of the solution to the static version of
the forecasting problem with the modified signal process and the solution to the fixed point problem.

F1. Setup with Static Information Structure

Best response function

The best response function is

y = E[θ] + E[Wy],

where y is a vector of individual actions

y ≡
[
y1 y2 · · · yn

]′
,

θ is a vector of exogenous variables

θ ≡
[
θ1 θ2 · · · θn

]′
,

and the expectation operator E is given by

E ≡
[
E1 E2 · · · En

]′
.

Agents can have heterogeneous information sets, and Ei may be different from Ej . The matrix W
represents the network structure.

Information structure

Let εi be the vector of, normally distributed, shocks the first u being common shocks, and the
last r private. The covariance matrix of εi is the identity matrix. Suppose that the process for
fundamentals is given by

θi =
[
ϕ′
i 01×r

]
εi

and that agent i’s signal is given by
xi = Miεi

where
Mi ≡ MΣi,

and
Σi ≡ diag

(
τ
−1/2
1 , . . . , τ−1/2

u , τ
−1/2
1i , . . . , τ

−1/2
ri

)
,

with u+ r ≡ m. Moreover, let

∆ ≡ diag(τ
−1/2
1 , . . . , τ−1/2

u , 0, . . . , 0),

and define Λ and Γ to be

Λ ≡
[

Iu
0r×u

]
m×u

, and Γ ≡ Im −ΛΛ′,



so that, in particular, we have

ΣiΛ = ∆Λ, and ΣiΛΛ′Σj = ∆2.

Let En
i be the n× n matrix with zeros everywhere and 1 at the position (i, i), and define

M =

n∑
i=1

En
i ⊗Mi, and Σ =

n∑
i=1

En
i ⊗Σi.

Finally, for each private shock, indexed by p, collect the associate variance for each agent i in the
diagonal of the following matrix:

Υp ≡ diag
(
τ−1
p1 , τ

−1
p2 , . . . , τ

−1
pn

)
.

Forecast

The forecast of the fundamental of agent j by agent i is given by

(F1) E[θj | xi] = ϕ′
jΛ

′M′
i

(
MiM

′
i

)−1
xi ≡ g′

jixi.

F2. Fixed Point Problem

Let hi be the equilibrium policy function for agent i, that is

yi = h′
ixi = h′

iMiεi.

Then, since the agents do not have information about others’ private shocks, the forecast of yj by
agent i is given by

E[yj | xi] = h′
jMjΛΛ′M′

i

(
MiM

′
i

)−1
xi.

In equilibrium, we have that
y1
y2
...
yn

 =


E[θ1 | x1]
E[θ2 | x2]

...
E[θn | xn]

+


0 E[y1 | x1] + w12E[y2 | x1] + · · ·+ w1nE[yn | x1]
w21E[y1 | x2] + 0 E[y2 | x2] + · · ·+ w2nE[yn | x2]

...
wn1E[y1 | xn] + wn2E[y2 | xn] + · · ·+ 0 E[yn | xn]

 ,
so that

h′
1x1

h′
2x2
...

h′
nxn

 =


ϕ′
1Λ

′M′
1 (M1M

′
1)

−1 x1

ϕ′
2Λ

′M′
2 (M2M

′
2)

−1 x2
...

ϕ′
nΛ

′M′
n (MnM

′
n)

−1 xn

+


∑

k ̸=1w1kh
′
kMkΛΛ′M′

1 (M1M
′
1)

−1 x1∑
k ̸=2w2kh

′
kMkΛΛ′M′

2 (M2M
′
2)

−1 x2

...∑
k ̸=nwnkh

′
kMkΛΛ′M′

n (MnM
′
n)

−1 xn

 ,
and, therefore, using the fact that this equation holds for any (x1, . . . ,xn) we can write

h′
1M1M

′
1

h′
2M2M

′
2

...
h′
nMnM

′
n

 =


ϕ′
1Λ

′M′
1

ϕ′
2Λ

′M′
2

...
ϕ′
nΛ

′M′
n

+


∑

k ̸=1w1kh
′
kMkΛΛ′M′

1∑
k ̸=2w2kh

′
kMkΛΛ′M′

2
...∑

k ̸=nwnkh
′
kMkΛΛ′M′

n

 .



Transposing each row we get
M1M

′
1h1

M2M
′
2h2

...
MnM

′
nhn

 =


M1Λϕ1

M2Λϕ2
...

MnΛϕn

+


∑

k ̸=1w1kM1ΛΛ′M′
khk∑

k ̸=2w2kM2ΛΛ′M′
khk

...∑
k ̸=nwnkMnΛΛ′M′

khk

 ,
which can be rewritten as

M M
′
h = M(In ⊗Λ)ϕ+M(W ⊗ΛΛ′)M

′
h,

where h and ϕ are defined to be

ϕ =


ϕ1

ϕ2
...
ϕn


nu×1

, and h =


h1

h2
...
hn

 .
Solving for h we obtain

h = C−1d,

where

C ≡ M(Inm −W ⊗ΛΛ′)M
′
,

d ≡ M(In ⊗Λ)ϕ.

The fact that C is invertible is established below in Section F4. It follows that the equilibrium
to the beauty-contest model exists and is unique.

F3. Modified Signal Process and Prediction Formula

Define D to be
D ≡

n∑
i=1

En
i ⊗Di,

with each Di given by

Di ≡ In ⊗∆+
r∑

p=1

[Ωp ⊗Em
u+p] = diag

(
τ
−1/2
1 , . . . , τ−1/2

u , τ̃
−1/2
1i , . . . , τ̃

−1/2
ri

)
,

and where τ̃−1
pi is the i-th eigenvalue of (In −W)−1Υp. Suppose that the signals observed by agent

i are a modified version of xi given by
x̃i = MDiεi.

Notice that, relative to Σi, Di simply replaces the precision of the private signals τpi by the trans-
formed τ̃pi. It follows that

(F2) E[θj | x̃i] = ϕ′
jΛ

′∆M′ (MD2
iM

′)−1
x̃i ≡ g′

jixi.

where we used the fact that Λ′Di = Λ′∆. Moreover, we need the following assumption.

ASSUMPTION 1: The matrix (In −W) is invertible, (In −W)−1Υp is diagonalizable, all of its



eigenvalues have absolute value less than 1, and all of its eigenvectors are independent of p.4

Under this assumption, letting Q denote the matrix composed of the eigenvectors of (In −
W)−1Υp, its eigendecomposition allows us to write

(F3) (In −W)−1Υp = QΩpQ
−1

where

Ωp ≡


τ̃−1
p1 0 · · · 0

0 τ̃−1
p2 · · · 0

...
... . . . ...

0 0 · · · τ̃−1
pn


n×n

.

F4. Equivalence Result

We start with a useful lemma, then, using this lemma we prove a proposition that establishes the
invertibility of the matrix C and a final proposition that establishes the equivalence result.

LEMMA F.1: Under Assumption 1 and using the definitions above, it follows that

Σ(Inm −W ⊗ΛΛ′)Σ = [(In −W)Q⊗ Im]D2[Q−1 ⊗ Im]

PROOF:
First notice that

Σ[(In −W)⊗ΛΛ′]Σ =

(
n∑

i=1

En
i ⊗Σi

)
[(In −W)⊗ΛΛ′]

 n∑
j=1

En
j ⊗Σj


=

n∑
i=1

n∑
j=1

En
i (In −W)En

j ⊗ΣiΛΛ′Σj

=(In −W)⊗∆2,

and

Σ[In ⊗ Γ]Σ =

(
n∑

i=1

En
i ⊗Σi

)
[In ⊗ Γ]

 n∑
j=1

En
j ⊗Σj


=

n∑
i=1

n∑
j=1

En
i E

n
j ⊗ΣiΓΣj

=
n∑

i=1

n∑
j=1

En
i E

n
j ⊗

r∑
p=1

r∑
q=1

τ
−1/2
ip τ

−1/2
jq Em

u+pE
m
qq

=
n∑

i=1

n∑
j=1

En
i E

n
j ⊗

r∑
p=1

τ
−1/2
ip τ

−1/2
jp Em

u+p

=

r∑
p=1

 n∑
i=1

n∑
j=1

En
i E

n
j ⊗ τ

−1/2
ip τ

−1/2
jp Em

u+p


4A trivial case where this holds is when Υp = γpΥ or when r = 1.



=
r∑

p=1

 n∑
i=1

n∑
j=1

En
i τ

−1/2
ip τ

−1/2
jp En

j ⊗Em
u+p


=

r∑
p=1

[
n∑

i=1

En
i τ

−1
ip ⊗Em

u+p

]

=

r∑
p=1

[
Υp ⊗Em

u+p

]
.

Hence,

Σ(Inm −W ⊗ΛΛ′)Σ

= Σ(In ⊗ (Γ+ΛΛ′)−W ⊗ΛΛ′)Σ

= Σ[In ⊗ Γ]Σ+Σ[(In −W)⊗ΛΛ′]Σ

=

r∑
p=1

[
Υp ⊗Em

u+p

]
+ (In −W)⊗∆2

=

r∑
p=1

[
Υp ⊗Em

u+p

]
− (In −W)⊗ Γ+ (In −W)⊗ (∆2 + Γ)

=
r∑

p=1

[
Υp ⊗Em

u+p

]
−

r∑
p=1

[
(In −W)⊗Em

u+p

]
+ (In −W)⊗ (∆2 + Γ)

=
r∑

p=1

[
(Υp − In +W)⊗Em

u+p

]
+ (In −W)⊗ (∆2 + Γ)

= [(In −W)⊗ (∆2 + Γ)]


r∑

p=1

[
(In −W)−1(Υp − In +W)⊗ (∆2 + Γ)−1Em

u+p

]
+ Inm


= [(In −W)⊗ (∆2 + Γ)]


r∑

p=1

[
((In −W)−1Υp − In)⊗ (∆2 + Γ)−1Em

u+p

]
+ Inm

 .

Next, using equation (F3),

Σ(Inm −W ⊗ΛΛ′)Σ

= [(In −W)⊗ (∆2 + Γ)]


r∑

p=1

[(QΩpQ
−1 − In)⊗ (∆2 + Γ)−1Em

u+p] + Inm


= [(In −W)Q⊗ (∆2 + Γ)]


r∑

p=1

[(Ωp − In)⊗ (∆2 + Γ)−1Em
u+p] + Inm

 [Q−1 ⊗ Im]

= [(In −W)Q⊗ Im]


r∑

p=1

[(Ωp − In)⊗Em
u+p] + [In ⊗ (∆2 + Γ)]

 [Q−1 ⊗ Im]

= [(In −W)Q⊗ Im]


r∑

p=1

[Ωp ⊗Em
u+p] + (In ⊗∆2)

 [Q−1 ⊗ Im]



= [(In −W)Q⊗ Im]D2[Q−1 ⊗ Im].

PROPOSITION 3: Under Assumption 1 and using the definitions above, it follows that
h′
1

h′
2
...
h′
n

 =

n∑
k=1

QEn
kkQ

−1(In −W)−1


g′
1k

g′
2k...

g′
nk

 .
PROOF:

First notice that

(In ⊗M)Σ(In ⊗Λ) = (In ⊗M)

(
n∑

i=1

En
i ⊗Σi

)
(In ⊗Λ)

= (In ⊗M)

(
n∑

i=1

En
i ⊗ΣiΛ

)
= (In ⊗M∆Λ)

So that, using this fact and Lemma F.1,

h = (M(Inm −W ⊗ΛΛ′)M
′
)−1M(In ⊗Λ)ϕ

=
[
(In ⊗M)Σ(Inm −W ⊗ΛΛ′)Σ(In ⊗M′)

]−1
(In ⊗M)Σ(In ⊗Λ)ϕ

=
[
(In ⊗M) ((In −W)Q⊗ Im)D2

(
Q−1 ⊗ Im

)
(In ⊗M′)

]−1
(In ⊗M∆Λ)ϕ

= (Q⊗ Ir)
[
(In ⊗M)D2(In ⊗M′)

]−1
(In ⊗M∆Λ)

(
Q−1(In −W)−1 ⊗ Iu

)
ϕ

= (Q⊗ Ir)

(
n∑

k=1

En
kk ⊗ (MD2

kM
′)−1M∆Λ

)(
Q−1(In −W)−1 ⊗ Iu

)
ϕ

=

n∑
k=1

[
QEn

kkQ
−1(In −W)−1 ⊗ (MD2

kM
′)−1M∆Λ

]
ϕ.

Finally, notice that, using the vectorization formula, we can rewrite this equation as

h = vec

(
n∑

k=1

(MD2
kM

′)−1M∆Λ
[
ϕ1 ϕ2 · · · ϕn

] (
QEn

kQ
−1(In −W)−1

)′)
,

and, it follows from equation (F2) that

h = vec

(
n∑

k=1

[
g1k g2k · · · gnk

] (
QEn

kQ
−1(In −W)−1

)′)
.

The result follows by rearranging this equation.
Notice that if all agents forecast the same fundamental, i.e. ϕj = ϕi then

hi =
n∑

k=1

ωikgk,



where
ωik ≡

n∑
j=1

e′iQEn
kQ

−1(In −W)−1ej ,

and ei is the i-th column of In. Finally, notice that in the proof of Proposition 3 we also obtain the
following corollary.

COROLLARY 1: Under Assumption 1, C is invertible which implies that the equilibrium exists
and is unique.



Appendix G: Proof of Proposition 8

In Section G1 we obtain the canonical factorization of the auto-covariance generating function for
the signal process which is necessary to apply the Wiener-Hopf prediction formula in Section G2.
Section G3 presents and solves the fixed point problem that allows us to solve for the equilibrium
explicitly. Section G4 describes the modified signal process and Section G5 shows the equiva-
lence between the equilibrium policy function and the forecasting problem with the modified signal
process.

G1. Canonical Factorization

This information structure is tractable enough that we can solve for the equilibrium analitically
using the Wiener-Hopf prediction formula to solve the necessary forecasting problems explicitly.
The observation equation is

[
zt
xit

]
=

[
τ
−1/2
ε 0 1

1−ρL

0 τ
−1/2
ν

1
1−ρL

]
︸ ︷︷ ︸

≡M(L)

 ε̂tν̂it
η̂t


︸ ︷︷ ︸
≡ŝit

.

where ŝit is a vector of standardized normal random variables. Let A (L) be the auto-covariance
generating function for the signal process, then

A (L) ≡ M (L)M′ (L−1
)
=

1

(L− ρ) (1− ρL)

[
L+ (L−ρ)(1−ρL)

τε
L

L L+ (L−ρ)(1−ρL)
τν

]
.

In order to apply the Wiener-Hopf prediction formula we need to obtain the canonical factorization
of A (L). Accordingly, let λ be the inside root of the determinant of A (L), that is

λ =
1

2

τε + τν
ρ

+
1

ρ
+ ρ−

√(
τε + τν
ρ

+
1

ρ
+ ρ

)2

− 4

 .

Then notice that

V ≡ 1

λ (τν + τε)

[
λτν+ρτε

τε
ρ− λ

ρ− λ ρτν+λτε
τν

]
,

and
B (L) ≡ 1

(τν + τε) (1− ρL)

[
τν + τε − (ρτν + λτε)L (ρ− λ) τνL

(ρ− λ) τεL τν + τε − (λτν + ρτε)L

]
,

are such that
B (L)VB′ (L−1

)
= M (L)M′ (L−1

)
.

G2. Wiener-Hopf Prediction Formula

Applying the prediction formula, the forecast of θt =
[
0 0 1

1−ρL

]
ŝit is given by

Eit [θt] =
[[
0 0 1

1−ρL

]
M′ (L−1

)
B′ (L−1

)−1
]
+
V−1B (L)−1

[
zt
xit

]
=

λ
[
τε τν

]
ρ (1− λL) (1− ρλ)

[
zt
xit

]
.(G1)



Let g (L) ≡ h1(L) + h2(L), then, the forecast about yt =
[
τ
−1/2
ε h1 (L) 0 g(L)

1−ρL

]
ŝit is given by

Eit [yt] =
[[
τ
−1/2
ε h1 (L) 0 g(L)

1−ρL

]
M′ (L−1

)
B′ (L−1

)−1
]
+
V−1B (L)−1

[
zt
xit

]

=

 [
(
(ρτν + λτε + λρ (λτν + ρτε))L− λρ (τν + τε)

(
1 + L2

))
h1 (L) τν (λ− ρ) (1− ρλ)Lh1 (L)]

ρ (τν + τε) (L− λ) (1− λL)

+
[τε (ρ− λ) (1− ρL)λh1 (λ) −τν (λ− ρ)λ (1− ρL)h1 (λ)]

ρ (τν + τε) (L− λ) (1− λL)

+
λ (L (1− ρλ) g (L)− λ (1− ρL) g (λ)) [τε τν]

ρ (1− ρλ) (L− λ) (1− λL)

}[
zt
xit

]
,

and the forecast about yt+1 =
[
τ
−1/2
ε L−1h1 (L) 0 L−1g(L)

1−ρL

]
ŝit is given by

Eit [yt+1] =
[[
τ
−1/2
ε L−1h1 (L) 0 L−1g(L)

1−ρL

]
M′ (L−1

)
B′ (L−1

)−1
]
+
V−1B (L)−1

[
zt
xit

]

=

 [
(
(ρτν + λτε + λρ (λτν + ρτε))L− λρ (τν + τε)

(
1 + L2

))
λh1 (L) λτν (λ− ρ) (1− ρλ)Lh1 (L)]

ρ (τν + τε)λL (L− λ) (1− λL)

+
[τε (ρ− λ) (1− ρL)λLh1 (λ) −λτν (λ− ρ) (1− ρL)Lh1 (λ)]

ρ (τν + τε)λL (L− λ) (1− λL)

+
[−λρ (L− λ) (τν + τε − (λτν + ρτε)L)h1 (0) λτν (λ− ρ)Lρ (L− λ)h1 (0)]

ρ (τν + τε)λL (L− λ) (1− λL)

+
λ ((1− ρλ) g (L)− (1− ρL) g (λ)) [τε τν]

ρ (1− ρλ) (L− λ) (1− λL)

}[
zt
xit

]
.

G3. Fixed Point

Substituting the forecast formulas into the best response function we obtain the following system

C(L)

[
h1 (L)
h2 (L)

]
= D (L) ,

where

C(L) ≡

[
1− (α+βL−1)

ρ(L−λ)(1−λL)
(ρτν+λτε+λρ(λτν+ρτε))L−λ(τν+τε)(ρL2−τεL+ρ)

(τν+τε)
− (α+βL−1)λLτε

ρ(L−λ)(1−λL)

− (α+βL−1)
ρ(L−λ)(1−λL)

−τν(λ−ρ)(L(λρ−1))+λLτν(τν+τε)
(τν+τε)

1− (α+βL−1)λLτν
ρ(L−λ)(1−λL)

]
,

and

D(L) ≡
γλ
[
τε τν

]′
ρ(1− λL)(1− ρλ)

− φ1
(1− ρL)

[
τε τν

]′
(L− λ)(1− λL)

− φ2

[
τε + τν − (λτν + ρτε)L τν(λ− ρ)L

]′
L(1− λL)

,



with

φ1 ≡
αλ+ β

λ

(
λ (λ− ρ)h1 (λ)

ρ (τν + τε)
+

λ2g (λ)

ρ (1− ρλ)

)
, and φ2 ≡

β

τν + τε
h1 (0) .

Using the fact that λ+ 1
λ = ρ+ 1

ρ + τε+τν
ρ to substitute out for τε, C (L) simplifies to

C(L) =

[
1− α− βL−1 − α+βL−1

ρ(L−λ)(1−λL)λLτε

0 1− α+βL−1

ρ(L−λ)(1−λL)λLτν

]
.

Next notice that the determinant of C(L),

det(C(L)) =
−λ
(
L2 −

(
λ+ 1

λ

)
L+ 1 + αL+β

ρ τν

)
((1− α)L− β)

L (1− λL) (L− λ)

has two inside roots,

ω1 ≡
ρ
(
λ+ 1

λ

)
− ατν −

√(
ρ
(
λ+ 1

λ

)
− ατν

)2 − 4 (ρ+ βτν) ρ

2ρ
, and ω2 ≡

β

1− α
,

and one outside root,
ω3 ≡

ρ+ βτν
ρ

1

ω1
.

Solving the system for h1(L) and h2(L) and choosing φ1 and φ2 to remove the inside poles of h1(L)
at ω1 and ω2,5 and rearranging we obtain the policy functions explicitly in terms of parameters,

h1 (L) =
ψ

ρ (ω3 − ρ)

τε(
1− 1

ω3
L
) , and h2 (L) =

ψ

ρ (ω3 − ρ)

(
(1− α)− β

ω3

)
τν(

1− 1
ω3
L
)

where
ψ ≡ γ

1− α− ρβ
.

G4. Modified Signal Process

Suppose, now, that agents receive the same public signals as before but the private signals are
given by

x̃it = θt + ν̃it

where ν̃it ∼ N (0, τ̃−1
ν ) and

τ̃ν ≡
(
(1− α)− β

ω3

)
τν .

5That is,

φ1 =
γρ ((1− α)λ− κ) (1− λω3) + γκλτν

ρ2 (1− ρλ) (ω3 − ρ) (1− α− ρκ)
, and φ2 =

γκ ((λ− ρ) (1− ρλ) + λτν)

ρ (1− ρλ) (ω3 − ρ) (1− α− ρκ) (λ− ρ)
.



Notice that, applying the Wiener-Hopf prediction formula, analogously to above, we obtain

Ẽit [θt] =
λ̃
[
τε τ̃ν

]
ρ
(
1− λ̃L

)(
1− ρλ̃

) [ zt
x̃it

]
,

where

λ̃ ≡ 1

2

τε + τ̃ν
ρ

+
1

ρ
+ ρ−

√(
τε + τ̃ν
ρ

+
1

ρ
+ ρ

)2

− 4

 .

G5. Equivalence Result

Finally, notice that
λ̃ = ω−1

3 ,

and, therefore,

ψẼit [θt] =
ψ

ρ (ω3 − ρ)

[
τε

(
(1− α)− β

ω3

)
τν

]
(
1− 1

ω3
L
) [

zt
x̃it

]
=
[
h1 (L) h2 (L)

] [ zt
x̃it

]
.

G6. Forward and Backward Looking Best Response

Consider the following best response function where agents also care about future and past ag-
gregate actions,

yit = γEit [θt] + αEit[yt] + βEit [yt+1] + κEit [yt−1] .

Following a similar procedure to the one above we can solve for the equilibrium best response
functions,

h1 (L) =
ψτε(

1− 1
ω3
L
)(

1− 1
ω4
L
) , and h2 (L) =

ψ (κω3ω4 − β) τν

ω3

(
1− 1

ω3
L
)

where

ψ ≡ γ (ρ+ κτν)

(κω4 − ρβ) (ρ+ κτν) ρω3 − ρ2κ (ρ+ βτν)ω4 + ρβ (ρ3 + (ρ (1− α)− κ) τν)
,

ω3 ≡
(1− α) τν + τε + 1 + ρ2 +

√
((1− α) τu + τε + 1 + ρ2)2 − 4 (ρ+ βτu) (ρ+ κτν)

2 (ρ+ κτν)
,

ω4 ≡
1− α+

√
(1− α)2 − 4βκ

2κ
.

Relative to a forecast of θt with the signal structure above (see equation (G1)) there is an extra lag
operator in the denominator of the response to the public signal, h1(L), here. Hence, the equilibrium
actions cannot be represented by a forecast of θt by a modification of the precision of the shocks
using the same information structure.



Appendix H: Additional Examples

H1. Multi-Action Example

In this section, we explore the effects of information frictions on the comovement between aggre-
gate outcomes. To our knowledge, this paper is the first to explore this issue. The joint dynamics
of multiple aggregate outcomes results from their intrinsic cross-dependence and from the degree of
information frictions. Using the single-agent solution from Proposition 4, we obtain a clear char-
acterization of these two forces. In particular, we show that increasing the degree of information
frictions can flip the sign of the correlation between aggregate variables.

Consider an economy in which agents choose two actions simultaneously. For simplicity, assume
that the two actions depend on the same aggregate fundamental, θt. Then, the agents’ best response
functions can be written as

y1it = Eit[θt] + a11Eit[y
1
t ] + a12Eit[y

2
t ]

y2it = Eit[θt] + a21Eit[y
1
t ] + a22Eit[y

2
t ]

where the matrix
A =

[
a11 a12
a21 a22

]
= Q

[
α1 0
0 α2

]
Q−1,

summarizes the dependence on aggregate actions. The second equality represents the eigendecom-
position of matrix A, where α1 and α2 denote its eigenvalues and Q is a matrix composed of its
eigenvectors. Without loss of generality, let ω1 and ω2, be such that

Q =

[
1 1
ω2
ω1

1−(1−α1)ω2

1−(1−α1)ω2

]
.

Notice that choosing α1, α2, ω1 and ω2 we can generate any matrix A that satisfies Assumption
4. The policy rule permits a simpler format when represented in terms of these parameters rather
than the ones in the original matrix A. Applying Proposition 4, it follows that

y1t = ω1Ẽt[θt;α1] + ϕ1Ẽt[θt;α2],

y2t = ω2Ẽt[θt;α1] + ϕ2Ẽt[θt;α2].

where ϕ1 and ϕ2 are functions of the primitives

ϕ1 ≡
1

1− α2
− 1− α1

1− α2
ω1, and ϕ2 ≡

1

1− α2
− 1− α1

1− α2
ω2.

This representation makes clear how the degrees of strategic complementarity affect each action.
In particular, if α1 = α2, then Ẽt[θt;α1] = Ẽt[θt;α2], and the actions are the same irrespective of
how these forecasts are weighted. If α1 ̸= α2, the behavior of the two actions does depend on the
weights.

Next, we show in a numerical example how dispersed information can affect the relationship
between the two actions. Suppose that the fundamental follows an AR(1) process

θt = ρθt−1 + ηt, ηt ∼ N (0, τ−1
η ),

and that agents only receive a private signal about θt,

xit = θt + νit, νit ∼ N (0, τ−1
ν ).

We set the eigenvalues to α1 = −0.5, and α2 = 0.5, so the precision of the α1-modified signals
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Figure H1. Multi-action Example

Note: We set the following parameters, τη = 1, ρ = 0.75, ω1 = 0.6 and ω2 = 1.4, α1 = −0.5 and α2 = 0.5.

are higher. We also set the eigenvector parameters to ω1 = 0.6, and ω2 = 1.4, which implies that
ϕ1 = 0.2, and ϕ2 = −2.2. In the perfect information benchmark, both modified forecasts collapse
to the fundamental itself, that is Ẽt[θt;α1] = Ẽt[θt;α2] = θt. The aggregate outcomes are, then,
uniquely pinned down by the fundamental and the parameters controlling strategic interactions.
Explicitly,

y1t = (ω1 + ϕ1)θt, and y2t = (ω2 + ϕ2)θt.

Under our parameterization, (ω1+ϕ1) and (ω2+ϕ2) have opposite signs, and therefore, the actions
are perfectly negatively correlated, as shown in Figure H1a. Figure H1c shows that, when τν = 1,
the two actions still move in different directions. The reason is that both (1−α1)τν and (1−α2)τν
are large enough, so that Ẽt[θt;α1] and Ẽt[θt;α2] are still quite responsive and close to one another,
as shown in Figure H1d.

When τν = 0.1, the modified precisions are low enough yielding a Ẽt[θt;α2] close to zero; recall
that α2 = 0.5 > −0.5 = α1. As a result, even though ϕ1 and ϕ2 have the opposite signs, the
terms with Ẽt[θt;α1] dominate and the aggregate actions comove. In fact, Figure H2 shows that
the correlation between the two actions is decreasing in τν monotonically, and switch from positive
to negative.

This result—that the correlation between actions is increasing in the intensity of information
frictions—depends on the particular specification of parameters in this example. However, it high-
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Figure H2. Correlation between y1t and y2t for different τν

lights the fact that dispersed information may significantly affect the joint behavior of interactive
actions.

H2. Endogenous Learning Example

Relative to Example 1, suppose agents also receive a signal about the aggregate action yt, which
is an endogenous object. Letting εit = [θt, νit, εit]

′, the information structure can be represented
within the framework of equation (25):

M(L) =

[
1 1 0
0 0 1

]
, p(L) =

[
0
1

]
⇒

xit = θt + νit

zit = yt + εit.

For simplicity, we also assume that all the shocks are i.i.d.: θt ∼ N (0, τ−1
θ ), νit ∼ N (0, τ−1

ν ), and
εit ∼ N (0, τ−1

ε ). This type of information structure is widely used in the literature on endogenous
learning.

The aggregate action, yt, must depend on the fundamental, θt—the only aggregate shock in this
economy—so we conjecture that

yt = H θt,

for some constant H. Since agents do not internalize the effects of their own actions on others’
signals, they take H as given. Hence, their forecasting problem, given H, is equivalent to one in
which their signals are generated by the following exogenous process:

M̂(L) =

[
1 1 0
H 0 1

]
⇒

xit = θt + νit

ẑit = H θt + εit

With endogenous information, even in the absence of a primitive coordinating motive (α = 0), agents
implicitly coordinate via their signal processes. Using the single-agent solution, one can focus on
the alternative simple forecasting problem in which all the coordination occurs via information. In
the example at hand, the aggregate action can be written as

yt =

∫
Ẽit[θt] =

(1− α)τν
τθ + (1− α)τν +H2 (1− α)τε

∫
xit +

H (1− α)τε
τθ + (1− α)τν +H2 (1− α)τε

∫
ẑit.

At this stage, the equivalence result spares us the trouble of making an inference about yt, and this
policy rule already satisfies the first two equilibrium conditions in Definition 3. To make sure that
the perceived law of motion for yt is consistent with agents’ signal processes, condition (27) must



also be satisfied, which reduces to a cubic polynomial equation in terms of H,

(H1) (1− α)τεH3 − (1− α)τεH2 + (τθ + (1− α)τν)H− (1− α)τν = 0.

It is clear that there may exist multiple real solutions to equation (H1), which correspond to multiple
equilibria. The origin of this multiplicity lies in the self-fulfilling property of the signals’ informa-
tiveness. For example, if all agents respond to the fundamental aggressively, if H is high, then the
signal zit is very informative. As a result, agents can learn more from the endogenous signal and
indeed become more responsive.

*

REFERENCES

Angeletos, George-Marios, and Jennifer La’O. 2010. “Noisy Business Cycles.” In NBER
Macroeconomics Annual 2009, Volume 24. 319–378. University of Chicago Press.

Hamilton, James Douglas. 1994. Time Series Analysis. . 2 ed., Princeton University Press.

Townsend, Robert M. 1983. “Forecasting the Forecasts of Others.” Journal of Political Economy,
91(4): 546–88.

Whittle, Peter. 1963. Prediction and Regulation by Linear Least-Square Methods. University of
Minnesota Press.

Woodford, Michael. 2002. “Imperfect Common Knowledge and the Effects of Monetary Policy.”
In Knowledge, Information, and Expectations in Modern Macroeconomics: In Honour of Edmund
S. Phelps. , ed. P. Aghion, R. Frydman, J. Stiglitz and M.Woodford. Princeton University Press.


